Chapter 17

17-1 Given: F-1 Polyamide, $b=6 \mathrm{in}, d=2$ in with $n=1750 \mathrm{rev} / \mathrm{min}, H_{\mathrm{nom}}=2 \mathrm{hp}, C=9(12)=$ 108 in, velocity ratio $=0.5, K_{s}=1.25, n_{d}=1$

$$
\begin{aligned}
& V=\pi d \mathrm{n} / 12=\pi(2)(1750) / 12=916.3 \mathrm{ft} / \mathrm{min} \\
& D=d / \text { vel ratio }=2 / 0.5=4 \mathrm{in}
\end{aligned}
$$

Eq. (17-1): $\quad \theta_{d}=\pi-2 \sin ^{-1} \frac{D-d}{2 C}=\pi-2 \sin ^{-1}\left[\frac{4-2}{2(108)}\right]=3.123 \mathrm{rad}$
Table 17-2: $\quad t=0.05 \mathrm{in}, d_{\text {min }}=1.0 \mathrm{in}, F_{a}=35 \mathrm{lbf} / \mathrm{in}, \gamma=0.035 \mathrm{lbf} / \mathrm{in}^{3}, f=0.5$

$$
w=12 \gamma b t=12(0.035) 6(0.05)=0.126 \mathrm{lbf} / \mathrm{ft}
$$

(a) Eq. (e), p. 885: $\quad F_{c}=\frac{w}{g}\left(\frac{V}{60}\right)^{2}=\frac{0.126}{32.17}\left(\frac{916.3}{60}\right)^{2}=0.913 \mathrm{lbf} \quad$ Ans.

$$
\begin{aligned}
& T=\frac{63025 H_{\text {nom }} K_{s} n_{d}}{n}=\frac{63025(2)(1.25)(1)}{1750}=90.0 \mathrm{lbf} \cdot \mathrm{in} \\
& \Delta F=\left(F_{1}\right)_{a}-F_{2}=\frac{2 T}{d}=\frac{2(90.0)}{2}=90.0 \mathrm{lbf}
\end{aligned}
$$

Table 17-4: $\quad C_{p}=0.70$
Eq. $(17-12): \quad\left(F_{1}\right)_{a}=b F_{a} C_{p} C_{v}=6(35)(0.70)(1)=147 \mathrm{lbf} \quad$ Ans.

$$
F_{2}=\left(F_{1}\right)_{a}-\left[\left(F_{1}\right)_{a}-F_{2}\right]=147-90=57 \mathrm{lbf} \quad \text { Ans. }
$$

Do not use Eq. (17-9) because we do not yet know f^{\prime}
Eq. (i), p. 886: $\quad F_{i}=\frac{\left(F_{1}\right)_{a}+F_{2}}{2}-F_{c}=\frac{147+57}{2}-0.913=101.1 \mathrm{lbf} \quad$ Ans.
Using Eq. (17-7) solved for f^{\prime} (see step 8, p.888),

$$
f^{\prime}=\frac{1}{\theta_{d}} \ln \left[\frac{\left(F_{1}\right)_{a}-F_{c}}{F_{2}-F_{c}}\right]=\frac{1}{3.123} \ln \left(\frac{147-0.913}{57-0.913}\right)=0.307
$$

The friction is thus underdeveloped.
(b) The transmitted horsepower is, with $\Delta F=\left(F_{1}\right)_{a}-F_{2}=90 \mathrm{lbf}$,

Eq. (j), p. 887: $\quad H=\frac{(\Delta F) V}{33000}=\frac{90(916.3)}{33000}=2.5 \mathrm{hp} \quad$ Ans.

$$
n_{f s}=\frac{H}{H_{\text {nom }} K_{s}}=\frac{2.5}{2(1.25)}=1
$$

Eq. (17-1): $\quad \theta_{D}=\pi+2 \sin ^{-1} \frac{D-d}{2 C}=\pi+2 \sin ^{-1}\left[\frac{4-2}{2(108)}\right]=3.160 \mathrm{rad}$
Eq. (17-2): $\quad L=\left[4 C^{2}-(D-d)^{2}\right]^{1 / 2}+\left(D \theta_{D}+d \theta_{d}\right) / 2$

$$
=\left[4(108)^{2}-(4-2)^{2}\right]^{1 / 2}+[4(3.160)+2(3.123)] / 2=225.4 \text { in Ans. }
$$

(c) Eq. (17-13): $\quad \operatorname{dip}=\frac{3 C^{2} w}{2 F_{i}}=\frac{3(108 / 12)^{2}(0.126)}{2(101.1)}=0.151$ in Ans.

Comment: The solution of the problem is finished; however, a note concerning the design is presented here.

The friction is under-developed. Narrowing the belt width to 5 in (if size is available) will increase f^{\prime}. The limit of narrowing is $b_{\min }=4.680 \mathrm{in}$, whence

$$
\begin{array}{ll}
w=0.0983 \mathrm{lbf} / \mathrm{ft} & \left(F_{1}\right)_{a}=114.7 \mathrm{lbf} \\
F_{c}=0.713 \mathrm{lbf} & F_{2}=24.7 \mathrm{lbf} \\
T=90 \mathrm{lbf} \cdot \mathrm{in} \text { (same) } & f^{\prime}=f=0.50 \\
\Delta F=\left(F_{1}\right)_{a}-F_{2}=90 \mathrm{lbf} & \text { dip }=0.173 \mathrm{in} \\
F_{i}=68.9 \mathrm{lbf} &
\end{array}
$$

Longer life can be obtained with a 6 -inch wide belt by reducing F_{i} to attain $f^{\prime}=0.50$. Prob. 17-8 develops an equation we can use here

$$
\begin{aligned}
& F_{1}=\frac{\left(\Delta F+F_{c}\right) \exp (f \theta)-F_{c}}{\exp (f \theta)-1} \\
& F_{2}=F_{1}-\Delta F \\
& F_{i}=\frac{F_{1}+F_{2}}{2}-F_{c} \\
& f^{\prime}=\frac{1}{\theta_{d}} \ln \left(\frac{F_{1}-F_{c}}{F_{2}-F_{c}}\right) \\
& \operatorname{dip}=\frac{3 C^{2} w}{2 F_{i}}
\end{aligned}
$$

which in this case, $\theta_{d}=3.123 \mathrm{rad}, \exp (f \theta)=\exp [0.5(3.123)]=4.766, w=0.126 \mathrm{lbf} / \mathrm{ft}$, $\Delta F=90.0 \mathrm{lbf}, F_{c}=0.913 \mathrm{lbf}$, and gives

$$
\begin{aligned}
& F_{1}=\frac{(0.913+90) 4.766-0.913}{4.766-1}=114.8 \mathrm{lbf} \\
& F_{2}=114.8-90=24.8 \mathrm{lbf} \\
& F_{i}=(114.8+24.8) / 2-0.913=68.9 \mathrm{lbf} \\
& f^{\prime}=\frac{1}{3.123} \ln \left(\frac{114.8-0.913}{24.8-0.913}\right)=0.50 \\
& \operatorname{dip}=\frac{3(108 / 12)^{2} 0.126}{2(68.9)}=0.222 \mathrm{in}
\end{aligned}
$$

So, reducing F_{i} from 101.1 lbf to 68.9 lbf will bring the undeveloped friction up to 0.50 , with a corresponding dip of 0.222 in . Having reduced F_{1} and F_{2}, the endurance of the belt is improved. Power, service factor and design factor have remained intact.

17-2 Double the dimensions of Prob. 17-1.
In Prob. 17-1, F-1 Polyamide was used with a thickness of 0.05 in . With what is available in Table 17-2 we will select the Polyamide A-2 belt with a thickness of 0.11 in . Also, let $b=12 \mathrm{in}, d=4$ in with $n=1750 \mathrm{rev} / \mathrm{min}, H_{\mathrm{nom}}=2 \mathrm{hp}, C=18(12)=216 \mathrm{in}$, velocity ratio $=0.5, K_{s}=1.25, n_{d}=1$.

$$
V=\pi d \mathrm{n} / 12=\pi(4)(1750) / 12=1833 \mathrm{ft} / \mathrm{min}
$$

$$
D=d / \text { vel ratio }=4 / 0.5=8 \text { in }
$$

Eq. (17-1): $\quad \theta_{d}=\pi-2 \sin ^{-1} \frac{D-d}{2 C}=\pi-2 \sin ^{-1}\left[\frac{8-4}{2(216)}\right]=3.123 \mathrm{rad}$
Table 17-2: $\quad t=0.11 \mathrm{in}, d_{\text {min }}=2.4 \mathrm{in}, F_{a}=60 \mathrm{lbf} / \mathrm{in}, \gamma=0.037 \mathrm{lbf} / \mathrm{in}^{3}, f=0.8$

$$
w=12 \gamma b t=12(0.037) 12(0.11)=0.586 \mathrm{lbf} / \mathrm{ft}
$$

(a) Eq. (e), p. 885: $\quad F_{c}=\frac{w}{g}\left(\frac{V}{60}\right)^{2}=\frac{0.586}{32.17}\left(\frac{1833}{60}\right)^{2}=17.0 \mathrm{lbf} \quad$ Ans.

$$
\begin{aligned}
& T=\frac{63025 H_{\text {nom }} K_{s} n_{d}}{n}=\frac{63025(2)(1.25)(1)}{1750}=90.0 \mathrm{lbf} \cdot \mathrm{in} \\
& \Delta F=\left(F_{1}\right)_{a}-F_{2}=\frac{2 T}{d}=\frac{2(90.0)}{4}=45.0 \mathrm{lbf}
\end{aligned}
$$

Table 17-4: $\quad C_{p}=0.73$

Eq. $(17-12): \quad\left(F_{1}\right)_{a}=b F_{a} C_{p} C_{v}=12(60)(0.73)(1)=525.6 \mathrm{lbf} \quad$ Ans.

$$
F_{2}=\left(F_{1}\right)_{a}-\left[\left(F_{1}\right)_{a}-F_{2}\right]=525.6-45=480.6 \mathrm{lbf} \quad \text { Ans. }
$$

Eq. (i), p. 886: $\quad F_{i}=\frac{\left(F_{1}\right)_{a}+F_{2}}{2}-F_{c}=\frac{525.6+480.6}{2}-17.0=486.1 \mathrm{lbf} \quad$ Ans.
Eq. (17-9):

$$
f^{\prime}=\frac{1}{\theta_{d}} \ln \left[\frac{\left(F_{1}\right)_{a}-F_{c}}{F_{2}-F_{c}}\right]=\frac{1}{3.123} \ln \left(\frac{525.6-17.0}{480.6-17.0}\right)=0.0297
$$

The friction is thus underdeveloped.
(b) The transmitted horsepower is, with $\Delta F=\left(F_{1}\right)_{a}-F_{2}=45 \mathrm{lbf}$,

$$
\begin{aligned}
H & =\frac{(\Delta F) V}{33000}=\frac{45(1833)}{33000}=2.5 \mathrm{hp} \quad \text { Ans. } \\
n_{f s} & =\frac{H}{H_{\mathrm{nom}} K_{s}}=\frac{2.5}{2(1.25)}=1
\end{aligned}
$$

Eq. (17-1): $\quad \theta_{D}=\pi+2 \sin ^{-1} \frac{D-d}{2 C}=\pi+2 \sin ^{-1}\left[\frac{8-4}{2(216)}\right]=3.160 \mathrm{rad}$
Eq. (17-2): $\quad L=\left[4 C^{2}-(D-d)^{2}\right]^{1 / 2}+\left(D \theta_{D}+d \theta_{d}\right) / 2$

$$
=\left[4(216)^{2}-(8-4)^{2}\right]^{1 / 2}+[8(3.160)+4(3.123)] / 2=450.9 \text { in Ans. }
$$

(c) Eq. $(17-13): \quad \operatorname{dip}=\frac{3 C^{2} w}{2 F_{i}}=\frac{3(216 / 12)^{2}(0.586)}{2(486.1)}=0.586$ in Ans.

17-3

As a design task, the decision set on p. 893 is useful.
A priori decisions:

- Function: $H_{\text {nom }}=60 \mathrm{hp}, n=380 \mathrm{rev} / \mathrm{min}, C=192 \mathrm{in}, K_{s}=1.1$
- Design factor: $n_{d}=1$
- Initial tension: Catenary
- Belt material. Table 17-2: Polyamide A-3, $F_{a}=100 \mathrm{lbf} / \mathrm{in}, \gamma=0.042 \mathrm{lbf} / \mathrm{in}^{3}, f=0.8$
- Drive geometry: $d=D=48$ in
- Belt thickness: $t=0.13$ in

Design variable: Belt width.
Use a method of trials. Initially, choose $b=6$ in

$$
\begin{aligned}
& V=\frac{\pi d n}{12}=\frac{\pi(48)(380)}{12}=4775 \mathrm{ft} / \mathrm{min} \\
& w=12 \gamma b t=12(0.042)(6)(0.13)=0.393 \mathrm{lbf} / \mathrm{ft} \\
& F_{c}=\frac{w V^{2}}{g}=\frac{0.393(4775 / 60)^{2}}{32.17}=77.4 \mathrm{lbf} \\
& T=\frac{63025 H_{\mathrm{nom}} K_{s} n_{d}}{n}=\frac{63025(60)(1.1)(1)}{380}=10946 \mathrm{lbf} \cdot \mathrm{in} \\
& \Delta F=\frac{2 T}{d}=\frac{2(10946)}{48}=456.1 \mathrm{lbf} \\
& F_{1}=\left(F_{1}\right)_{a}=b F_{a} C_{p} C_{v}=6(100)(1)(1)=600 \mathrm{lbf} \\
& F_{2}=F_{1}-\Delta F=600-456.1=143.9 \mathrm{lbf}
\end{aligned}
$$

Transmitted power H

$$
\begin{aligned}
& H=\frac{\Delta F(V)}{33000}=\frac{456.1(4775)}{33000}=66 \mathrm{hp} \\
& F_{i}=\frac{F_{1}+F_{2}}{2}-F_{c}=\frac{600+143.9}{2}-77.4=294.6 \mathrm{lbf} \\
& f^{\prime}=\frac{1}{\theta_{d}} \ln \frac{F_{1}-F_{c}}{F_{2}-F_{c}}=\frac{1}{\pi} \ln \left(\frac{600-77.4}{143.9-77.4}\right)=0.656
\end{aligned}
$$

Eq. $(17-2): \quad L=\left[4(192)^{2}-(48-48)^{2}\right]^{1 / 2}+[48(\pi)+48(\pi)] / 2=534.8$ in
Friction is not fully developed, so $b_{\text {min }}$ is just a little smaller than 6 in (5.7 in). Not having a figure of merit, we choose the most narrow belt available (6 in). We can improve the design by reducing the initial tension, which reduces F_{1} and F_{2}, thereby increasing belt life (see the result of Prob. 17-8). This will bring f^{\prime} to 0.80

$$
\begin{aligned}
& F_{1}=\frac{\left(\Delta F+F_{c}\right) \exp (f \theta)-F_{c}}{\exp (f \theta)-1} \\
& \exp (f \theta)=\exp (0.80 \pi)=12.345
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& F_{1}=\frac{(456.1+77.4)(12.345)-77.4}{12.345-1}=573.7 \mathrm{lbf} \\
& F_{2}=F_{1}-\Delta F=573.7-456.1=117.6 \mathrm{lbf} \\
& F_{i}=\frac{F_{1}+F_{2}}{2}-F_{c}=\frac{573.7+117.6}{2}-77.4=268.3 \mathrm{lbf}
\end{aligned}
$$

These are small reductions since f^{\prime} is close to f, but improvements nevertheless.

$$
\begin{aligned}
& f^{\prime}=\frac{1}{\theta_{d}} \ln \frac{F_{1}-F_{c}}{F_{2}-F_{c}}=\frac{1}{\pi} \ln \left(\frac{573.7-77.4}{117.6-77.4}\right)=0.80 \\
& \operatorname{dip}=\frac{3 C^{2} w}{2 F_{i}}=\frac{3(192 / 12)^{2}(0.393)}{2(268.3)}=0.562 \mathrm{in}
\end{aligned}
$$

17-4 From the last equation given in the problem statement,

$$
\begin{aligned}
& \exp (f \phi)=\frac{1}{1-\left\{2 T /\left[d\left(a_{0}-a_{2}\right) b\right]\right\}} \\
& {\left[1-\frac{2 T}{d\left(a_{0}-a_{2}\right) b}\right] \exp (f \phi)=1} \\
& {\left[\frac{2 T}{d\left(a_{0}-a_{2}\right) b}\right] \exp (f \phi)=\exp (f \phi)-1} \\
& b=\frac{1}{a_{0}-a_{2}}\left(\frac{2 T}{d}\right)\left[\frac{\exp (f \phi)}{\exp (f \phi)-1}\right]
\end{aligned}
$$

But $2 T / d=33000 H_{d} / V$. Thus,

$$
b=\frac{1}{a_{0}-a_{2}}\left(\frac{33000 H_{d}}{V}\right)\left[\frac{\exp (f \phi)}{\exp (f \phi)-1}\right] \quad \text { Q.E.D. }
$$

17-5 Refer to Ex. 17-1 on p. 890 for the values used below.
(a) The maximum torque prior to slip is,

$$
T=\frac{63025 H_{\mathrm{nom}} K_{s} n_{d}}{n}=\frac{63025(15)(1.25)(1.1)}{1750}=742.8 \mathrm{lbf} \cdot \text { in } \quad \text { Ans. }
$$

The corresponding initial tension, from Eq. (17-9), is,

$$
F_{i}=\frac{T}{d}\left(\frac{\exp (f \theta)+1}{\exp (f \theta)-1}\right)=\frac{742.8}{6}\left(\frac{11.17+1}{11.17-1}\right)=148.1 \mathrm{lbf} \quad \text { Ans. }
$$

(b) See Prob. 17-4 statement. The final relation can be written

$$
b_{\min }=\frac{1}{F_{a} C_{p} C_{v}-(12 \gamma t / 32.174)(V / 60)^{2}}\left\{\frac{33000 H_{a} \exp (f \theta)}{V[\exp (f \theta)-1]}\right\}
$$

$$
=\frac{1}{100(0.7)(1)-\{[12(0.042)(0.13)] / 32.174\}(2749 / 60)^{2}}\left[\frac{33000(20.6)(11.17)}{2749(11.17-1)}\right]
$$

$=4.13$ in Ans.
This is the minimum belt width since the belt is at the point of slip. The design must round up to an available width.

Eq. (17-1):

$$
\begin{aligned}
\theta_{d} & =\pi-2 \sin ^{-1}\left(\frac{D-d}{2 C}\right)=\pi-2 \sin ^{-1}\left[\frac{18-6}{2(96)}\right] \\
& =3.016511 \mathrm{rad} \\
\theta_{D} & =\pi+2 \sin ^{-1}\left(\frac{D-d}{2 C}\right)=\pi+2 \sin ^{-1}\left[\frac{18-6}{2(96)}\right] \\
& =3.266674 \mathrm{rad}
\end{aligned}
$$

Eq. (17-2):

$$
\begin{aligned}
L & =\left[4(96)^{2}-(18-6)^{2}\right]^{1 / 2}+\frac{1}{2}[18(3.266674)+6(3.016511)] \\
& =230.074 \text { in Ans. }
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \Delta F=\frac{2 T}{d}=\frac{2(742.8)}{6}=247.6 \mathrm{lbf} \\
& \left(F_{1}\right)_{a}=b F_{a} C_{p} C_{v}=F_{1}=4.13(100)(0.70)(1)=289.1 \mathrm{lbf} \\
& F_{2}=F_{1}-\Delta F=289.1-247.6=41.5 \mathrm{lbf} \\
& w=12 \gamma b t=12(0.042) 4.13(0.130)=0.271 \mathrm{lbf} / \mathrm{ft} \\
& F_{c}=\frac{w}{g}\left(\frac{V}{60}\right)^{2}=\frac{0.271}{32.17}\left(\frac{2749}{60}\right)^{2}=17.7 \mathrm{lbf} \\
& F_{i}=\frac{F_{1}+F_{2}}{2}-F_{c}=\frac{289.1+41.5}{2}-17.7=147.6 \mathrm{lbf}
\end{aligned}
$$

Transmitted belt power H

$$
\begin{aligned}
& H=\frac{\Delta F(V)}{33000}=\frac{247.6(2749)}{33000}=20.6 \mathrm{hp} \\
& n_{f s}=\frac{H}{H_{\mathrm{nom}} K_{s}}=\frac{20.6}{15(1.25)}=1.1
\end{aligned}
$$

$$
\text { Dip: } \quad \operatorname{dip}=\frac{3 C^{2} w}{2 F_{i}}=\frac{3(96 / 12)^{2}(0.271)}{2(147.6)}=0.176 \text { in }
$$

(d) If you only change the belt width, the parameters in the following table change as shown.

	Ex. 17-1	This Problem
b	6.00	4.13
w	0.393	0.271
F_{c}	25.6	17.7
$\left(F_{1}\right)_{a}$	420	289
F_{2}	172.4	41.5
F_{i}	270.6	147.6
f^{\prime}	0.33^{*}	$0.80^{* *}$
dip	0.139	0.176

*Friction underdeveloped **Friction fully developed

17-6 The transmitted power is the same.

			n-Fold
$b=6$ in	$b=12$ in	Change	

If we relax F_{i} to develop full friction $(f=0.80)$ and obtain longer life, then

			n-Fold
	$b=6$ in	$b=12$ in	Change
F_{c}	25.6	51.3	2
F_{i}	148.1	148.1	1
F_{1}	297.6	323.2	1.09
F_{2}	50	75.6	1.51
f^{\prime}	0.80	0.80	1
dip	0.255	0.503	2

17-7

Find the resultant of F_{1} and F_{2} :

$$
\begin{aligned}
& \alpha=\sin ^{-1} \frac{D-d}{2 C} \\
& \sin \alpha=\frac{D-d}{2 C} \\
& \cos \alpha \doteq 1-\frac{1}{2}\left(\frac{D-d}{2 C}\right)^{2} \\
& R^{x}=F_{1} \cos \alpha+F_{2} \cos \alpha=\left(F_{1}+F_{2}\right)\left[1-\frac{1}{2}\left(\frac{D-d}{2 C}\right)^{2}\right] \\
& R^{y}=F_{1} \sin \alpha-F_{2} \sin \alpha=\left(F_{1}-F_{2}\right) \frac{D-d}{2 C} \quad \text { Ans. }
\end{aligned}
$$

Ans.

From Ex. 17-2, $d=16 \mathrm{in}, D=36 \mathrm{in}, C=16(12)=192 \mathrm{in}, F_{1}=940 \mathrm{lbf}, F_{2}=276 \mathrm{lbf}$

$$
\begin{aligned}
\alpha & =\sin ^{-1}\left[\frac{36-16}{2(192)}\right]=2.9855^{\circ} \\
R^{x} & =(940+276)\left[1-\frac{1}{2}\left(\frac{36-16}{2(192)}\right)^{2}\right]=1214.4 \mathrm{lbf} \\
R^{y} & =(940-276)\left[\frac{36-16}{2(192)}\right]=34.6 \mathrm{lbf} \\
T & =\left(F_{1}-F_{2}\right)\left(\frac{d}{2}\right)=(940-276)\left(\frac{16}{2}\right)=5312 \mathrm{lbf} \cdot \mathrm{in}
\end{aligned}
$$

17-8 Begin with Eq. (17-10),

$$
F_{1}=F_{c}+F_{i} \frac{2 \exp (f \theta)}{\exp (f \theta)-1}
$$

Introduce Eq. (17-9):

$$
\begin{aligned}
& F_{1}=F_{c}+d\left[\frac{\exp (f \theta)+1}{\exp (f \theta)-1}\right]\left[\frac{2 \exp (f \theta)}{\exp (f \theta)+1}\right]=F_{c}+\frac{2 T}{d}\left[\frac{\exp (f \theta)}{\exp (f \theta)-1}\right] \\
& F_{1}=F_{c}+\Delta F \frac{\exp (f \theta)}{\exp (f \theta)-1}
\end{aligned}
$$

Now add and subtract $F_{c}\left[\frac{\exp (f \theta)}{\exp (f \theta)-1}\right]$

$$
\begin{aligned}
F_{1} & =F_{c}+F_{c}\left[\frac{\exp (f \theta)}{\exp (f \theta)-1}\right]+\Delta F\left[\frac{\exp (f \theta)}{\exp (f \theta)-1}\right]-F_{c}\left[\frac{\exp (f \theta)}{\exp (f \theta)-1}\right] \\
& =\left(F_{c}+\Delta F\right)\left[\frac{\exp (f \theta)}{\exp (f \theta)-1}\right]+F_{c}-F_{c}\left[\frac{\exp (f \theta)}{\exp (f \theta)-1}\right] \\
& =\left(F_{c}+\Delta F\right)\left[\frac{\exp (f \theta)}{\exp (f \theta)-1}\right]-\frac{F_{c}}{\exp (f \theta)-1} \\
& =\frac{\left(F_{c}+\Delta F\right) \exp (f \theta)-F_{c}}{\exp (f \theta)-1} \text { Q.E.D. }
\end{aligned}
$$

From Ex. 17-2: $\theta_{d}=3.037 \mathrm{rad}, \Delta F=664 \mathrm{lbf}, \exp (f \theta)=\exp [0.80(3.037)]=11.35$, and $F_{c}=73.4 \mathrm{lbf}$.

$$
\begin{aligned}
& F_{1}=\frac{(73.4+664) 11.35-73.4}{(11.35-1)}=802 \mathrm{lbf} \\
& F_{2}=F_{1}-\Delta F=802-664=138 \mathrm{lbf} \\
& F_{i}=\frac{802+138}{2}-73.4=396.6 \mathrm{lbf} \\
& f^{\prime}=\frac{1}{\theta_{d}} \ln \left(\frac{F_{1}-F_{c}}{F_{2}-F_{c}}\right)=\frac{1}{3.037} \ln \left(\frac{802-73.4}{138-73.4}\right)=0.80 \quad \text { Ans. }
\end{aligned}
$$

17-9 This is a good class project. Form four groups, each with a belt to design. Once each group agrees internally, all four should report their designs including the forces and torques on the line shaft. If you give them the pulley locations, they could design the line shaft.

17-10 If you have the students implement a computer program, the design problem selections may differ, and the students will be able to explore them. For $K_{s}=1.25, n_{d}=1.1, d=14$ in and $D=28 \mathrm{in}$, a polyamide A-5 belt, 8 inches wide, will do ($b_{\min }=6.58 \mathrm{in}$)

17-11 An efficiency of less than unity lowers the output for a given input. Since the object of
the drive is the output, the efficiency must be incorporated such that the belt's capacity is increased. The design power would thus be expressed as

$$
H_{d}=\frac{H_{\mathrm{nom}} K_{s} n_{d}}{\operatorname{eff}} \quad \text { Ans. }
$$

17-12 Some perspective on the size of F_{c} can be obtained from

$$
F_{c}=\frac{w}{g}\left(\frac{V}{60}\right)^{2}=\frac{12 \gamma b t}{g}\left(\frac{V}{60}\right)^{2}
$$

An approximate comparison of non-metal and metal belts is presented in the table below.

	Non-metal	Metal
$\gamma, \mathrm{lbf} / \mathrm{in}^{3}$	0.04	0.280
b, in	5.00	1.000
t, in	0.20	0.005

The ratio w / w_{m} is

$$
\frac{w}{w_{m}}=\frac{12(0.04)(5)(0.2)}{12(0.28)(1)(0.005)} \doteq 29
$$

The second contribution to F_{c} is the belt peripheral velocity which tends to be low in metal belts used in instrument, printer, plotter and similar drives. The velocity ratio squared influences any $F_{c} /\left(F_{c}\right)_{m}$ ratio.

It is common for engineers to treat F_{c} as negligible compared to other tensions in the belting problem. However, when developing a computer code, one should include F_{c}.

17-13 Eq. (17-8):

$$
\Delta F=F_{1}-F_{2}=\left(F_{1}-F_{c}\right) \frac{\exp (f \theta)-1}{\exp (f \theta)} \doteq F_{1} \frac{\exp (f \theta)-1}{\exp (f \theta)}
$$

Assuming negligible centrifugal force and setting $F_{1}=a b$ from step 3 , p. 897,

$$
\begin{equation*}
b_{\min }=\frac{\Delta F}{a} \frac{\exp (f \theta)}{\exp (f \theta)-1} \tag{1}
\end{equation*}
$$

Also,

$$
\begin{aligned}
H_{d} & =H_{\mathrm{nom}} K_{s} n_{d}=\frac{(\Delta F) V}{33000} \\
\Delta F & =\frac{33000 H_{\mathrm{nom}} K_{s} n_{d}}{V}
\end{aligned}
$$

Substituting into Eq. (1), $\quad b_{\min }=\frac{1}{a}\left(\frac{33000 H_{d}}{V}\right) \frac{\exp (f \theta)}{\exp (f \theta)-1} \quad$ Ans.

17-14 The decision set for the friction metal flat-belt drive is:
A priori decisions

- Function: $H_{\text {nom }}=1 \mathrm{hp}, n=1750 \mathrm{rev} / \mathrm{min}, V R=2, C \doteq 15 \mathrm{in}, K_{s}=1.2$,

$$
N_{p}=10^{6} \text { belt passes. }
$$

- Design factor: $n_{d}=1.05$
- Belt material and properties: 301/302 stainless steel

Table 17-8: $\quad S_{y}=175 \mathrm{kpsi}, \quad E=28 \mathrm{Mpsi}, \quad v=0.285$

- Drive geometry: $d=2 \mathrm{in}, D=4$ in
- Belt thickness: $t=0.003$ in

Design variables:

- Belt width, b
- Belt loop periphery

Preliminaries

$$
\begin{aligned}
H_{d} & =H_{\mathrm{nom}} K_{s} n_{d}=1(1.2)(1.05)=1.26 \mathrm{hp} \\
T & =\frac{63025(1.26)}{1750}=45.38 \mathrm{lbf} \cdot \mathrm{in}
\end{aligned}
$$

A 15 in center-to-center distance corresponds to a belt loop periphery of 39.5 in . The 40 in loop available corresponds to a 15.254 in center distance.

$$
\begin{aligned}
& \theta_{d}=\pi-2 \sin ^{-1}\left[\frac{4-2}{2(15.254)}\right]=3.010 \mathrm{rad} \\
& \theta_{D}=\pi+2 \sin ^{-1}\left[\frac{4-2}{2(15.274)}\right]=3.273 \mathrm{rad}
\end{aligned}
$$

For full friction development

$$
\begin{aligned}
& \exp \left(f \theta_{d}\right)=\exp [0.35(3.010)]=2.868 \\
& V=\frac{\pi d n}{12}=\frac{\pi(2)(1750)}{12}=916.3 \mathrm{ft} / \mathrm{s} \\
& S_{y}=175 \mathrm{kpsi}
\end{aligned}
$$

Eq. (17-15):

$$
S_{y}=14.17\left(10^{6}\right) N_{p}^{-0.407}=14.17\left(10^{6}\right)\left(10^{6}\right)^{-0.407}=51.212\left(10^{3}\right) \mathrm{psi}
$$

From selection step 3, p. 897,

$$
\begin{aligned}
a & =\left[S_{f}-\frac{E t}{\left(1-v^{2}\right) d}\right] t=\left[51.212\left(10^{3}\right)-\frac{28\left(10^{6}\right)(0.003)}{\left(1-0.285^{2}\right)(2)}\right](0.003) \\
& =16.50 \mathrm{lbf} / \mathrm{in} \text { of belt width }
\end{aligned}
$$

$$
\left(F_{1}\right)_{a}=a b=16.50 b
$$

For full friction development, from Prob. 17-13,

$$
\begin{aligned}
& b_{\min }=\frac{\Delta F}{a} \frac{\exp \left(f \theta_{d}\right)}{\exp \left(f \theta_{d}\right)-1} \\
& \Delta F=\frac{2 T}{d}=\frac{2(45.38)}{2}=45.38 \mathrm{lbf}
\end{aligned}
$$

So

$$
b_{\min }=\frac{45.38}{16.50}\left(\frac{2.868}{2.868-1}\right)=4.23 \mathrm{in}
$$

Decision \#1: $\quad b=4.5$ in

$$
\begin{aligned}
& F_{1}=\left(F_{1}\right)_{a}=a b=16.5(4.5)=74.25 \mathrm{lbf} \\
& F_{2}=F_{1}-\Delta F=74.25-45.38=28.87 \mathrm{lbf} \\
& F_{i}=\frac{F_{1}+F_{2}}{2}=\frac{74.25+28.87}{2}=51.56 \mathrm{lbf}
\end{aligned}
$$

Existing friction

$$
\begin{aligned}
& f^{\prime}=\frac{1}{\theta_{d}} \ln \left(\frac{F_{1}}{F_{2}}\right)=\frac{1}{3.010} \ln \left(\frac{74.25}{28.87}\right)=0.314 \\
& H_{t}=\frac{(\Delta F) V}{33000}=\frac{45.38(916.3)}{33000}=1.26 \mathrm{hp} \\
& n_{f s}=\frac{H_{t}}{H_{\text {nom }} K_{s}}=\frac{1.26}{1(1.2)}=1.05
\end{aligned}
$$

This is a non-trivial point. The methodology preserved the factor of safety corresponding to $n_{d}=1.1$ even as we rounded $b_{\text {min }}$ up to b.

Decision \#2 was taken care of with the adjustment of the center-to-center distance to accommodate the belt loop. Use Eq. (17-2) as is and solve for C to assist in this.
Remember to subsequently recalculate θ_{d} and θ_{D}.

17-15 Decision set:

A priori decisions

- Function: $H_{\text {nom }}=5 \mathrm{hp}, N=1125 \mathrm{rev} / \mathrm{min}, \quad V R=3, \quad C \doteq 20 \mathrm{in}, K_{s}=1.25$, $N_{p}=10^{6}$ belt passes
- Design factor: $n_{d}=1.1$
- Belt material: $\mathrm{BeCu}, S_{y}=170 \mathrm{kpsi}, E=17 \mathrm{Mpsi}, \quad v=0.220$
- Belt geometry: $d=3$ in, $D=9$ in
- Belt thickness: $t=0.003$ in

Design decisions

- Belt loop periphery
- Belt width b

Preliminaries:

$$
\begin{aligned}
& H_{d}=H_{\text {nom }} K_{s} n_{d}=5(1.25)(1.1)=6.875 \mathrm{hp} \\
& T=\frac{63025(6.875)}{1125}=385.2 \mathrm{lbf} \cdot \mathrm{in}
\end{aligned}
$$

Decision \#1: Choose a 60-in belt loop with a center-to-center distance of 20.3 in .

$$
\begin{aligned}
& \theta_{d}=\pi-2 \sin ^{-1}\left[\frac{9-3}{2(20.3)}\right]=2.845 \mathrm{rad} \\
& \theta_{D}=\pi+2 \sin ^{-1}\left[\frac{9-3}{2(20.3)}\right]=3.438 \mathrm{rad}
\end{aligned}
$$

For full friction development:

$$
\begin{aligned}
& \exp \left(f \theta_{d}\right)=\exp [0.32(2.845)]=2.485 \\
& V=\frac{\pi d n}{12}=\frac{\pi(3)(1125)}{12}=883.6 \mathrm{ft} / \mathrm{min} \\
& S_{f}=56.67 \mathrm{kpsi}
\end{aligned}
$$

From selection step 3, p. 897,

$$
\begin{aligned}
& a=\left[S_{f}-\frac{E_{t}}{\left(1-v^{2}\right) d}\right] t=\left[56.67\left(10^{3}\right)-\frac{17\left(10^{6}\right)(0.003)}{\left(1-0.22^{2}\right)(3)}\right](0.003)=116.4 \mathrm{lbf} / \mathrm{in} \\
& \Delta F=\frac{2 T}{d}=\frac{2(385.2)}{3}=256.8 \mathrm{lbf} \\
& b_{\min }=\frac{\Delta F}{a}\left[\frac{\exp \left(f \theta_{d}\right)}{\exp \left(f \theta_{d}\right)-1}\right]=\frac{256.8}{116.4}\left(\frac{2.485}{2.485-1}\right)=3.69 \mathrm{in}
\end{aligned}
$$

Decision \#2: $\quad b=4$ in

$$
\begin{aligned}
& F_{1}=\left(F_{1}\right)_{a}=a b=116.4(4)=465.6 \mathrm{lbf} \\
& F_{2}=F_{1}-\Delta F=465.6-256.8=208.8 \mathrm{lbf} \\
& F_{i}=\frac{F_{1}+F_{2}}{2}=\frac{465.6+208.8}{2}=337.3 \mathrm{lbf}
\end{aligned}
$$

Existing friction

$$
\begin{aligned}
f^{\prime} & =\frac{1}{\theta_{d}} \ln \left(\frac{F_{1}}{F_{2}}\right)=\frac{1}{2.845} \ln \left(\frac{465.6}{208.8}\right)=0.282 \\
H & =\frac{(\Delta F) V}{33000}=\frac{256.8(883.6)}{33000}=6.88 \mathrm{hp} \\
n_{f s} & =\frac{H}{5(1.25)}=\frac{6.88}{5(1.25)}=1.1
\end{aligned}
$$

F_{i} can be reduced only to the point at which $f^{\prime}=f=0.32$. From Eq. (17-9)

$$
F_{i}=\frac{T}{d}\left[\frac{\exp \left(f \theta_{d}\right)+1}{\exp \left(f \theta_{d}\right)-1}\right]=\frac{385.2}{3}\left(\frac{2.485+1}{2.485-1}\right)=301.3 \mathrm{lbf}
$$

Eq. (17-10):

$$
\begin{aligned}
& F_{1}=F_{i}\left[\frac{2 \exp \left(f \theta_{d}\right)}{\exp \left(f \theta_{d}\right)+1}\right]=301.3\left[\frac{2(2.485)}{2.485+1}\right]=429.7 \mathrm{lbf} \\
& F_{2}=F_{1}-\Delta F=429.7-256.8=172.9 \mathrm{lbf}
\end{aligned}
$$

and

$$
f^{\prime}=f=0.32
$$

17-16 This solution is the result of a series of five design tasks involving different belt thicknesses. The results are to be compared as a matter of perspective. These design tasks are accomplished in the same manner as in Probs. 17-14 and 17-15 solutions.

The details will not be presented here, but the table is provided as a means of learning. Five groups of students could each be assigned a belt thickness. You can form a table
from their results or use the table given here.

	t, in				
	.002	0.003	0.005	0.008	0.010
b	4.000	3.500	4.000	1.500	1.500
$C D$	20.300	20.300	20.300	18.700	20.200
a	109.700	131.900	110.900	194.900	221.800
d	3.000	3.000	3.000	5.000	6.000
D	9.000	9.000	9.000	15.000	18.000
F_{i}	310.600	333.300	315.200	215.300	268.500
F_{1}	439.000	461.700	443.600	292.300	332.700
F_{2}	182.200	209.000	186.800	138.200	204.300
$n_{f s}$	1.100	1.100	1.100	1.100	1.100
L	60.000	60.000	60.000	70.000	80.000
f^{\prime}	0.309	0.285	0.304	0.288	0.192
F_{i}	301.200	301.200	301.200	195.700	166.600
F_{1}	429.600	429.600	429.600	272.700	230.800
F_{2}	172.800	172.800	172.800	118.700	102.400
f	0.320	0.320	0.320	0.320	0.320

The first three thicknesses result in the same adjusted F_{i}, F_{1} and F_{2} (why?). We have no figure of merit, but the costs of the belt and pulleys are about the same for these three thicknesses. Since the same power is transmitted and the belts are widening, belt forces are lessening.

17-17 This is a design task. The decision variables would be belt length and belt section, which could be combined into one, such as B90. The number of belts is not an issue.

We have no figure of merit, which is not practical in a text for this application. It is suggested that you gather sheave dimensions and costs and V-belt costs from a principal vendor and construct a figure of merit based on the costs. Here is one trial.

Preliminaries: For a single V-belt drive with $H_{\text {nom }}=3 \mathrm{hp}, n=3100 \mathrm{rev} / \mathrm{min}, D=12 \mathrm{in}$, and $d=6.2$ in, choose a B90 belt, $K_{s}=1.3$ and $n_{d}=1$. From Table 17-10, select a circumference of 90 in . From Table 17-11, add 1.8 in giving

$$
L_{p}=90+1.8=91.8 \text { in }
$$

Eq. (17-16b):

$$
\begin{aligned}
C & =0.25\left\{\left[91.8-\frac{\pi}{2}(12+6.2)\right]+\sqrt{\left[91.8-\frac{\pi}{2}(12+6.2)\right]^{2}-2(12-6.2)^{2}}\right\} \\
& =31.47 \mathrm{in}
\end{aligned}
$$

$$
\begin{aligned}
\theta_{d}=\pi & -2 \sin ^{-1}\left[\frac{12-6.2}{2(31.47)}\right]=2.9570 \mathrm{rad} \\
& \exp \left(f \theta_{d}\right)=\exp [0.5123(2.9570)]=4.5489 \\
& V=\frac{\pi d n}{12}=\frac{\pi(6.2)(3100)}{12}=5031.8 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

Table 17-13:

$$
\text { Angle } \theta=\theta_{d} \frac{180^{\circ}}{\pi}=(2.957 \mathrm{rad})\left(\frac{180^{\circ}}{\pi}\right)=169.42^{\circ}
$$

The footnote regression equation of Table 17-13 gives K_{1} without interpolation:

$$
K_{1}=0.143543+0.007468\left(169.42^{\circ}\right)-0.000015052\left(169.42^{\circ}\right)^{2}=0.9767
$$

The design power is

$$
H_{d}=H_{\mathrm{nom}} K_{s} n_{d}=3(1.3)(1)=3.9 \mathrm{hp}
$$

From Table 17-14 for B90, $K_{2}=1$. From Table 17-12 take a marginal entry of $H_{\mathrm{tab}}=4$, although extrapolation would give a slightly lower $H_{\text {tab }}$.

Eq. (17-17):

$$
H_{a}=K_{1} K_{2} H_{\mathrm{tab}}=0.9767(1)(4)=3.91 \mathrm{hp}
$$

The allowable ΔF_{a} is given by

$$
\Delta F_{a}=\frac{63025 H_{a}}{n(d / 2)}=\frac{63025(3.91)}{3100(6.2 / 2)}=25.6 \mathrm{lbf}
$$

The allowable torque T_{a} is

$$
T_{a}=\frac{\Delta F_{a} d}{2}=\frac{25.6(6.2)}{2}=79.4 \mathrm{lbf} \cdot \mathrm{in}
$$

From Table 17-16, $K_{c}=0.965$. Thus, Eq. (17-21) gives,

$$
F_{c}=K_{c}\left(\frac{V}{1000}\right)^{2}=0.965\left(\frac{5031.8}{1000}\right)^{2}=24.4 \mathrm{lbf}
$$

At incipient slip, Eq. (17-9) provides:

$$
F_{i}=\left(\frac{T}{d}\right)\left[\frac{\exp (f \theta)+1}{\exp (f \theta)-1}\right]=\left(\frac{79.4}{6.2}\right)\left(\frac{4.5489+1}{4.5489-1}\right)=20.0 \mathrm{lbf}
$$

Eq. (17-10):

$$
F_{1}=F_{c}+F_{i}\left[\frac{2 \exp (f \theta)}{\exp (f \theta)+1}\right]=24.4+20\left[\frac{2(4.5489)}{4.5489+1}\right]=57.2 \mathrm{lbf}
$$

Thus, $F_{2}=F_{1}-\Delta F_{a}=57.2-25.6=31.6 \mathrm{lbf}$
Eq. (17-26): $\quad n_{f s}=\frac{H_{a} N_{b}}{H_{d}}=\frac{(3.91)(1)}{3.9}=1.003 \quad$ Ans.

If we had extrapolated for $H_{\text {tab }}$, the factor of safety would have been slightly less than one.

Life Use Table 17-16 to find equivalent tensions T_{1} and T_{2}.

$$
\begin{aligned}
& T_{1}=F_{1}+\left(F_{b}\right)_{1}=F_{1}+\frac{K_{b}}{d}=57.2+\frac{576}{6.2}=150.1 \mathrm{lbf} \\
& T_{2}=F_{1}+\left(F_{b}\right)_{2}=F_{1}+\frac{K_{b}}{D}=57.2+\frac{576}{12}=105.2 \mathrm{lbf}
\end{aligned}
$$

From Table 17-17, $K=1193, b=10.926$, and from Eq. (17-27), the number of belt passes is:

$$
\begin{aligned}
N_{P} & =\left[\left(\frac{K}{T_{1}}\right)^{-b}+\left(\frac{K}{T_{2}}\right)^{-b}\right]^{-1} \\
& =\left[\left(\frac{1193}{150.1}\right)^{-10.926}+\left(\frac{1193}{105.2}\right)^{-10.926}\right]^{-1}=6.72\left(10^{9}\right) \text { passes }
\end{aligned}
$$

From Eq. (17-28) for $N_{P}>10^{9}$,

$$
\begin{aligned}
& t=\frac{N_{P} L_{p}}{720 V}>\frac{10^{9}(91.8)}{720(5031.8)} \\
& t>25340 \mathrm{~h} \quad \text { Ans. }
\end{aligned}
$$

Suppose $n_{f s}$ was too small. Compare these results with a 2-belt solution.

$$
\begin{aligned}
& H_{\mathrm{tab}}=4 \mathrm{hp} / \mathrm{belt}, \quad T_{a}=39.6 \mathrm{lbf} \cdot \mathrm{in} / \mathrm{belt}, \\
& \Delta F_{a}=12.8 \mathrm{lbf} / \mathrm{belt}, \quad H_{a}=3.91 \mathrm{hp} / \mathrm{belt} \\
& n_{f s}=\frac{N_{b} H_{a}}{H_{d}}=\frac{N_{b} H_{a}}{H_{\mathrm{nom}} K_{s}}=\frac{2(3.91)}{3(1.3)}=2.0
\end{aligned}
$$

Also, $\quad F_{1}=40.8 \mathrm{lbf} /$ belt,$\quad F_{2}=28.0 \mathrm{lbf} /$ belt

$$
\begin{array}{lc}
F_{i}=9.99 \mathrm{lbf} / \mathrm{belt}, & F_{c}=24.4 \mathrm{lbf} / \mathrm{belt} \\
\left(F_{b}\right)_{1}=92.9 \mathrm{lbf} / \mathrm{belt}, & \left(F_{b}\right)_{2}=48 \mathrm{lbf} / \mathrm{belt} \\
T_{1}=133.7 \mathrm{lbf} / \mathrm{belt}, & T_{2}=88.8 \mathrm{lbf} / \mathrm{belt} \\
N_{P}=2.39\left(10^{10}\right) \text { passes }, & t>605600 \mathrm{~h}
\end{array}
$$

Initial tension of the drive:

$$
\left(F_{i}\right)_{\text {drive }}=N_{b} F_{i}=2(9.99)=20 \mathrm{lbf}
$$

17-18 Given: two B85 V-belts with $d=5.4 \mathrm{in}, D=16 \mathrm{in}, n=1200 \mathrm{rev} / \mathrm{min}$, and $K_{s}=1.25$
Table 17-11: $L_{p}=85+1.8=86.8$ in
Eq. (17-17b):

$$
\begin{aligned}
C & =0.25\left\{\left[86.8-\frac{\pi}{2}(16+5.4)\right]+\sqrt{\left[86.8-\frac{\pi}{2}(16+5.4)\right]^{2}-2(16-5.4)^{2}}\right\} \\
& =26.05 \mathrm{in} \quad \text { Ans. }
\end{aligned}
$$

Eq. (17-1):

$$
\theta_{d}=180^{\circ}-2 \sin ^{-1}\left[\frac{16-5.4}{2(26.05)}\right]=156.5^{\circ}
$$

From table 17-13 footnote:

$$
K_{1}=0.143543+0.007468\left(156.5^{\circ}\right)-0.000015052\left(156.5^{\circ}\right)^{2}=0.944
$$

Table 17-14: $\quad K_{2}=1$
Belt speed: $\quad V=\frac{\pi(5.4)(1200)}{12}=1696 \mathrm{ft} / \mathrm{min}$
Use Table 17-12 to interpolate for $H_{\text {tab }}$.

$$
H_{\mathrm{tab}}=1.59+\left(\frac{2.62-1.59}{2000-1000}\right)(1696-1000)=2.31 \mathrm{hp} / \mathrm{belt}
$$

Eq. (17-17) for two belts: $\quad H_{a}=K_{1} K_{2} N_{b} H_{\text {tab }}=0.944(1)(2)(2.31)=4.36 \mathrm{hp}$
Assuming $n_{d}=1$,

$$
H_{d}=K_{s} H_{\mathrm{nom}} n_{d}=1.25(1) H_{\mathrm{nom}}
$$

For a factor of safety of one,

$$
\begin{aligned}
H_{a} & =H_{d} \\
4.36 & =1.25 H_{\mathrm{nom}} \\
H_{\mathrm{nom}} & =\frac{4.36}{1.25}=3.49 \mathrm{hp} \quad \text { Ans. }
\end{aligned}
$$

17-19 Given: $H_{\text {nom }}=60 \mathrm{hp}, n=400 \mathrm{rev} / \mathrm{min}, K_{s}=1.4, d=D=26$ in on 12 ft centers.
Design task: specify V-belt and number of strands (belts). Tentative decision: Use D360 belts.

Table 17-11: $L_{p}=360+3.3=363.3$ in
Eq. (17-16b):

$$
\begin{aligned}
C & =0.25\left\{\left[363.3-\frac{\pi}{2}(26+26)\right]+\sqrt{\left[363.3-\frac{\pi}{2}(26+26)\right]^{2}-2(26-26)^{2}}\right\} \\
& =140.8 \text { in (nearly } 144 \mathrm{in})
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{d}=\pi, \quad \theta_{D}=\pi, \quad \exp [0.5123 \pi]=5.0, \\
& V=\frac{\pi d n}{12}=\frac{\pi(26)(400)}{12}=2722.7 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

Table 17-13: For $\theta=180^{\circ}, \quad K_{1}=1$
Table 17-14: For D360, $K_{2}=1.10$
Table 17-12: $\quad H_{\text {tab }}=16.94 \mathrm{hp}$ by interpolation
Thus,

$$
H_{a}=K_{1} K_{2} H_{\mathrm{tab}}=1(1.1)(16.94)=18.63 \mathrm{hp} / \text { belt }
$$

Eq. (17-19): $\quad H_{d}=H_{\mathrm{nom}} K_{s} n_{d}=60(1.4)(1)=84 \mathrm{hp}$
Number of belts, N_{b}

$$
N_{b}=\frac{H_{d}}{H_{a}}=\frac{84}{18.63}=4.51
$$

Round up to five belts. It is left to the reader to repeat the above for belts such as C360 and E360.

$$
\begin{aligned}
\Delta F_{a} & =\frac{63025 H_{a}}{n(d / 2)}=\frac{63025(18.63)}{400(26 / 2)}=225.8 \mathrm{lbf} / \mathrm{belt} \\
T_{a} & =\frac{\left(\Delta F_{a}\right) d}{2}=\frac{225.8(26)}{2}=2935 \mathrm{lbf} \cdot \mathrm{in} / \mathrm{belt}
\end{aligned}
$$

Eq. (17-21):

$$
F_{c}=3.498\left(\frac{V}{1000}\right)^{2}=3.498\left(\frac{2722.7}{1000}\right)^{2}=25.9 \mathrm{lbf} / \mathrm{belt}
$$

At fully developed friction, Eq. (17-9) gives

$$
F_{i}=\frac{T}{d}\left[\frac{\exp (f \theta)+1}{\exp (f \theta)-1}\right]=\frac{2935}{26}\left(\frac{5+1}{5-1}\right)=169.3 \mathrm{lbf} / \mathrm{belt}
$$

Eq. (17-10): $\quad F_{1}=F_{c}+F_{i}\left[\frac{2 \exp (f \theta)}{\exp (f \theta)+1}\right]=25.9+169.3\left[\frac{2(5)}{5+1}\right]=308.1 \mathrm{lbf} / \mathrm{belt}$

$$
\begin{aligned}
& F_{2}=F_{1}-\Delta F_{a}=308.1-225.8=82.3 \mathrm{lbf} / \mathrm{belt} \\
& n_{f s}=\frac{H_{a} N_{b}}{H_{d}}=\frac{18.63(5)}{84}=1.109 \quad \text { Ans } .
\end{aligned}
$$

Life From Table 17-16,

$$
T_{1}=T_{2}=F_{1}+\frac{K_{b}}{d}=308.1+\frac{5680}{26}=526.6 \mathrm{lbf}
$$

Eq. (17-27):

$$
N_{P}=\left[\left(\frac{K}{T_{1}}\right)^{-b}+\left(\frac{K}{T_{2}}\right)^{-b}\right]^{-1}=5.28\left(10^{-9}\right) \text { passes }
$$

Thus, $\quad N_{P}>10^{-9}$ passes Ans.
Eq. (17-28): $\quad t=\frac{N_{P} L_{p}}{720 V}>\frac{10^{9}(363.3)}{720(2722.7)}$
Thus, $\quad t>185320 \mathrm{~h}$ Ans.

17-20 Preliminaries: $D \doteq 60 \mathrm{in}, 14$-in wide rim, $H_{\text {nom }}=50 \mathrm{hp}, n=875 \mathrm{rev} / \mathrm{min}, K_{s}=1.2$, $n_{d}=1.1, m_{G}=875 / 170=5.147, d \doteq 60 / 5.147=11.65$ in
(a) From Table 17-9, an 11-in sheave exceeds C -section minimum diameter and precludes D- and E-section V-belts.

Decision: Use $d=11$ in, C270 belts

Table 17-11: $L_{p}=270+2.9=272.9$ in
Eq. (17-16b):

$$
\begin{aligned}
C & =0.25\left\{\left[272.9-\frac{\pi}{2}(60+11)\right]+\sqrt{\left[272.9-\frac{\pi}{2}(60+11)\right]^{2}-2(60-11)^{2}}\right\} \\
& =76.78 \mathrm{in}
\end{aligned}
$$

This fits in the range

$$
\begin{gathered}
D<C<3(D+d) \Rightarrow 60<C<3(60+11) \Rightarrow 60 \text { in }<C<213 \text { in } \\
\theta_{d}=\pi-2 \sin ^{-1} \frac{60-11}{2(76.78)}=2.492 \mathrm{rad}=142.8^{\circ} \\
\theta_{D}=\pi+2 \sin ^{-1} \frac{60-11}{2(76.78)}=3.791 \mathrm{rad} \\
\exp \left(f \theta_{d}\right)=\exp [0.5123(2.492)]=3.5846
\end{gathered}
$$

For the flat on flywheel, $f=0.13$ (see p. 900), $\exp \left(f \theta_{D}\right)=\exp [0.13(3.791)]=1.637$.
The belt speed is

$$
V=\frac{\pi d n}{12}=\frac{\pi(11)(875)}{12}=2520 \mathrm{ft} / \mathrm{min}
$$

Table 17-13:

$$
K_{1}=0.143543+0.007468\left(142.8^{\circ}\right)-0.000015052\left(142.8^{\circ}\right)^{2}=0.903
$$

Table 17-14: $\quad K_{2}=1.15$
For interpolation of Table $17-12$, let x be entry for $d=11.65$ in and $n=2000 \mathrm{ft} / \mathrm{min}$, and y be entry for $d=11.65 \mathrm{in}$ and $n=3000 \mathrm{ft} / \mathrm{min}$. Then,

$$
\frac{x-6.74}{11.65-11}=\frac{7.17-6.74}{12-11} \Rightarrow x=7.01 \mathrm{hp} \text { at } 2000 \mathrm{ft} / \mathrm{min}
$$

and

$$
\frac{8.11-y}{11.65-11}=\frac{8.84-8.11}{12-11} \Rightarrow y=8.58 \mathrm{hp} \text { at } 3000 \mathrm{ft} / \mathrm{min}
$$

Interpolating these for $2520 \mathrm{ft} / \mathrm{min}$ gives

$$
\frac{8.58-H_{\mathrm{tab}}}{8.58-7.01}=\frac{3000-2520}{3000-2000} \Rightarrow H_{\mathrm{tab}}=7.83 \mathrm{hp} / \mathrm{belt}
$$

Eq. (17-17): $\quad H_{a}=K_{1} K_{2} H_{\text {tab }}=0.903(1.15)(7.83)=8.13 \mathrm{hp}$

Eq. (17-19): $\quad H_{d}=H_{\text {nom }} K_{s} n_{d}=50(1.2)(1.1)=66 \mathrm{hp}$
Eq. (17-20): $N_{b}=\frac{H_{d}}{H_{a}}=\frac{66}{8.13}=8.1$ belts

Decision: Use 9 belts. On a per belt basis,

$$
\begin{aligned}
& \Delta F_{a}=\frac{63025 H_{a}}{n(d / 2)}=\frac{63025(8.13)}{875(11 / 2)}=106.5 \mathrm{lbf} / \mathrm{belt} \\
& T_{a}=\frac{\Delta F_{a} d}{2}=\frac{106.5(11)}{2}=586.8 \mathrm{lbf} \cdot \text { in per belt }
\end{aligned}
$$

Table 17-16: $\quad K_{c}=1.716$
Eq. (17-21): $\quad F_{c}=1.716\left(\frac{V}{1000}\right)^{2}=1.716\left(\frac{2520}{1000}\right)^{2}=10.9 \mathrm{lbf} / \mathrm{belt}$
At fully developed friction, Eq. (17-9) gives

$$
F_{i}=\frac{T}{d}\left[\frac{\exp \left(f \theta_{d}\right)+1}{\exp \left(f \theta_{d}\right)-1}\right]=\frac{586.9}{11}\left[\frac{3.5846+1}{3.5846-1}\right]=94.6 \mathrm{lbf} / \mathrm{belt}
$$

Eq. (17-10):

$$
\begin{gathered}
F_{1}=F_{c}+F_{i}\left[\frac{2 \exp \left(f \theta_{d}\right)}{\exp \left(f \theta_{d}\right)+1}\right]=10.9+94.6\left[\frac{2(3.5846)}{3.5846+1}\right]=158.8 \mathrm{lbf} / \mathrm{belt} \\
F_{2}=F_{1}-\Delta F_{a}=158.8-106.7=52.1 \mathrm{lbf} / \mathrm{belt} \\
n_{f s}=\frac{N_{b} H_{a}}{H_{d}}=\frac{9(8.13)}{66}=1.11 \text { O.K. Ans. }
\end{gathered}
$$

Durability:

$$
\begin{aligned}
& \left(F_{b}\right)_{1}=K_{b} / d=1600 / 11=145.5 \mathrm{lbf} / \mathrm{belt} \\
& \left(F_{b}\right)_{2}=K_{b} / D=1600 / 60=26.7 \mathrm{lbf} / \mathrm{belt} \\
& T_{1}=F_{1}+\left(F_{b}\right)_{1}=158.8+145.5=304.3 \mathrm{lbf} / \mathrm{belt} \\
& T_{2}=F_{1}+\left(F_{b}\right)_{2}=158.8+26.7=185.5 \mathrm{lbf} / \mathrm{belt}
\end{aligned}
$$

Eq. (17-27) with Table 17-17:

$$
\begin{aligned}
N_{P} & =\left[\left(\frac{K}{T_{1}}\right)^{-b}+\left(\frac{K}{T_{2}}\right)^{-b}\right]^{-1}=\left[\left(\frac{2038}{304.3}\right)^{-11.173}+\left(\frac{2038}{185.5}\right)^{-11.173}\right]^{-1} \\
& =1.68\left(10^{9}\right) \text { passes }>10^{9} \text { passes Ans. }
\end{aligned}
$$

Since N_{P} is greater than 10^{9} passes and is out of the range of Table 17-17, life from Eq. (17-27) is

$$
t=\frac{N_{P} L_{p}}{720 V}>\frac{10^{9}(272.9)}{720(2520)}=150\left(10^{3}\right) \mathrm{h}
$$

Remember:

$$
\left(F_{i}\right)_{\text {drive }}=9(94.6)=851.4 \mathrm{lbf}
$$

Table 17-9: C-section belts are 7/8 in wide. Check sheave groove spacing to see if 14 in width is accommodating.
(b) The fully developed friction torque on the flywheel using the flats of the V-belts, from Eq. (17-9), is

$$
T_{\text {flat }}=F_{i} D\left[\frac{\exp (f \theta)-1}{\exp (f \theta)+1}\right]=94.6(60)\left(\frac{1.637-1}{1.637+1}\right)=1371 \mathrm{lbf} \cdot \text { in per belt }
$$

The flywheel torque should be

$$
T_{\mathrm{fly}}=m_{G} T_{a}=5.147(586.9)=3021 \mathrm{lbf} \cdot \text { in per belt }
$$

but it is not. There are applications, however, in which it will work. For example, make the flywheel controlling. Yes. Ans.
(a)

S is the spliced-in string segment length D_{e} is the equatorial diameter
D^{\prime} is the spliced string diameter
δ is the radial clearance
$S+\pi D_{e}=\pi D^{\prime}=\pi\left(D_{e}+2 \delta\right)=\pi D_{e}+2 \pi \delta$

From which

$$
\delta=\frac{S}{2 \pi}
$$

The radial clearance is thus independent of D_{e}.

$$
\delta=\frac{12(6)}{2 \pi}=11.5 \text { in Ans. }
$$

This is true whether the sphere is the earth, the moon or a marble. Thinking in terms of a radial or diametral increment removes the basic size from the problem.
(b) and (c)

Table 17-9: For an E210 belt, the thickness is 1 in .

$$
\begin{aligned}
& \uparrow \\
& \downarrow \\
& 1^{\prime \prime} \\
& \frac{\substack{\uparrow \\
0.716^{\prime \prime} \\
\downarrow}}{} \quad d_{P}-d_{i}=\frac{210+4.5}{\pi}-\frac{210}{\pi}=\frac{4.5}{\pi} \\
& 2 \delta=\frac{4.5}{\pi} \\
& \delta=\frac{4.5}{2 \pi}=0.716 \mathrm{in}
\end{aligned}
$$

The pitch diameter of the flywheel is

$$
D_{P}-2 \delta=D \Rightarrow D_{P}=D+2 \delta=60+2(0.716)=61.43 \text { in }
$$

We could make a table:

Diametral	Section				
Growth	A	B	C	D	E
2δ	$\frac{1.3}{\pi}$	$\frac{1.8}{\pi}$	$\frac{2.9}{\pi}$	$\frac{3.3}{\pi}$	$\frac{4.5}{\pi}$

The velocity ratio for the D-section belt of Prob. 17-20 is

$$
m_{G}^{\prime}=\frac{D+2 \delta}{d}=\frac{60+3.3 / \pi}{11}=5.55 \quad \text { Ans. }
$$

for the V-flat drive as compared to $m_{a}=60 / 11=5.455$ for the VV drive. The pitch diameter of the pulley is still $d=11 \mathrm{in}$, so the new angle of wrap, θ_{d}, is

$$
\begin{aligned}
& \theta_{d}=\pi-2 \sin ^{-1} \frac{D+2 \delta-d}{2 C} \\
& \theta_{D}=\pi+2 \sin ^{-1} \frac{D+2 \delta-d}{2 C}
\end{aligned} \quad \text { Ans. }
$$

Equations (17-16a) and (17-16b) are modified as follows

$$
\begin{aligned}
L_{p} & =2 C+\frac{\pi}{2}(D+2 \delta+d)+\frac{(D+\delta-d)^{2}}{4 C} \quad \text { Ans. } \\
C_{p} & =0.25\left\{\left[L_{p}-\frac{\pi}{2}(D+2 \delta+d)\right]\right. \\
& \left.+\sqrt{\left[L_{p}-\frac{\pi}{2}(D+2 \delta+d)\right]^{2}-2(D+2 \delta-d)^{2}}\right\} \quad \text { Ans. }
\end{aligned}
$$

The changes are small, but if you are writing a computer code for a V-flat drive, remember that θ_{d} and θ_{D} changes are exponential.

17-22 This design task involves specifying a drive to couple an electric motor running at 1720 $\mathrm{rev} / \mathrm{min}$ to a blower running at $240 \mathrm{rev} / \mathrm{min}$, transmitting two horsepower with a center distance of at least 22 inches. Instead of focusing on the steps, we will display two different designs side-by-side for study. Parameters are in a "per belt" basis with per drive quantities shown along side, where helpful.

Parameter	Four A-90 Belts	Two A-120 Belts
m_{G}	7.33	7.142
K_{s}	1.1	1.1
n_{d}	1.1	1.1
K_{1}	0.877	0.869
K_{2}	1.05	1.15
d, in	3.0	4.2
D, in	22	30
θ_{d}, rad	2.333	2.287
V, ft $/ \mathrm{min}$	1350.9	1891
exp $\left(f \theta_{d}\right)$	3.304	3.2266
L_{p}, in	91.3	101.3
C, in	24.1	31
$H_{\text {tab }}$, uncorr.	0.783	1.662
$N_{b} H_{\text {tab }}$, uncorr.	3.13	3.326
T_{a}, lbf \cdot in	$26.45(105.8)$	$60.87(121.7)$
ΔF_{a}, lbf	$17.6(70.4)$	$29.0(58)$
H_{a}, hp	$0.721(2.88)$	$1.667(3.33)$
$n_{f s}$	1.192	1.372
F_{1}, lbf	$26.28(105.2)$	$44(88)$
F_{2}, lbf	$8.67(34.7)$	$15(30)$
$\left(F_{b}\right)_{1}$, lbf	$73.3(293.2)$	$52.4(109.8)$
$\left(F_{b}\right)_{2}$, lbf	$10(40)$	$7.33(14.7)$
F_{c}, lbf	1.024	2.0
F_{i}, lbf	$16.45(65.8)$	$27.5(55)$
T_{1}, lbf \cdot in	99.2	96.4

$T_{2}, \mathrm{lbf} \cdot$ in	36.3	57.4
N^{\prime}, passes	$1.61\left(10^{9}\right)$	$2.3\left(10^{9}\right)$
$t>h$	93869	89080

Conclusions:

- Smaller sheaves lead to more belts.
- Larger sheaves lead to larger D and larger V.
- Larger sheaves lead to larger tabulated power.
- The discrete numbers of belts obscures some of the variation. The factors of safety exceed the design factor by differing amounts.

17-23 In Ex. 17-5 the selected chain was 140-3, making the pitch of this 140 chain $14 / 8=1.75$ in. Table 17-19 confirms.

17-24 (a) Eq. (17-32): $H_{1}=0.004 N_{1}^{1.08} n_{1}^{0.9} p^{(3-0.07 p)}$
Eq. (17-33): $\quad H_{2}=\frac{1000 K_{r} N_{1}^{1.5} p^{0.8}}{n_{1}^{1.5}}$
Equating and solving for n_{1} gives

$$
n_{1}=\left[\frac{0.25\left(10^{6}\right) K_{r} N_{1}^{0.42}}{p^{(2.2-0.07 p)}}\right]^{1 / 2.4} \quad \text { Ans. }
$$

(b) For a No. 60 chain, $p=6 / 8=0.75$ in, $N_{1}=17, K_{r}=17$

$$
n_{1}=\left\{\frac{0.25\left(10^{6}\right)(17)(17)^{0.42}}{0.75^{[2.2-0.07(0.75)]}}\right\}^{1 / 2.4}=1227 \mathrm{rev} / \mathrm{min} \quad \text { Ans. }
$$

Table 17-20 confirms that this point occurs at $1200 \pm 200 \mathrm{rev} / \mathrm{min}$.
(c) Life predictions using Eq. (17-40) are possible at speeds greater than $1227 \mathrm{rev} / \mathrm{min}$. Ans.

17-25 Given: a double strand No. 60 roller chain with $p=0.75 \mathrm{in}, N_{1}=13$ teeth at $300 \mathrm{rev} / \mathrm{min}$, $N_{2}=52$ teeth.
(a) Table 17-20: $\quad H_{\text {tab }}=6.20 \mathrm{hp}$

Table 17-22: $\quad K_{1}=0.75$
Table 17-23: $\quad K_{2}=1.7$
Use $\quad K_{s}=1$
Eq. (17-37):

$$
H_{a}=K_{1} K_{2} H_{\mathrm{tab}}=0.75(1.7)(6.20)=7.91 \mathrm{hp} \quad \text { Ans. }
$$

(b) Eqs. (17-35) and (17-36) with $L / p=82$

$$
\begin{aligned}
& A=\frac{13+52}{2}-82=-49.5 \\
& C=\frac{p}{4}\left[49.5+\sqrt{49.5^{2}-8\left(\frac{52-13}{2 \pi}\right)^{2}}\right]=23.95 p \\
& C=23.95(0.75)=17.96 \text { in, round up to } 18 \text { in Ans. }
\end{aligned}
$$

(c) For 30 percent less power transmission,

$$
\begin{aligned}
H & =0.7(7.91)=5.54 \mathrm{hp} \\
T & =\frac{63025(5.54)}{300}=1164 \mathrm{lbf} \cdot \text { in } \quad \text { Ans. }
\end{aligned}
$$

Eq. (17-29):

$$
\begin{aligned}
D & =\frac{0.75}{\sin \left(180^{\circ} / 13\right)}=3.13 \mathrm{in} \\
F & =\frac{T}{r}=\frac{1164}{3.13 / 2}=744 \mathrm{lbf} \quad \text { Ans. }
\end{aligned}
$$

17-26 Given: No. 40-4 chain, $N_{1}=21$ teeth for $n=2000 \mathrm{rev} / \mathrm{min}, N_{2}=84$ teeth, $h=20000$ hours.
(a) Chain pitch is $p=4 / 8=0.500$ in and $C \doteq 20 \mathrm{in}$.

Eq. (17-34):

$$
\begin{aligned}
\frac{L}{p} & \doteq \frac{2 C}{p}+\frac{N_{1}+N_{2}}{2}+\frac{\left(N_{1}-N_{2}\right)^{2}}{4 \pi^{2} C / p} \\
& =\frac{2(20)}{0.5}+\frac{21+84}{2}+\frac{(84-21)^{2}}{4 \pi^{2}(20 / 0.5)}=135 \text { pitches (or links) } \\
L & =135(0.500)=67.5 \text { in Ans. }
\end{aligned}
$$

(b) Table 17-20: $\quad H_{\text {tab }}=7.72 \mathrm{hp}$ (post-extreme power)

Eq. (17-40): Since K_{1} is required, the $N_{1}^{3.75}$ term is omitted (see p. 914).

$$
\begin{aligned}
& \text { constant }=\frac{\left(7.72^{2.5}\right)(15000)}{135}=18399 \\
& H_{\text {tab }}^{\prime}=\left[\frac{18399(135)}{20000}\right]^{1 / 2.5}=6.88 \mathrm{hp} \text { Ans. }
\end{aligned}
$$

(c) Table 17-22:

$$
K_{1}=\left(\frac{21}{17}\right)^{1.5}=1.37
$$

Table 17-23: $\quad K_{2}=3.3$

$$
H_{a}=K_{1} K_{2} H_{\mathrm{tab}}^{\prime}=1.37(3.3)(6.88)=31.1 \mathrm{hp} \quad \text { Ans. }
$$

(d)
$V=\frac{N_{1} p n}{12}=\frac{21(0.5)(2000)}{12}=1750 \mathrm{ft} / \mathrm{min}$
$F_{1}=\frac{33000(31.1)}{1750}=586 \mathrm{lbf} \quad$ Ans.

17-27 This is our first design/selection task for chain drives. A possible decision set:
A priori decisions

- Function: $H_{\text {nom }}, n_{1}$, space, life, K_{s}
- Design factor: n_{d}
- Sprockets: Tooth counts N_{1} and N_{2}, factors K_{1} and K_{2}

Decision variables

- Chain number
- Strand count
- Lubrication type
- Chain length in pitches

Function: Motor with $H_{\text {nom }}=25 \mathrm{hp}$ at $n=700 \mathrm{rev} / \mathrm{min}$; pump at $n=140 \mathrm{rev} / \mathrm{min}$; $m_{G}=700 / 140=5$
Design Factor: $n_{d}=1.1$
Sprockets: Tooth count $N_{2}=m_{G} N_{1}=5(17)=85$ teeth-odd and unavailable. Choose 84 teeth. Decision: $N_{1}=17, N_{2}=84$

Evaluate K_{1} and K_{2}
Eq. (17-38):
$H_{d}=H_{\mathrm{nom}} K_{s} n_{d}$
Eq. (17-37):

$$
H_{a}=K_{1} K_{2} H_{\mathrm{tab}}
$$

Equate H_{d} to H_{a} and solve for $H_{\text {tab }}$:

$$
H_{\text {tab }}=\frac{K_{s} n_{d} H_{\text {nom }}}{K_{1} K_{2}}
$$

Table 17-22: $\quad K_{1}=1$
Table 17-23: $\quad K_{2}=1,1.7,2.5,3.3$ for 1 through 4 strands

$$
H_{\text {tab }}^{\prime}=\frac{1.5(1.1)(25)}{(1) K_{2}}=\frac{41.25}{K_{2}}
$$

Prepare a table to help with the design decisions:

Strands	K_{2}	$H_{\text {tab }}^{\prime}$	Chain No.	$H_{\text {tab }}$	$n_{\text {fs }}$	Lub. Type
1	1.0	41.3	100	59.4	1.58	B
2	1.7	24.3	80	31.0	1.40	B
3	2.5	16.5	80	31.0	2.07	B
4	3.3	12.5	60	13.3	1.17	B

Design Decisions
We need a figure of merit to help with the choice. If the best was 4 strands of No. 60 chain, then

Decision \#1 and \#2: Choose four strand No. 60 roller chain with $n_{f s}=1.17$.

$$
n_{f s}=\frac{K_{1} K_{2} H_{\mathrm{tab}}}{K_{\mathrm{s}} H_{\mathrm{nom}}}=\frac{1(3.3)(13.3)}{1.5(25)}=1.17
$$

Decision \#3: Choose Type B lubrication
Analysis:
Table 17-20: $\quad H_{\text {tab }}=13.3 \mathrm{hp}$
Table 17-19: $\quad p=0.75$ in
Try $C=30$ in in Eq. (17-34):

$$
\begin{aligned}
\frac{L}{p} & \doteq \frac{2 C}{p}+\frac{N_{1}+N_{2}}{2}+\frac{\left(N_{2}-N_{1}\right)^{2}}{4 \pi^{2} C / p} \\
& =2(30 / 0.75)+\frac{17+84}{2}+\frac{(84-17)^{2}}{4 \pi^{2}(30 / 0.75)} \\
& =133.3 \\
L & =0.75(133.3)=100 \text { in (no need to round) }
\end{aligned}
$$

Eq. (17-36) with $p=0.75$ in: $A=\frac{N_{1}+N_{2}}{2}-\frac{L}{p}=\frac{17+84}{2}-\frac{100}{0.75}=-82.83$ Eq. (17-35):

$$
\begin{aligned}
C & =\frac{p}{4}\left[-A+\sqrt{A^{2}-8\left(\frac{N_{2}-N_{1}}{2 \pi}\right)^{2}}\right] \\
& =\frac{0.75}{4}\left[-(-82.83)+\sqrt{(-82.83)^{2}-8\left(\frac{84-17}{2 \pi}\right)^{2}}\right]=30.0 \mathrm{in}
\end{aligned}
$$

Decision \#4: Choose $C=30.0$ in.

17-28 Follow the decision set outlined in Prob. 17-27 solution. We will form two tables, the first for a 15000 h life goal, and a second for a 50000 h life goal. The comparison is useful.

Function: $H_{\text {nom }}=50 \mathrm{hp}$ at $n=1800 \mathrm{rev} / \mathrm{min}, n_{\text {pump }}=900 \mathrm{rev} / \mathrm{min}, m_{G}=1800 / 900=2$, $K_{s}=1.2$, life $=15000 \mathrm{~h}$, then repeat with life $=50000 \mathrm{~h}$
Design factor: $n_{d}=1.1$
Sprockets: $N_{1}=19$ teeth, $N_{2}=38$ teeth
Table 17-22 (post extreme):

$$
K_{1}=\left(\frac{N_{1}}{17}\right)^{1.5}=\left(\frac{19}{17}\right)^{1.5}=1.18
$$

Table 17-23: $\quad K_{2}=1,1.7,2.5,3.3,3.9,4.6,6.0$
Decision variables for 15000 h life goal:

$$
\begin{align*}
& H_{\text {tab }}^{\prime}=\frac{K_{s} n_{d} H_{\text {nom }}}{K_{1} K_{2}}=\frac{1.2(1.1)(50)}{1.18 K_{2}}=\frac{55.9}{K_{2}} \tag{1}\\
& n_{f s}=\frac{K_{1} K_{2} H_{\text {tab }}}{K_{s} H_{\text {nom }}}=\frac{1.18 K_{2} H_{\text {tab }}}{1.2(50)}=0.0197 K_{2} H_{\mathrm{tab}}
\end{align*}
$$

Form a table for a 15000 h life goal using these equations.

K_{2}	$H_{\text {tab }}^{\prime}$	Chain \#	$H_{\text {tab }}$	$n_{f s}$	Lub
1	55.90	120	21.6	0.423	C^{\prime}
1.7	32.90	120	21.6	0.923	C^{\prime}
2.5	22.40	120	21.6	1.064	C^{\prime}
3.3	16.90	120	21.6	1.404	C^{\prime}
3.9	14.30	80	15.6	1.106	C^{\prime}
4.6	12.20	60	12.4	1.126	C^{\prime}
6	9.32	60	12.4	1.416	C^{\prime}

There are 4 possibilities where $n_{f s} \geq 1.1$
Decision variables for 50000 h life goal
From Eq. (17-40), the power-life tradeoff is:

$$
\begin{aligned}
& \left(H_{\mathrm{tab}}^{\prime}\right)^{2.5} 15000=\left(H_{\mathrm{tab}}^{\prime \prime}\right)^{2.5} 50000 \\
& H_{\mathrm{tab}}^{\prime \prime}=\left[\frac{15000}{50000}\left(H_{\mathrm{tab}}^{\prime}\right)^{2.5}\right]^{1 / 2.5}=0.618 H_{\mathrm{tab}}^{\prime}
\end{aligned}
$$

Substituting from (1),

$$
H_{\text {tab }}^{\prime \prime}=0.618\left(\frac{55.9}{K_{2}}\right)=\frac{34.5}{K_{2}}
$$

The $H^{\prime \prime}$ notation is only necessary because we constructed the first table, which we normally would not do.

$$
\begin{aligned}
n_{f s} & =\frac{K_{1} K_{2} H_{\mathrm{tab}}^{\prime \prime}}{K_{s} H_{\mathrm{nom}}}=\frac{K_{1} K_{2}\left(0.618 H_{\mathrm{tab}}^{\prime}\right)}{K_{s} H_{\mathrm{nom}}}=0.618\left[(0.0197) K_{2} H_{\mathrm{tab}}\right] \\
& =0.0122 K_{2} H_{\mathrm{tab}}
\end{aligned}
$$

Form a table for a 50000 h life goal.

K_{2}	$H^{\prime \prime}{ }_{\text {tab }}$	Chain \#	$H_{\text {tab }}$	$n_{f s}$	Lub
1	34.50	120	21.6	0.264	C^{\prime}
1.7	20.30	120	21.6	0.448	C^{\prime}
2.5	13.80	120	21.6	0.656	C^{\prime}
3.3	10.50	120	21.6	0.870	C^{\prime}
3.9	8.85	120	21.6	1.028	C^{\prime}
4.6	7.60	120	21.6	1.210	C^{\prime}
6	5.80	80	15.6	1.140	C^{\prime}

There are two possibilities in the second table with $n_{f s} \geq 1.1$. (The tables allow for the identification of a longer life of the outcomes.) We need a figure of merit to help with the choice; costs of sprockets and chains are thus needed, but is more information than we have.

Decision \#1: \#80 Chain (smaller installation) Ans.
$n_{f s}=0.0122 K_{2} H_{\text {tab }}=0.0122(8.0)(15.6)=1.14 \quad$ O.K.
Decision \#2: 8-Strand, No. 80 Ans.
Decision \#3: Type C' Lubrication Ans.
Decision \#4: $\quad p=1.0 \mathrm{in}, C$ is in midrange of 40 pitches

$$
\begin{aligned}
\frac{L}{p} & \doteq \frac{2 C}{p}+\frac{N_{1}+N_{2}}{2}+\frac{\left(N_{2}-N_{1}\right)^{2}}{4 \pi^{2} C / p} \\
& =2(40)+\frac{19+38}{2}+\frac{(38-19)^{2}}{4 \pi^{2}(40)} \\
& =108.7 \Rightarrow 110 \text { even integer Ans. }
\end{aligned}
$$

Eq. (17-36):

$$
A=\frac{N_{1}+N_{2}}{2}-\frac{L}{p}=\frac{19+38}{2}-\frac{110}{1}=-81.5
$$

Eq. (17-35): $\quad \frac{C}{p}=\frac{1}{4}\left[-(-81.5)+\sqrt{(-81.5)^{2}-8\left(\frac{38-19}{2 \pi}\right)^{2}}\right]=40.64$

$$
C=p(C / p)=1.0(40.64 / 1.0)=40.64 \text { in (for reference) Ans. }
$$

17-29 The objective of the problem is to explore factors of safety in wire rope. We will express strengths as tensions.
(a) Monitor steel $2-\mathrm{in} 6 \times 19$ rope, 480 ft long.

Table 17-2: Minimum diameter of a sheave is $30 \mathrm{~d}=30(2)=60 \mathrm{in}$, preferably $45(2)=90$ in. The hoist abuses the wire when it is bent around a sheave. Table 17-24 gives the nominal tensile strength as 106 kpsi . The ultimate load is

$$
F_{u}=\left(S_{u}\right)_{\mathrm{nom}} A_{\mathrm{nom}}=106\left[\frac{\pi(2)^{2}}{4}\right]=333 \text { kip Ans. }
$$

The tensile loading of the wire is given by Eq. (17-46)

$$
\begin{aligned}
& F_{t}=\left(\frac{W}{m}+w l\right)\left(1+\frac{a}{g}\right) \\
& W=4(2)=8 \mathrm{kip}, \quad m=1
\end{aligned}
$$

Table (17-24):

$$
w l=1.60 d^{2} l=1.60\left(2^{2}\right)(480)=3072 \mathrm{lbf}=3.072 \mathrm{kip}
$$

Therefore,

$$
F_{t}=(8+3.072)\left(1+\frac{2}{32.2}\right)=11.76 \mathrm{kip} \quad \text { Ans. }
$$

Eq. (17-48):

$$
F_{b}=\frac{E_{r} d_{w} A_{m}}{D}
$$

and for the 72-in drum

$$
F_{b}=\frac{12\left(10^{6}\right)(2 / 13)(0.38)\left(2^{2}\right)\left(10^{-3}\right)}{72}=39 \mathrm{kip} \quad \text { Ans. }
$$

For use in Eq. (17-44), from Fig. 17-21

$$
\begin{aligned}
& \left(p / S_{u}\right)=0.0014 \\
& S_{u}=240 \mathrm{kpsi}, \quad \text { p. } 920 \\
& F_{f}=\frac{0.0014(240)(2)(72)}{2}=24.2 \mathrm{kip} \quad \text { Ans. }
\end{aligned}
$$

(b) Factors of safety

Static, no bending:

$$
n=\frac{F_{u}}{F_{t}}=\frac{333}{11.76}=28.3 \quad \text { Ans. }
$$

Static, with bending:
Eq. (17-49): $\quad n_{s}=\frac{F_{u}-F_{b}}{F_{t}}=\frac{333-39}{11.76}=25.0 \quad$ Ans.
Fatigue without bending:

$$
n_{f}=\frac{F_{f}}{F_{t}}=\frac{24.2}{11.76}=2.06 \quad \text { Ans. }
$$

Fatigue, with bending: For a life of $0.1\left(10^{6}\right)$ cycles, from Fig. 17-21

$$
\begin{aligned}
& \left(p / S_{u}\right)=4 / 1000=0.004 \\
& F_{f}=\frac{0.004(240)(2)(72)}{2}=69.1 \mathrm{kip}
\end{aligned}
$$

Eq. (17-50): $\quad n_{f}=\frac{69.1-39}{11.76}=2.56 \quad$ Ans.
If we were to use the endurance strength at 10^{6} cycles ($F_{f}=24.2$ kip) the factor of safety would be less than 1 indicating 10^{6} cycle life impossible.

Comments:

- There are a number of factors of safety used in wire rope analysis. They are different, with different meanings. There is no substitute for knowing exactly which factor of safety is written or spoken.
- Static performance of a rope in tension is impressive.
- In this problem, at the drum, we have a finite life.
- The remedy for fatigue is the use of smaller diameter ropes, with multiple ropes
supporting the load. See Ex. 17-6 for the effectiveness of this approach. It will also be used in Prob. 17-30.
- Remind students that wire ropes do not fail suddenly due to fatigue. The outer wires gradually show wear and breaks; such ropes should be retired. Periodic inspections prevent fatigue failures by parting of the rope.

17-30 Since this is a design task, a decision set is useful.
A priori decisions

- Function: load, height, acceleration, velocity, life goal
- Design Factor: n_{d}
- Material: IPS, PS, MPS or other
- Rope: Lay, number of strands, number of wires per strand

Decision variables:

- Nominal wire size: d
- Number of load-supporting wires: m

From experience with Prob. 17-29, a 1-in diameter rope is not likely to have much of a life, so approach the problem with the d and m decisions open.

Function: 5000 lbf load, 90 foot lift, acceleration $=4 \mathrm{ft} / \mathrm{s}^{2}$, velocity $=2 \mathrm{ft} / \mathrm{s}$, life goal $=10^{5}$ cycles
Design Factor: $n_{d}=2$
Material: IPS
Rope: Regular lay, 1-in plow-steel 6×19 hoisting

Design variables

Choose 30-in $D_{\min }$. Table 17-27: $w=1.60 d^{2} \mathrm{lbf} / \mathrm{ft}$

$$
w l=1.60 d^{2} l=1.60 d^{2}(90)=144 d^{2} \mathrm{lbf}, \text { each }
$$

Eq. (17-46):

$$
\begin{aligned}
F_{t} & =\left(\frac{W}{m}+w l\right)\left(1+\frac{a}{g}\right)=\left(\frac{5000}{m}+144 d^{2}\right)\left(1+\frac{4}{32.2}\right) \\
& =\frac{5620}{m}+162 d^{2} \mathrm{lbf}, \text { each wire }
\end{aligned}
$$

Eq. (17-47):

$$
F_{f}=\frac{\left(p / S_{u}\right) S_{u} D d}{2}
$$

From Fig. 17-21 for 10^{5} cycles, $p / S_{u}=0.004$. From p. $920, S_{u}=240 \mathrm{kpsi}$, based on metal area.

$$
F_{f}=\frac{0.004(240000)(30 d)}{2}=14400 \mathrm{~d} \mathrm{lbf} \text { each wire }
$$

Eq. (17-48) and Table 17-27:

$$
F_{b}=\frac{E_{w} d_{w} A_{m}}{D}=\frac{12\left(10^{6}\right) 0.067 d\left(0.4 d^{2}\right)}{30}=10720 d^{3} \mathrm{lbf}, \text { each wire }
$$

Eq. (17-45):

$$
n_{f}=\frac{F_{f}-F_{b}}{F_{t}}=\frac{14400 d-10720 d^{3}}{(5620 / m)+162 d^{2}}
$$

We could use a computer program to build a table similar to that of Ex. 17-6.
Alternatively, we could recognize that $162 d^{2}$ is small compared to $5620 / m$, and therefore eliminate the $162 d^{2}$ term.

$$
n_{f} \doteq \frac{14400 d-10720 d^{3}}{5620 / m}=\frac{m}{5620}\left(14400 d-10720 d^{3}\right)
$$

Maximize n_{f},

$$
\frac{\partial n_{f}}{\partial d}=0=\frac{m}{5620}\left[14400-3(10720) d^{2}\right]
$$

From which

$$
d^{*}=\sqrt{\frac{14400}{3(10720)}}=0.669 \mathrm{in}
$$

Back-substituting

$$
n_{f}=\frac{m}{5620}\left[14400(0.669)-10720\left(0.669^{3}\right)\right]=1.14 \mathrm{~m}
$$

Thus $n_{f}=1.14,2.28,3.42,4.56$ for $m=1,2,3,4$ respectively. If we choose $d=0.50 \mathrm{in}$, then $m=2$.

$$
n_{f}=\frac{14400(0.5)-10720\left(0.5^{3}\right)}{(5620 / 2)+162(0.5)^{2}}=2.06
$$

This exceeds $n_{d}=2$
Decision \#1: $d=1 / 2$ in
Decision \#2: $m=2$ ropes supporting load. Rope should be inspected weekly for any signs of fatigue (broken outer wires).

Comment: Table 17-25 gives n for freight elevators in terms of velocity.

$$
\begin{aligned}
F_{u} & =\left(S_{u}\right)_{\text {nom }} A_{\text {nom }}=106000\left(\frac{\pi d^{2}}{4}\right)=83252 d^{2} \mathrm{lbf}, \text { each wire } \\
n & =\frac{F_{u}}{F_{t}}=\frac{83452(0.5)^{2}}{(5620 / 2)+162(0.5)^{2}}=7.32
\end{aligned}
$$

By comparison, interpolation for $120 \mathrm{ft} / \mathrm{min}$ gives 7.08 - close. The category of construction hoists is not addressed in Table 17-25. We should investigate this before proceeding further.

17-31 Given: 2000 ft lift, 72 in drum, $6 \times 19 \mathrm{MS}$ rope, cage and load 8000 lbf , accel. $=2 \mathrm{ft} / \mathrm{s}^{2}$.
(a) Table 17-24: $\left(S_{u}\right)_{\text {nom }}=106 \mathrm{kpsi} ; S_{u}=240 \mathrm{kpsi}(\mathrm{p} .920)$; Fig. 17-21: $\left(p / S_{u}\right) 10^{6}=$ 0.0014

Eq. (17-44):

$$
F_{f}=\frac{\left(p / S_{u}\right) S_{u} d D}{2}=\frac{0.0014(240) d(72)}{2}=12.1 d \mathrm{kip}
$$

Table 17-24: $\quad w l=1.6 d^{2} 2000\left(10^{-3}\right)=3.2 d^{2} \mathrm{kip}$
Eq. (17-46): $\quad F_{t}=(W+w l)\left(1+\frac{a}{g}\right)$
$=\left(8+3.2 d^{2}\right)\left(1+\frac{2}{32.2}\right)$
$=8.5+3.4 d^{2} \mathrm{kip}$
Note that bending is not included.

$$
n=\frac{F_{f}}{F_{t}}=\frac{12.1 d}{8.5+3.4 d^{2}}
$$

d, in	n	
0.500	0.650	

(b) Try $m=4$ strands

$$
\begin{aligned}
F_{t} & =\left(\frac{8}{4}+3.2 d^{2}\right)\left(1+\frac{2}{32.2}\right) \\
& =2.12+3.4 d^{2} \mathrm{kip} \\
F_{f} & =12.1 d \mathrm{kip} \\
n & =\frac{12.1 d}{2.12+3.4 d^{2}} \\
\frac{d, \text { in } \quad n}{0.5000} & \\
\frac{2.037}{0.5625} 2.130 & \\
0.6520 \quad 2.193 & \\
0.7500 \quad 2.250 & \leftarrow \operatorname{maximum} n \quad \text { Ans. }
\end{aligned}
$$

d, in	n
0.5000	2.037

$$
0.5625 \quad 2.130
$$

$$
0.6520 \quad 2.193
$$

$$
0.8750 \quad 2.242
$$

$$
1.0000 \quad 2.192
$$

Comparing tables, multiple ropes supporting the load increases the factor of safety, and reduces the corresponding wire rope diameter, a useful perspective.

17-32

$$
\begin{aligned}
n & =\frac{a d}{b / m+c d^{2}} \\
\frac{d n}{d d} & =\frac{\left(b / m+c d^{2}\right) a-a d(2 c d)}{\left(b / m+c d^{2}\right)^{2}}=0
\end{aligned}
$$

From which

$$
\begin{aligned}
& d^{*}=\sqrt{\frac{b}{m c}} \quad \text { Ans. } \\
& n^{*}=\frac{a \sqrt{b /(m c)}}{(b / m)+c[b /(m c)]}=\frac{a}{2} \sqrt{\frac{m}{b c}} \quad \text { Ans. }
\end{aligned}
$$

These results agree closely with the Prob. 17-31 solution. The small differences are due to rounding in Prob. 17-31.

17-33 From Prob. 17-32 solution:

$$
n_{1}=\frac{a d}{b / m+c d^{2}}
$$

Solve the above equation for m

$$
\begin{aligned}
& m=\frac{b}{a d / n_{1}-c d^{2}} \\
& \frac{d m}{d d}=0=\frac{\left[\left(a d / n_{1}\right)-a d^{2}\right](0)-b\left[\left(a / n_{1}\right)-2 c d\right]}{\left[\left(a d / n_{1}\right)-c d^{2}\right]^{2}}
\end{aligned}
$$

From which $\quad d^{*}=\frac{a}{2 c n_{1}} \quad$ Ans.

Substituting this result for d into Eq. (1) gives

$$
m^{*}=\frac{4 b c n_{1}}{a^{2}} \quad \text { Ans. }
$$

17-34 Note to the Instructor. In the first printing of the ninth edition, the wording of this problem is incorrect. It should read " For Prob. 17-29 estimate the elongation of the rope if a 7000 lbf loaded mine cart is placed in the cage which weighs 1000 lbf . The results of Prob. 4-7 may be useful". This will be corrected in subsequent printings. We apologize for any inconvenience encountered.

Table 17-27:

$$
\begin{aligned}
A_{m} & =0.40 d^{2}=0.40\left(2^{2}\right)=1.6 \mathrm{in}^{2} \\
E_{r} & =12 \mathrm{Mpsi}, w=1.6 d^{2}=1.6\left(2^{2}\right)=6.4 \mathrm{lbf} / \mathrm{ft} \\
w l & =6.4(480)=3072 \mathrm{lbf} \\
\gamma & \doteq w l /\left(A_{m} l\right)=3072 /[1.6(480) 12]=0.333 \mathrm{lbf} / \mathrm{in}^{3}
\end{aligned}
$$

Treat the rest of the system as rigid, so that all of the stretch is due to the load of 7000 lbf , the cage weighing 1000 lbf , and the wire's weight. From the solution of Prob. 4-7,

$$
\begin{aligned}
\delta_{1} & =\frac{W l}{A E}+\frac{\gamma l^{2}}{2 E} \\
& =\frac{(1000+7000)(480)(12)}{1.6(12)\left(10^{6}\right)}+\frac{0.333\left(480^{2}\right) 12^{2}}{2(12)\left(10^{6}\right)} \\
& =2.4+0.460=2.860 \text { in } \quad \text { Ans. }
\end{aligned}
$$

17-35 to 17-38 Computer programs will vary.

