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JAMES MONROE GERE
1925–2008

James Monroe Gere, Professor Emeritus of  Civil Engineering at Stanford
University, died in Portola Valley, CA, on January 30, 2008. Jim Gere was
born on June 14, 1925, in Syracuse, NY. He joined the U.S. Army Air
Corps at age 17 in 1942, serving in England, France and Germany. After
the war, he earned undergraduate and master’s degrees in Civil
Engineering from the Rensselaer Polytechnic Institute in 1949 and 1951,
respectively. He worked as an instructor and later as a Research Associate
for Rensselaer between 1949 and 1952. He was awarded one of  the first
NSF Fellowships, and chose to study at Stanford. He received his Ph.D. in
1954 and was offered a faculty position in Civil Engineering, beginning a
34-year career of  engaging his students in challenging topics in mechan-
ics, and structural and earthquake engineering. He served as Department
Chair and Associate Dean of  Engineering and in 1974 co-founded the
John A. Blume Earthquake Engineering Center at Stanford. In 1980, Jim
Gere also became the founding head of  the Stanford Committee on
Earthquake Preparedness, which urged campus members to brace and
strengthen office equipment, furniture, and other items that could pose a
life safety hazard in the event of  an earthquake. That same year, he was
invited as one of  the first foreigners to study the earthquake-devastated
city of  Tangshan, China. Jim retired from Stanford in 1988 but continued
to be a most valuable member of  the Stanford community as he gave freely
of  his time to advise students and to guide them on various field trips to
the California earthquake country.

Jim Gere was known for his outgoing manner, his cheerful personality
and wonderful smile, his athleticism, and his skill as an educator in Civil
Engineering. He authored nine textbooks on various engineering subjects
starting in 1972 with Mechanics of Materials, a text that was inspired by his
teacher and mentor Stephan P. Timoshenko. His other well-known text-
books, used in engineering courses around the world, include: Theory of
Elastic Stability, co-authored with S. Timoshenko; Matrix Analysis of
Framed Structures and Matrix Algebra for Engineers, both co-authored with
W. Weaver; Moment Distribution; Earthquake Tables: Structural and
Construction Design Manual, co-authored with H. Krawinkler; and Terra
Non Firma: Understanding and Preparing for Earthquakes, co-authored with
H. Shah.

Respected and admired by students, faculty, and staff  at Stanford
University, Professor Gere always felt that the opportunity to work with

and be of service to young people both inside and outside the classroom was one of his great joys. He hiked
frequently and regularly visited Yosemite and the Grand Canyon national parks. He made over 20 ascents of
Half Dome in Yosemite as well as “John Muir hikes” of up to 50 miles in a day. In 1986 he hiked to the base

Jim Gere in the Timoshenko
Library at Stanford holding a
copy of the 2nd edition of this
text (photo courtesy of Richard
Weingardt Consultants, Inc.)

(Ed Souza/Stanford News Service)

ix
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James Monroe Gere

camp of Mount Everest, saving the life of a companion on the trip. James was an active runner and completed
the Boston Marathon at age 48, in a time of 3:13.

James Gere will be long remembered by all who knew him as a considerate and loving man whose upbeat
good humor made aspects of daily life or work easier to bear. His last project (in progress and now being con-
tinued by his daughter Susan of Palo Alto) was a book based on the written memoirs of his great-grandfather,
a Colonel (122d NY) in the Civil War.

x
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P R E F A C E  T O  T H E  S I  E D I T I O N

xi

Mechanics of materials is a basic engineering subject that, along with statics, must
be understood by anyone concerned with the strength and physical performance of
structures, whether those structures are man-made or natural. At the college level,
statics is usually taught during the sophomore or junior year and is a prerequisite
for the follow-on course in mechanics of materials. Both courses are required for
most students majoring in mechanical, structural, civil, biomedical, petroleum,
nuclear, aeronautical, and aerospace engineering. Furthermore, many students
from such diverse fields as materials science, industrial engineering, architecture,
and agricultural engineering also find it useful to study mechanics of materials.

A FIRST COURSE IN MECHANICS OF MATERIALS
In many university engineering programs today, both statics and mechanics of
materials are now taught in large sections comprised of students from the variety
of engineering disciplines listed above. Instructors for the various parallel sections
must cover the same material, and all of the major topics must be presented so that
students are well prepared for the more advanced courses required by their specific
degree programs. An essential prerequisite for success in a first course in mechan-
ics of materials is a strong foundation in statics, which includes not only under-
standing of fundamental concepts but also proficiency in applying the laws of
statical equilibrium to solution of both two and three dimensional problems. This
eighth edition begins with a new section on review of statics in which the laws of
equilibrium and boundary (or support) conditions are reviewed, as well as types of
applied forces and internal stress resultants, all based upon and derived from a
properly drawn free body diagram. Numerous examples and end of chapter prob-
lems are included to help the student review the analysis of plane and space trusses,
shafts in torsion, beams and plane and space frames and to reinforce basic concepts
learned in the prerequisite course.

Many instructors like to present the basic theory of  say, beam bending, and
then use real world examples to motivate student interest in the subject of  beam
flexure, beam design, etc. In many cases, structures on campus offer easy access
to beams, frames, and bolted connections which can be dissected in lecture, or on
homework problems, to find reactions at supports, forces and moments in mem-
bers and stresses in connections. In addition, study of  causes of  failures in struc-
tures and components also offers the opportunity for students to begin the
process of  learning from actual designs and even past engineering mistakes.
A number of  the new example problems and also the new or revised end-of-
chapter problems in this eighth edition are based upon actual components or
structures and are accompanied by photographs so that the student can see the
real world problem alongside the simplified mechanics model and free body dia-
grams to be used in its analysis.

An increasing number of universities are using rich media lecture (and/or class-
room) capture software in their large undergraduate courses in mathematics,
physics, and engineering and the many new photos and enhanced graphics in the
eighth edition are designed to support this enhanced lecture mode.
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NEW TO THE EIGHTH EDITION OF MECHANICS
OF MATERIALS, SI EDITION
The main topics covered in this book are the analysis and design of structural mem-
bers subjected to tension, compression, torsion, and bending, including the funda-
mental concepts mentioned above. Other important topics are the transformations of
stress and strain, combined loadings and combined stress, deflections of beams, and
stability of columns. Some additional specialized topics include the following: stress
concentrations, dynamic and impact loadings, non-prismatic members, shear centers,
bending of beams of two materials (or composite beams), bending of unsymmetric
beams, maximum stresses in beams, energy based approaches for computing deflec-
tions of beams, and statically indeterminate beams. Review material on centroids and
moments of inertia is presented in Chapter 12.

As an aid to the student reader, each chapter begins with a Chapter Overview
which highlights the major topics to be covered in that chapter, and closes with a
Chapter Summary & Review in which the key points as well as major mathematical
formulas presented in the chapter are listed for quick review (in preparation for
examinations on the material). Each chapter also opens with a photograph of a com-
ponent or structure which illustrates the key concepts to be discussed in that chapter.

Some of the notable features of this eighth edition, which have been added as
new or updated material to meet the needs of a modern course in mechanics of
materials, are as follows:

• Statics review—A new section entitled Statics Review has been added to
Chapter 1. New Section 1.2 includes four example problems which illustrate cal-
culation of support reactions and internal stress resultants for truss, beam, cir-
cular shaft and plane frame structures. Twenty six end-of-chapter problems on
statics provide the student with two and three dimensional structures to be used
as practice, review or homework assignment problems of varying difficulty.

• Expanded Chapter Overview and also Chapter Summary & Review sections–
The Chapter Overview and Chapter Summary sections have been expanded and
now include key equations presented in that chapter. These summary sections
will serve as a convenient review for the student of key topics and equations
presented in each chapter.

• Increased emphasis on equilibrium, constitutive, and strain-displacement/
compatibility equations in problem solutions–Example problem and end-of-
chapter problem solutions have been updated to emphasize an orderly process
of explicitly writing out the equilibrium, constitutive and strain-displacement/
compatibility equations before attempting a solution.

• New/expanded topic coverage—The following topics have been added or have
received expanded coverage: stress concentrations in axially loads bars (Sec. 2.10);
torsion of noncircular shafts (Sec. 3.10); stress concentrations in bending
(Sec. 5.13); and transformed section analysis for composite beams (Sec. 6.3).

• New example and end-of-chapter problems—Forty-eight new example problems
have been added to the eighth edition. In addition, close to 800 of the end-of-
chapter problems are new or revised, out of a total of almost 1200 problems.

Preface to the SI Editionxii
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Preface to the SI Edition xiii

• Review problems—A total of one hundred and nineteen review problems have
been added at the ends of chapters 1 to 11. The student must select from 4
available answers (A, B, C or D), only one of which is the correct answer. The
correct answer choices are listed in the Answers section at the back of this text,
and the detailed solution for each problem is available on the student website.
Solution of these problems will provide the student with a quick check on his
or her mastery of the subject matter presented in that chapter.

EXAMPLES
Examples are presented throughout the book to illustrate the theoretical concepts
and show how those concepts may be used in practical situations. In some cases,
new photographs have been added showing actual engineering structures or com-
ponents to reinforce the tie between theory and application. In both lecture and
text examples, it is appropriate to begin with simplified analytical models of the
structure or component and the associated free-body diagram(s) to aid the student
in understanding and applying the relevant theory in engineering analysis of the
system. The text examples vary in length from one to four pages, depending upon
the complexity of the material to be illustrated. When the emphasis is on concepts,
the examples are worked out in symbolic terms so as to better illustrate the ideas,
and when the emphasis is on problem-solving, the examples are numerical in char-
acter. In selected examples throughout the text, graphical display of results (e.g.,
stresses in beams) has been added to enhance the student’s understanding of the
problem results.

PROBLEMS
In all mechanics courses, solving problems is an important part of the learning
process. This textbook offers more than 1230 problems for homework assignments
and classroom discussions. The problems are placed at the end of each chapter so
that they are easy to find and don’t break up the presentation of the main subject
matter. Also, problems are generally arranged in order of increasing difficulty thus
alerting students to the time necessary for solution. Answers to all problems are
listed near the back of the book. An Instructor Solution Manual (ISM) is available
to registered instructors at the publisher’s web site.

Considerable effort has been spent in checking and proofreading the text so as
to eliminate errors. If  you happen to find one, no matter how trivial, please notify
me by e-mail (bgoodno@ce.gatech.edu). We will correct any errors in the next print-
ing of the book.

UNITS
The International System of Units (SI) is used in all examples and problems. Tables
containing properties of selected structural-steel shapes in SI units may be found
in Appendix E; these tables will be useful in the solution of beam analysis and
design examples and end-of-chapter problems in Chapter 5.
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Father of  Engineering Mechanics in the U.S.” by Richard G. Weingardt,
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the many other engineering mechanics textbooks written by each of
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xviii

A area
Af, Aw area of flange; area of web
a, b, c dimensions, distances

C centroid, compressive force, constant of integration
c distance from neutral axis to outer surface of a beam

D diameter
d diameter, dimension, distance
E modulus of elasticity

Er, Et reduced modulus of elasticity; tangent modulus of elasticity
e eccentricity, dimension, distance, unit volume change

(dilatation)
F force
f shear flow, shape factor for plastic bending, flexibility, 

frequency (Hz)
fT torsional flexibility of a bar
G modulus of elasticity in shear
g acceleration of gravity

H height, distance, horizontal force or reaction, horsepower
h height, dimensions
I moment of inertia (or second moment) of a plane area

Ix, Iy, Iz moments of inertia with respect to x, y, and z axes
Ix1, Iy1 moments of inertia with respect to x1 and y1 axes 

(rotated axes)
Ixy product of inertia with respect to xy axes

Ix1y1 product of inertia with respect to x1y1 axes (rotated axes)
IP polar moment of inertia

I1, I2 principal moments of inertia
J torsion constant
K stress-concentration factor, bulk modulus of elasticity,

effective length factor for a column
k spring constant, stiffness, symbol for 

kT torsional stiffness of a bar
L length, distance

LE effective length of a column
ln, log natural logarithm (base e); common logarithm (base 10)

M bending moment, couple, mass
MP, MY plastic moment for a beam; yield moment for a beam

m moment per unit length, mass per unit length
N axial force
n factor of safety, integer, revolutions per minute (rpm)

O origin of coordinates
O� center of curvature
P force, concentrated load, power

Pallow allowable load (or working load)
Pcr critical load for a column

2P/EI

S Y M B O L S
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PP plastic load for a structure
Pr, Pt reduced-modulus load for a column; tangent-modulus load

for a column
PY yield load for a structure

p pressure (force per unit area)
Q force, concentrated load, first moment of a plane area
q intensity of distributed load (force per unit distance)
R reaction, radius
r radius, radius of gyration 
S section modulus of the cross section of a beam, shear center
s distance, distance along a curve

T tensile force, twisting couple or torque, temperature
TP, TY plastic torque; yield torque

t thickness, time, intensity of torque (torque per unit distance)
tf, tw thickness of flange; thickness of web

U strain energy
u strain-energy density (strain energy per unit volume)

ur, ut modulus of resistance; modulus of toughness
V shear force, volume, vertical force or reaction
v deflection of a beam, velocity

v�, v��, etc. dv/dx, d2v/dx2, etc.
W force, weight, work
w load per unit of area (force per unit area)

x, y, z rectangular axes (origin at point O)
xc, yc, zc rectangular axes (origin at centroid C)

coordinates of centroid
Z plastic modulus of the cross section of a beam
α angle, coefficient of thermal expansion, nondimensional ratio
β angle, nondimensional ratio, spring constant, stiffness

βR rotational stiffness of a spring
γ shear strain, weight density (weight per unit volume)

γxy, γyz, γzx shear strains in xy, yz, and zx planes
γx1y1 shear strain with respect to x1y1 axes (rotated axes)

γθ shear strain for inclined axes
δ deflection of a beam, displacement, elongation of a bar or

spring
�T temperature differential

δP, δY plastic displacement; yield displacement
ε normal strain

εx, εy, εz normal strains in x, y, and z directions
εx1, εy1 normal strains in x1 and y1 directions (rotated axes)

εθ normal strain for inclined axes
ε1, ε2, ε3 principal normal strains

ε� lateral strain in uniaxial stress
εT thermal strain
εY yield strain
θ angle, angle of rotation of beam axis, rate of twist of a bar

in torsion (angle of twist per unit length)

x, y, z

(r � 2I/A)

xixSymbols
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Symbols

θp angle to a principal plane or to a principal axis
θs angle to a plane of maximum shear stress
κ curvature (κ � 1/ρ)
� distance, curvature shortening
ν Poisson’s ratio
ρ radius, radius of curvature (ρ � 1/κ ), radial distance in

polar coordinates, mass density (mass per unit volume)
σ normal stress

σx, σy, σz normal stresses on planes perpendicular to x, y, and z axes
σx1, σy1 normal stresses on planes perpendicular to x1y1 axes

(rotated axes)
σθ normal stress on an inclined plane

σ1, σ2, σ3 principal normal stresses
σallow allowable stress (or working stress)

σcr critical stress for a column (σcr � Pcr/A)
σpl proportional-limit stress
σr residual stress
σT thermal stress

σU, σY ultimate stress; yield stress
τ shear stress

τxy, τyz, τzx shear stresses on planes perpendicular to the x, y, and z
axes and acting parallel to the y, z, and x axes

τx1y1 shear stress on a plane perpendicular to the x1 axis and act-
ing parallel to the y1 axis (rotated axes)

τθ shear stress on an inclined plane
τallow allowable stress (or working stress) in shear

τU, τY ultimate stress in shear; yield stress in shear
φ angle, angle of twist of a bar in torsion
ψ angle, angle of rotation
ω angular velocity, angular frequency (ω � 2π f )

GREEK ALPHABET
A α Alpha N ν Nu
B β Beta Ξ ξ Xi
Γ γ Gamma O Omicron
� δ Delta Π π Pi
E ε Epsilon P ρ Rho
Z ζ Zeta Σ σ Sigma
H η Eta T τ Tau
Θ θ Theta � υ Upsilon
I ι Iota Φ φ Phi
K κ Kappa X χ Chi
Λ λ Lambda Ψ ψ Psi
M μ Mu Ω ω Omega

ο

xx

*A star attached to a section number indicates a specialized.

77742_00_fm_p00i-001.qxd:77742_00_fm_p00i-001.qxd  3/1/12  6:41 PM  Page xx

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Mechanics of Materials
Eighth Edition, SI

77742_00_fm_p00i-001.qxd:77742_00_fm_p00i-001.qxd  3/1/12  6:41 PM  Page 1

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C H A P T E R1
Tension, Compression,
and Shear

This telecommunications
tower is an assemblage
of many members that
act primarily in tension
or compression. (Péter
budella/Shutterstock)
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I CHAPTER OVERVIEW
In Chapter 1, we are introduced to mechanics of
materials, which examines the stresses, strains, and
displacements in bars of  various materials acted on
by axial loads applied at the centroids of  their
cross sections. After a brief  review of  basic con-
cepts presented in statics, we will learn about nor-
mal stress (σ ) and normal strain (ε ) in materials
used for structural applications, then identify key
properties of  various materials, such as the modu-
lus of  elasticity (E ) and yield (σy) and ultimate (σu)
stresses, from plots of  stress (σ ) versus strain (ε).
We will also plot shear stress (τ ) versus shear
strain (γ ) and identify the shearing modulus of
elasticity (G ). If  these materials perform only in
the linear range, stress and strain are related by
Hooke’s Law for normal stress and strain (σ � E • ε)
and also for shear stress and strain (τ � G • γ ). We
will see that changes in lateral dimensions and
 volume depend upon Poisson’s ratio (ν). Material
properties E, G, and ν, in fact, are directly related to

one another and are not independent properties of
the material.

Assemblage of bars to form structures (such as
trusses) leads to consideration of average shear (τ )
and bearing (σb) stresses in their connections as well
as normal stresses acting on the net area of the cross
section (if  in tension) or on the full cross-sectional
area (if  in compression). If  we restrict maximum
stresses at any point to allowable values by use of
factors of safety, we can identify allowable levels of
axial loads for simple systems, such as cables and
bars. Factors of safety relate actual to required
strength of structural members and account for a
variety of uncertainties, such as variations in mate-
rial properties and probability of accidental over-
load. Lastly, we will consider design: the iterative
process by which the appropriate size of structural
members is determined to meet a variety of both
strength and stiffness requirements for a particular
structure subjected to a variety of different loadings.

1.1 Introduction to Mechanics of Materials 4
1.2 Statics Review 6
1.3 Normal Stress and Strain 27
1.4 Mechanical Properties of Materials 37
1.5 Elasticity, Plasticity, and Creep 45
1.6 Linear Elasticity, Hooke’s Law, and Poisson’s

Ratio 52

1.7 Shear Stress and Strain 57
1.8 Allowable Stresses and Allowable Loads 68
1.9 Design for Axial Loads and Direct Shear 74

Chapter Summary & Review 80
Problems 83

Chapter 1 is organized as follows:
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Chapter 1  Tension, Compression, and Shear

1.1 INTRODUCTION TO MECHANICS OF
MATERIALS
Mechanics of materials is a branch of applied mechanics that deals with
the behavior of solid bodies subjected to various types of loading. Other
names for this field of study are strength of materials and mechanics of
deformable bodies. The solid bodies considered in this book include bars
with axial loads, shafts in torsion, beams in bending, and columns in com-
pression.

The principal objective of mechanics of materials is to determine the
stresses, strains, and displacements in structures and their components due
to the loads acting on them. If we can find these quantities for all values of
the loads up to the loads that cause failure, we will have a complete picture
of the mechanical behavior of these structures.

An understanding of mechanical behavior is essential for the safe
design of all types of structures, whether airplanes and antennas, buildings
and bridges, machines and motors, or ships and spacecraft. That is why
mechanics of materials is a basic subject in so many engineering fields.
Statics and dynamics are also essential, but those subjects deal primarily
with the forces and motions associated with particles and rigid bodies.
However, most problems in mechanics of materials begin with an exami-
nation of the external and internal forces acting on a stable deformable
body. We first define the loads acting on the body, along with its support
conditions, then determine reaction forces at supports and internal forces
in its members or elements using the basic laws of static equilibrium (pro-
vided that it is statically determinate). A well-constructed free-body dia-
gram is an essential part of the process of carrying out a proper static
analysis of a structure.

In mechanics of materials we go beyond the concepts presented in
statics to study the stresses and strains inside real bodies, that is, bodies of
finite dimensions that deform under loads. To determine the stresses and
strains, we use the physical properties of the materials as well as numerous
theoretical laws and concepts. Later, we will see that mechanics of materi-
als provides additional essential information, based on the deformations
of the body, to allow us to solve so-called statically indeterminate prob-
lems (not possible if  using the laws of statics alone).

Theoretical analyses and experimental results have equally important
roles in mechanics of materials. We use theories to derive formulas and
equations for predicting mechanical behavior, but these expressions can-
not be used in practical design unless the physical properties of the mate-
rials are known. Such properties are available only after careful
experiments have been carried out in the laboratory. Furthermore, not all
practical problems are amenable to theoretical analysis alone, and in such
cases physical testing is a necessity.

The historical development of mechanics of materials is a fascinating
blend of both theory and experiment—theory has pointed the way to use-
ful results in some instances, and experiment has done so in others. Such
famous persons as Leonardo da Vinci (1452–1519) and Galileo Galilei
(1564–1642) performed experiments to determine the strength of wires,
bars, and beams, although they did not develop adequate theories (by
today’s standards) to explain their test results. By contrast, the famous

4
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1.1 Introduction to Mechanics of Materials 5

mathematician Leonhard Euler (1707–1783) developed the mathematical
theory of columns and calculated the critical load of a column in 1744,
long before any experimental evidence existed to show the significance of
his results. Without appropriate tests to back up his theories, Euler’s
results remained unused for over a hundred years, although today they are
the basis for the design and analysis of most columns.*

Problems
When studying mechanics of materials, you will find that your efforts are
divided naturally into two parts: first, understanding the logical develop-
ment of the concepts, and second, applying those concepts to practical situ-
ations. The former is accomplished by studying the derivations, discussions,
and examples that appear in each chapter, and the latter is accomplished by
solving the problems at the ends of the chapters. Some of the problems are
numerical in character, and others are symbolic (or algebraic).

An advantage of numerical problems is that the magnitudes of all
quantities are evident at every stage of the calculations, thus providing an
opportunity to judge whether the values are reasonable or not. The prin-
cipal advantage of symbolic problems is that they lead to general-purpose
formulas. A formula displays the variables that affect the final results; for
instance, a quantity may actually cancel out of the solution, a fact that
would not be evident from a numerical solution. Also, an algebraic solu-
tion shows the manner in which each variable affects the results, as when
one variable appears in the numerator and another appears in the denom-
inator. Furthermore, a symbolic solution provides the opportunity to
check the dimensions at every stage of the work.

Finally, the most important reason for solving algebraically is to
obtain a general formula that can be used for many different problems. In
contrast, a numerical solution applies to only one set of circumstances.
Because engineers must be adept at both kinds of solutions, you will find
a mixture of numeric and symbolic problems throughout this book.

Numerical problems require that you work with specific units of
measurement. This book utilizes the International System of Units (SI).
A discussion of SI units appears in Appendix A, where you will also find
many useful tables. 

All problems appear at the ends of the chapters, with the problem
numbers and subheadings identifying the sections to which they belong.
The techniques for solving problems are discussed in detail in Appendix B.
In addition to a list of sound engineering procedures, Appendix B includes
sections on dimensional homogeneity and significant digits. These topics
are especially important, because every equation must be dimensionally
homogeneous and every numerical result must be expressed with the
proper number of significant digits. In this book, final numerical results
are usually presented with three significant digits when a number begins
with the digits 2 through 9, and with four significant digits when a num-
ber begins with the digit 1. Intermediate values are often recorded with
additional digits to avoid losing numerical accuracy due to rounding
of numbers. 

*The history of mechanics of materials, beginning with Leonardo and Galileo, is given in Refs. 1-1, 1-2, and 1-3.
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Chapter 1  Tension, Compression, and Shear

1.2 STATICS REVIEW
In your prerequisite course on statics, you studied the equilibrium of rigid
bodies acted upon by a variety of different forces and supported or
restrained in such a way that the body was stable and at rest. As a result, a
properly restrained body could not undergo rigid-body motion due to the
application of static forces. You drew free-body diagrams of the entire body,
or of key parts of the body, and then applied the equations of equilibrium to
find external reaction forces and moments or internal forces and moments
at critical points. In this section, we will review the basic static equilibrium
equations and apply them to the solution of example structures (both two
and three dimensional) using both scalar and vector operations (both accel-
eration and velocity of the body will be assumed to be zero). Most problems
in mechanics of materials require a static analysis as the first step, so all
forces acting on the system and causing its deformation are known. Once all
external and internal forces of interest have been found, we will be able to
proceed with the evaluation of stresses, strains, and deformations of bars,
shafts, beams, and columns in subsequent chapters.

Equilibrium Equations
The resultant force R and resultant moment M of all forces and moments
acting on either a rigid or deformable body in equilibrium are both zero.
The sum of the moments may be taken about any arbitrary point. The
resulting equilibrium equations can be expressed in vector form as:

(1-1)

(1-2)

where F is one of a number of vectors of forces acting on the body and r is
a position vector from the point at which moments are taken to a point along
the line of application of any force F. It is often convenient to write the equi-
librium equations in scalar form using a rectangular Cartesian coordinate
system, either in two dimensions (x, y) or three dimensions (x, y, z) as

(1-3)

Eq. (1-3) can be used for two-dimensional or planar problems, but in three
dimensions, three force and three moment equations are required:

(1-4)

(1-5)

If the number of unknown forces is equal to the number of independent
equilibrium equations, these equations are sufficient to solve for all unknown
reaction or internal forces in the body, and the problem is referred to as stat-
ically determinate (provided that the body is stable). If the body or structure
is constrained by additional (or redundant) supports, it is statically indeter-
minate, and a solution is not possible using the laws of static equilibrium
alone. For statically indeterminate structures, we must also examine the
deformations of the structure, as will be discussed in the following chapters.

gMx � 0 gMy � 0 gMz � 0

gFx � 0 gFy � 0 gFz � 0

gFx � 0 gFy � 0 gMz � 0

R � gF � 0

M � gM � g (r � F) � 0

6
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1.2 Statics Review 7

Applied Forces
External loads applied to a body or structure may be either concentrated
or distributed forces or moments. For example, force FB (with units of
pounds, lb, or newtons, N) in Fig. 1-1 is a point or concentrated load and
is assumed to act at point B on the body, while moment MA is a concen-
trated moment or couple (with units of lb-ft or N • m) acting at point A.
Distributed forces may act alone or normal to a member and may have
constant intensity, such as line load q1 normal to member BC (Fig. 1-1) or
line load q2 acting in the �y direction on inclined member DF; both q1 and
q2 have units of force intensity (lb/ft or N/m). Distributed loads also may
have a linear (or other) variation with some peak intensity q0 (as on mem-
ber ED in Fig. 1-1). Surface pressures p (with units of lb/ft2 or Pa), such as
wind acting on a sign (Fig. 1-2), act over a designated region of a body.
Finally, a body force w (with units of force per unit volume, lb/ft3 or N/m3),

Fig. 1-1
Plane frame structure

q1

q2

3

3

4

4

q0

E

C

A

a

b
D

F

B

FB

MA

dc

e

y

x

Fig. 1-2
Wind on sign

Wp

P

Ws

y

p

z

H

x
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Chapter 1  Tension, Compression, and Shear

such as the distributed self-weight of the sign or post in Fig. 1-2, acts
throughout the volume of the body and can be replaced by the component
weight W acting at the center of gravity (c.g.) of the sign (Ws) or
post (Wp). In fact, any distributed loading (line, surface, or body force) can
be replaced by a statically equivalent force at the center of gravity of the
distributed loading when overall static equilibrium of the structure is eval-
uated using Eqs. (1-1) to (1-5).

Free-Body Diagrams
A free-body diagram (FBD) is an essential part of  a static analysis of  a
rigid or deformable body. All forces acting on the body, or component
part of  the body, must be displayed on the FBD if  a correct equilibrium
solution is to be obtained. This includes applied forces and moments,
reaction forces and moments, and any connection forces between individ-
ual components. For example, an overall FBD of the plane frame in
Fig. 1-1 is shown in Fig. 1-3a; all applied and reaction forces are shown
on this FBD and statically equivalent concentrated loads are displayed
for all distributed loads. Statically equivalent forces Fq0, Fq1, and Fq2, each
acting at the c.g. of  the corresponding distributed loading, are used in
the equilibrium equation solution to represent distributed loads q0, q1, 
and q2, respectively.

Next, the plane frame has been disassembled in Fig. 1-3b, so that
separate FBD’s can be drawn for each part of  the frame, thereby expos-
ing pin-connection forces at D (Dx, Dy). Both FBD’s must show all
applied forces as well as reaction forces Ax and Ay at pin-support joint 
A and Fx and Fy at pin-support joint F. The forces transmitted between
frame elements EDC and DF at pin connection D must be determined if
the proper interaction of  these two elements is to be accounted for in the
static analysis.

The plane frame structure in Fig. 1-1 will be analyzed in Example 1-2
to find reaction forces at joints A and F and also pin-connection forces at
joint D using the equilibrium equations Eqs. (1-1) to (1-3). The FBD’s pre-
sented in Figs. 1-3a and 1-3b are essential parts of this solution process. 
A statics sign convention is usually employed in the solution for support
reactions; forces acting in the positive directions of the coordinate axes are
assumed positive, and the right-hand rule is used for moment vectors.

Reactive Forces and Support Conditions
Proper restraint of the body or structure is essential if  the equilibrium
equations are to be satisfied. A sufficient number and arrangement of sup-
ports must be present to prevent rigid body motion under the action of
static forces. A reaction force at a support is represented by a single arrow
with a slash drawn through it (see Fig. 1-3) while a moment restraint at a
support is shown as a double-headed or curved arrow with a slash.
Reaction forces and moments usually result from the action of applied
forces of the types described above (i.e., concentrated, distributed, surface,
and body forces).

A variety of  different support conditions may be assumed depend-
ing on whether the problem is 2D or 3D. Supports A and F in the 2D
plane frame structure shown in Fig. 1-1 and Fig. 1-3 are pin supports,

8

77742_01_ch01_p002-121.qxd:77742_01_ch01_p002-121.qxd  3/2/12  2:16 PM  Page 8

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1.2 Statics Review 9

while the base of  the 3D sign structure in Fig. 1-2 may be considered to
be a fixed or clamped support. Some of  the most commonly used ideal-
izations for 2D and 3D supports, as well as interconnections between
members or elements of  a structure, are illustrated in Table 1-1. The

q1C

Fq1

q0

Fq0

q2

Fq2

E D

D

Dy

Dy Dx

Dx

Resultant D

Resultant A

Fy

FxF

B

FB

3
4

MA

(b)

Ax

Ay

A

y

x

Fig. 1-3
(a) Overall FBD of plane frame
structure from Fig. 1-1, and 
(b) Separate free-body diagrams
of parts A through E and DF of
the plane frame structure in
Fig. 1-1

q1
C

e

Fq1

Fq2

3

4
q0

Fq0

E

a

b

D

Fy

Fx
F

B

FB

3
4

MA

(a)

Ax
Ay

A

dc

y

x
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Chapter 1  Tension, Compression, and Shear10

Type of support or 
connection

Simplified sketch of 
support or connection

Display of restraint forces
and moments, or 
connection forces

(1) Roller support—
horizontal, vertical, or
inclined

Bridge with roller support
(The Earthquake Engineering
Online Archive)

Horizontal roller support
(constrains motion in both
�y and �y directions)

Vertical roller restraints

Rotated or inclined roller
support

x y

z

(a) Two-dimensional roller
support

(b) Three-dimensional roller
support

z x

y

Ry

R

θ

x

y

Rx x

y

R

x

y

(2) Pin support

Bridge with pin support
(Courtesy of Joel Kerkhoff,
P.Eng.)

Pin support on old truss
bridge
(© Barry Goodno)

Pin support at F in Fig. 1-1

yx

z

F

(a) Two-dimensional pin 
support

(b) Three-dimensional pin
support

x

Rx

y

Ry

Rz

RyRx

yx

z

Rx

y

Ry

x

Table 1-1
Reaction and Connection Forces

in 2D or 3D Static Analysis
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1.2 Statics Review 11

(3) Sliding support

Frictionless sleeve on 
vertical shaft

Rx x

y
Mz

(4) Clamped or fixed support

Fixed support at base of sign
post (see Fig. 1-2)

A A

Weld

Pole
Base plate

Concrete pier

(a) Two-dimensional fixed
support

(b) Three-dimensional fixed
support

Rz
RxMz Mx

x

z

y

My

Ry

Rx

Ry

Mz

x

y

Rx

Ry

Mz

x

y

(5) Elastic or spring supports (a) Translational spring (k)

−kyδy

−kxδx
ky

kx δx

δy

x

y

Table 1-1 (continued)
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Chapter 1  Tension, Compression, and Shear12

(b) Rotational spring (kr)

Rx

Ry

Mz = −kr θz

x

y θz

kr

(6) Pinned connection (from
Figs. 1-1 and 1-3)

Pin connection on old bridge
(© Barry Goodno)

Pinned connection at D
between members EDC and
DF in plane frame (Fig. 1-1)

D
D

D

Dy

Dy

Dx

Dx

(7) Slotted connection (modi-
fied connection from that
shown in Figs. 1-1 and 1-3)

Alternate slotted connection
at D on plane frame (Note
that the plane frame in 
Fig. 1-1 is unstable if this
slotted connection is used
instead of a pin at D.)

D

D
Dy

Dy

(8) Rigid connection (internal
forces and moment in mem-
bers joined at C of plane
frame in Fig. 1-1)

Rigid connection at C on
plane frame

q1C

Fq1

B

3
4

Mc

Nc

Vc

Nc
Vc

Mc

Table 1-1 (continued)

restraining or transmitted forces and moments associated with each
type of  support or connection are displayed in the third column of  the
table (these are not FBDs, however). The reactions forces and moments
for the 3D sign structure in Fig. 1-2 are shown on the FBD in Fig. 1-4a;
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1.2 Statics Review 13

only reactions Ry, Rz, and Mx are non-zero because the sign structure
and wind loading are symmetric with respect to the yz plane. If  the sign
is eccentric to the post (Fig. 1-4b), only reaction Rx is zero for the case
of  wind loading in the �z direction. (See Prob. 1.7-16 at the end of
Chapter 1 for a more detailed examination of  the reaction forces due to
wind pressure acting on the sign structure in Fig. 1-2; forces and
stresses in the base plate bolts are also computed. Several eccentric sign
structures are presented for analysis as end of  chapter problems in
Chapter 8.)

Internal Forces (Stress Resultants)
In our study of  mechanics of  materials, we will investigate the deforma-
tions of  the members or elements which make up the overall
deformable body. In order to compute the member deformations, we
must first find the internal forces and moments (i.e., the internal stress
resultants) at key points along the members of  the overall structure. In
fact, we will often create graphical displays of  the internal axial force,
torsional moment, transverse shear and bending moment along the axis
of  each member of  the body so that we can readily identify critical
points or regions within the structure. The first step is to make a section
cut normal to the axis of  each member so that a FBD can be drawn
which displays the internal forces of  interest. For example, if  a cut is
made at the top of  member BC in the plane frame in Fig. 1-1, the 
internal axial force (Nc), transverse shear force (Vc) and bending moment
(Mc) at joint C can be exposed as shown in the last row of  Table 1-1.
Fig. 1-5 shows two additional cuts made through members ED and DF

Fig. 1-4
(a) FBD of symmetric sign 
structure, and (b) FBD of 
eccentric sign structure

Wp

Mx

Rz

Ry

P

Ws

y

z

H

x

(a)

Wp

Mx

Mz

Rz
Ry

My

P

Ws

y

z x

(b)
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Chapter 1  Tension, Compression, and Shear14

in the plane frame; the resulting FBD’s now can be used to find N, V,
and M in members ED and DF of  the plane frame. Stress resultants N,
V, and M are usually taken along and normal to the member under
consideration (i.e., local or member axes are used), and a deformation
sign convention (e.g., tension is positive, compression is negative) is
employed in their solution. In later chapters, we will see how these (and
other) internal stress resultants are used to compute stresses in the
member cross section.

The following examples are presented as a review of application of
the equations of  static equilibrium in the solution for external reactions
and internal forces in truss, beam, circular shaft, and frame structures.
First, a truss structure is considered and both scalar and vector solutions
for reaction forces are reviewed. Then member forces are computed using
the method of joints. Properly drawn FBD’s are seen to be essential to the
overall solution process. The second example involves static analysis of  a
beam structure to find reactions and internal forces at a particular section
along the beam. In the third example, reactive and internal torsional
moments in a stepped shaft are computed. And, finally, the fourth exam-
ple presents the solution of the plane frame structure discussed here.
Numerical values are assigned to applied forces and structure dimensions,
and then reaction, pin connection, and selected internal forces in the
frame are computed.

Fig. 1-5
FBD’s for internal stress 
resultants in ED and DF

D

q1
C

Fq2

q0

Fq0

q2

Fq2

E V

D

Dy

Dy

Dx

Dx

Fy

Fx

FBDDFFBDED

F

B
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MA
Ax

Ay

A

y

x

N

V

V

N
M

M

N
N
M M

V
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1.2 Statics Review 15

The plane truss shown in Fig. 1-6 is pin supported at A and has a roller sup-
port at B. Joint loads 2P and �P are applied at joint C. Find support reactions
at joints A and B, then solve for forces in members AB, AC and BC. Use
numerical properties given below.

Numerical data:

Solution
(1) Use the law of sines to find angles θB and θC , then find the length (c) of

member AB.
(2) Draw the FBD, then use equilibrium equations in scalar form [Eq. (1-3)]

to find the support reactions.
(3) Find member forces using the method of joints.
(4) Repeat solution for support reactions using a vector solution.
(5) Solve for support reactions and member forces for a 3D version of this

plane (2D) truss.

(1) Use the law of sines to find angles θB, θC then find the length (c) of mem-
ber AB.

See law of sines in Appendix C:

Note that the Law of Cosines also could be used:

(2) Draw the FBD (Fig. 1-7), then use equilibrium equations in scalar form
[Eq. (1-3)] to find the support reactions.

Note that the plane truss is statically determinate since there are 
(m � r � 6) unknowns (where m � number of member forces and 
r � number of reactions), but there are (2j � 2 � 3 � 6) equations of
statics from the method of joints (where j � number of joints).

Use equilibrium equations in scalar form to find support reactions.

Sum moments about A to get reaction By:

Sum forces in y direction to get Ay :

Sum forces in x direction to get Ax :

(3) Find member forces using the method of joints.

Draw FBDs of each joint (Fig. 1-8) then sum forces in x and y directions
to find member forces.

Ax � �2P � �320 kN

Ay � P � By � �70 kN

By �
[Pb cos (θA) � (2P)b sin (θA)]

c
� 230 kN

c � 3b2 � L2 � 2bL cos(θC) � 3.417 m

and c � La sin(θC)

sin(θA)
b � 3.417 m or c � b cos (θA) � L cos(θB) � 3.417 m

θB � arcsinab
L

sin(θA)b � 39.426° so θC � 180° � (θA � θB) � 80.574°

P � 160 kN L � 3 m θA � 60° b � 2.2 m

Example 1-1• • •

Continues ➥

A B

C 2P

c

θA = 60°
θB

θc

L

x

y
P

b
Fig. 1-6
Example 1-1: Plane truss static
analysis for joint loads

A B

C 2P

c

θA = 60°
θB

ByAy

Ax

θc

L

P

b

Fig. 1-7
Example 1-1: FBD of plane 
truss

A B

C 2P

ByAy

Ax FAB

FAB

FAC

FAC

FBC

FBC

P

Fig. 1-8
Example 1-1: FBD of each joint
of plane truss
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Chapter 1  Tension, Compression, and Shear16

Sum forces in y direction at joint A:

Sum forces in x direction at joint A:

Sum forces in y direction at joint B:

Check equilibrium at joint C. (First at x direction, then y direction.)

(4) Repeat solution for support reactions using a vector solution (show x, y,
z components in vector format).

Sum moments about point A, then equate each expression to zero:

Now sum forces and equate each expression to zero:

Reactions Ax, Ay, and By are the same as from the scalar solution approach.

(5) Solve for support reactions and member forces for a 3D version of plane
(2D) truss.

To create a space truss from the plane truss, move joint A along the z axis
a distance z while holding B on the x axis and constraining C to lie some

or Á 3 £ i j k
c 0 0
0 By 0

≥ 3 � 4 §
i j k
b
2

b 13
2

0

2P �P 0

¥ 4� �785.68 k kN # m � 3.4173 m By k

Ay� 160 � By � �70 kN

A � B � C � £ Ax � 320 kN
Ay � By � 160 kN

0
≥ so Ax ��320 kN

so By �
785.7
3.417

� 230 kN

MA � rAB � B � rAC � C � £ 0
0

3.417 m By � 785.7 m kN
≥

A � £Ax

Ay

0
≥ B � £ 0

By

0
≥ C � £ 2P

�P
0
≥

Force vectors at A, B, and C:

rAB � £ c
0
0
≥ � £3.4173

0
0
≥ m rAC � £b cos (θA)

b sin (θA)
0

≥ � £ 1.1
1.9053

0
≥ m

Position vectors to B and C from A:

�FAC cos (θA) � FBC cos (θB) � 2P � 0 �FAC sin (θA) � FBC sin (θB) � P � 0

FBC �
�By

sin (θB )
FBC � �362 kN

FAB � �Ax � FAC cos (θA) � 280 kN

FAC �
�Ay

sin (θA)
� 80.7 kN

Example 1-1 - Continued• • •
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1.2 Statics Review 17

distance y along the y axis (see Fig. 1-9); hold member lengths (L, b, c)
and angles (θA, θB, θC) to the values used for the plane truss. Apply joint
loads 2P and �P at joint C. Add 3D pin support at A, two restraints at 
B (By , Bz), and one restraint at C (Cz).

Note that the space truss is statically determinate since there are 
(m � r � 9) unknowns (where m � number of member forces and 
r � number of reactions), but there are (3j � 3 � 3 � 9) equations of
statics from the method of joints (where j � number of joints).

First, find x, y, and z projections of members along coordinate axes.
Then find angles OBC, OBA, and OAC in each plane.

Draw the overall FBD (see Fig. 1-9), then use a scalar solution to find reac-
tions and member forces.

(1) Sum moments about a line through A, which is parallel to the y axis (this
will isolate reaction Bz, giving us one equation with one unknown):

This is based on a statics sign convention so the negative sign means that
force Bz acts in the �z direction.

(2) Sum moments about the z-axis to find By, then sum forces in y direction
to get Ay:

(3) Sum moments about the x axis to find Cz:

(4) Sum forces in the x and z directions to get Ax and Az:

(5) Finally, use the method of joints to find member forces (a deformation sign
convention is used here so positive (�) means tension and negative (�)
means compression).

Sum forces in x direction at joint A:

Sum forces in y direction at joint A:

y

b
FAC � Ay � 0 FAC �

b
y

(�Ay ) FAC � �88.4 kN

x
c

FAB � Ax � 0 FAB �
�c
x

Ax FAB � 389 kN

Ax � �2P � �320 kN Az � �Cz � Bz � 142.6 kN

Cz �
Ayz

y
� 77.9 kN

By �
2P(y)

x
� 118.2 kN so Ay � P � By � 41.8 kN

Bzx � (2P )z � 0 Bz � �2P
z
x

� �220 kN

OAC � arctan ay

z
b � 28.202°

OBC � arctan ay

x
b � 20.277° OBA � arctan az

x
b � 34.566°

z �
B

�L2 � b2 � c2

2
� 1.93883 m

x �
B

L2 � b2 � c2

2
� 2.81408 m y �

B

L2 � b2 � c2

2
� 1.03968 m

Fig. 1-9
Example 1-1: FBD of space truss
(extended version of plane
truss)

A

O
B

C 2P

c
θA = 60°

θB

By
Bz

Ay

Az

Cz

Ax

y

y

x

x

z

z

θc L

P

b

Continues ➥
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Chapter 1  Tension, Compression, and Shear18

Sum forces in y direction at joint B:

Re-compute reactions for the space truss using a vector solution.
Find position (r) and unit (e) vectors from joint A to joints B and C:

Sum moments about point A, then equate each expression to zero:

or 

and  

Collecting coefficients of j and solving:

Collecting coefficients of k and solving:

Collecting coefficients of i and solving:

Complete the solution by summing forces and equating to zero:

Reactions Ax, Ay, Az and By, Bz are the same as from the scalar 
solution approach. 

rAC � £ 0
y

�z
≥ eAC �

rAC

|rAC |
� £ 0

0.473
�0.881

≥

y

L
FBC � By � 0 FBC �

�L
y

By FBC � �341 kN

Ax � �320 kN Ay � 41.8 kN Az � 142.6 kN

£Ax

Ay

Az

≥ � £ 0
By

Bz

≥ � £ 2P
�P
Cz

≥ � £Ax � 320.0 kN
Ay�41.8 kN
Az � 142.6

≥

Cz �
310.21 � 1.9388 By

1.0397
� 77.9 kN

By �
332.7

2.8141
� 118.2 kN

Bz �
620.43

�2.8141
� �220 kN

�620.43 kN # m j � 332.7 kN # m k

3 £ i j k
0 y �z

2P �P Cz

≥ 3 � 1.0397 m Cz i � 310.21 kN # m i

3 £ i j k
x 0 �z
0 By Bz

≥ 3 �1.9388 m By i � 2.8141 m Bz j �2.8141 m By k

� £1.9388 m By � 1.0397 m Cz � 310.21 kN # m
�2.8141 m Bz � 620.43 kN # m

2.8141 m By � 332.7 kN # m
≥

MA � rAB � £ 0
By

Bz

≥ � rAC � £ 2P
�P
Cz

≥
MA � rAB � B � rAC � C

rAB � £ x
0

�z
≥ eAB �

rAB

|rAB|
� £ 0.823

0
�0.567

≥

Example 1-1 - Continued• • •
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1.2 Statics Review
19

• • •

Continues ➥

The simply-supported beam structure shown in Fig. 1-10 is subjected to
moment MA at pin-supported joint A, inclined load FB applied at joint B, and
uniform load with intensity q1 on member segment BC. Find support reac-
tions at joints A and C, then solve for internal forces at the midpoint of BC.
Use properly drawn free-body diagrams in your solution.

Example 1-2

MA
FB

A

x
a b

B

C

q1

3

4Fig. 1-10
Example 1-2: Beam static 
analysis for support reactions

Numerical data (Newtons and meters):

Solution
(1) Draw the FBD of the overall beam. The solution for reaction forces at A

and C must begin with a proper drawing of the FBD of the overall beam
(Fig. 1-11). The FBD shows all applied and reactive forces.

MA � 380N # m FB � 200N q1 � 160N/m
a � 3m b � 2m

MA FB

A

Ax

Ay
a b

B

(4/5)FB

(3/5)FB

C

Cy

q1

b/2

Fq1

Fig. 1-11
Example 1-2: FBD of beam

(2) Determine statically equivalent concentrated forces. Distributed forces are
replaced by their statical equivalents (Fq1) and the components of the
inclined concentrated force at B may also be computed:

(3) Sum the moments about A to find reaction force Cy. This structure is stati-
cally determinate because there are three available equations from statics 
(ΣFx � 0, ΣFy � 0, and ΣM � 0) and three reaction unknowns (Ax, Ay, Cy). It
is convenient to start the static analysis using ΣMA � 0, because we can iso-
late one equation with one unknown and then easily find reaction Cy. 
A statics sign convention is used (i.e., right-hand rule or CCW is positive).

➥

➥

Cy �
1

(a � b)
cMA � FBya � Fq1aa �

b
2
b d � 260N

Fq1 � q1b � 320N FBx �
4
5

FB � 160N FBy �
3
5

FB � 120N
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Chapter 1  Tension, Compression, and Shear20

(4) Sum the forces in x and y directions to find reaction forces at A. Now that
Cy is known, we can complete the equilibrium analysis to find Ax and Ay
using ΣFx � 0 and ΣFy � 0. Then we can find the resultant reaction force
at A using components Ax and Ay:

(5) Find the internal forces and moment at the midpoint of member segment
BC. Now that reaction forces at A and C are known, we can cut a section
through the beam midway between B and C, creating left and right FBDs
(Fig. 1-12). Section forces Nc (axial) and Vc (shear) as well as section
moment (Mc) are exposed and may be computed using statics. Either FBD
may be used to find Nc, Vc, and Mc; the computed internal forces and
moment Nc, Vc, and Mc will be the same.

Calculations based on left FBD:

Calculations based on right FBD:

The computed internal forces (N and V ) and internal moment (M) are the
same and can be determined using either the left or right FBD. This
applies for any section taken through the beam at any point along its
length. Later, we will create plots or diagrams which show the variation
of N, V, and M over the length of the beam. These diagrams will be very
useful in the design of beams, because they readily show the critical
regions of the beam where N, V, and M have maximum values.

M � Cyab
2
b � q1ab

2
b ab

4
b � 180 N # m

M � MA � Ayaa �
b
2
b � FByab

2
b � q1ab

2
b ab

4
b � 180 N # m

©M � 0

©Fy � 0 V � q1ab
2
b � Cy � �100 N

©Fx � 0 N � 0

©M � 0

©Fy � 0 V � Ay � FBy � q1ab
2
b � �100 N

©Fx � 0 N � FBx � Ax � 0 N

Resultant force at A: A � 4Ax
2 � Ay

2 A � 171 N

Ay � �FBy � Cy � Fq1 Ay � �60 N

Sum forces in y direction: Ay � FBy � Cy � Fq1 � 0

Sum forces in x direction: Ax � FBx � 0 Ax � FBx Ax � 160 N

Example 1-2 - Continued• • •

MA FB

A

Left FBD Right FBD

Ax

Ay
a

B

(4/5)FB

(3/5)FB

M M
V

NN

V

C

Cy

b/2

q1 q1

b/2Fig. 1-12
Example 1-2: Left and right
FBDs of beam
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1.2 Statics Review 21

• • •

Continues ➥

A stepped circular shaft is fixed at A and has three gears that transmit the
torques shown in Fig. 1-13. Find the reaction torque at A, then find the
internal torsional moments in segments AB, BC, and CD. Use properly drawn
free-body diagrams in your solution.

Example 1-3

D

x

B

A

C

1900 N·m

1000 N·m

550 N·m

Fig. 1-13
Example 1-3: Stepped circular
shaft in torsion

x

MAx

C DBA

1900 N·m 550 N·m1000 N·m

Fig. 1-14
Example 1-3: FBD of overall
shaft

(2) Sum the moments about the x axis to find the reaction moment MAx.
This structure is statically determinate because there is one available
equation from statics (ΣMx � 0) and one reaction unknown (MAx). A stat-
ics sign convention is used (i.e., right-hand rule or CCW is positive).

MAx � 1900 N m � 1000 N m � 550 N m � 0

MAx � �(�1900 N m � 1000 N m � 550 N m)

� 350 N m

The computed result for MAx is positive, so the reaction moment vector
is in the positive x direction as assumed.

(3) Find the internal torsional moments in each segment of the shaft. Now
that reaction moment MAx is known, we can cut a section through the
shaft in each segment creating left and right FBDs (Fig. 1-15). Internal

#

# # #

###

Solution
(1) Draw the FBD of the overall shaft structure. The cantilever shaft struc-

ture is statically determinate. The solution for the reaction moment at A
must begin with a proper drawing of the FBD of the overall structure
(Fig. 1-14). The FBD shows all applied and reactive torques.
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Example 1-3 - Continued• • •

Right FBDLeft FBD

x

TAB

MAx

C DBA

1900 N·m 550 N·m1000 N·m

(a)

Fig. 1-15a
Example 1-3: Left and right
FBDs of shaft for each 
segment

Right FBDLeft FBD

x
MAx

C DBA

1900 N·m 550 N·m1000 N·m

(b)

TBC

Fig. 1-15b

Left FBD: Right FBD:
TAB � �MAx � �350 N m TAB � �1900 N m � 1000 N m 

� 550 N m � �350 N m

Find the internal torque TBC (Fig. 1-15b).

##

###

Left FBD: Right FBD:
TBC � �MAx � 1900 N m TBC � 1000 N m � 550 N m 

� 1550 N m � 1550 N m

Find internal torque TCD (Fig. 1-15c).

#

##

#

#

Right FBDLeft FBD

x
MAx

C DBA

1900 N·m 550 N·m1000 N·m

(c)

TCD

Fig. 1-15c

Left FBD: Right FBD:
TCD � �MAx � 1900 N m TCD � 550 N m

� 1000 N m � 550 N m

In each segment, the internal torsional moments computed using either the
left or right FBDs are the same.

#

#

#

#

torsional moments then may be computed using statics. Either FBD may
be used; the computed internal torsional moment will be the same.

Find the internal torque TAB (Fig. 1-15a).
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• • •

Continues ➥

The plane frame in Fig. 1-16 is a modified version of that shown in Fig. 1-1.
Initially, member DF has been replaced with a roller support at D. Moment
MA is applied at pin-supported joint A, and load FB is applied at joint B.
A uniform load with intensity q1 acts on member BC, and a linearly distrib-
uted load with peak intensity q0 is applied downward on member ED. Find
the support reactions at joints A and D, then solve for internal forces at the
top of member BC. Use numerical properties given. As a final step, remove
the roller at D, insert member DF (as shown in Fig. 1-1) and reanalyze the
structure to find the reaction forces at A and F.

Example 1-4

q1

q0

E

A

a

b

D C

B

FB

3

4

MA

dc

y

x

Fig. 1-16
Example 1-4: Plane frame static
analysis for support reactions

Numerical data (Newtons and meters):

Solution
(1) Draw the FBD of the overall frame. The solution for reaction forces at A

and D must begin with a proper drawing of the FBD of the overall frame
(Fig. 1-17). The FBD shows all applied and reactive forces.

MA � 380 N # m FB � 200 N q0 � 80 N/m q1 � 160 N/m

a � 3 m b � 2 m c � 6 m d � 2.5 m

q1

q0
Fq

0

Fq
1

E

A
Ax

a

b

D

Dy

C

B

FB

3
4

MA

dc

y

x

Ay

Fig. 1-17
Example 1-4: FBD of plane
frame
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Chapter 1  Tension, Compression, and Shear24

Example 1-4 - Continued• • •

(2) Determine the statically equivalent concentrated forces. Distributed
forces are replaced by their statical equivalents (Fq0 and Fq1). The compo-
nents of the inclined concentrated force at B also may be computed:

(3) Sum the moments about A to find reaction force Dy. This structure is stat-
ically determinate because there are three available equations from statics
(ΣFx � 0, ΣFy � 0, and ΣM � 0) and three reaction unknowns (Ax, Ay, Dy).
It is convenient to start the static analysis using ΣMA � 0, because we can
isolate one equation with one unknown and then easily find reaction Dy.

(4) Sum the forces in the x and y directions to find the reaction forces at A.
Now that Dy is known, we can find Ax and Ay using ΣFx � 0 and ΣFy � 0, and
then find the resultant reaction force at A using components Ax and Ay.

(5) Find the internal forces and moment at the top of member BC. Now that
reaction forces at A and D are known, we can cut a section through the
frame just below joint C, creating upper and lower FBDs (Fig. 1-18).

Resultant force at A: A � 4Ax
2 � Ay

2 A � 262N

Ay � 208 N

Sum forces in y direction: Ay � FBy � Dy � Fq0 � 0 Ay � FBy � Dy � Fq0

Ax � �160 N

Sum forces in x direction: Ax � FBx � Fq1 � 0 Ax � FBx � Fq1

Dy �
1
d
c�MA � FBxa � Fq1aa �

b
2
b � Fq0ad �

2
3

cb d � 152 N

FBx �
4
5

FB � 160 N FBy �
3
5

FB � 120 N

Fq0 �
1
2

q0c � 240 N Fq1 � q1b � 320 N

Fq0

Fq1

Mc

Vc
E

AxA

D

Dy

C

FB

3

4
MA

a

b/2

b/2

Mc

Nc

Nc

Vc

c d

y

x

Ay

B

Fig. 1-18
Example 1-4: Upper and lower
FBDs of plane frame
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1.2 Statics Review 25

Section forces Nc (axial) and Vc (shear) as well as section moment (Mc) are
exposed and may be computed using statics. Either FBD may be used to
find Nc, Vc, and Mc; the computed stress resultants Nc, Vc, and Mc will be
the same.

Calculations based on upper FBD:

Calculations based on lower FBD:

(6) Remove the roller at D, insert member DF (as shown in Fig. 1-1) and
reanalyze the structure to find reaction forces at A and F. Member DF is
pin-connected to EDC at D, has a pin support at F, and carries uniform
load q2 in the �y direction. See Figs. 1-3a and 1-3b for the FBDs required
in the solution. Note that there are now four unknown reaction forces
(Ax, Ay, Fx and Fy) but only three equilibrium equations available (ΣFx �
0, ΣFy � 0, ΣM � 0) for use with the overall FBD in Fig. 1-3a. To find
another equation, we will have to separate the structure at pin connec-
tion D to take advantage of the fact that the moment at D is known to
be zero (friction effects are assumed to be negligible); we can then use
ΣMD � 0 for either the upper FBD or the lower FBD in Fig. 1-3b to
develop one more independent equation of statics. Recall that a statics
sign convention is used here for all equilibrium equations.
Dimensions and loads for new member DF:

First, write equilibrium equations for the entire structure FBD (see Fig. 1-3a).

(a) Sum forces in x direction for entire FBD:

(a)

(b) Sum forces in y direction for entire FBD:

(b)Ay � Fy � Fq0 � Fq2 � FBy � 0

Ax � Fx � FBx � Fq1 � 0

q2 � 180 N/m Fq2 � q2e � 900 N

e � 5 m ex �
3
5

e � 3 m ey �
4
5

e � 4 m

Mc � �Fq1
b
2

� FBxb � Ax(a � b) � MA � 1180 N # m

©Mc � 0

Nc � FBy � Ay � �88 N©Fy � 0

Vc � �Fq1 � FBx � Ax � 0©Fx � 0

Mc � �Dyd � Fq0ad �
2
3

cb � 1180 N # m

©Mc � 0

Nc � Dy � Fq0 � �88 N©Fy � 0

Vc � 0©Fx � 0

Continues ➥
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Chapter 1  Tension, Compression, and Shear26

Example 1-4 - Continued• • •

(c) Sum moments about A for entire FBD:

(c)

Next, write another equilibrium equation for the upper FBD in Fig. 1-3b.

(d) Sum moments about D on upper FBD:

(d)

Solving Eqs. (c) and (d) for Fx and Fy, we have

Now, substitute solutions for Fx and Fy into Eqs. (a) and (b) to find reac-
tions Ax and Ay :

The resultant force at A is   

Sum the moments about D on lower FBD as a check; the lower FBD is in
equilibrium as required:

(7) Finally, compute the resultant force in the pin connection at D. Use the
summation of forces in the upper FBD to find component forces Dx and
Dy, then find the resultant D (see Fig. 1-3b).

The resultant force at D is 

≥
MA � Fq1 aa �

b
2
b � cFBxa � Fq0 ad �

2
3

cb � Fq2 ad �
ex

2
b d

Fq2

ex

2

¥ � a180.6
690.8

b N

D � 4Dx
2 � Dy

2 � 276 N.

Dy � �Fy � Fq2 � 209.2 N©Fy � 0

Dx � �Fx � �180.6 N©Fx � 0

Fq0a2
3

cb � Fq1
b
2

� FBxb � FByd � MA � Ax(a � b) � Ayd � 0

A � 663 NA � 4Ax
2 � Ay

2

Ay � 569.2 NAy � �Fy � Fq0 � Fq2 � FBy

Ax � �340.6 NAx � �(Fx � FBx � Fq1)

aFx

Fy
b � c�(a � b � ey ) ex � d

�ey ex
d �1

�Fxey � Fyex � Fq2

ex

2
� 0 so �Fxey � Fyex � Fq2

ex

2

� cFBxa � Fq0ad �
2
3

cb � Fq2ad �
ex

2
b d

so �Fx(a � b � ey) � Fy(ex � d ) � MA � Fq1aa �
b
2
b

� Fq0ad �
2
3

cb � Fq2ad �
ex

2
b � 0

�MA � Fq1aa �
b
2
b � Fx(a � b � ey) � Fy(ex � d) � FBxa
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1.3 Normal Stress and Strain 27

1.3 NORMAL STRESS AND STRAIN
Now that statical equilibrium has been established and we have com-
puted all required reaction forces and internal forces associated with the
deformable body, we are ready to examine internal actions more closely.
The most fundamental concepts in mechanics of  materials are stress and
strain. These concepts can be illustrated in their most elementary form
by considering a prismatic bar subjected to axial forces. A prismatic bar
is a straight structural member having the same cross section throughout
its length, and an axial force is a load directed along the axis of  the mem-
ber, resulting in either tension or compression in the bar. Examples are
shown in Fig. 1-19, where the tow bar is a prismatic member in tension
and the landing gear strut is a member in compression. Other examples
are the members of  a bridge truss, connecting rods in automobile
engines, spokes of  bicycle wheels, columns in buildings, and wing struts
in small airplanes.

Fig. 1-19
Structural members subjected to
axial loads (the tow bar is in 
tension and the landing gear
strut is in compression)

Tow bar

Landing gear strut

For discussion purposes, we will consider the tow bar of Fig. 1-19 and
isolate a segment of it as a free body (Fig. 1-20a). When drawing this free-
body diagram, we disregard the weight of the bar itself  and assume that
the only active forces are the axial forces P at the ends. Next we consider
two views of the bar, the first showing the same bar before the loads are
applied (Fig. 1-20b) and the second showing it after the loads are applied
(Fig. 1-20c). Note that the original length of the bar is denoted by the let-
ter L, and the increase in length due to the loads is denoted by the Greek
letter δ (delta).

The internal actions in the bar are exposed if  we make an imaginary
cut through the bar at section mn (Fig. 1-20c). Because this section is
taken perpendicular to the longitudinal axis of  the bar, it is called a cross
section.

We now isolate the part of  the bar to the left of  cross section mn as
a free body (Fig. 1-20d). At the right-hand end of  this free body (sec-
tion mn) we show the action of  the removed part of  the bar (that is, the
part to the right of  section mn) upon the part that remains. This action
consists of  continuously distributed stresses acting over the entire cross
section, and the axial force P acting at the cross section is the resultant
of  those stresses. (The resultant force is shown with a dashed line in
Fig. 1-20d.)
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Chapter 1  Tension, Compression, and Shear28

Fig. 1-20
Prismatic bar in tension: (a) free-

body diagram of a segment of
the bar, (b) segment of the bar
before loading, (c) segment of

the bar after loading, and 
(d) normal stresses in the bar

d

P

(a)

P

P

(c)

(d)

P

P P

—
A
P=

(b)

m

n

m

n

L

L + d

s

Stress has units of force per unit area and is denoted by the Greek letter
σ (sigma). In general, the stresses σ acting on a plane surface may be uniform
throughout the area or may vary in intensity from one point to another. Let
us assume that the stresses acting on cross section mn (Fig. 1-20d) are uni-
formly distributed over the area. Then the resultant of those stresses must be
equal to the magnitude of the stress times the cross-sectional area A of the
bar, that is, P � σA. Therefore, we obtain the following expression for the
magnitude of the stresses:

(1-6)

This equation gives the intensity of uniform stress in an axially loaded,
prismatic bar of arbitrary cross-sectional shape.

When the bar is stretched by the forces P, the stresses are tensile
stresses; if  the forces are reversed in direction, causing the bar to be com-
pressed, we obtain compressive stresses. Inasmuch as the stresses act in a
direction perpendicular to the cut surface, they are called normal stresses.
Thus, normal stresses may be either tensile or compressive. Later, in
Section 1.7, we will encounter another type of  stress, called shear stress,
that acts parallel to the surface.

When a sign convention for normal stresses is required, it is custom-
ary to define tensile stresses as positive and compressive stresses as 
negative.

Because the normal stress σ is obtained by dividing the axial force by
the cross-sectional area, it has units of force per unit of area. 

σ �
P
A
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1.3 Normal Stress and Strain 29

In SI units, force is expressed in newtons (N) and area in square
meters (m2). Consequently, stress has units of newtons per square meter
(N/m2), that is, pascals (Pa). However, the pascal is such a small unit of
stress that it is necessary to work with large multiples, usually the mega-
pascal (MPa). Although it is not recommended in SI, you will sometimes
find stress given in newtons per square millimeter (N/mm2), which is a unit
equal to the megapascal (MPa).

Limitations
The equation σ � P/A is valid only if  the stress is uniformly distributed
over the cross section of the bar. This condition is realized if  the axial force
P acts through the centroid of the cross-sectional area, as demonstrated
later in this section. When the load P does not act at the centroid, bending
of the bar will result, and a more complicated analysis is necessary (see
Sections 5.12 and 11.5). However, in this book (as in common practice) it
is understood that axial forces are applied at the centroids of the cross sec-
tions unless specifically stated otherwise.

The uniform stress condition pictured in Fig. 1-20d exists throughout
the length of  the bar except near the ends. The stress distribution at the
end of a bar depends upon how the load P is transmitted to the bar. If
the load happens to be distributed uniformly over the end, then the stress
pattern at the end will be the same as everywhere else. However, it is more
likely that the load is transmitted through a pin or a bolt, producing high
localized stresses called stress concentrations.

One possibility is illustrated by the eyebar shown in Fig. 1-21. In this
instance the loads P are transmitted to the bar by pins that pass through
the holes (or eyes) at the ends of the bar. Thus, the forces shown in the fig-
ure are actually the resultants of bearing pressures between the pins and
the eyebar, and the stress distribution around the holes is quite complex.
However, as we move away from the ends and toward the middle of the
bar, the stress distribution gradually approaches the uniform distribution
pictured in Fig. 1-20d.

As a practical rule, the formula σ � P/A may be used with good accu-
racy at any point within a prismatic bar that is at least as far away from the
stress concentration as the largest lateral dimension of the bar. In other
words, the stress distribution in the steel eyebar of Fig. 1-21 is uniform at
distances b or greater from the enlarged ends, where b is the width of the
bar, and the stress distribution in the prismatic bar of Fig. 1-20 is uniform
at distances d or greater from the ends, where d is the diameter of the bar
(Fig. 1-20d). More detailed discussions of stress concentrations produced
by axial loads are given in Section 2.10.

Of course, even when the stress is not uniformly distributed, the equa-
tion σ � P/A may still be useful because it gives the average normal stress
on the cross section.

Normal Strain
As already observed, a straight bar will change in length when loaded
axially, becoming longer when in tension and shorter when in compres-
sion. For instance, consider again the prismatic bar of  Fig. 1-20. The

Fig. 1-21
Steel eyebar subjected to tensile
loads P

b

P P
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elongation δ of this bar (Fig. 1-20c) is the cumulative result of  the
stretching of  all elements of  the material throughout the volume of  the
bar. Let us assume that the material is the same everywhere in the bar.
Then, if  we consider half  of  the bar (length L/2), it will have an elonga-
tion equal to δ/2, and if  we consider one-fourth of  the bar, it will have an
elongation equal to δ/4.

In general, the elongation of  a segment is equal to its length 
divided by the total length L and multiplied by the total elongation δ.
Therefore, a unit length of  the bar will have an elongation equal to 
1/L � δ. This quantity is called the elongation per unit length, or strain,
and is denoted by the Greek letter ε (epsilon). We see that strain is given
by the equation

(1-7)

If  the bar is in tension, the strain is called a tensile strain, representing
an elongation or stretching of  the material. If  the bar is in compres-
sion, the strain is a compressive strain and the bar shortens. Tensile
strain is usually taken as positive and compressive strain as negative.
The strain ε is called a normal strain because it is associated with nor-
mal stresses.

Because normal strain is the ratio of two lengths, it is a dimensionless
quantity, that is, it has no units. Therefore, strain is expressed simply as a
number, independent of any system of units. Numerical values of strain
are usually very small, because bars made of structural materials undergo
only small changes in length when loaded.

As an example, consider a steel bar having length L equal to 2.0 m.
When heavily loaded in tension, this bar might elongate by 1.4 mm, which
means that the strain is

In practice, the original units of δ and L are sometimes attached to the
strain itself, and then the strain is recorded in forms such as mm/m, μm/m,
and in./in. For instance, the strain ε in the preceding illustration could be
given as 700 μm/m or 700 � 10�6 m/m. Also, strain is sometimes expressed
as a percent, especially when the strains are large. (In the preceding exam-
ple, the strain is 0.07%.)

Uniaxial Stress and Strain
The definitions of  normal stress and normal strain are based upon
purely static and geometric considerations, which means that Eqs. (1-1)
and (1-2) can be used for loads of  any magnitude and for any material.
The principal requirement is that the deformation of  the bar be uni-
form throughout its volume, which in turn requires that the bar be pris-
matic, the loads act through the centroids of  the cross sections, and the

ε �
δ
L

�
1.4mm
2.0m

� 0.0007 � 700 � 10�6

ε �
δ
L
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1.3 Normal Stress and Strain 31

material be homogeneous (that is, the same throughout all parts of  the
bar). The resulting state of  stress and strain is called uniaxial stress and
strain (although lateral strain exists as discussed in Sec. 1.6 below).

Further discussions of uniaxial stress, including stresses in directions
other than the longitudinal direction of the bar, are given later in Section 2.6.
We will also analyze more complicated stress states, such as biaxial stress and
plane stress, in Chapter 7.

Line of Action of the Axial Forces for a Uniform
Stress Distribution
Throughout the preceding discussion of stress and strain in a prismatic
bar, we assumed that the normal stress σ was distributed uniformly over
the cross section. Now we will demonstrate that this condition is met if
the line of  action of the axial forces is through the centroid of  the cross-
sectional area.

Consider a prismatic bar of arbitrary cross-sectional shape subjected
to axial forces P that produce uniformly distributed stresses σ (Fig. 1-22a).
Also, let p1 represent the point in the cross section where the line of action
of the forces intersects the cross section (Fig. 1-22b). We construct a set of
xy axes in the plane of the cross section and denote the coordinates of
point p1 by and . To determine these coordinates, we observe that the
moments Mx and My of the force P about the x and y axes, respectively,
must be equal to the corresponding moments of the uniformly distributed
stresses.

The moments of the force P are

(1-8a,b)

in which a moment is considered positive when its vector (using the
right-hand rule) acts in the positive direction of  the corresponding
axis.*

The moments of  the distributed stresses are obtained by integrat-
ing over the cross-sectional area A. The differential force acting on an
element of  area dA (Fig. 1-22b) is equal to σdA. The moments of  this
elemental force about the x and y axes are σydA and � σxdA, respec-
tively, in which x and y denote the coordinates of  the element dA. The
total moments are obtained by integrating over the cross-sectional
area:

(1-8c,d)

These expressions give the moments produced by the stresses σ.

Mx �
L

σydA My � �
L

σxdA

Mx � Py My � �P x

xq yq

*To visualize the right-hand rule, imagine that you grasp an axis of coordinates with your right hand so that
your fingers fold around the axis and your thumb points in the positive direction of the axis. Then a moment
is positive if it acts about the axis in the same direction as your fingers.
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Next, we equate the moments Mx and My as obtained from the force
P [Eqs. (1-8a and b)] to the moments obtained from the distributed stresses
[Eqs. (1-8c and d)]:

Because the stresses σ are uniformly distributed, we know that they are
constant over the cross-sectional area A and can be placed outside the
integral signs. Also, we know that σ is equal to P/A. Therefore, we obtain
the following formulas for the coordinates of point p1:

(1-9a,b)

These equations are the same as the equations defining the coordinates
of  the centroid of  an area [see Eqs. (12-3a and b) in Chapter 12].
Therefore, we have now arrived at an important conclusion: In order to
have uniform tension or compression in a prismatic bar, the axial force
must act through the centroid of the cross-sectional area. As explained
previously, we always assume that these conditions are met unless it is
specifically stated otherwise.

The following examples illustrate the calculation of stresses and
strains in prismatic bars. In the first example we disregard the weight of
the bar and in the second we include it. (It is customary when solving text-
book problems to omit the weight of the structure unless specifically
instructed to include it.)

Pyq �
L

σydA P x � �
L

σxdA

yq �
L

ydA

A
xq �

L
xdA

A
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Fig. 1-22
Uniform stress distribution in a
prismatic bar: (a) axial forces P,
and (b) cross section of the bar
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1.3 Normal Stress and Strain 33

• • •

Continues ➥

A hollow circular nylon pipe (see Fig 1-23) supports a load PA � 7800 N,
which is uniformly distributed around a cap plate at the top of the lower
pipe. A second load PB is applied at the bottom. The inner and outer
diameters of the upper and lower parts of the pipe are d1 � 51 mm, 
d2 � 60 mm, d3 � 57 mm, and d4 � 63 mm, respectively. The upper pipe
has a length L1 � 350 mm; the lower pipe length is L2 � 400 mm. Neglect
the self-weight of the pipes.

(a) Find PB so that the tensile stress in upper part is 14.5 MPa. What is the
resulting stress in the lower part?

(b) If PA remains unchanged, find the new value of PB so that upper and
lower parts have same tensile stress.

(c) Find the tensile strains in the upper and lower pipe segments for the
loads in part (b) if the elongation of the upper pipe segment is known to
be 3.56 mm and the downward displacement of the bottom of the pipe
is 7.63 mm.

Numerical data:

Solution
(a) Find PB so that the stress in the upper part is 14.5 MPa. What is the

resulting stress in the lower part? Neglect self-weight in all calculations.

Use the given dimensions to compute the cross-sectional areas of the
upper (segment 1) and lower (segment 2) pipes (we note that A1 is 1.39
times A2). The stress in segment 1 is known to be 14.5 MPa.

The axial tensile force in the upper pipe is the sum of loads PA and PB.
Write an expression for σ1 in terms of both loads, then solve for PB:

With PB now known, the axial tensile stress in the lower segment can be
computed as

➥

➥

σ2 �
PB

A2

� 6.33 MPa

where σ1 � 14.5 MPa so PB � σ1A1 � PA � 3577 N

σ1 �
PA � PB

A1

A1 �
π
4

(d2
2 � d1

2) � 784.613 mm2 A2 �
π
4

(d4
2 � d3

2) � 565.487 mm2

L1 � 350 mm L2 � 400 mm

d3 � 57 mm d4 � 63 mm d1 � 51 mm d2 � 60 mm PA � 7800 N

Example 1-5

PB

L2 = 400 mm

L1 = 350 mm

PA

d2

d3

d4

d1

Fig. 1-23
Example 1-5: Two-tier hanging
pipe stress analysis
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Chapter 1  Tension, Compression, and Shear34

Example 1-5 - Continued• • •

(b) If PA remains unchanged, find the new value of PB so that upper and
lower parts have same tensile stress.

So PA � 7800 N. Write expressions for the normal stresses in the upper
and lower segments, equate these expressions, and then solve for PB.

Tensile normal stress in upper segment:

Tensile normal stress in lower segment:

Equate these expressions for stresses σ1 and σ2 and solve for the required PB:

So for the stresses to be equal in the upper and lower pipe segments, the
new value of load PB is 2.58 times the value of load PA.

(c) Find the tensile strains in the upper and lower pipe segments for the
loads in part (b).

The elongation of the upper pipe segment is δ1 � 3.56 mm. So the ten-
sile strain in the upper pipe segment is

The downward displacement of the bottom of the pipe is δ � 7.63 mm.
So the net elongation of the lower pipe segment is δ2 � δ � δ1 � 4.07 mm
and the tensile strain in the lower pipe segment is

Note: As explained earlier, strain is a dimensionless quantity and no units
are needed. For clarity, however, units are often given. In this example, ε
could be written as 1017 � 10�6 m/m or 1017 μm/m.

➥

➥

➥

σ1 �
PA � PB

A1

σ2 �
PB

A2

ε2 �
δ2

L2

� 1.017 � 10�2

ε1 �
δ1

L1

� 1.017 � 10�2

PB �

PA

A1

a 1
A2

�
1
A1

b
� 20,129 N
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1.3 Normal Stress and Strain 35

A semicircular bracket assembly is used to support a steel staircase in an office
building. Steel rods are attached to each of two brackets using a clevis and
pin; the upper end of the rod is attached to a cross beam near the roof. Photos
of the bracket attachment and hanger rod supports are shown in Fig. 1-24.
The weight of the staircase, and any building occupants who are using the
staircase, is estimated to result in a force of 4800 N on each hanger rod.

(a) Obtain a formula for the maximum stress σmax in the rod, taking into
account the weight of the rod itself.

(b) Calculate the maximum stress in the rod in MPa using numerical proper-
ties Lr � 12 m, dr � 20 mm, Fr � 4800 N (note that the weight density γr
of steel is 77.0 kN/m3 [from Table H-1 in Appendix H]).

Example 1-6• • •

Bolt and washer

Bracket

Clevis

Pin

Rods Lr

FrFr

dr

Fig. 1-24a
Example 1-6: Hanger rods 
supporting steel staircase

Components of hanger rod connection
(© Barry Goodno)

Side view

Fig. 1-24b

Roof cross beam

Rods

Lr

Side view of hanger rod and bracket
(© Barry Goodno)

Fig. 1-24c

Hanger rod attached to cross beam at roof
(© Barry Goodno)

Continues ➥
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Chapter 1  Tension, Compression, and Shear36

Numerical data:

Solution
(a) Obtain a formula for the maximum stress σmax in the rod, taking into

account the weight of the rod itself.

The maximum axial force Fmax in the rod occurs at the upper end and is
equal to the force Fr in the rod due to the combined staircase and occu-
pants’ weights plus the weight Wr of the rod itself. The latter is equal to
the weight density γr of the steel times the volume Vr of the rod, or

(1-10)

in which Ar is the cross-sectional area of the rod. Therefore, the formula
for the maximum stress [from Eq. (1-6)] becomes

(1-11)

(b) Calculate the maximum stress in the rod in MPa using numerical 
properties.

To calculate the maximum stress, we substitute numerical values into the
preceding equation. The cross-sectional area , where 
dr � 20 mm, and the weight density γr of steel is 77.0 kN/m3 (from Table H-1
in Appendix H).

Thus,

The normal stress in the rod due to the weight of the staircase is

and the additional normal stress at the top of the rod due to the weight

of the rod itself is

So the maximum normal stress at the top of the rod is the sum of these

two normal stresses:

(1-12)

Note that

In this example, the weight of the rod contributes about 6% to the maxi-
mum stress and should not be disregarded.

➥

➥

➥

Lr � 12 m dr � 20 mm γr � 77 kN/m3 Fr � 4800 N

σrod

σstair
� 6.05%

σ max � σstair � σrod σ max � 16.2 MPa

σrod � γrLr � 0.924 MPa

σstair �
Fr

Ar

� 15.3 MPa

Ar �
πdr

2

4
� 314 mm2 Fr � 4800 N

Ar � πdr
2/4

σ max �
F max

Ar

or σ max �
Fr � Wr

Ar

�
Fr

Ar

� γrLr

Wr � γr (ArLr )

Example 1-6 - Continued• • •
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1.4 Mechanical Properties of Materials 37

1.4 MECHANICAL PROPERTIES OF
MATERIALS
The design of machines and structures so that they will function properly
requires that we understand the mechanical behavior of the materials being
used. Ordinarily, the only way to determine how materials behave when they
are subjected to loads is to perform experiments in the laboratory. The usual
procedure is to place small specimens of the material in testing machines,
apply the loads, and then measure the resulting deformations (such as
changes in length and changes in diameter). Most materials-testing laborato-
ries are equipped with machines capable of loading specimens in a variety of
ways, including both static and dynamic loading in tension and compression.

A typical tensile-test machine is shown in Fig. 1-25. The test specimen
is installed between the two large grips of the testing machine and then
loaded in tension. Measuring devices record the deformations, and the
automatic control and data-processing systems (at the left in the photo)
tabulate and graph the results.

A more detailed view of a tensile-test specimen is shown in Fig. 1-26
on the next page. The ends of the circular specimen are enlarged where
they fit in the grips so that failure will not occur near the grips themselves.
A failure at the ends would not produce the desired information about the
material, because the stress distribution near the grips is not uniform, as
explained in Section 1.3. In a properly designed specimen, failure will
occur in the prismatic portion of the specimen where the stress distribu-
tion is uniform and the bar is subjected only to pure tension. This situa-
tion is shown in Fig. 1-26, where the steel specimen has just fractured
under load. The device at the left, which is attached by two arms to the
specimen, is an extensometer that measures the elongation during loading.

In order that test results will be comparable, the dimensions of test
specimens and the methods of applying loads must be standardized. One
of the major standards organizations in the United States is the American
Society for Testing and Materials (ASTM), a technical society that pub-
lishes specifications and standards for materials and testing. Other stan-
dardizing organizations are the American Standards Association (ASA)

Fig. 1-25
Tensile-test machine with 
automatic data-processing 
system (Courtesy of MTS Systems
Corporation)
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Chapter 1  Tension, Compression, and Shear38

and the National Institute of Standards and Technology (NIST). Similar
organizations exist in other countries.

The ASTM standard tension specimen has a diameter of 12.8 mm and
a gage length of 50.8 mm between the gage marks, which are the points
where the extensometer arms are attached to the specimen (see Fig. 1-26).
As the specimen is pulled, the axial load is measured and recorded, either
automatically or by reading from a dial. The elongation over the gage
length is measured simultaneously, either by mechanical gages of the kind
shown in Fig. 1-26 or by electrical-resistance strain gages.

In a static test, the load is applied slowly and the precise rate of load-
ing is not of interest because it does not affect the behavior of the speci-
men. However, in a dynamic test the load is applied rapidly and sometimes
in a cyclical manner. Since the nature of a dynamic load affects the prop-
erties of the materials, the rate of loading must also be measured.

Compression tests of  metals are customarily made on small
specimens in the shape of  cubes or circular cylinders. For instance, cubes
may be 50 mm on a side, and cylinders may have diameters of  25 mm and
lengths from 25 to 300 mm. Both the load applied by the machine and the
shortening of  the specimen may be measured. The shortening should
be measured over a gage length that is less than the total length of  the
specimen in order to eliminate end effects.

Concrete is tested in compression on important construction projects to
ensure that the required strength has been obtained. One type of concrete

Fig. 1-26
Typical tensile-test specimen

with extensometer attached; the
specimen has just fractured in

tension. (Courtesy of MTS
Systems Corporation)
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1.4 Mechanical Properties of Materials 39

test specimen is 152 mm in diameter, 305 mm in length, and 28 days old (the
age of concrete is important because concrete gains strength as it cures).
Similar but somewhat smaller specimens are used when performing com-
pression tests of rock (see Fig. 1-27).

Stress-Strain Diagrams
Test results generally depend upon the dimensions of the specimen being
tested. Since it is unlikely that we will be designing a structure having parts
that are the same size as the test specimens, we need to express the test
results in a form that can be applied to members of any size. A simple way
to achieve this objective is to convert the test results to stresses and strains.

The axial stress σ in a test specimen is calculated by dividing the axial
load P by the cross-sectional area A [Eq. (1-6)]. When the initial area of
the specimen is used in the calculation, the stress is called the nominal
stress (other names are conventional stress and engineering stress). A more
exact value of the axial stress, called the true stress, can be calculated by
using the actual area of the bar at the cross section where failure occurs.
Since the actual area in a tension test is always less than the initial area (as
illustrated in Fig. 1-26), the true stress is larger than the nominal stress.

Fig. 1-27
Rock sample being tested in
compression to obtain compres-
sive strength, elastic modulus
and Poisson’s ratio (Courtesy of
MTS Systems Corporation)
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Chapter 1  Tension, Compression, and Shear

The average axial strain ε in the test specimen is found by dividing
the measured elongation δ between the gage marks by the gage length L
[see Fig. 1-26 and Eq. (1-7)]. If  the initial gage length is used in the calcu-
lation (for instance, 50 mm), then the nominal strain is obtained. Since the
distance between the gage marks increases as the tensile load is applied, we
can calculate the true strain (or natural strain) at any value of the load by
using the actual distance between the gage marks. In tension, true strain is
always smaller than nominal strain. However, for most engineering pur-
poses, nominal stress and nominal strain are adequate, as explained later
in this section.

After performing a tension or compression test and determining the
stress and strain at various magnitudes of the load, we can plot a diagram
of stress versus strain. Such a stress-strain diagram is a characteristic of
the particular material being tested and conveys important information
about the mechanical properties and type of behavior.*

The first material we will discuss is structural steel, also known as mild
steel or low-carbon steel. Structural steel is one of the most widely used met-
als and is found in buildings, bridges, cranes, ships, towers, vehicles, and
many other types of construction. A stress-strain diagram for a typical
structural steel in tension is shown in Fig. 1-28. Strains are plotted on the
horizontal axis and stresses on the vertical axis. (In order to display all of the
important features of this material, the strain axis in Fig. 1-28 is not drawn
to scale.)

The diagram begins with a straight line from the origin O to point A,
which means that the relationship between stress and strain in this initial
region is not only linear but also proportional.** Beyond point A, the pro-
portionality between stress and strain no longer exists; hence the stress at
A is called the proportional limit. For low-carbon steels, this limit is in the
range 210 to 350 MPa, but high-strength steels (with higher carbon con-
tent plus other alloys) can have proportional limits of more than 550 MPa.
The slope of the straight line from O to A is called the modulus of
 elasticity. Because the slope has units of stress divided by strain, modulus
of elasticity has the same units as stress. (Modulus of elasticity is discussed
later in Section 1.6.)

With an increase in stress beyond the proportional limit, the strain
begins to increase more rapidly for each increment in stress. Consequently,
the stress-strain curve has a smaller and smaller slope, until, at point B, the
curve becomes horizontal (see Fig. 1-28). Beginning at this point, consid-
erable elongation of the test specimen occurs with no noticeable increase
in the tensile force (from B to C). This phenomenon is known as yielding
of the material, and point B is called the yield point. The corresponding
stress is known as the yield stress of the steel.

In the region from B to C (see Fig. 1-28), the material becomes perfectly
plastic, which means that it deforms without an increase in the applied 
load. The elongation of a mild-steel specimen in the perfectly plastic 

40

*Stress-strain diagrams were originated by Jacob Bernoulli (1654–1705) and J. V. Poncelet (1788–1867); see Ref. 1-4.

**Two variables are said to be proportional if their ratio remains constant. Therefore, a proportional relation-
ship may be represented by a straight line through the origin. However, a proportional relationship is not the
same as a linear relationship. Although a proportional relationship is linear, the converse is not necessarily true,
because a relationship represented by a straight line that does not pass through the origin is linear but not pro-
portional. The often-used expression “directly proportional” is synonymous with “proportional” (Ref. 1-5).
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1.4 Mechanical Properties of Materials 41

region is typically 10 to 15 times the elongation that occurs in the linear
region (between the onset of loading and the proportional limit). The 
presence of very large strains in the plastic region (and beyond) is the rea-
son for not plotting this diagram to scale.

After undergoing the large strains that occur during yielding in the
region BC, the steel begins to strain harden. During strain hardening, the
material undergoes changes in its crystalline structure, resulting in
increased resistance of the material to further deformation. Elongation of
the test specimen in this region requires an increase in the tensile load, and
therefore the stress-strain diagram has a positive slope from C to D. The
load eventually reaches its maximum value, and the corresponding stress
(at point D) is called the ultimate stress. Further stretching of the bar is
actually accompanied by a reduction in the load, and fracture finally
occurs at a point such as E in Fig. 1-28.

The yield stress and ultimate stress of a material are also called the
yield strength and ultimate strength, respectively. Strength is a general term
that refers to the capacity of a structure to resist loads. For instance, the
yield strength of a beam is the magnitude of the load required to cause
yielding in the beam, and the ultimate strength of a truss is the maximum
load it can support, that is, the failure load. However, when conducting a
tension test of a particular material, we define load-carrying capacity by
the stresses in the specimen rather than by the total loads acting on
the specimen. As a result, the strength of a material is usually stated as
a stress.

When a test specimen is stretched, lateral contraction occurs, as previ-
ously mentioned. The resulting decrease in cross-sectional area is too small
to have a noticeable effect on the calculated values of the stresses up to
about point C in Fig. 1-28, but beyond that point the reduction in area
begins to alter the shape of the curve. In the vicinity of the ultimate stress,
the reduction in area of the bar becomes clearly visible and a pronounced
necking of the bar occurs (see Figs. 1-26 and 1-29).

If  the actual cross-sectional area at the narrow part of  the neck is
used to calculate the stress, the true stress-strain curve (the dashed line
CE� in Fig. 1-28) is obtained. The total load the bar can carry does indeed
diminish after the ultimate stress is reached (as shown by curve DE), but
this reduction is due to the decrease in area of  the bar and not to a loss
in strength of  the material itself. In reality, the material withstands an

Fig. 1-28
Stress-strain diagram for a 
typical structural steel in tension
(not to scale)
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Fig. 1-29
Necking of a mild-steel bar in
tension (© Barry Goodno)
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Chapter 1  Tension, Compression, and Shear

increase in true stress up to failure (point E�). Because most structures are
expected to function at stresses below the proportional limit, the conven-
tional stress-strain curve OABCDE, which is based upon the original
cross-sectional area of  the specimen and is easy to determine, provides
satisfactory information for use in engineering design.

The diagram of Fig. 1-28 shows the general characteristics of the stress-
strain curve for mild steel, but its proportions are not realistic because, as
already mentioned, the strain that occurs from B to C may be more than ten
times the strain occurring from O to A. Furthermore, the strains from C to
E are many times greater than those from B to C. The correct relationships
are portrayed in Fig. 1-30, which shows a stress-strain diagram for mild steel
drawn to scale. In this figure, the strains from the zero point to point A
are so small in comparison to the strains from point A to point E that 
they cannot be seen, and the initial part of the diagram appears to be a 
vertical line.

The presence of  a clearly defined yield point followed by large plas-
tic strains is an important characteristic of  structural steel that is some-
times utilized in practical design (see, for instance, the discussions of
elastoplastic behavior in Sections 2.12 and 6.10). Metals such as struc-
tural steel that undergo large permanent strains before failure are classi-
fied as ductile. For instance, ductility is the property that enables a bar of
steel to be bent into a circular arc or drawn into a wire without break-
ing. A desirable feature of  ductile materials is that visible distortions
occur if  the loads become too large, thus providing an opportunity to
take remedial action before an actual fracture occurs. Also, materials
exhibiting ductile behavior are capable of  absorbing large amounts of
strain energy prior to fracture.

Structural steel is an alloy of iron containing about 0.2% carbon, and
therefore it is classified as a low-carbon steel. With increasing carbon con-
tent, steel becomes less ductile but stronger (higher yield stress and higher
ultimate stress). The physical properties of steel are also affected by heat
treatment, the presence of other metals, and manufacturing processes such
as rolling. Other materials that behave in a ductile manner (under certain
conditions) include aluminum, copper, magnesium, lead, molybdenum,
nickel, brass, bronze, monel metal, nylon, and teflon.

Although they may have considerable ductility, aluminum alloys
typically do not have a clearly definable yield point, as shown by the
stress-strain diagram of  Fig. 1-31. However, they do have an initial
 linear region with a recognizable proportional limit. Alloys produced 
for structural purposes have proportional limits in the range 70 to
410 MPa and ultimate stresses in the range 140 to 550 MPa.

When a material such as aluminum does not have an obvious yield
point and yet undergoes large strains after the proportional limit is
exceeded, an arbitrary yield stress may be determined by the offset
method. A straight line is drawn on the stress-strain diagram parallel to
the initial linear part of  the curve (Fig. 1-32) but offset by some stan-
dard strain, such as 0.002 (or 0.2%). The intersection of  the offset line
and the stress-strain curve (point A in the figure) defines the yield
stress. Because this stress is determined by an arbitrary rule and is not
an inherent physical property of  the material, it should be distinguished
from a true yield stress by referring to it as the offset yield stress. For a
material such as aluminum, the offset yield stress is slightly above the
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Fig. 1-30
Stress-strain diagram for a typi-

cal structural steel in tension
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1.4 Mechanical Properties of Materials 43

proportional limit. In the case of  structural steel, with its abrupt tran-
sition from the linear region to the region of  plastic stretching, the off-
set stress is essentially the same as both the yield stress and the
proportional limit.

Rubber maintains a linear relationship between stress and strain up
to relatively large strains (as compared to metals). The strain at the pro-
portional limit may be as high as 0.1 or 0.2 (10% or 20%). Beyond the
proportional limit, the behavior depends upon the type of  rubber
(Fig. 1-33). Some kinds of  soft rubber will stretch enormously without
failure, reaching lengths several times their original lengths. The mate-
rial eventually offers increasing resistance to the load, and the stress-
strain curve turns markedly upward. You can easily sense this
characteristic behavior by stretching a rubber band with your hands.
(Note that although rubber exhibits very large strains, it is not a ductile
material because the strains are not permanent. It is, of  course, an elas-
tic material; see Section 1.5.)

The ductility of a material in tension can be characterized by its elon-
gation and by the reduction in area at the cross section where fracture
occurs. The percent elongation is defined as

(1-13)

in which L0 is the original gage length and L1 is the distance between the
gage marks at fracture. Because the elongation is not uniform over the
length of the specimen but is concentrated in the region of necking,
the percent elongation depends upon the gage length. Therefore, when
stating the percent elongation, the gage length should always be given. For
a 50 mm gage length, steel may have an elongation in the range from 3%
to 40%, depending upon composition; in the case of structural steel, val-
ues of 20% or 30% are common. The elongation of aluminum alloys varies
from 1% to 45%, depending upon composition and treatment.

The percent reduction in area measures the amount of necking that
occurs and is defined as

(1-14)

in which A0 is the original cross-sectional area and A1 is the final area at
the fracture section. For ductile steels, the reduction is about 50%.

Materials that fail in tension at relatively low values of strain are clas-
sified as brittle. Examples are concrete, stone, cast iron, glass, ceramics,
and a variety of metallic alloys. Brittle materials fail with only little elon-
gation after the proportional limit (the stress at point A in Fig. 1-34) is
exceeded. Furthermore, the reduction in area is insignificant, and so the
nominal fracture stress (point B) is the same as the true ultimate stress.
High-carbon steels have very high yield stresses—over 700 MPa in some
cases—but they behave in a brittle manner and fracture occurs at an elon-
gation of only a few percent.

Percent reduction in area �
A0 � A1

A0
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Percent elongation �
L1 � L0
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Fig. 1-33
Stress-strain curves for two kinds
of rubber in tension
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Typical stress-strain diagram for
a brittle material showing the
proportional limit (point A) and
fracture stress (point B)

A

O

Bs

´

77742_01_ch01_p002-121.qxd:77742_01_ch01_p002-121.qxd  3/2/12  2:20 PM  Page 43

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 1  Tension, Compression, and Shear

Ordinary glass is a nearly ideal brittle material, because it exhibits
almost no ductility. The stress-strain curve for glass in tension is essentially
a straight line, with failure occurring before any yielding takes place. The
ultimate stress is about 70 MPa for certain kinds of plate glass, but great
variations exist, depending upon the type of glass, the size of the specimen,
and the presence of microscopic defects. Glass fibers can develop enormous
strengths, and ultimate stresses over 7 GPa have been attained.

Many types of  plastics are used for structural purposes because of
their light weight, resistance to corrosion, and good electrical insulation
properties. Their mechanical properties vary tremendously, with some
plastics being brittle and others ductile. When designing with plastics it is
important to realize that their properties are greatly affected by both
 temperature changes and the passage of  time. For instance, the ultimate
tensile stress of  some plastics is cut in half  merely by raising the temper-
ature from 10� C to 50� C. Also, a loaded plastic may stretch gradually
over time until it is no longer serviceable. For example, a bar of  polyvinyl
chloride subjected to a tensile load that initially produces a strain of  0.005
may have that strain doubled after one week, even though the load
remains constant. (This phenomenon, known as creep, is discussed in the
next section.)

Ultimate tensile stresses for plastics are generally in the range 14 to
350 MPa and weight densities vary from 8 to 14 kN/m3. One type of
nylon has an ultimate stress of  80 MPa and weighs only 11 kN/m3, which
is only 12% heavier than water. Because of  its light weight, the strength-
to-weight ratio for nylon is about the same as for structural steel (see
Prob. 1.4-4).

A filament-reinforced material consists of  a base material (or matrix)
in which high-strength filaments, fibers, or whiskers are embedded. The
resulting composite material has much greater strength than the base
material. As an example, the use of  glass fibers can more than double the
strength of  a plastic matrix. Composites are widely used in aircraft,
boats, rockets, and space vehicles where high strength and light weight
are needed.

Compression
Stress-strain curves for materials in compression differ from those in ten-
sion. Ductile metals such as steel, aluminum, and copper have propor-
tional limits in compression very close to those in tension, and the initial
regions of  their compressive and tensile stress-strain diagrams are about
the same. However, after yielding begins, the behavior is quite different.
In a tension test, the specimen is stretched, necking may occur, and frac-
ture ultimately takes place. When the material is compressed, it bulges
outward on the sides and becomes barrel shaped, because friction
between the specimen and the end plates prevents lateral expansion. With
increasing load, the specimen is flattened out and offers greatly increased
resistance to further shortening (which means that the stress-strain curve
becomes very steep). These characteristics are illustrated in Fig. 1-35,
which shows a compressive stress-strain diagram for copper. Since the
actual cross-sectional area of  a specimen tested in compression is larger
than the initial area, the true stress in a compression test is smaller than
the nominal stress.
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Fig. 1-35
Stress-strain diagram for copper

in compression
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1.5 Elasticity, Plasticity, and Creep 45

Brittle materials loaded in compression typically have an initial linear
region followed by a region in which the shortening increases at a slightly
higher rate than does the load. The stress-strain curves for compression
and tension often have similar shapes, but the ultimate stresses in compres-
sion are much higher than those in tension. Also, unlike ductile materials,
which flatten out when compressed, brittle materials actually break at the
maximum load.

Tables of Mechanical Properties
Properties of materials are listed in the tables of Appendix H at the back
of the book. The data in the tables are typical of the materials and are suit-
able for solving problems in this book. However, properties of materials
and stress-strain curves vary greatly, even for the same material, because
of different manufacturing processes, chemical composition, internal
defects, temperature, and many other factors.

For these reasons, data obtained from Appendix H (or other tables of
a similar nature) should not be used for specific engineering or design pur-
poses. Instead, the manufacturers or materials suppliers should be con-
sulted for information about a particular product.

1.5 ELASTICITY, PLASTICITY, AND CREEP
Stress-strain diagrams portray the behavior of engineering materials when
the materials are loaded in tension or compression, as described in the pre-
ceding section. To go one step further, let us now consider what happens
when the load is removed and the material is unloaded.

Assume, for instance, that we apply a load to a tensile specimen so that
the stress and strain go from the origin O to point A on the stress-strain
curve of Fig. 1-36a. Suppose further that when the load is removed, the
material follows exactly the same curve back to the origin O. This prop-
erty of a material, by which it returns to its original dimensions during
unloading, is called elasticity, and the material itself  is said to be elastic.
Note that the stress-strain curve from O to A need not be linear in order
for the material to be elastic.

Now suppose that we load this same material to a higher level, so
that point B is reached on the stress-strain curve (Fig. 1-36b). When
unloading occurs from point B, the material follows line BC on the dia-
gram. This unloading line is parallel to the initial portion of  the load-
ing curve; that is, line BC is parallel to a tangent to the stress-strain
curve at the origin. When point C is reached, the load has been entirely
removed, but a residual strain, or permanent strain, represented by line
OC, remains in the material. As a consequence, the bar being tested is
longer than it was before loading. This residual elongation of  the bar is
called the permanent set. Of  the total strain OD developed during load-
ing from O to B, the strain CD has been recovered elastically and the
strain OC remains as a permanent strain. Thus, during unloading the
bar returns partially to its original shape, and so the material is said to
be partially elastic.

Between points A and B on the stress-strain curve (Fig. 1-36b),
there must be a point before which the material is elastic and beyond

Fig. 1-36
Stress-strain diagrams illustrat-
ing (a) elastic behavior, and 
(b) partially elastic behavior
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Chapter 1  Tension, Compression, and Shear

which the material is partially elastic. To find this point, we load the
material to some selected value of  stress and then remove the load. If
there is no permanent set (that is, if  the elongation of  the bar returns to
zero), then the material is fully elastic up to the selected value of  the
stress.

The process of loading and unloading can be repeated for successively
higher values of stress. Eventually, a stress will be reached such that not all
the strain is recovered during unloading. By this procedure, it is possible to
determine the stress at the upper limit of the elastic region, for instance, the
stress at point E in Figs. 1-36a and b. The stress at this point is known as
the elastic limit of the material.

Many materials, including most metals, have linear regions at the begin-
ning of their stress-strain curves (for example, see Figs. 1-28 and 1-31). The
stress at the upper limit of this linear region is the proportional limit, as
explained in the preceeding section. The elastic limit is usually the same as,
or slightly above, the proportional limit. Hence, for many materials the two
limits are assigned the same numerical value. In the case of mild steel, the
yield stress is also very close to the proportional limit, so that for practical
purposes the yield stress, the elastic limit, and the proportional limit are
assumed to be equal. Of course, this situation does not hold for all materi-
als. Rubber is an outstanding example of a material that is elastic far beyond
the proportional limit.

The characteristic of  a material by which it undergoes inelastic
strains beyond the strain at the elastic limit is known as plasticity. Thus,
on the stress-strain curve of  Fig. 1-36a, we have an elastic region fol-
lowed by a plastic region. When large deformations occur in a ductile
material loaded into the plastic region, the material is said to undergo
plastic flow.

Reloading of a Material
If  the material remains within the elastic range, it can be loaded,
unloaded, and loaded again without significantly changing the behavior.
However, when loaded into the plastic range, the internal structure of the
material is altered and its properties change. For instance, we have already
observed that a permanent strain exists in the specimen after unloading
from the plastic region (Fig. 1-36b). Now suppose that the material is
reloaded after such an unloading (Fig. 1-37). The new loading begins at
point C on the diagram and continues upward to point B, the point at
which unloading began during the first loading cycle. The material then
follows the original stress-strain curve toward point F. Thus, for the sec-
ond loading, we can imagine that we have a new stress-strain diagram with
its origin at point C.

During the second loading, the material behaves in a linearly elastic
manner from C to B, with the slope of  line CB being the same as the
slope of  the tangent to the original loading curve at the origin O. The
proportional limit is now at point B, which is at a higher stress than
the original elastic limit (point E). Thus, by stretching a material such
as steel or aluminum into the inelastic or plastic range, the properties of
the material are changed—the linearly elastic region is increased, the
proportional limit is raised, and the elastic limit is raised. However,
the ductility is reduced because in the “new material” the amount of
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Fig. 1-37
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1.5 Elasticity, Plasticity, and Creep 47

yielding beyond the elastic limit (from B to F) is less than in the origi-
nal material (from E to F).*

Creep
The stress-strain diagrams described previously were obtained from tension
tests involving static loading and unloading of the specimens, and the passage
of time did not enter our discussions. However, when loaded for long periods
of time, some materials develop additional strains and are said to creep.

This phenomenon can manifest itself in a variety of ways. For instance,
suppose that a vertical bar (Fig. 1-38a) is loaded slowly by a force P, pro-
ducing an elongation equal to δ0. Let us assume that the loading and cor-
responding elongation take place during a time interval of duration t0
(Fig. 1-38b). Subsequent to time t0, the load remains constant. However,
due to creep, the bar may gradually lengthen, as shown in Fig. 1-38b, even
though the load does not change. This behavior occurs with many materi-
als, although sometimes the change is too small to be of concern.

As another manifestation of creep, consider a wire that is stretched
between two immovable supports so that it has an initial tensile stress
σ0 (Fig. 1-39). Again, we will denote the time during which the wire is ini-
tially stretched as t0. With the elapse of time, the stress in the wire gradu-
ally diminishes, eventually reaching a constant value, even though the
supports at the ends of the wire do not move. This process, is called 
relaxation of the material.

Fig. 1-38
Creep in a bar under constant
load
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*The study of material behavior under various environmental and loading conditions is an important branch
of applied mechanics. For more detailed engineering information about materials, consult a textbook
devoted solely to this subject.

Fig. 1-39
Relaxation of stress in a wire
under constant strain
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Creep is usually more important at high temperatures than at ordinary
temperatures, and therefore it should always be considered in the design of
engines, furnaces, and other structures that operate at elevated temperatures
for long periods of time. However, materials such as steel, concrete, and
wood will creep slightly even at atmospheric temperatures. For example,
creep of concrete over long periods of time can create undulations in bridge
decks because of sagging between the supports. (One remedy is to construct
the deck with an upward camber, which is an initial displacement above the
horizontal, so that when creep occurs, the spans lower to the level position.)
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Chapter 1  Tension, Compression, and Shear48

Example 1-7• • •

Machine component AB
slides horizontally at A and
rolls in vertical slot at B

Collar slides on bar

Wire AC

Bar 
AB

y

x

A

B

C

0.45 m

0.45 m

1.2 m

Wire AC

Fig. 1-40
Example 1-7: Rigid bar 
supported by copper alloy 
wire

A machine component slides along a horizontal bar at A and moves in a ver-
tical slot at B. The component is represented as a rigid bar AB (length 
L � 1.5 m, weight W � 4.5 kN) with roller supports at A and B (neglect fric-
tion). When not in use, the machine component is supported by a single
wire (diameter d � 3.5 mm) with one end attached at A and the other end
supported at C (see Fig. 1-40). The wire is made of a copper alloy; the stress-
strain relationship for the wire is

(a) Plot a stress-strain diagram for the material; what is the modulus of 
elasticity E (GPa)? What is the 0.2% offset yield stress (MPa)?

(b) Find the tensile force T (kN) in the wire.
(c) Find the normal axial strain ε and elongation δ (mm) of the wire.
(d) Find the permanent set of the wire if all forces are removed.

σ (ε) �
124,000ε
1 � 240ε

0 … ε … 0.03 (σ in MPa)
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1.5 Elasticity, Plasticity, and Creep 49

Solution
(a) Plot a stress-strain diagram for the material. What is the modulus of

elasticity? What is the 0.2% offset yield stress (MPa)?

Plot the function σ (ε ) for strain values between 0 and 0.03 (Fig. 1-41).
The stress at strain ε � 0.03 is 454 MPa.

σ (0) � 0 σ (0.03) � 454 MPa

σ (ε) �
124,000ε
1 � 240ε

ε � 0, 0.001, Á ,0.03

0
0

60

120

180

240

300

360

420

480

5 × 10–3 0.015 0.02 0.025 0.030.01

ε

s (ε)
(MPa)

Fig. 1-41
Stress-strain curve for copper
alloy wire in Example 1-7

Continues ➥

The slope of the tangent to the stress-strain curve at strain ε � 0 is the
modulus of elasticity E (see Fig. 1-42). Take the derivative of σ(ε) to get
the slope of the tangent to the σ (ε ) curve, and evaluate the derivative
at strain ε � 0 to find E.

Next, find an expression for the yield strain εy, the point at which the 0.2%
offset line crosses the stress-strain curve (see Fig. 1-42). Substitute the expres-
sion for εy into the σ(ε) expression and then solve for yield stress σ (εy) � σy:

Rearranging the equation in terms of σy gives

Solving this quadratic equation for the 0.2% offset yield stress σy gives
σy � 255 MPa. ➥

E � E(0) E � 124,000 MPa � 124 GPa

➥

σy
2 � a E

500
bσy �

E2

120000
� 0

εy � 0.002 �
σy

E
and σ (εy) � σy or σy �

124,000εy

1 � 240εy

E(ε) �
d
dε

σ (ε) :
124,000

(240ε � 1)2
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Chapter 1  Tension, Compression, and Shear50

The yield strain can be computed as

εy � 0.002 �
σy

E (GPa)
� 4.056 � 10�3

Example 1-7 - Continued• • •

0 0.0020

60

120

180

240

300

360
1

E420

480

5 × 10–3 0.0150.01

ε

εy = 4.056 × 10–3

sy = s (εy)s (ε)
(MPa)

Fig. 1-42
Modulus of elasticity E, 0.2%
offset line and yield stress σy
and strain εy for copper alloy
wire in Example 1-7

(b) Use statics to find the tensile force T (kN) in the wire; recall that bar
weight W � 4.5 kN.

Find the angle between the x axis and cable attachment position at C: 

Sum the moments about A to obtain one equation and one unknown.
The reaction Bx acts to the left:

Next, sum the forces in the x direction to find the cable force TC:

(c) Find the normal axial strain ε and elongation δ (mm) of the wire.

Compute the normal stress then find the associated strain from stress-
strain plot (or from the σ (ε) equation). The wire elongation is strain
times wire length.

The wire diameter, cross-sectional area, and length are

➥

LC � 3(1.2 m)2 � (0.45 m)2 � 1.282 m

d � 3.5 mm A �
π
4

d2 � 9.6211 mm2

αC � arctan a0.45
1.2
b � 20.556°

Bx �
�W (0.6 m)

0.9 m
� �3 kN

TC �
�Bx

cos (αC)
TC � 3.2 kN
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1.5 Elasticity, Plasticity, and Creep 51

Fig. 1-43
Residual strain (εres) and elastic
recovery strain (εer) for copper
alloy wire in Example 1-7

We can now compute the stress and strain in the wire and the elonga-
tion of the wire.

Note that the stress in the wire exceeds the 0.2% offset yield stress of
255 MPa. The corresponding normal strain can be found from the σ (ε)
plot or by rearranging the σ (ε) equation to give

Finally, the wire elongation is

(d) Find the permanent set of the wire if all forces are removed.

If the load is removed from the wire, the stress in the wire will return to
zero following unloading line BC in Fig. 1-43 (see also Fig. 1-36b). The
elastic recovery strain can be computed as

Hence, the residual strain is the difference between the total strain (εC)
and the elastic recovery strain (εer) as

Finally, the permanent set of the wire is the product of the residual strain
and the length of the wire:

➥

➥

➥

σC �
TC

A
� 333 MPa

Pset � εres LC � 9.184 mm

εres � εC � εer � 7.166 � 10�3

εer �
σC

E
� 3.895 � 10�4

δC � εCLC � 9.68 mm

Then, ε (σC) � εC, or εC �
σC

124 GPa � 240σC

� 7.556 � 10�3

ε (σ) �
σ

124000 � 240σ

0 0.0020

60

120

180

240

300

360
1

E420

480

5 × 10–3 0.015 0.020.01

e

eres eer

eC

sC

sy = s (ey)s (ε)
(MPa)
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Chapter 1  Tension, Compression, and Shear52

1.6 LINEAR ELASTICITY, HOOKE’S LAW,
AND POISSON’S RATIO
Many structural materials, including most metals, wood, plastics, and
ceramics, behave both elastically and linearly when first loaded.
Consequently, their stress-strain curves begin with a straight line pass-
ing through the origin. An example is the stress-strain curve for struc-
tural steel (Fig. 1-28), where the region from the origin O to the
proportional limit (point A) is both linear and elastic. Other examples
are the regions below both the proportional limits and the elastic limits
on the diagrams for aluminum (Fig. 1-31), brittle materials (Fig. 1-34),
and copper (Fig. 1-35).

When a material behaves elastically and also exhibits a linear relation-
ship between stress and strain, it is said to be linearly elastic. This type of
behavior is extremely important in engineering for an obvious reason—by
designing structures and machines to function in this region, we avoid per-
manent deformations due to yielding.

Hooke’s Law
The linear relationship between stress and strain for a bar in simple ten-
sion or compression is expressed by the equation

(1-15)

in which σ is the axial stress, ε is the axial strain, and E is a constant of
proportionality known as the modulus of elasticity for the material. The
modulus of elasticity is the slope of the stress-strain diagram in the lin-
early elastic region, as mentioned previously in Section 1.4. Since strain is
dimensionless, the units of E are the same as the units of stress. 

The equation σ � Eε is commonly known as Hooke’s law, named for
the famous English scientist Robert Hooke (1635–1703). Hooke was the
first person to investigate scientifically the elastic properties of materials,
and he tested such diverse materials as metal, wood, stone, bone, and
sinew. He measured the stretching of long wires supporting weights and
observed that the elongations “always bear the same proportions one to
the other that the weights do that made them” (Ref. 1-6). Thus, Hooke
established the linear relationship between the applied loads and the
resulting elongations.

Equation (1-15) is actually a very limited version of Hooke’s law
because it relates only to the longitudinal stresses and strains developed in
simple tension or compression of a bar (uniaxial stress). To deal with more
complicated states of stress, such as those found in most structures and
machines, we must use more extensive equations of Hooke’s law (see
Sections 7.5 and 7.6).

The modulus of elasticity has relatively large values for materials that
are very stiff, such as structural metals. Steel has a modulus of approxi-
mately 210 GPa; for aluminum, values around 73 GPa are typical. More
flexible materials have a lower modulus—values for plastics range from
0.7 to 14 GPa. Some representative values of E are listed in Table H-2,
Appendix H. For most materials, the value of E in compression is nearly the
same as in tension.

σ � Eε
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1.6 Linear Elasticity, Hooke’s Law, and Poisson’s Ratio 53

Modulus of elasticity is often called Young’s modulus, after another
English scientist, Thomas Young (1773–1829). In connection with an
investigation of tension and compression of prismatic bars, Young intro-
duced the idea of a “modulus of the elasticity.” However, his modulus was
not the same as the one in use today, because it involved properties of the
bar as well as of the material (Ref. 1-7).

Poisson’s Ratio
When a prismatic bar is loaded in tension, the axial elongation is accompa-
nied by lateral contraction (that is, contraction normal to the direction of the
applied load). This change in shape is pictured in Fig. 1-44, where part (a)
shows the bar before loading and part (b) shows it after loading. In part (b),
the dashed lines represent the shape of the bar prior to loading.

Fig. 1-44
Axial elongation and lateral
contraction of a prismatic bar in
tension: (a) bar before loading,
and (b) bar after loading (The
deformations of the bar are
highly exaggerated.)

P

(b)

P

(a)

Lateral contraction is easily seen by stretching a rubber band, but in
metals the changes in lateral dimensions (in the linearly elastic region) are
usually too small to be visible. However, they can be detected with sensi-
tive measuring devices.

The lateral strain ε� at any point in a bar is proportional to the axial
strain ε at that same point if  the material is linearly elastic. The ratio of
these strains is a property of the material known as Poisson’s ratio. This
dimensionless ratio, usually denoted by the Greek letter ν (nu), can be
expressed by the equation

(1-16)

The minus sign is inserted in the equation to compensate for the fact that
the lateral and axial strains normally have opposite signs. For instance, the
axial strain in a bar in tension is positive and the lateral strain is negative
(because the width of the bar decreases). For compression we have the
opposite situation, with the bar becoming shorter (negative axial strain)
and wider (positive lateral strain). Therefore, for ordinary materials
Poisson’s ratio will have a positive value.

When Poisson’s ratio for a material is known, we can obtain the lateral
strain from the axial strain as follows:

(1-17)ε � � �νε

ν � �
lateral strain
axial strain

� �
ε�

ε
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Chapter 1  Tension, Compression, and Shear

When using Eqs. (1-16) and (1-17), we must always keep in mind that they
apply only to a bar in uniaxial stress, that is, a bar for which the only stress
is the normal stress σ in the axial direction.

Poisson’s ratio is named for the famous French mathematician
Siméon Denis Poisson (1781–1840), who attempted to calculate this ratio
by a molecular theory of  materials (Ref. 1-8). For isotropic materials,
Poisson found ν � 1/4. More recent calculations based upon better mod-
els of  atomic structure give ν � 1/3. Both of these values are close to
actual measured values, which are in the range 0.25 to 0.35 for most met-
als and many other materials. Materials with an extremely low value of
Poisson’s ratio include cork, for which ν is practically zero, and concrete,
for which ν is about 0.1 or 0.2. A theoretical upper limit for Poisson’s ratio
is 0.5, as explained later in Section 7.5. Rubber comes close to this limit-
ing value.

A table of Poisson’s ratios for various materials in the linearly elastic
range is given in Table H-2, Appendix H. For most purposes, Poisson’s
ratio is assumed to be the same in both tension and compression.

When the strains in a material become large, Poisson’s ratio changes.
For instance, in the case of structural steel the ratio becomes almost 0.5
when plastic yielding occurs. Thus, Poisson’s ratio remains constant only
in the linearly elastic range. When the material behavior is nonlinear, the
ratio of lateral strain to axial strain is often called the contraction ratio. Of
course, in the special case of linearly elastic behavior, the contraction ratio
is the same as Poisson’s ratio.

Limitations
For a particular material, Poisson’s ratio remains constant throughout the
linearly elastic range, as explained previously. Therefore, at any given point
in the prismatic bar of Fig. 1-44, the lateral strain remains proportional to
the axial strain as the load increases or decreases. However, for a given
value of the load (which means that the axial strain is constant through-
out the bar), additional conditions must be met if  the lateral strains are to
be the same throughout the entire bar.

First, the material must be homogeneous, that is, it must have the
same composition (and hence the same elastic properties) at every
point. However, having a homogeneous material does not mean that
the elastic properties at a particular point are the same in all directions.
For instance, the modulus of  elasticity could be different in the axial
and lateral directions, as in the case of  a wood pole. Therefore, a sec-
ond condition for uniformity in the lateral strains is that the elastic
properties must be the same in all directions perpendicular to the longi-
tudinal axis. When the preceding conditions are met, as is often the
case with metals, the lateral strains in a prismatic bar subjected to uni-
form tension will be the same at every point in the bar and the same in
all lateral directions.

Materials having the same properties in all directions (whether
axial, lateral, or any other direction) are said to be isotropic. If  the prop-
erties differ in various directions, the material is anisotropic (or
aeolotropic).

In this book, all examples and problems are solved with the assump-
tion that the material is linearly elastic, homogeneous, and isotropic,
unless a specific statement is made to the contrary.

54

Fig. 1-44 (Repeated)

P

(b)

P

(a)
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1.6 Linear Elasticity, Hooke’s Law, and Poisson’s Ratio 55

• • •

Continues ➥

A hollow plastic circular pipe (length Lp, inner and outer diameters d1, d2,
respectively; see Fig. 1-45) is inserted as a liner inside a cast iron pipe (length
Lc, inner and outer diameters d3, d4, respectively).

(a) Derive a formula for the required initial length Lp of the plastic pipe so
that when it is compressed by some force P, the final length of both
pipes is the same and also, at the same time, the final outer diameter of
the plastic pipe is equal to the inner diameter of the cast iron pipe.

(b) Using the numerical data given below, find initial length Lp (m) and final
thickness tp (mm) for the plastic pipe.

(c) What is the required compressive force P (N)? What are the final normal
stresses (MPa) in both pipes?

(d) Compare initial and final volumes (mm3) for the plastic pipe.

Numerical data and pipe cross-section properties:

The initial cross-sectional areas of the plastic and cast iron pipes are

(a) Derive a formula for the required initial length Lp of the plastic pipe.

The lateral strain resulting from compression of the plastic pipe must close
the gap (d3 � d2) between the plastic pipe and the inner surface of the cast
iron pipe. The required extensional lateral strain is positive (here, ):

The accompanying compressive normal strain in the plastic pipe is
obtained using Eq. (1-17), which requires Poisson’s ratio for the plastic
pipe and also the required lateral strain:

We can now use the compressive normal strain εp to compute the short-
ening δp1 of the plastic pipe as

At the same time, the required shortening of the plastic pipe (so that it
will have the same final length as that of the cast iron pipe) is

δp2 � �(Lp � Lc)

εlat � ε�

δp1 � εpLp

εp �
�εlat

vp
or εp �

�1
νp
ad3 � d2

d2

b � �4.545 � 10�3

εlat �
d3 � d2

d2

� 1.818 � 10�3

Ap �
π
4

(d2
2 � d1

2) � 34.526 mm2 Ac �
π
4

(d4
2 � d3

2) � 848.984 mm2

d4 � 115 mm tp �
d2 � d1

2
� 0.1 mm

d1 � 109.8 mm d2 � 110 mm d3 � 110.2 mm

Lc � 0.25 m Ec � 170 GPa Ep � 2.1 GPa vc � 0.3 vp � 0.4

Example 1-8

Inner plastic
pipe liner

Outer cast
iron pipe

Force P compresses
plastic pipe

Lp

Lc

d2

d1

d2

d3

d4

Fig. 1-45
Example 1-8: Plastic pipe 
compressed inside cast iron
pipe
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Chapter 1  Tension, Compression, and Shear56

Now, equating δp1 and δp2 leads to a formula for the required initial
length Lp of the plastic pipe:

(b) Now substitute the numerical data to find the initial length Lp, change
in thickness Δtp, and final thickness tpf for the plastic pipe.

As expected, Lp is greater than the length of the cast iron pipe, Lc � 0.25 m,
and the thickness of the compressed plastic pipe increases by Δtp:

(c) Next find the required compressive force P and the final normal stresses
in both pipes.

A check on the normal compressive stress in the plastic pipe, computed
using Hooke’s Law [Eq. (1-15)] shows that it is well below the ultimate
stress for selected plastics (see Table H-3, Appendix H); this is also the
final normal stress in the plastic pipe:

The required downward force to compress the plastic pipe is 

Both the initial and final stresses in the cast iron pipe are zero because
no force is applied to the cast iron pipe.

(d) Lastly, compare the initial and final volumes of the plastic pipe.

The initial cross-sectional area of the plastic pipe is 

The final cross-sectional area of the plastic pipe is 

The initial volume of the plastic pipe is 

and the final volume of the plastic pipe is 

The ratio of final to initial volume reveals little change: 

Note: The numerical results obtained in this example illustrate that the
dimensional changes in structural materials under normal loading condi-
tions are extremely small. In spite of their smallness, changes in dimensions
can be important in certain kinds of analysis (such as the analysis of stati-
cally indeterminate structures) and in the experimental determination of
stresses and strains. 

Apf �
π
4

➥

➥

Ap � �330 N

Vpfinal � LcApf

Vpfinal

Vpinit

� 0.99908

or Vpfinal � 8663 mm3

Vpinit � LpAp � 8671 mm3

[d3
2 � (d3 � 2tpf)

2] � 34.652 mm2

Ap � 34.526 mm2

Preqd � σp

σp � Epεp � �9.55 MPa

¢tp � εlattp � 1.818 � 10�4 mm so tpf � tp � ¢tp � 0.10018 mm

Lp �
Lc

1 � ad3 � d2

νpd2

b
� 0.25114 m

Lp �
Lc

1 � εp

or Lp �
Lc

1 �
d3 � d2

νpd2

Example 1-8 - Continued• • •
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1.7 Shear Stress and Strain 57

1.7 SHEAR STRESS AND STRAIN
In the preceding sections we discussed the effects of normal stresses pro-
duced by axial loads acting on straight bars. These stresses are called “nor-
mal stresses” because they act in directions perpendicular to the surface of
the material. Now we will consider another kind of stress, called a shear
stress, that acts tangential to the surface of the material.

As an illustration of the action of shear stresses, consider the bolted
connection shown in Fig. 1-46a. This connection consists of a flat bar A,
a clevis C, and a bolt B that passes through holes in the bar and clevis.
Under the action of the tensile loads P, the bar and clevis will press
against the bolt in bearing, and contact stresses, called bearing stresses, will
be developed. In addition, the bar and clevis tend to shear the bolt, that is,
cut through it, and this tendency is resisted by shear stresses in the bolt. As
an example, consider the bracing for an elevated pedestrian walkway
shown in the photograph.

Diagonal bracing for an elevated
walkway showing a clevis and a
pin in double shear (© Barry
Goodno)

Fig. 1-46
Bolted connection in which the
bolt is loaded in double shear
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To show more clearly the actions of the bearing and shear stresses, let
us look at this type of connection in a schematic side view (Fig. 1-46b). With
this view in mind, we draw a free-body diagram of the bolt (Fig. 1-46c). The
bearing stresses exerted by the clevis against the bolt appear on the left-hand
side of the free-body diagram and are labeled 1 and 3. The stresses from the
bar appear on the right-hand side and are labeled 2. The actual distribution
of the bearing stresses is difficult to determine, so it is customary to assume
that the stresses are uniformly distributed. Based upon the assumption of
uniform distribution, we can calculate an average bearing stress σb by divid-
ing the total bearing force Fb by the bearing area Ab:

(1-18)

The bearing area is defined as the projected area of  the curved bearing
surface. For instance, consider the bearing stresses labeled 1. The pro-
jected area Ab on which they act is a rectangle having a height equal to

σb �
Fb

Ab
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Chapter 1  Tension, Compression, and Shear58

the thickness of  the clevis and a width equal to the diameter of  the bolt.
Also, the bearing force Fb represented by the stresses labeled 1 is equal to
P/2. The same area and the same force apply to the stresses labeled 3.

Now consider the bearing stresses between the flat bar and the bolt
(the stresses labeled 2). For these stresses, the bearing area Ab is a rectan-
gle with height equal to the thickness of the flat bar and width equal to the
bolt diameter. The corresponding bearing force Fb is equal to the load P.

The free-body diagram of Fig. 1-46c shows that there is a tendency to
shear the bolt along cross sections mn and pq. From a free-body diagram
of the portion mnpq of the bolt (see Fig. 1-46d), we see that shear forces
V act over the cut surfaces of the bolt. In this particular example there are
two planes of shear (mn and pq), and so the bolt is said to be in double
shear. In double shear, each of the shear forces is equal to one-half  of the
total load transmitted by the bolt, that is, V � P/2.

The shear forces V are the resultants of the shear stresses distributed
over the cross-sectional area of the bolt. For instance, the shear stresses
acting on cross section mn are shown in Fig. 1-46e. These stresses act par-
allel to the cut surface. The exact distribution of the stresses is not known,
but they are highest near the center and become zero at certain locations
on the edges. As indicated in Fig. 1-46e, shear stresses are customarily
denoted by the Greek letter τ (tau).

A bolted connection in single shear is shown in Fig. 1-47a, where the
axial force P in the metal bar is transmitted to the flange of the steel col-
umn through a bolt. A cross-sectional view of the column (Fig. 1-47b)
shows the connection in more detail. Also, a sketch of the bolt (Fig. 1-47c)
shows the assumed distribution of the bearing stresses acting on the bolt.
As mentioned earlier, the actual distribution of these bearing stresses is
much more complex than shown in the figure. Furthermore, bearing

Fig. 1-47
Bolted connection in which the

bolt is loaded in single shear

m

n

(c)(b)

(a)

m

n
V

(d)

P

P
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1.7 Shear Stress and Strain 59

stresses are also developed against the inside surfaces of the bolt head and
nut. Thus, Fig. 1-47c is not a free-body diagram—only the idealized bear-
ing stresses acting on the shank of the bolt are shown in the figure.

By cutting through the bolt at section mn we obtain the diagram
shown in Fig. 1-47d. This diagram includes the shear force V (equal to the
load P) acting on the cross section of the bolt. As already pointed out,
this shear force is the resultant of  the shear stresses that act over the
cross-sectional area of  the bolt.

The deformation of a bolt loaded almost to fracture in single shear is
shown in Fig. 1-48 (compare with Fig. 1-47c).

Fig. 1-48
Failure of a bolt in single shear
(© Barry Goodno)

Load

Load

In the preceding discussions of bolted connections we disregarded
friction (produced by tightening of the bolts) between the connecting ele-
ments. The presence of friction means that part of the load is carried by
friction forces, thereby reducing the loads on the bolts. Since friction forces
are unreliable and difficult to estimate, it is common practice to err on the
conservative side and omit them from the calculations.

The average shear stress on the cross section of a bolt is obtained by
dividing the total shear force V by the area A of the cross section on which
it acts, as follows:

(1-19)

In the example of Fig. 1-47, which shows a bolt in single shear, the shear
force V is equal to the load P and the area A is the cross-sectional area of
the bolt. However, in the example of Fig. 1-46, where the bolt is in double
shear, the shear force V equals P/2.

From Eq. (1-19) we see that shear stresses, like normal stresses, repre-
sent intensity of force, or force per unit of area. Thus, the units of shear
stress are the same as those for normal stress, namely, pascals or multiples
thereof in SI units.

The loading arrangements shown in Figs. 1-46 and 1-47 are examples
of direct shear (or simple shear) in which the shear stresses are created by
the direct action of the forces in trying to cut through the material. Direct
shear arises in the design of bolts, pins, rivets, keys, welds, and glued joints.

τaver �
V
A
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Shear stresses also arise in an indirect manner when members are sub-
jected to tension, torsion, and bending, as discussed later in Sections 2.6,
3.3, and 5.8, respectively.

Equality of Shear Stresses on Perpendicular
Planes
To obtain a more complete picture of the action of shear stresses, let us
consider a small element of material in the form of a rectangular paral-
lelepiped having sides of lengths a, b, and c in the x, y, and z directions,
respectively (Fig. 1-49).* The front and rear faces of this element are free
of stress.

Now assume that a shear stress τ1 is distributed uniformly over the
right-hand face, which has area bc. In order for the element to be in equi-
librium in the y direction, the total shear force τ1bc acting on the right-
hand face must be balanced by an equal but oppositely directed shear
force on the left-hand face. Since the areas of these two faces are equal, it
follows that the shear stresses on the two faces must be equal.

The forces τ1bc acting on the left- and right-hand side faces (Fig. 1-49)
form a couple having a moment about the z axis of magnitude τ1abc,
 acting counterclockwise in the figure.** Equilibrium of the element
requires that this moment be balanced by an equal and opposite moment
resulting from shear stresses acting on the top and bottom faces of the ele-
ment. Denoting the stresses on the top and bottom faces as τ2, we see that
the corresponding horizontal shear forces equal τ2ac. These forces form a
clockwise couple of moment τ2abc. From moment equilibrium of the ele-
ment about the z axis, we see that τ1abc equals τ2abc, or

(1-20)

Therefore, the magnitudes of the four shear stresses acting on the element
are equal, as shown in Fig. 1-50a.

In summary, we have arrived at the following general observations
regarding shear stresses acting on a rectangular element:

1. Shear stresses on opposite (and parallel) faces of an element are
equal in magnitude and opposite in direction.

2. Shear stresses on adjacent (and perpendicular) faces of an element
are equal in magnitude and have directions such that both stresses
point toward, or both point away from, the line of intersection of the
faces.

These observations were obtained for an element subjected only to shear
stresses (no normal stresses), as pictured in Figs. 1-49 and 1-50. This state
of stress is called pure shear and is discussed later in greater detail
(Section 3.5).

For most purposes, the preceding conclusions remain valid even when
normal stresses act on the faces of the element. The reason is that the normal

τ1 � τ2

Chapter 1  Tension, Compression, and Shear60

*A parallelepiped is a prism whose bases are parallelograms; thus, a parallelepiped has six faces, each 
of which is a parallelogram. Opposite faces are parallel and identical parallelograms. A rectangular 
parallelepiped has all faces in the form of rectangles.

**A couple consists of two parallel forces that are equal in magnitude and opposite in direction.

Fig. 1-49
Small element of material 
subjected to shear stresses
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1.7 Shear Stress and Strain 61

stresses on opposite faces of a small element usually are equal in magnitude
and opposite in direction; hence they do not alter the equilibrium equations
used in reaching the preceding conclusions.

Shear Strain
Shear stresses acting on an element of material (Fig. 1-50a) are accompa-
nied by shear strains. As an aid in visualizing these strains, we note that the
shear stresses have no tendency to elongate or shorten the element in the
x, y, and z directions—in other words, the lengths of the sides of the ele-
ment do not change. Instead, the shear stresses produce a change in the
shape of the element (Fig. 1-50b). The original element, which is a rectan-
gular parallelepiped, is deformed into an oblique parallelepiped, and the
front and rear faces become rhomboids.*

Because of this deformation, the angles between the side faces change.
For instance, the angles at points q and s, which were π /2 before deforma-
tion, are reduced by a small angle γ to π /2 � γ (Fig. 1-50b). At the same
time, the angles at points p and r are increased to π /2 � γ. The angle γ is
a measure of the distortion, or change in shape, of the element and is
called the shear strain. Because shear strain is an angle, it is usually meas-
ured in degrees or radians.

Sign Conventions for Shear Stresses and Strains
As an aid in establishing sign conventions for shear stresses and strains, we
need a scheme for identifying the various faces of a stress element (Fig. 1-50a).
Henceforth, we will refer to the faces oriented toward the positive directions
of the axes as the positive faces of the element. In other words, a positive face
has its outward normal directed in the positive direction of a coordinate axis.
The opposite faces are negative faces. Thus, in Fig. 1-50a, the right-hand, top,
and front faces are the positive x, y, and z faces, respectively, and the opposite
faces are the negative x, y, and z faces.

Using the terminology described in the preceding paragraph, 
we may state the sign convention for shear stresses in the following
manner:

A shear stress acting on a positive face of an element is positive if it
acts in the positive direction of one of the coordinate axes and negative
if it acts in the negative direction of an axis. A shear stress acting on a
negative face of an element is positive if it acts in the negative direction
of an axis and negative if it acts in a positive direction.

Thus, all shear stresses shown in Fig. 1-50a are positive.
The sign convention for shear strains is as follows:

Shear strain in an element is positive when the angle between two
positive faces (or two negative faces) is reduced. The strain is negative
when the angle between two positive (or two negative) faces is
increased.

*An oblique angle can be either acute or obtuse, but it is not a right angle. A rhomboid is a parallelogram
with oblique angles and adjacent sides not equal. (A rhombus is a parallelogram with oblique angles and all
four sides equal, sometimes called a diamond-shaped figure.)
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Thus, the strains shown in Fig. 1-50b are positive, and we see that positive
shear stresses are accompanied by positive shear strains.

Hooke’s Law in Shear
The properties of  a material in shear can be determined experimentally
from direct-shear tests or from torsion tests. The latter tests are per-
formed by twisting hollow, circular tubes, thereby producing a state of
pure shear, as explained later in Section 3.5. From the results of  these
tests, we can plot shear stress-strain diagrams (that is, diagrams of shear
stress τ versus shear strain γ ). These diagrams are similar in shape to
 tension-test diagrams (σ versus ε) for the same materials, although they
differ in magnitudes.

From shear stress-strain diagrams, we can obtain material properties
such as the proportional limit, modulus of elasticity, yield stress, and ulti-
mate stress. These properties in shear are usually about half  as large as
those in tension. For instance, the yield stress for structural steel in shear
is 0.5 to 0.6 times the yield stress in tension.

For many materials, the initial part of  the shear stress-strain dia-
gram is a straight line through the origin, just as it is in tension. For this
linearly elastic region, the shear stress and shear strain are propor-
tional, and therefore we have the following equation for Hooke’s law in
shear:

(1-21)

in which G is the shear modulus of elasticity (also called the modulus of
rigidity).

The shear modulus G has the same units as the tension modulus E,
namely, pascals (or multiples thereof) in SI units. For mild steel, typical
values of G are 75 GPa; for aluminum alloys, typical values are 28 GPa.
Additional values are listed in Table H-2, Appendix H.

The moduli of elasticity in tension and shear are related by the follow-
ing equation:

(1-22)

in which ν is Poisson’s ratio. This relationship, which is derived later in
Section 3.6, shows that E, G, and ν are not independent elastic properties
of the material. Because the value of Poisson’s ratio for ordinary materi-
als is between zero and one-half, we see from Eq. (1-22) that G must be
from one-third to one-half  of E.

The following examples illustrate some typical analyses involving the
effects of shear. Example 1-5 is concerned with shear stresses in a plate,
Example 1-6 deals with bearing and shear stresses in pins and bolts, and
Example 1-7 involves finding shear stresses and shear strains in an elas-
tomeric bearing pad subjected to a horizontal shear force.

G �
E

2(1 � ν)

τ � Gγ
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1.7 Shear Stress and Strain 63

A punch for making holes in steel plates is shown in Fig. 1-51a. Assume that
a punch having diameter d � 20 mm is used to punch a hole in an 8 mm
plate, as shown in the cross-sectional view (Fig. 1-51b).

If a force P � 110 kN is required to create the hole, what is the aver-
age shear stress in the plate and the average compressive stress in the
punch?

Example 1-9• • •

Solution
The average shear stress in the plate is obtained by dividing the force P by
the shear area of the plate. The shear area As is equal to the circumference
of the hole times the thickness of the plate, or

in which d is the diameter of the punch and t is the thickness of the plate.
Therefore, the average shear stress in the plate is

The average compressive stress in the punch is

in which Apunch is the cross-sectional area of the punch.
Note: This analysis is highly idealized because we are disregarding

impact effects that occur when a punch is rammed through a plate. (The
inclusion of such effects requires advanced methods of analysis that are
beyond the scope of mechanics of materials.)

➥

➥

σc �
P

Apunch

�
P

πd 2/4
�

110 kN

π (20 mm)2/4
� 350 MPa

τaver �
P
As

�
110 kN

502.7 mm2
� 219 MPa

As � πdt � π (20 mm)(8.0 mm) � 502.7 mm2

(a)

d = 20 mm

t = 8.0 mm

P = 110 kN

(b)

PFig. 1-51
Example 1-9: Punching a hole
in a steel plate
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Chapter 1  Tension, Compression, and Shear64

A semicircular bracket assembly is used to support a steel staircase in an
office building. One design under consideration, referred to as the eccentric
design, uses two separate L-shaped brackets, each having a clevis attached
to a steel hanger rod to support the staircase (see Fig. 1-52). Photos of the
bracket attachment and hanger rod in the eccentric design are shown
below (see also Example 1-6).

The staircase designer would like to also consider a symmetric
bracket design. The symmetric design uses a single hanger rod attached
by a clevis and pin to a T-shaped bracket in which the two separate 
L-brackets are attached along a vertical axis (see Figs. 1-52c and d). In
this design, the eccentric moment of the rod force about the z axis is
eliminated.

In the symmetric design, the weight of the staircase and the connection
itself, and any building occupants who are using the staircase, is estimated
to result in a force of Fr � 9600 N in the single hanger rod. Use numerical
values for dimensions of connection components given below. Determine
the following stresses in the symmetric connection.

(a) Average in-plane shear stress in bolts 1 to 6.
(b) Bearing stress between the clevis pin and the bracket.
(c) Bearing stress between the clevis and the pin.
(d) Bolt forces in the z direction at bolts 1 and 4 due to moment about the

x axis, and resulting normal stress in bolts 1 and 4.
(e) Bearing stress between the bracket and washer at bolts 1 and 4.
(f) Shear stress through the bracket at bolts 1 and 4.

Example 1-10• • •

Bolt and washer

Bracket

Clevis

Pin

Rods Lr

FrFr

dr

Side view

6

5

4

1

2

3

2 @ tb
Bolt no.

Fr

dw,db

y

b1 b1r r

r

r

x

6

5

4

1

3

2 @ tb
Bolt no.

Pin

Clevis
Fr

dw, db

y

b1 b1r r

r

r

x

Fig. 1-52a
Example 1-10: Semi-circular
plate connection for steel 
staircase

Fig. 1-52b

Components of eccentric
hanger rod connection (from
Example 1-6) (© Barry Goodno)

Side view of hanger rod 
and bracket for eccentric 
connection (© Barry Goodno)

Fig. 1-52c

Bolts 1 through 6 in symmetric
bracket design

Fig. 1-52d

Clevis and pin in symmetric
bracket design

Numerical data:

ez � 150 mm dr � 40 mm Fr � 9600 N

db � 18 mm dpin � 38 mm tc � 14 mm

b1 � 40 mm r � 50 mm tb � 12 mm dw � 40 mm
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1.7 Shear Stress and Strain 65

Continues ➥

Solution
As a starting point, we note that the normal tensile stress in the hanger rod
is computed as the force in the rod (Fr ) divided by the cross-sectional area
of the rod:

Now, we consider how the force Fr in the rod is distributed to the various
components of the connection (i.e., clevis, pin, bracket and bolts) resulting
in normal, shear, and bearing stresses in the connection.

(a) The average in-plane shear stress in bolts 1 through 6 is equal to the
force in the rod divided by the sum of the cross-sectional areas of the six
bolts. This is based on the assumption that each bolt carries the same
fraction of the overall rod force (see Fig. 1-52e):

τbolt �
Fr

6Abolt

�
9600 N

6 cπ
4

(18 mm)2 d
� 6.29 MPa ➥

σrod �
Fr

Ar

�
9600N

π
4

(40 mm)2

� 7.64 MPa

6

5

1

2

3

Fr

Fr /6

y

x

z

z

4

Fig. 1-52e
In-plane shear force in each bolt

6

5

4

1

3

2

Bearing
stress

Bolt no.

Pin

Clevis
Fr

dw, db

tb

y

b1 b1r r

r

r

x

Fig. 1-52f
Bearing stresses on pin and
bracket

(b) The bearing stress between the clevis pin and the bracket is shown in
Fig. 1-52f. The pin bears against the center portion of the bracket which
has thickness of twice the bracket plate thickness (tb) so the bearing
stress is computed as follows:

σb1 �
Fr

dpin 12tb2 �
9600 N

(38 mm)(2 � 12 mm)
� 10.53 MPa ➥
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Chapter 1  Tension, Compression, and Shear66

(c) The clevis bears against the pin in two locations (see Fig. 1-52f) so the
bearing stress between the clevis and the pin is computed as 
the rod force divided by twice the clevis thickness (tc) times the pin
diameter:

(d) Although the connection bracket is symmetric with respect to the yz
plane, the rod force Fr is applied at a distance ez � 150 mm from the
back plate (see Fig. 1-52g). This results in a moment about the x axis 
Mx � Fr � ez which can be converted into two force couples, each equal
to Fz � 2r, at bolt pairs 1–3 and 4–6. The resulting tension force on bolts
1 and 4 is computed as

Here, we have assumed that the moment Fr � ez acts about the x axis,
which eliminates bolts 2 and 5 because they lie along the x axis 
(Fig. 1-52h). Using force Fz, we can now compute the normal stress in
bolts 1 and 4 as

Note that the bolts are likely to be pretensioned so the computed stress
σ1 or σ4 is in fact the stress increase at bolts 1 and 4, respectively, and the
stress decrease at bolts 3 and 6, respectively, due to the moment Mx.
Also, note that the symmetric bracket design eliminates the torsional
moment about the z axis (Mz � Fr � ex) resulting from the application of
the rod force at a distance ex from the center of gravity of the bolt group
in the eccentric bracket design.

(e) Now that we know the force Fz acting on bolts 1 and 4, we can compute
the bearing stress between the bracket and washer at bolts 1 and 4.
The bearing area is the ring-shaped area of the washer so the bearing
stress is

(f) Finally, the shear stress through the bracket at bolts 1 and 4 is the force Fz
divided by the circumference of the washer times the thickness of the
bracket:

➥

➥

➥

τ �
Fz

πdwtb

�
7.2 kN

π (40 mm)(12 mm)
� 4.77 MPa

σ1 � σ4 �
Fz

π
4

db
2

�
7.2 kN

π
4

(18 mm)2

� 28.3 MPa

Fz �
Mx

4r
�

Frez

4r
�

9600 N(150 mm)
4(50 mm)

� 7.2 kN

σb2 �
Fr

dpin 12tc2 �
9600 N

(38 mm)(2)(14 mm)
� 9.02 MPa

σb3 �
Fz

π
4
1dw

2 � db
22

�
7.2 kN

π
4

[(40 mm)2 � (18 mm)2]
� 7.18 MPa

Example 1-10 - Continued• • •

5

1

2

3

Fr

Mx  = Frez

Fz  = Mx /4r

y

x

z

4

2r2r

6

Fig. 1-52h
Moment Mx can be converted
into two force couples, each
equal to Fz � 2r, which act on
bolt pairs 1-3 and 4-6.

Fr

Clevis

Bracket

Pin

ez = 150 mm

Fig. 1-52g
Rod force is applied at distance
ez from back plate of bracket.
(© Barry Goodno)

77742_01_ch01_p002-121.qxd:77742_01_ch01_p002-121.qxd  3/2/12  2:23 PM  Page 66

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1.7 Shear Stress and Strain 67

A bearing pad of the kind used to support machines and bridge girders con-
sists of a linearly elastic material (usually an elastomer, such as rubber)
capped by a steel plate (Fig. 1-53a). Assume that the thickness of the elas-
tomer is h, the dimensions of the plate are a � b, and the pad is subjected
to a horizontal shear force V.

Obtain formulas for the average shear stress τaver in the elastomer and
the horizontal displacement d of the plate (Fig. 1-53b).

Example 1-11• • •

a

h

b V
h

a

d V

(a) (b)

g

Fig. 1-53
Example 1-11. Bearing pad in
shear

Solution
Assume that the shear stresses in the elastomer are uniformly distributed
throughout its entire volume. Then the shear stress on any horizontal plane
through the elastomer equals the shear force V divided by the area ab of
the plane (Fig. 1-53a):

(1-23)

The corresponding shear strain [from Hooke’s law in shear; Eq. (1-21)] is

(1-24)

in which Ge is the shear modulus of the elastomeric material. Finally, the
horizontal displacement d is equal to htanγ (from Fig. 1-53b):

(1-25)

In most practical situations the shear strain γ is a small angle, and in such
cases we may replace tanγ by γ and obtain

(1-26)

Equations (1-25) and (1-26) give approximate results for the horizontal
displacement of the plate because they are based upon the assumption that
the shear stress and strain are constant throughout the volume of the elas-
tomeric material. In reality the shear stress is zero at the edges of the material
(because there are no shear stresses on the free vertical faces), and therefore
the deformation of the material is more complex than pictured in Fig. 1-53b.
However, if the length a of the plate is large compared with the thickness h of
the elastomer, the preceding results are satisfactory for design purposes.

➥

➥

➥

d = hγ =
hV

abGe

d � htanγ � htan a V
abGe

b

γ �
τaver

Ge

�
V

abGe

τaver �
V
ab
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1.8 ALLOWABLE STRESSES AND
ALLOWABLE LOADS
Engineering has been aptly described as the application of science to the
common purposes of life. In fulfilling that mission, engineers design a seem-
ingly endless variety of objects to serve the basic needs of society. These
needs include housing, agriculture, transportation, communication, and
many other aspects of modern life. Factors to be considered in design
include functionality, strength, appearance, economics, and environmental
effects. However, when studying mechanics of materials, our principal
design interest is strength, that is, the capacity of the object to support or
transmit loads. Objects that must sustain loads include buildings,
machines, containers, trucks, aircraft, ships, and the like. For simplicity, we
will refer to all such objects as structures; thus, a structure is any object that
must support or transmit loads.

Factors of Safety
If  structural failure is to be avoided, the loads that a structure is capable
of supporting must be greater than the loads it will be subjected to when
in service. Since strength is the ability of a structure to resist loads, the pre-
ceding criterion can be restated as follows: The actual strength of a struc-
ture must exceed the required strength. The ratio of the actual strength to
the required strength is called the factor of safety n:

(1-27)

Of course, the factor of safety must be greater than 1.0 if  failure is to be
avoided. Depending upon the circumstances, factors of safety from
slightly above 1.0 to as much as 10 are used.

The incorporation of factors of safety into design is not a simple mat-
ter, because both strength and failure have many different meanings.
Strength may be measured by the load-carrying capacity of a structure, or
it may be measured by the stress in the material. Failure may mean the
fracture and complete collapse of a structure, or it may mean that the
deformations have become so large that the structure can no longer per-
form its intended functions. The latter kind of failure may occur at loads
much smaller than those that cause actual collapse.

The determination of a factor of safety must also take into account such
matters as the following: probability of accidental overloading of the struc-
ture by loads that exceed the design loads; types of loads (static or dynamic);
whether the loads are applied once or are repeated; how accurately the loads
are known; possibilities for fatigue failure; inaccuracies in construction; vari-
ability in the quality of workmanship; variations in properties of materials;
deterioration due to corrosion or other environmental effects; accuracy of
the methods of analysis; whether failure is gradual (ample warning) or sud-
den (no warning); consequences of failure (minor damage or major catastro-
phe); and other such considerations. If the factor of safety is too low, the
likelihood of failure will be high and the structure will be unacceptable; if the
factor is too large, the structure will be wasteful of materials and perhaps
unsuitable for its function (for instance, it may be too heavy).

Factor of safetyn =
Actual strength

Required strength
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1.8 Allowable Stresses and Allowable Loads 69

Because of these complexities and uncertainties, factors of safety
must be determined on a probabilistic basis. They usually are established
by groups of experienced engineers who write the codes and specifications
used by other designers, and sometimes they are even enacted into law.
The provisions of codes and specifications are intended to provide reason-
able levels of safety without unreasonable costs.

In aircraft design it is customary to speak of the margin of safety
rather than the factor of safety. The margin of safety is defined as the fac-
tor of safety minus one:

(1-28)

Margin of safety is often expressed as a percent, in which case the value
given above is multiplied by 100. Thus, a structure having an actual
strength that is 1.75 times the required strength has a factor of safety of
1.75 and a margin of safety of 0.75 (or 75%). When the margin of safety
is reduced to zero or less, the structure (presumably) will fail.

Allowable Stresses
Factors of safety are defined and implemented in various ways. For many
structures, it is important that the material remain within the linearly elastic
range in order to avoid permanent deformations when the loads are removed.
Under these conditions, the factor of safety is established with respect to
yielding of the structure. Yielding begins when the yield stress is reached at
any point within the structure. Therefore, by applying a factor of safety with
respect to the yield stress (or yield strength), we obtain an allowable stress (or
working stress) that must not be exceeded anywhere in the structure. Thus,

(1-29)

or, for tension and shear, respectively,

(1-30a,b)

in which σY and τY are the yield stresses and n1 and n2 are the correspon-
ding factors of safety. In building design, a typical factor of safety with
respect to yielding in tension is 1.67; thus, a mild steel having a yield stress
of 250 MPa has an allowable stress of 150 MPa.

Sometimes the factor of safety is applied to the ultimate stress instead
of the yield stress. This method is suitable for brittle materials, such as
concrete and some plastics, and for materials without a clearly defined
yield stress, such as wood and high-strength steels. In these cases the allow-
able stresses in tension and shear are

(1-31a,b)

in which σU and τU are the ultimate stresses (or ultimate strengths).
Factors of safety with respect to the ultimate strength of a material are
usually larger than those based upon yield strength. In the case of mild
steel, a factor of safety of 1.67 with respect to yielding corresponds to a
factor of approximately 2.8 with respect to the ultimate strength.

σallow =
σU

n3

and τallow =
τU

n4

σallow =
σY

n1

and τallow =
τY

n2

Allowable stress =
Yield strength

Factor of safety

Margin of safety = n − 1
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Chapter 1  Tension, Compression, and Shear

Allowable Loads
After the allowable stress has been established for a particular material
and structure, the allowable load on that structure can be determined. The
relationship between the allowable load and the allowable stress depends
upon the type of structure. In this chapter we are concerned only with the
most elementary kinds of structures, namely, bars in tension or compres-
sion and pins (or bolts) in direct shear and bearing.

In these kinds of structures the stresses are uniformly distributed (or
at least assumed to be uniformly distributed) over an area. For instance, in
the case of a bar in tension, the stress is uniformly distributed over the
cross-sectional area provided the resultant axial force acts through the cen-
troid of the cross section. The same is true of a bar in compression pro-
vided the bar is not subject to buckling. In the case of a pin subjected to
shear, we consider only the average shear stress on the cross section, which
is equivalent to assuming that the shear stress is uniformly distributed.
Similarly, we consider only an average value of the bearing stress acting on
the projected area of the pin.

Therefore, in all four of the preceding cases the allowable load (also
called the permissible load or the safe load ) is equal to the allowable stress
times the area over which it acts:

(1-32)

For bars in direct tension and compression (no buckling), this equation
becomes

(1-33)

in which σallow is the permissible normal stress and A is the cross-sectional
area of the bar. If the bar has a hole through it, the net area is normally
used when the bar is in tension. The net area is the gross cross-sectional
area minus the area removed by the hole. For compression, the gross area
may be used if  the hole is filled by a bolt or pin that can transmit the com-
pressive stresses.

For pins in direct shear, Eq. (1-32) becomes

(1-34)

in which τallow is the permissible shear stress and A is the area over which
the shear stresses act. If  the pin is in single shear, the area is the cross-
sectional area of  the pin; in double shear, it is twice the cross-sectional
area.

Finally, the permissible load based upon bearing is

(1-35)

in which σb is the allowable bearing stress and Ab is the projected area of
the pin or other surface over which the bearing stresses act.

The following example illustrates how allowable loads are determined
when the allowable stresses for the material are known.

Pallow � σbAb

Pallow � τallowA

Pallow � σallowA

Allowable load � (Allowable stress)(Area)

70
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1.8 Allowable Stresses and Allowable Loads 71

A steel bar serving as a vertical hanger to support heavy machinery in 
a factory is attached to a support by the bolted connection shown in 
Fig. 1-54. Two clip angles (thickness tc � 9.5 mm) are fastened to an upper
support by bolts 1 and 2 each with a diameter of 12 mm; each bolt has a
washer with a diameter of dw � 28 mm. The main part of the hanger is
attached to the clip angles by a single bolt (bolt 3 in Fig. 1-54a) with a
diameter of d � 25 mm. The hanger has a rectangular cross section with a
width of b1 � 38 mm and thickness of t � 13 mm, but at the bolted con-
nection, the hanger is enlarged to a width of b2 � 75 mm. Determine the
allowable value of the tensile load P in the hanger based upon the follow-
ing considerations.

(a) The allowable tensile stress in the main part of the hanger is 110 MPa.
(b) The allowable tensile stress in the hanger at its cross section through the

bolt 3 hole is 75 MPa. (The permissible stress at this section is lower
because of the stress concentrations around the hole.)

(c) The allowable bearing stress between the hanger and the shank of
bolt 3 is 180 MPa.

(d) The allowable shear stress in bolt 3 is 45 MPa.
(e) The allowable normal stress in bolts 1 and 2 is 160 MPa.
(f) The allowable bearing stress between the washer and the clip angle at

either bolt 1 or 2 is 65 MPa.
(g) The allowable shear stress through the clip angle at bolts 1 and 2 is 35 MPa.

Example 1-12• • •

Continues ➥

P

Hanger

(a) (b)

b1 = 38 mm

t = 13 mm

d = 25 mm

Washer

Bolt 3

Bolt 1 Bolt 2

Clip angle

P

b2 = 75 mm

dw
dw = 28 mm

tc = 9.5 mm

d1 = 12 mm

Fig. 1-54
Example 1-12: Vertical hanger
subjected to a tensile load P:
(a) front view of bolted con-
nection, and (b) side view of
connection

Numerical properties:

d1 � 12 mm d � 25 mm dw � 28 mm

tc � 9.5 mm t � 13 mm b1 � 38 mm b2 � 75 mm
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Chapter 1  Tension, Compression, and Shear72

Solution
(a) The allowable load Pa, based upon the stress in the main part of the

hanger (Fig. 1-54c) is equal to the allowable stress in tension times the
cross-sectional area of the hanger [Eq. (1-33)]:

A load greater than this value will overstress the main part of the hanger
(that is, the actual stress will exceed the allowable stress), thereby reduc-
ing the factor of safety.

(b) At the cross section of the hanger through the bolt hole (Fig 1-54d), we
must make a similar calculation but with a different allowable stress and
a different area. The net cross-sectional area (that is, the area that
remains after the hole is drilled through the bar) is equal to the net
width times the thickness. The net width is equal to the gross width b2
minus the diameter d of the hole. Thus, the equation for the allowable
load Pb at this section is

(c) The allowable load based upon bearing between the hanger and the
bolt (Fig. 1-54e) is equal to the allowable bearing stress times the bear-
ing area. The bearing area is the projection of the actual contact area,

Pb � σa3(b2 � d)t � (75 MPa)(75 mm � 25 mm)(13 mm) � 48.8 kN

σa � 110 MPa σa3 � 75 MPa σba3 � 180 MPa τa3 � 45 MPa

Pa � σab1t � (110 MPa)(38 mm � 13 mm) � 54.3 kN

τa1 � 35 MPa σa1 � 160 MPa σba1 � 65 MPa

Example 1-12 - Continued• • •

tb1

(c)

Pmax(a)

Fig. 1-54c

b1

b2 – d
2

b2 – dd
2

(d)

Pmax(b)

Fig. 1-54d

n

t

(e)

Pmax(c)

q

m p

Fig. 1-54e

77742_01_ch01_p002-121.qxd:77742_01_ch01_p002-121.qxd  3/2/12  2:24 PM  Page 72

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1.8 Allowable Stresses and Allowable Loads 73

which is equal to the bolt diameter times the thickness of the hanger.
Therefore, the allowable load [Eq. (1-35)] is

(d) The allowable load Pd based upon shear in the bolt (Fig. 1-54f) is equal to
the allowable shear stress times the shear area [Eq. (1-34)]. The shear area
is twice the area of the bolt because the bolt is in double shear; thus,

(e) The allowable normal stress in bolts 1 and 2 is 160 MPa. Each bolt car-
ries one half of the applied load P (see Fig. 1-54g). The allowable total
load Pe is the product of the allowable normal stress in the bolt and
the sum of the cross-sectional areas of bolts 1 and 2:

(f) The allowable bearing stress between the washer and the clip angle at
either bolt 1 or 2 is 65 MPa. Each bolt (1 or 2) carries one half of the
applied load P (see Fig. 1-54h). The bearing area here is the ring-shaped
circular area of the washer (the washer is assumed to fit snugly against
the bolt). The allowable total load Pf is the allowable bearing stress on
the washer times twice the area of the washer:

(g) The allowable shear stress through the clip angle at bolts 1 and 2 is 
35 MPa. Each bolt (1 or 2) carries one half of the applied load P (see 
Fig. 1-54i). The shear area at each bolt is equal to the circumference of
the hole (π � dw ) times the thickness of the clip angle (tc).

The allowable total load Pg is the the allowable shear stress times
twice the shear area:

We have now found the allowable tensile loads in the hanger based
upon all seven of the given conditions. Comparing the seven preceding
results, we see that the smallest value of the load is Pallow � 36.2 kN. This
load, which is based upon normal stress in bolts 1 and 2 [see part (e)
above], is the allowable tensile load in the hanger.

We could refine the analysis by next considering the self-weight of
the entire hanger assembly (see Example 1-6).

➥

Pc � σba3dt � 58.5 kN � (180 MPa)(25 mm)(13 mm) � 58.5 kN

Pd � 2τa3aπ
4

d2b � 2(45 MPa) cπ
4

(25 mm)2 d � 44.2 kN

Pg � τa1(2)(πdWtc ) � (35 MPa)(2)(π � 28 mm � 9.5 mm) � 58.5 kN

Pf � σba1(2) cπ
4
1dw

2 � d1
22 d � (65 MPa)(2)e π

4
[(28 mm)2 � (12 mm)2] f

� 65.3 kN

Pe � σa1(2)aπ
4

d1
2b � (160 MPa)(2) cπ

4
(12 mm)2 d � 36.2 kN

(f)

τ = V/A

V = P/2V

Pmax(d)

t

Fig. 1-54f

(g)
Pmax(e)

P/2 P/2

Fig. 1-54g

Fig. 1-54h

(h)

Pmax(f) /2

Fig. 1-54i

(i)

Pmax(g)/2
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Chapter 1  Tension, Compression, and Shear

1.9 DESIGN FOR AXIAL LOADS AND
DIRECT SHEAR
In the preceding section we discussed the determination of  allowable
loads for simple structures, and in earlier sections we saw how to find the
stresses, strains, and deformations of  bars. The determination of  such
quantities is known as analysis. In the context of  mechanics of  materi-
als, analysis consists of  determining the response of a structure to loads,
temperature changes, and other physical actions. By the response of  a
structure, we mean the stresses, strains, and deformations produced by
the loads.

Response also refers to the load-carrying capacity of a structure; for
instance, the allowable load on a structure is a form of response.

A structure is said to be known (or given) when we have a complete
physical description of the structure, that is, when we know all of its prop-
erties. The properties of a structure include the types of members and how
they are arranged, the dimensions of all members, the types of supports
and where they are located, the materials used, and the properties of the
materials. Thus, when analyzing a structure, the properties are given and the
response is to be determined.

The inverse process is called design. When designing a structure, we
must determine the properties of the structure in order that the structure
will support the loads and perform its intended functions. For instance, a
common design problem in engineering is to determine the size of  a
member to support given loads. Designing a structure is usually a much
lengthier and more difficult process than analyzing it—indeed, analyz-
ing a structure, often more than once, is typically part of  the design
process.

In this section we will deal with design in its most elementary form
by calculating the required sizes of  simple tension and compression
members as well as pins and bolts loaded in shear. In these cases the
design process is quite straightforward. Knowing the loads to be trans-
mitted and the allowable stresses in the materials, we can calculate the
required areas of  members from the following general relationship [com-
pare with Eq. (1-32)]:

(1-36)

This equation can be applied to any structure in which the stresses are uni-
formly distributed over the area. (The use of this equation for finding the
size of a bar in tension and the size of a pin in shear is illustrated in
Example 1-13, which follows.)

In addition to strength considerations, as exemplified by Eq. (1-36), the
design of a structure is likely to involve stiffness and stability. Stiffness refers
to the ability of the structure to resist changes in shape (for instance, to resist
stretching, bending, or twisting), and stability refers to the ability of the
structure to resist buckling under compressive stresses. Limitations on stiff-
ness are sometimes necessary to prevent excessive deformations, such as

Required area �
Load to be transmitted

Allowable stress

74
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1.9 Design for Axial Loads and Direct Shear 75

large deflections of a beam that might interfere with its performance.
Buckling is the principal consideration in the design of columns, which are
slender compression members (Chapter 11).

Another part of the design process is optimization, which is the task of
designing the best structure to meet a particular goal, such as minimum
weight. For instance, there may be many structures that will support a given
load, but in some circumstances the best structure will be the lightest one.
Of course, a goal such as minimum weight usually must be balanced
against more general considerations, including the aesthetic, economic,
environmental, political, and technical aspects of the particular design
project.

When analyzing or designing a structure, we refer to the forces that
act on it as either loads or reactions. Loads are active forces that are
applied to the structure by some external cause, such as gravity, water
pressure, wind, and earthquake ground motion. Reactions are passive
forces that are induced at the supports of  the structure—their magni-
tudes and directions are determined by the nature of  the structure itself.
Thus, reactions must be calculated as part of  the analysis, whereas loads
are known in advance.

Example 1-13, on the following pages, begins with a review of free-
body diagrams and elementary statics and concludes with the design of a
bar in tension and a pin in direct shear.

When drawing free-body diagrams, it is helpful to distinguish reac-
tions from loads or other applied forces. A common scheme is to place a
slash, or slanted line, across the arrow when it represents a reactive force,
as illustrated in Fig. 1-55 of the following example.
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Chapter 1  Tension, Compression, and Shear76

The cable-pipe structure ABCD shown in Fig. 1-55 has pin supports at points
A and D, which are 1.8 m apart. Member ABC is a steel pipe, and member
BDC is a continuous cable which passes over a frictionless pulley at D. A sign
weighing 6.6 kN is suspended from bar ABC at points E and F.

Determine the required diameter of the pins at A, B, C, and D if the
allowable stress in shear is 45 MPa. Also, find the required cross-sectional
areas of bar ABC and cable BDC if the allowable stresses in tension and
compression are 124 MPa and 69 MPa, respectively. (The allowable com-
pression stress is lower because of the possibility of buckling instability.)

(Note: The pins at the supports are in double shear. Also, consider only
the weight of the sign; disregard the weights of members BDC and ABC.)

Example 1-13• • •

D
y

A

Ares Ay

Ax
αB αC

E F

B C x

0.45 m 0.75 m 1.05 m 0.15 m

1.8 m

W/2 W/2

Dres

Dy

Dx
Fig. 1-56
Example 1-13: Free-body 
diagram of entire structure

Solution
The first step in the overall solution is to find reaction forces at supports and
the tensile force in the continuous cable BDC. These quantities are found by
applying the laws of statics to free-body diagrams (see Section 1.2). Once
reaction and cable forces are known, we can find the axial forces in mem-
ber ABC and the shear forces in pins at A, B, C, and D. We can then find the
required sizes of member ABC and the pins at A, B, C, and D.

Reactions: We begin with a free-body diagram of the entire structure
(Fig. 1-56), which shows all of the applied and reaction forces. A statics sign
convention is commonly used so all reaction components are initially shown
in the positive coordinate directions.

D

A
B

C x

E F

1.2 m

0.9 m

0.45 m 0.15 m

0.9 m

1.8 m

1.2 m

W = 6.6 kN

Pulley at D

Fig. 1-55
Example 1-13: Cable-supported
pipe ABC carrying sign of
weight W
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1.9 Design for Axial Loads and Direct Shear 77

Summing moments about point D (counterclockwise moments are positive)
gives

Next, sum forces in the x direction:  

ΣFx � 0 Ax � Dx � 0  or  Dx � �Ax � �4.95 kN

The minus sign means that Dx acts in the negative x direction.
Summing forces in the x direction at joint D will give us the force in the

continuous cable BDC.
First compute angles αB and αC (see Fig. 1-56):

Now ΣFx � 0 at joint D:

Now find the vertical reaction at joint D where TB � TC because the cable is
one continuous cable (see Fig. 1-57).

The plus sign means that Dy acts in the positive y direction.

So, the resultant at D is

Next, sum the forces in the y direction for the entire free-body diagram
to get Ay:

The resultant at A is

Ares � 4Ax
2 � Ay

2 � 5.14 kN

gFy � 0 Ay � Dy � W � 0 so Ay � �Dy � W � 1.37 kN

Dres � 4Dx
2 � Dy

2 � 7.2 kN

Dy � T(sin (αB) � sin (αC)) � 5.23 kN

or T �
�(�4.95 kN)

(cos (αB) � cos (αC))
� 3.65 kN

Dx � T (cos (αB) � cos (αC)) � 0 so T �
�Dx

( cos (αB) � cos (αC))

αB � arctan a1.8
1.2
b � 56.31° αC � arctan a1.8

2.4
b � 36.87°

� 4.95 kN

©MD � 0 Ax(1.8 m) �
W
2

(0.45 m � 2.25 m) � 0 or Ax �
6.6 kN

2
a2.7 m
1.8 m

b

Continues ➥

Dy

Dx

TB

TC

D

y

Dres

Fig. 1-57
Free-body diagram of joint D
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Chapter 1  Tension, Compression, and Shear78

As a final check, confirm the equilibrium using the free-body diagram of
pipe ABC (see Fig. 1-58, where TB � TC because the cable is one continuous
cable). The forces will sum to zero, and the sum of the moments about A is
zero:

W
2

(0.45 m � 2.25 m) � 0

gMA: T sin (αB)(0.45 m � 0.75 m)�T sin (αC)(2.4 m) �

gFy: Ay � W � T sin (αB) � T sin (αC) � 0

gFx: Ax � T cos (αB) � T cos (αC) � 0

Example 1-13 - Continued• • •

D

y

A

TB

Ares Ay

Ax

TC
αB αC

E F

B C

x
0.45 m 0.75 m 1.05 m 0.15 m

1.8 m

W/2 W/2

Fig. 1-58
Free-body diagram of 
member ABC

Determine the shear forces in pins (all are in double shear) and required
diameter of each pin. Now that the reaction and cable forces are known, we
can identify the shear forces in pins at A, B, C, and D and then find the
required size of each pin.

Pin at A:

Pin at B:

so dpinB �
B

4
π (40.6 mm2) � 7.19 mm

so dpinA �
B

4
π (57.1 mm2) � 8.53 mm

ApinB �
T

2τallow

�
3.65 kN

2(45 MPa)
� 40.6 mm2

ApinA �
Ares

2τallow

�
5.14 kN

2(45 MPa)
� 57.1 mm2
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1.9 Design for Axial Loads and Direct Shear 79

Pin at C:
The resultant force at C is the same as that at B, so the pin at C will have

the same diameter as that at B.

Pin in pulley at D:

Determine the axial force in cable BDC and required cross-sectional area of
the cable. Here we use the computed tension for T and higher allowable
axial stress for members in tension:

Determine the axial force in pipe ABC and required cross-sectional area of
the pipe. We can use free-body diagrams of portions of member ABC to
compute the axial compressive force N in segments AB and BC (as discussed
in Section 1.2). For segment AB, force NAB � �4.95 kN, while in segment BC,
NBC � �2.92 kN. The larger force NAB controls. Now we must use the
reduced allowable axial stress for compression, so the required area is

Notes: In this example, we intentionally omitted the self-weight of the
cable–pipe structure from the calculations. However, once the sizes of
the members are known, their weights can be calculated and included in the
free-body diagrams given.

When the weights of the bars are included, the design of member ABC
becomes more complicated. Not only because of its own weight but also
because of the weight of the sign, member ABC is a beam subjected to bend-
ing and transverse shear as well as axial compression. The design of such
 members must wait until we study stresses in beams (Chapter 5), where a
beam with axial loads is discussed as a separate topic (see Section 5.12). As the
compressive forces increase, the possibility of lateral instability (or buckling)
of ABC also becomes a concern; we will investigate this in Chapter 11.

In practice, other loads besides the weights of the structure and sign
would have to be considered before making a final decision about the sizes
of the pipes, cables, and pins. Loads that could be important include wind
loads, earthquake loads, and the weights of objects that might have to be
supported temporarily by the structure.

Finally, if cables BD and CD are separate cables (instead of one contin-
uous cable as in the previous analysis where TB � TC), the forces TB and TC in
the two cables are not equal in magnitude. The structure is now statically
indeterminate, and the cable forces and the reactions at A cannot be deter-
mined using the equations of static equilibrium alone. We will consider
problems of this type in Chapter 2, Section 2.4 (see Example 2-5).

so dpinD �
B

4
π (80 mm2) � 10.09 mm

ApinD �
Dres

2τallow

�
7.2 kN

2(45 MPa)
� 80 mm2

Acable �
T

σallowT
�

3.65 kN
69 MPa

� 52.9 mm2

Apipe �
4.95 kN
σallowC

�
4.95 kN
69 MPa

� 71.7 mm2
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CHAPTER SUMMARY & REVIEW

In Chapter 1 we learned about mechanical properties of construction
materials. After a brief  review of statics, we computed normal stresses and
strains in bars loaded by centroidal axial loads, and also shear stresses and
strains (as well as bearing stresses) in pin connections used to assemble
simple structures, such as trusses. We also defined allowable levels of stress
from appropriate factors of safety and used these values to set allowable
loads that could be applied to the structure.

Some of the major concepts presented in this chapter are as follows.

1. The principal objective of mechanics of materials is to determine the
stresses, strains, and displacements in structures and their compo-
nents due to the loads acting on them. These components include
bars with axial loads, shafts in torsion, beams in bending, and
columns in compression.

2. Prismatic bars subjected to tensile or compressive loads acting
through the centroid of their cross section (to avoid bending) experi-
ence normal stress (σ ) and strain (ε)

and either extension or contraction proportional to their lengths. These
stresses and strains are uniform except near points of load application
where high localized stresses, or stress-concentrations, occur.

3. We investigated the mechanical behavior of various materials and
plotted the resulting stress-strain diagram, which conveys important
information about the material. Ductile materials (such as mild steel)
have an initial linear relationship between normal stress and strain
(up to the proportional limit) and are said to be linearly elastic with
stress and strain related by Hooke’s law

They also have a well-defined yield point. Other ductile materials
(such as aluminum alloys) typically do not have a clearly definable
yield point, so an arbitrary yield stress may be determined by using
the offset method.

4. Materials that fail in tension at relatively low values of strain (such
as concrete, stone, cast iron, glass ceramics and a variety of metallic
alloys) are classified as brittle. Brittle materials fail with only little
elongation after the proportional limit.

5. If  the material remains within the elastic range, it can be loaded,
unloaded, and loaded again without significantly changing the

σ � Eε

ε �
δ
L

σ �
P
A
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behavior. However when loaded into the plastic range, the internal
structure of the material is altered and its properties change.
Loading and unloading behavior of materials depends on the elas-
ticity and plasticity properties of the material, such as the elastic
limit and possibility of permanent set (residual strain) in the mate-
rial. Sustained loading over time may lead to creep and relaxation.

6. Axial elongation of bars loaded in tension is accompanied by lateral
contraction; the ratio of lateral strain to normal strain is known as
Poisson’s ratio (ν).

Poisson’s ratio remains constant throughout the linearly elastic
range, provided the material is homogeneous and isotropic. Most of
the examples and problems in the text are solved with the assump-
tion that the material is linearly elastic, homogeneous, and isotropic.

7. Normal stresses (σ) act perpendicular to the surface of the material
and shear stresses (τ) act tangential to the surface. We investigated
bolted connections between plates in which the bolts were subjected
to either single or double shear (τaver) where

as well as average bearing stresses (σb). The bearing stresses act on
the rectangular projected area (Ab) of the actual curved contact sur-
face between a bolt and plate.

8. We looked at an element of material acted on by shear stresses and
strains to study a state of stress referred to as pure shear. We saw that
shear strain (γ) is a measure of the distortion or change in shape of
the element in pure shear. We looked at Hooke’s law in shear in
which shear stress (τ) is related to shear strain by the shearing mod-
ulus of elasticity G.

We noted that E and G are related and therefore are not independent
elastic properties of the material.

G �
E

2(1 � ν)

τ � Gγ

σb �
Fb

Ab

τaver �
V
A

ν � �
lateral strain
axial strain

� �
ε�

ε
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9. Strength is the capacity of a structure or component to support or
transmit loads. Factors of safety relate actual to required strength of
structural members and account for a variety of uncertainties, such
as variations in material properties, uncertain magnitudes or distri-
butions of loadings, probability of accidental overload, and so on.
Because of these uncertainties, factors of safety (n1, n2, n3, n4) must
be determined using probabilistic methods.

10. Yield or ultimate level stresses can be divided by factors of safety to
produce allowable values for use in design. For ductile materials,

while for brittle materials,

A typical value of n1 and n2 is 1.67 while n3 and n4 might be 2.8.

For a pin-connected member in axial tension, the allowable load
depends on the allowable stress times the appropriate area (e.g., net
cross-sectional area for bars acted on by centroidal tensile loads,
cross-sectional area of pin for pins in shear, and projected area for
bolts in bearing). If  the bar is in compression, net cross-sectional area
need not be used, but buckling may be an important consideration.

11. Lastly, we considered design, the iterative process by which the appro-
priate size of structural members is determined to meet a variety of
both strength and stiffness requirements for a particular structure sub-
jected to a variety of different loadings. However, incorporation of
factors of safety into design is not a simple matter, because both
strength and failure have many different meanings.

σallow �
σU

n3

, τallow �
τU

n4

.

σallow �
σY

n1

, τallow �
τY

n2
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Statics Review

1.2-1 Segments AB and BC of beam ABC are pin con-
nected a small distance to the right of joint B (see figure).
Axial loads act at A and at the mid-span of AB. A concen-
trated moment is applied at joint B.

(a) Find reactions at supports A, B, and C.
(b) Find internal stress resultants N, V, and M at 

x � 4.5 m.

PROBLEMS CHAPTER 1
37 N/m at C. A concentrated moment is applied at joint A,
and a 180 N inclined load is applied at the mid-span of CD.

(a) Find reactions at supports A, C, and D.
(b) Find the resultant force in the pin connection at B.
(c) Repeat parts (a) and (b) if  a rotational spring 

(kr � 68 N m/rad) is added at A and the roller at C is
removed.

#

83Problems Chapter 1

x

6 m 3 m

Pin
connection

B CA

3 m

220 N

136 N·m at joint B

440 N

PROB. 1.2-1

PROB. 1.2-3

20 N 45 N

2.5 m 2 m 1 m

60 N

5 6
8

7

3 4
1 2

3

2 m

4

7

1
8

2

12
10

9

65

13

11

PROB. 1.2-4

PROB. 1.2-5

4 m 4 m 3 m

Pin
connection

x

B

C D
C

ky

A

Part (c)

80 N/m 200 N.m at joint D

PROB. 1.2-2

1.2-2 Segments AB and BCD of beam ABCD are pin con-
nected at x � 4 m. The beam is supported by a sliding sup-
port at A and roller supports at C and D (see figure). A
triangularly distributed load with peak intensity of 80 N/m
acts on BC. A concentrated moment is applied at joint B.

(a) Find reactions at supports A, C, and D.
(b) Find internal stress resultants N, V, and M at 

x � 5 m.
(c) Repeat parts (a) and (b) for the case of the roller

support at C replaced by a linear spring of stiffness 
ky � 200 kN/m (see figure).

1.2-3 Segments AB and BCD of beam ABCD are pin con-
nected at x � 3 m. The beam is supported by a pin support
at A and roller supports at C and D; the roller at D is
rotated by 30� from the x axis (see figure). A trapezoidal dis-
tributed load on BC varies in intensity from 74 N/m at B to

1.2-4 Consider the plane truss with a pin support at joint 3
and a vertical roller support at joint 5 (see figure).

(a) Find reactions at support joints 3 and 5.
(b) Find axial forces in truss members 11 and 13.

1.2-5 A plane truss has a pin support at A and a roller 
support at E (see figure).

(a) Find reactions at all supports.
(b) Find the axial force in truss member FE.

connection Remove roller at C in
part (c)

Pin

200 N·m at joint A 74 N/m
37 N/m 4

3

30º

1.5 m1.5 m

3 m3 m3 m

Part (c)

DC

B

x

A
kr A

180 N

3 m 3 m 3 m

3 m

13.5 kN 9.0 kN 4.5 kN

1 m

4.5 m

A B C D

E

F
G

77742_01_ch01_p002-121.qxd:77742_01_ch01_p002-121.qxd  3/2/12  2:28 PM  Page 83

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 1  Tension, Compression, and Shear

1.2-9 A space truss is restrained at joints A, B, and C, as
shown in the figure. Load 2P is applied at in the �x direc-
tion at joint A, load 3P acts in the �z direction at joint B
and load P is applied in the �z direction at joint C.
Coordinates of all joints are given in terms of dimension
variable L (see figure).

(a) Find reaction force components Ay and Az in
terms of load variable P.

(b) Find the axial force in truss member AB in terms
of load variable P.

84

1.2-6 A plane truss has a pin support at F and a roller sup-
port at D (see figure).

(a) Find reactions at both supports.
(b) Find the axial force in truss member FE.

3 m 3 m 3 m

3 m

3 kN6 kN9 kN

1 m

4.5 m

A B C D

E

F

G

PROB. 1.2-6

Cy

Cz

Ox

Oy

Oz

BxBz
By

Cx

O(0, 0, 0)

B(2, 0, 0)

Q(4, −3, 5)

(0, 0, 5)A

C(0, 4, 0)

xP
z

Joint B
coordinates (meters) 

y

PROB. 1.2-7

Bx

By

3P(+z direction)

A(3L, 0, 0)

B(0, 4L, 0)

Cy Cx

Ay
Az

y

x

P

z

2P
4L

3L

C(0, 2L, 4L)

2 L

2 L

PROB. 1.2-9

Bx

A(3L, 0, 0)

P(z direction)

(0, 4L, 2L)B

Cy

Cx

Ay

AxAz

y

x

P(–z direction)

z

2L
2L

4L

3LC (0, 0, 4L)

1

2
23

34

4

PROB. 1.2-10

Ox

Oy
Ay

Ax By
Bz

0.6L

0.8L O

Cx

Oz

C

y

L

x
BA

P

2P

z

PROB. 1.2-8

1.2-7 A space truss has three-dimensional pin supports at
joints O, B, and C. Load P is applied at joint A and acts
toward point Q. Coordinates of all joints are given in feet
(see figure).

(a) Find reaction force components Bx, Bz, and Oz.
(b) Find the axial force in truss member AC.

1.2-8 A space truss is restrained at joints O, A, B, and C,
as shown in the figure. Load P is applied at joint A and
load 2P acts downward at joint C.

(a) Find reaction force components Ax, By, and Bz in
terms of load variable P.

(b) Find the axial force in truss member AB in terms
of load variable P.

1.2-10 A space truss is restrained at joints A, B, and C, as
shown in the figure. Load P acts in the �z direction at
joint B and in the �z direction at joint C. Coordinates of
all joints are given in terms of dimension variable L (see
figure). Let P � 5 kN and L � 2 m.

(a) Find the reaction force components Az and Bx.
(b) Find the axial force in truss member AB.
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Problems Chapter 1

1.2-11 A stepped shaft ABC consisting of two solid, circu-
lar segments is subjected to torques T1 and T2 acting in
opposite directions, as shown in the figure. The larger seg-
ment of the shaft has a diameter of d1 � 58 mm and a
length L1 � 0.75 m; the smaller segment has a diameter 
d2 � 44 mm and a length L2 � 0.5 m. The torques are 
T1 � 2400 N m and T2 � 1130 N m.

(a) Find reaction torque TA at support A.
(b) Find the internal torque T(x) at two locations:

x � L1/2 and x � L1 � L2/2. Show these internal torques
on properly drawn free-body diagrams (FBDs).

# #

85

1.2-14 A plane frame is restrained at joints A and D, as
shown in the figure. Members AB and BCD are pin con-
nected at B. A triangularly distributed lateral load with
peak intensity of 80 N/m acts on CD. An inclined concen-
trated force of 200 N acts at the mid-span of BC.

(a) Find reactions at supports A and D.
(b) Find resultant forces in the pins at B and C.

d1

x

d2

L2L1

T2

T1

BA C

PROB. 1.2-11

Pin
connection

2.75 m

1300 N/m

3.70 m

C

B

A

x

680 N·m at joint C

PROB. 1.2-13

Pin
connection

1.5 m

80 N/m

1.5 m

200 N
4

3
4 m4 m

C
B

A D

PROB. 1.2-14

d1

t1

x

d2

L2L1

T2

BA C

PROB. 1.2-12

1.2-12 A stepped shaft ABC consisting of two solid, circu-
lar segments is subjected to uniformly distributed torque t1
acting over segment 1 and concentrated torque T2 applied
at C, as shown in the figure. Segment 1 of the shaft has a
diameter of d1 � 57 mm and length of L1 � 0.75 m; seg-
ment 2 has a diameter d2 � 44 mm and length L2 � 0.5 m.
Torque intensity t1 � 3100 N�m/m and T2 � 1100 N m.

(a) Find reaction torque TA at support A.
(b) Find the internal torque T(x) at two locations:

x � L1/2 and at x � L1 � L2/2. Show these internal torques
on properly drawn free-body diagrams (FBDs).

#

1.2-13 A plane frame is restrained at joints A and C, as
shown in the figure. Members AB and BC are pin con-
nected at B. A triangularly distributed lateral load with a
peak intensity of 1300 N/m acts on AB. A concentrated
moment is applied at joint C.

(a) Find reactions at supports A and C.
(b) Find internal stress resultants N, V, and M at 

x � 1.0 m on column AB.
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Chapter 1  Tension, Compression, and Shear

(a) Find reactions at supports A and E.
(b) Find internal stress resultants N, V, and M at

point H.

86

1.2-15 A 1900-N trap door (AB) is supported by a strut
(BC) which is pin connected to the door at B (see figure).

(a) Find reactions at supports A and C.
(b) Find internal stress resultants N, V, and M on the

trap door at 0.5 m from A.

Pin or hinge
connection

Strut

Tra
p d

oo
r

1900 N

0.75 m

4

3

2

1
C

x

y

A

B

PROB. 1.2-15

D E

C

H

G

F

B

x
A

y

180 mm

750 mm150 mm

360 mm

240 mm 150 mm 150 mm

2.25 kN

Cable

PROB. 1.2-17

D

C E
A

B

Pin connection
just left of C

Cable is attached at E and
passes over
frictionless pulleys at B and D

4 m

5 m3 m

3

3 400 N 4

4

4 m

PROB. 1.2-18

Pin connection

90 kN·m

3 m

10 kN

6 m

3 m

3 m ED

C

B10 kN

A

PROB. 1.2-16

1.2-16 A plane frame is constructed by using a pin con-
nection between segments ABC and CDE. The frame has
pin supports at A and E and joint loads at B and D (see
figure).

(a) Find reactions at supports A and E.
(b) Find the resultant force in the pin at C.

1.2-17 A plane frame with pin supports at A and E has a
cable attached at C, which runs over a frictionless pulley
at F (see figure). The cable force is known to be 2.25 kN.

1.2-18 A plane frame with a pin support at A and roller
supports at C and E has a cable attached at E, which runs
over frictionless pulleys at D and B (see figure). The cable
force is known to be 400 N. There is a pin connection just
to the left of joint C.

(a) Find reactions at supports A, C, and E.
(b) Find internal stress resultants N, V, and M just to

the right of joint C.
(c) Find resultant force in the pin near C.

1.2-19 A 650 N rigid bar AB, with frictionless rollers at
each end, is held in the position shown in the figure by a
continuous cable CAD. The cable is pinned at C and D and
runs over a pulley at A.

(a) Find reactions at supports A and B.
(b) Find the force in the cable.
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Problems Chapter 1

1.2-20 A plane frame has a pin support at A and roller
supports at C and E (see figure). Frame segments ABD and
CDEF are joined just left of joint D by a pin connection.

(a) Find reactions at supports A, C, and E.
(b) Find the resultant force in the pin just left of D.

87

1.2-22 Space frame ABCD is clamped at A, except it is free to
translate in the x direction. There is also a roller support at D,
which is normal to line CDE. A triangularly distributed
force with peak intensity q0 � 75 N/m acts along AB in the pos-
itive z direction. Forces Px � 60 N and Pz � �45 N are applied
at joint C, and a concentrated moment My � 120 N � m acts at
the mid-span of member BC.

(a) Find reactions at supports A and D.
(b) Find internal stress resultants N, V, T, and M at

the mid-height of segment AB.

D 0.6 m

0.9 m

650 N rig
id bar

C

y

A x

1.2 m

30°

B

Cab
le

PROB. 1.2-19

6 m 6 m

4 m

16 kN

1.5 kN/m

Pin connection
just left of D 3 kN/m

4 m 4 m

A C E

B D F

PROB. 1.2-20

O

x

z

178 mm

B

A

C

15°

15°

P2

y
y'

200 mm

150 mm

P1

x

PROB. 1.2-21

A(0, 0, 0)

B(0, 2, 0)

C(1.5, 2, 0)

E(2.5, 0, −0.5)

D

0.75 m

Joint coordinates
in meters

My

z

q0

Pz

Px

y

x

PROB. 1.2-22

1.2-21 A special vehicle brake is clamped at O, (when the
brake force P1 is applied—see figure). Force P1 � 220 N
and lies in a plane which is parallel to the xz plane and is
applied at C normal to line BC. Force P2 � 180 N and is
applied at B in the �y direction.

(a) Find reactions at support O.
(b) Find internal stress resultants N, V, T, and M at

the mid-point of segment OA.
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Chapter 1  Tension, Compression, and Shear

moment releases at the base of  member 2, so member 2
can lengthen and shorten as the roller support at B moves
along the 30� incline. (These releases indicate that the
internal axial force N and moment M must be zero at this
location.)

88

1.2-23 Space frame ABC is clamped at A, except it is free
to rotate at A about the x and y axes. Cables DC and
EC support the frame at C. Force Py � �220 N is applied
at the mid-span of AB, and a concentrated moment Mx �

�2.25 N m acts at joint B.
(a) Find reactions at support A.
(b) Find cable tension forces.

#

Cable DC

Cable EC

Joint coordinates
in meters

D(0, 0.25, −0.5)

C(0.25, 0.1, −0.1)

B(0.25, 0, 0)

E(0, 0.2, 0.25)

y

z
Py

Mx
x

A(0, 0, 0)

PROB. 1.2-23

Roller support (joint 1) for
back rail

Pin support (joint 3)
at pivot point

780 N

90 N

90 N

110 N

Axial & moment releases
at hinge above joint 2

Front rail
Moment
release (or hinge)

Incline at 30°

Axial
release

Back rail

(a)

90 N
Cy

C
Cx

By

Ay

Bx

Member no.

D

780 N

860 mm

400 mm

Axial
release

Moment
release

B

B

30°

Joint no.

A

a = 11.537°
x

y

a

a

a

860 mm

400 mm

1

2

3

250 mm

(b)

PROB. 1.2-25

1.22 m

2.44 m

2.44 m

3.65 m

3.65 m

43

G

x

y

DF = 200 N

P
w = 73 N/m

B R

z
Gravity

Reaction force

w = 29 N/m

Q

H

C
S

PROB. 1.2-24

1.2-24 A soccer goal is subjected to gravity loads (in the
�z direction, w � 73 N/m for DG, BG, and BC; 
w � 29 N/m for all other members; see figure) and a force
F � 200 N applied eccentrically at the mid-height of mem-
ber DG. Find reactions at supports C, D, and H.

1.2-25 An elliptical exerciser machine (see figure part a)
is composed of front and back rails. A simplified plane-
frame model of  the back rail is shown in figure part b.
Analyze the plane-frame model to find reaction forces at
supports A, B, and C for the position and applied loads
given in figure part b. Note that there are axial and

1.2-26 A mountain bike is moving along a flat path at
constant velocity. At some instant, the rider (weight �

670 N) applies pedal and hand forces, as shown in the
 figure part a.

(a) Find reaction forces at the front and rear hubs.
(Assume that the bike is pin supported at the rear hub and
roller supported at the front hub.)

(b) Find internal stress resultants N, V, and M in the
inclined seat post (see figure part b).
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Problems Chapter 1

Normal Stress and Strain

1.3-1 A hollow circular post ABC (see figure) supports a
load P1 � 7.5 kN acting at the top. A second load P2 is uni-
formly distributed around the cap plate at B. The diame-
ters and thicknesses of the upper and lower parts of the
post are dAB � 32 mm, tAB � 12 mm, dBC � 57 mm, and
tBC � 9 mm, respectively.

(a) Calculate the normal stress σAB in the upper part
of the post.

(b) If  it is desired that the lower part of the post have
the same compressive stress as the upper part, what should
be the magnitude of the load P2?

89

1.3-2 A force P of 70 N is applied by a rider to the front hand
brake of a bicycle (P is the resultant of an evenly distributed
pressure). As the hand brake pivots at A, a tension T develops
in the 460-mm long brake cable (Ae � 1.075 mm2) which
elongates by δ � 0.214 mm. Find normal stress σ and strain
ε in the brake cable.

752 mm

1021 mm

670 N

241 mm

15.3°

90 N at 5°

200 N at 15° to vertical

45 N at 30° to vertical
on each grip

660 mm

1130 mm

254 m
m

y

x

241 mm

Origin at
B (0,0,0)

HB

VB
VF

(a)

HB

V

V

N
N

M

M

(b)

15.3°

PROB. 1.2-26

A

B

C

P1

dAB

tAB

dBC

tBC

P2

PROB. 1.3-1

50 mm

100 mm

P (Resultant
of distributed
pressure)

A

Hand brake pivot ABrake cable, L = 460 mm

37.5 mm
T

Uniform hand
brake pressure

PROB. 1.3-2

(c) If P1 remains at 7.5 kN and P2 is now set at 10 kN,
what new thickness of BC will result in the same compres-
sive stress in both parts?

(hamurishi/Shutterstock)

(hamurishi/Shutterstock)
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Chapter 1  Tension, Compression, and Shear

1.3-4 A circular aluminum tube with a length of L � 420 mm
is loaded in compression by forces P (see figure). The hollow
segment of length L/3 had outside and inside diameters of
60 mm and 35 mm, respectively. The solid segment of length
2L/3 has a diameter of 60 mm. A strain gage is placed on the
outside of the hollow segment of the bar to measure normal
strains in the longitudinal direction.

(a) If  the measured strain in the hollow segment is 
εh � 470 � 10�6, what is the strain εs in the solid part?
(Hint: The strain in the solid segment is equal to that in the
hollow segment multiplied by the ratio of the area of the
hollow to that of the solid segment.)

(b) What is the overall shortening δ of the bar?
(c) If the compressive stress in the bar cannot exceed

48 MPa, what is the maximum permissible value of load P?

90

1.3-3 A bicycle rider would like to compare the effective-
ness of cantilever hand brakes [see figure part (a)] versus
V brakes [figure part (b)].

(a) Calculate the braking force RB at the wheel rims
for each of the bicycle brake systems shown. Assume that
all forces act in the plane of the figure and that cable ten-
sion T � 200 N. Also, what is the average compressive nor-
mal stress σc on the brake pad (A � 4 cm2)?

(b) For each braking system, what is the stress in
the brake cable (assume effective cross-sectional area of
1.077 mm2)?

(HINT: Because of symmetry, you only need to use
the right half  of each figure in your analysis.)

50 mm

100 mm
45°

90°
125 mm

Pivot points
anchored to frame

25 mm

25 mm

RB

TDE

TDE

TDCh

TDC
TDCv

TDC = TDE

T
D

C

B

G

F

A

E

(a) Cantilever brakes

106 mm

100 mm

Pivot points
anchored to frame

25
mm

B

T

D
C

F A

E

(b) V brakes

PROB. 1.3-3

Strain gage

L = 420 mm

L/3

PP

PROB. 1.3-4

200
mm

125
mm

125
mm

y

x

500 mm

500 mm

Circular pipe
chase cutout

400 mm

200 mm

600 mm

PROB. 1.3-5

1.3-5 The cross section of a concrete corner column that
is loaded uniformly in compression is shown in the figure.
A circular pipe chase cut-out of 250 mm in diameter runs
the height of the column (see figure).

(a) Determine the average compressive stress σc in the
concrete if  the load is equal to 14.5 MN.

(b) Determine the coordinates xc and yc of the point
where the resultant load must act in order to produce uni-
form normal stress in the column.

1.3-6 A car weighing 130 kN when fully loaded is pulled
slowly up a steep inclined track by a steel cable (see figure).
The cable has an effective cross-sectional area of 490 mm2,
and the angle α of the incline is 30�.
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Problems Chapter 1

(a) Calculate the tensile stress σt in the cable.
(b) If  the allowable stress in the cable is 150 MPa,

what is the maximum acceptable angle of the incline for a
fully loaded car?

91

1.3-8 A long retaining wall is braced by wood shores set at
an angle of 30� and supported by concrete thrust blocks, as
shown in the first part of the figure. The shores are evenly
spaced, 3 m apart.

For analysis purposes, the wall and shores are ideal-
ized as shown in the second part of the figure. Note that the
base of the wall and both ends of the shores are assumed to
be pinned. The pressure of the soil against the wall is
assumed to be triangularly distributed, and the resultant
force acting on a 3-meter length of the wall is F � 190 kN.

If each shore has a 150 mm � 150 mm square cross
section, what is the compressive stress σc in the shores?

Cable

a

PROB. 1.3-6

Retaining
wall

Shore

30� 30�

Concrete
thrust
block

Soil

4.0 m

0.5 m

F

B

C

A

1.5 m

PROB. 1.3-8

T2

W

(a)

ab

T1

PROB. 1.3-7
1.3-7 Two steel wires support a moveable overhead cam-
era weighing W � 125 N (see figure part a) used for close-
up viewing of field action at sporting events. At some
instant, wire 1 is at an angle α � 22� to the horizontal and
wire 2 is at an angle β � 40�. Wires 1 and 2 have diameters
of 0.75 mm and 0.90 mm, respectively. 

(a) Determine the tensile stresses σ1 and σ2 in the two
wires.

(b) If  the stresses in wires 1 and 2 must be the same,
what is the required diameter of wire 1?

(c) Now, to stabilize the camera for windy outdoor
conditions, a third wire is added (see figure part b).
Assume the three wires meet at a common point (coordi-
nates (0, 0, 0) above the camera at the instant shown in
 figure part b). Wire 1 is attached to a support at coordi-
nates (25 m, 16 m, 23 m). Wire 2 is supported at (�23 m,
18 m, 27 m). Wire 3 is supported at (�3 m, �28 m, 25 m).
Assume that all three wires have a diameter of 0.8 mm.
Find the tensile stresses in wires 1 to 3.

Wire 2
Wire 1

Camera x

y

Wire 3

(b)

(−23 m, 18 m, 27 m)

(−3 m, −28 m, 25 m)

(25 m, 16 m, 23 m)

Plan view of camera suspension system
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Chapter 1  Tension, Compression, and Shear92

1.3-10 Solve the preceding problem if  the mass of  the
tail gate is MT � 27 kg and that of  the crate is 
MC � 68 kg. Use dimensions H � 305 mm, L � 406 mm,
dC � 460 mm, and dT � 350 mm. The cable cross-
sectional area is Ae � 11.0 mm2.

(a) Find the tensile force T and normal stress σ in
each cable.

Cable

dT = 350 mm

L = 406 mm

MT = 27 kg

MC = 68 kg
dc = 460 mm

Tail gate

Crate

Truck

H = 305 mm

PROB. 1.3-10

1.8 m 1.8 m

1.8 m

Coordinates of D in m

D (1.5, 3.6, 0)

C (1.5, 1.5, 0)

W

Q
(1.5, 1.5, 2.1)

F

T1

T2

T3

B (3.6, 0, 0)

O
(0, 0, 0)

z

x

y

5

5

5

7

7

7

1
1

kN
m3Concrete slab g = 24

Thickness t, c.g at (1.5 m, 1.5 m, 0)

A
(0, 3.6, 0)

PROB. 1.3-11

1.3-11 An L-shaped reinforced concrete slab 3.6 m � 3.6 m
(but with a 1.8 m � 1.8 m cut-out) and thickness t � 230 mm,
is lifted by three cables attached at O, B and D, as shown in
the figure. The cables are combined at point Q, which is
2.1 m above the top of the slab and directly above the cen-
ter of mass at C. Each cable has an effective cross-sectional
area of Ae � 77 mm2.

(a) Find the tensile force Ti (i � 1, 2, 3) in each cable due
to the weight W of the concrete slab (ignore weight of cables).

(b) Find the average stress σi in each cable. (See
Table H-1 in Appendix H for the weight density of  rein-
forced concrete.)

(c) Add cable AQ so that OQA is one continuous
cable, with each segment having force T1, which is con-
nected to cables BQ and DQ at point Q. Repeat parts (a)
and (b). (Hint: There are now three force equilibrium equa-
tions and one constraint equation, T1 � T4.)

Cable

dT = 350 mm

L = 400 mm

WT = 270 N

WC = 900 N
F = 450 Ndc = 450 mm

Tail gate

Crate

Truck

H
 =

 3
00

 m
m

h 
=

 2
75

 m
m

PROBS. 1.3-9 and 1.3-10

1.3-9 A pickup truck tailgate supports a crate 
(WC � 900 N), as shown in the figure. The tailgate weighs
WT � 270 N and is supported by two cables (only one is
shown in the figure). Each cable has an effective cross-sec-
tional area Ae � 11 mm2.

(a) Find the tensile force T and normal stress σ in
each cable.

(b) If  each cable elongates δ � 0.42 mm due to the
weight of both the crate and the tailgate, what is the aver-
age strain in the cable?

(b) If  each cable elongates δ � 0.25 mm due to the
weight of both the crate and the tailgate, what is the aver-
age strain in the cable?

(© Barry Goodno)
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Problems Chapter 1

Mechanical Properties and Stress-
Strain Diagrams

1.4-1 Imagine that a long steel wire hangs vertically from
a high-altitude balloon.

(a) What is the greatest length (meters) it can have
without yielding if  the steel yields at 260 MPa?

(b) If  the same wire hangs from a ship at sea, what is
the greatest length? (Obtain the weight densities of steel
and sea water from Table H-1, Appendix H.)

1.4-2 Steel riser pipe hangs from a drill rig located off-
shore in deep water (see figure).

(a) What is the greatest length (meters) it can have
without breaking if  the pipe is suspended in the air and the
ultimate strength (or breaking strength) is 550 MPa?

(b) If  the same riser pipe hangs from a drill rig at sea,
what is the greatest length? (Obtain the weight densities of
steel and sea water from Table H-1, Appendix H. Neglect
the effect of buoyant foam casings on the pipe).

93

1.3-12 A round bar ACB of length 2L (see figure) rotates
about an axis through the midpoint C with constant angu-
lar speed ω (radians per second). The material of the bar
has weight density γ.

(a) Derive a formula for the tensile stress σx in the bar
as a function of the distance x from the midpoint C.

(b) What is the maximum tensile stress σmax?

CA B

L L

x

v

PROB. 1.3-12

L = 30.5 m

Support
tower

B

WB WC

C

DA

DC

DB
u3

u2

u1

PROB. 1.3-13

x

O
B

A

55

2

5 m

5 m 3 m

2 m
2 m

5 m

21

y

z

Cra
ne

 b
oo

m

P

C

Q

D

PROB. 1.3-14

PROB. 1.4-2 

1.3-13 Two gondolas on a ski lift are locked in the position
shown in the figure while repairs are being made elsewhere.
The distance between support towers is L � 30.5 m. The
length of each cable segment under gondola weights 
WB � 2000 N and WC � 2900 N are DAB � 3.7 m, DBC �

21.4 m, and DCD � 6.1 m. The cable sag at B is ΔB � 1.3 m
and that at C(ΔC) is 2.3 m. The effective cross-sectional area
of the cable is Ae � 77 mm2.

(a) Find the tension force in each cable segment; neg-
lect the mass of the cable.

(b) Find the average stress (σ ) in each cable segment.

1.3-14 A crane boom of mass 450 kg with its center of mass
at C is stabilized by two cables AQ and BQ (Ae � 304 mm2

for each cable) as shown in the figure. A load P � 20 kN is
supported at point D. The crane boom lies in the y–z plane.

(a) Find the tension forces in each cable: TAQ and
TBQ (kN). Neglect the mass of the cables, but include the
mass of the boom in addition to load P.

(b) Find the average stress (σ) in each cable.

Drill pipe

Riser

BOP
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Chapter 1  Tension, Compression, and Shear

1.4-6 A specimen of a methacrylate plastic is tested in tension
at room temperature (see figure), producing the stress-strain
data listed in the accompanying table (see table below).

Plot the stress-strain curve and determine the propor-
tional limit, modulus of elasticity (i.e., the slope of the ini-
tial part of the stress-strain curve), and yield stress at 0.2%
offset. Is the material ductile or brittle?

94

1.4-3 Three different materials, designated A, B, and C,
are tested in tension using test specimens having diameters
of 12 mm and gage lengths of 50 mm (see figure). At fail-
ure, the distances between the gage marks are found to be
54.5 mm, 63.2 mm, and 69.4 mm, respectively. Also, at the
failure cross sections the diameters are found to be 11.46,
9.48, and 6.06 mm, respectively.

Determine the percent elongation and percent reduc-
tion in area of each specimen, and then, using your own
judgment, classify each material as brittle or ductile.

P

P

PROB. 1.4-6

1.4-4 The strength-to-weight ratio of a structural material
is defined as its load-carrying capacity divided by its
weight. For materials in tension, we may use a characteris-
tic tensile stress (as obtained from a stress-strain curve) as
a measure of strength. For instance, either the yield stress
or the ultimate stress could be used, depending upon the
particular application. Thus, the strength-to-weight ratio
RS/W for a material in tension is defined as

in which σ is the characteristic stress and γ is the weight
density. Note that the ratio has units of length.

Using the ultimate stress σU as the strength parameter,
calculate the strength-to-weight ratio (in units of meters)
for each of  the following materials: aluminum alloy 
6061-T6, Douglas fir (in bending), nylon, structural steel
ASTM-A572, and a titanium alloy. (Obtain the material
properties from Tables H-1 and H-3 of Appendix H. When
a range of values is given in a table, use the average value.)

1.4-5 A symmetrical framework consisting of three pin-
connected bars is loaded by a force P (see figure). The angle
between the inclined bars and the horizontal is α � 52�.
The axial strain in the middle bar is measured as 0.027.

Determine the tensile stress in the outer bars if  they
are constructed of a copper alloy having the following
stress-strain relationship:

σ �
124,020ε
1 � 300ε

0 … ε … 0.03 (σ � MPa)

Rs/w �
σ
γ

STRESS-STRAIN DATA FOR PROB. 1.4-6
Stress (MPa) Strain

8.0 0.0032
17.5 0.0073
25.6 0.0111
31.1 0.0129
39.8 0.0163
44.0 0.0184
48.2 0.0209
53.9 0.0260
58.1 0.0331
62.0 0.0429
62.1 Fracture

1.4-7 The data shown in the table below were obtained
from a tensile test of high-strength steel. The test specimen
had a diameter of 13 mm and a gage length of 50 mm (see
figure for Prob. 1.4-3). At fracture, the elongation between
the gage marks was 3.0 mm and the  minimum diameter was
10.7 mm.

Gage 
lengthP

P

PROB. 1.4-3

P

D

A B C
a

PROB. 1.4-5
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Problems Chapter 1 95

Plot the conventional stress-strain curve for the steel
and determine the proportional limit, modulus of elastic-
ity (i.e., the slope of the initial part of the stress-strain
curve), yield stress at 0.1% offset, ultimate stress, percent
elongation in 50 mm, and percent reduction in area.

TENSILE-TEST DATA FOR PROB. 1.4-7
Load (kN) Elongation (mm)

5 0.005
10 0.015
30 0.048
50 0.084
60 0.099
64.5 0.109
67.0 0.119
68.0 0.137
69.0 0.160
70.0 0.229
72.0 0.259
76.0 0.330
84.0 0.584
92.0 0.853

100.0 1.288
112.0 2.814
113.0 Fracture

Elasticity and Plasticity

1.5-1 A bar made of structural steel having the stress-
strain diagram shown in the figure has a length of 1.5 m.
The yield stress of the steel is 290 MPa and the slope of the
initial linear part of the stress-strain curve (modulus of
elasticity) is 207 GPa. The bar is loaded axially until it
elongates 7.6 mm, and then the load is removed.

How does the final length of the bar compare with its
original length? (Hint: Use the concepts illustrated in
Fig. 1-36b.)

s (MPa)

0

420

280

140

0.0020 0.0060.004
ε

PROB. 1.5-1

    (MPa)

0

300

200

100

0.0020 0.0060.004

s

ε

PROB. 1.5-2

0 0.002
0
7

14
21
28

70

35
42
49
56
63

0.006 0.0080.004 0.01

s (MPa)

ε

PROB. 1.5-4

1.5-2 A bar of length 2.0 m is made of a structural steel
having the stress-strain diagram shown in the figure. The
yield stress of the steel is 250 MPa and the slope of the ini-
tial linear part of the stress-strain curve (modulus of elas-
ticity) is 200 GPa. The bar is loaded axially until it
elongates 6.5 mm, and then the load is removed.

How does the final length of  the bar compare with
its original length? (Hint: Use the concepts illustrated in
Fig. 1-36b.)

1.5-3 An aluminum bar has length L � 1.8 m and diameter
d � 34 mm. The stress-strain curve for the aluminum is
shown in Fig. 1-31 of Section 1.4. The initial straight-line
part of the curve has a slope (modulus of elasticity) of
73 GPa. The bar is loaded by tensile forces P � 200 kN and
then unloaded.

(a) What is the permanent set of the bar?
(b) If the bar is reloaded, what is the proportional limit?

(Hint: Use the concepts illustrated in Figs. 1-36b and 1-37.)

1.5-4 A circular bar of magnesium alloy is 750 mm long.
The stress-strain diagram for the material is shown in the
figure. The bar is loaded in tension to an elongation of
6.0 mm, and then the load is removed.

(a) What is the permanent set of the bar?
(b) If the bar is reloaded, what is the proportional limit?

(Hint: Use the concepts illustrated in Figs. 1-36b and 1-37.)
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Chapter 1  Tension, Compression, and Shear

1.6-3 A polyethylene bar having diameter d1 � 70 mm is
placed inside a steel tube having inner diameter d2 �

70.2 mm (see figure). The polyethylene bar is then com-
pressed by an axial force P.

At what value of the force P will the space between
the polyethylene bar and the steel tube be closed? (For
polyethylene, assume E � 1.4 GPa and υ � 0.4.)

96

1.5-5 A wire of length L � 2.5 m and diameter d � 1.6 mm
is stretched by tensile forces P � 600 N. The wire is made of
a copper alloy having a stress-strain relationship that may be
described mathematically by the following equation:

in which ε is nondimensional and σ has units of MPa.
(a) Construct a stress-strain diagram for the material.
(b) Determine the elongation of the wire due to the

forces P.
(c) If  the forces are removed, what is the permanent

set of the bar?
(d) If  the forces are applied again, what is the propor-

tional limit?

Hooke’s Law and Poisson’s Ratio

When solving the problems for Section 1.6, assume that the
material behaves linearly elastically.

1.6-1 A high-strength steel bar used in a large crane has
diameter d � 50 mm (see figure). The steel has modulus
of  elasticity E � 200 GPa and Poisson’s ratio 
	 � 0.3. Because of  clearance requirements, the diameter
of  the bar is limited to 50.025 mm when it is compressed
by axial forces.

What is the largest compressive load Pmax that is per-
mitted?

σ �
124,020ε
1 � 300ε

0 … ε … 0.03 (σ � MPa)

d2d1

Steel
tube

Polyethylene
bar

PROB. 1.6-3

PROB. 1.6-4

L
(a)

P

Strain gage

Pd2 d1

P P

L/3 L/3 L/3

d2d3 d1

(b)

1.6-2 A round bar of 10 mm diameter is made of alu-
minum alloy 7075-T6 (see figure). When the bar is stretched
by axial forces P, its diameter decreases by 0.016 mm.

Find the magnitude of the load P. (Obtain the mate-
rial properties from Appendix H.)

1.6-4 A circular aluminum tube of length L � 600 mm is
loaded in compression by forces P (see figure). The outside
and inside diameters are d2 � 75 mm and d1 � 63 mm,
respectively. A strain gage is placed on the outside of the tube
to measure normal strains in the longitudinal direction.
Assume that E � 73 GPa and Poisson’s ratio v � 0.33.

(a) If  the compressive stress in the tube is 57 MPa,
what is the load P?

(b) If  the measured strain is ε � 781 � 10�6, what is
the shortening δ of the tube? What is the percent change in
its cross-sectional area? What is the volume change of the
tube?

(c) If the tube has a constant outer diameter of 
d2 � 75 mm along its entire length L but now has increased
inner diameter d3 with a normal stress of 70 MPa over the
middle third (see figure, part c) while the rest of the tube
remains at normal stress of 57 MPa, what is the diameter d3?

P
d

P

PROB. 1.6-1

d = 10 mm

7075-T6

PP

PROB. 1.6-2
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Problems Chapter 1

1.6-5 A bar of monel metal as in the figure (length 
L � 230 mm, diameter d � 6 mm) is loaded axially by a
 tensile force P. If  the bar elongates by 0.5 mm, what is the
decrease in diameter d? What is the magnitude of the load
P? Use the data in Table H-2, Appendix H.

97

1.6-6 A tensile test is peformed on a brass specimen
10 mm in diameter using a gage length of  50 mm (see fig-
ure). When the tensile load P reaches a value of  20 kN,
the distance between the gage marks has increased by
0.122 mm.

(a) What is the modulus of elasticity E of the brass?
(b) If  the diameter decreases by 0.00830 mm, what is

Poisson’s ratio?

d PP

L

PROB. 1.6-5

P2

dAB

tAB

dBC

tBC

A

B

C

Cap plate

P1

PROB. 1.6-7

10 mm

PP
50 mm

PROB. 1.6-6

Bar 1 Bar 2

d

d L

5

Bar 3

PPP

L

2d

d

2d

L

15

PROB. 1.6-8

1.6-7 A hollow, brass circular pipe ABC (see figure) 
supports a load P1 � 118 kN acting at the top. A second
load P2 � 98 kN is uniformly distributed around the cap
plate at B. The diameters and thicknesses of  the upper
and lower parts of  the pipe are dAB � 31 mm, 
tAB � 12 mm, dBC � 57 mm, and tBC � 9 mm, respectively.
The modulus of  elasticity is 96 GPa. When both loads are
fully applied, the wall thickness of  pipe BC increases by
5 � 10�3 mm.

(a) Find the increase in the inner diameter of pipe 
segment BC.

(b) Find Poisson’s ratio for the brass.
(c) Find the increase in the wall thickness of  pipe

segment AB and the increase in the inner diameter
of AB.

1.6-8 Three round, copper alloy bars having the same
length L but different shapes are shown in the figure. The
first bar has a diameter d over its entire length, the second
has a diameter d over one-fifth of its length, and the third
has a diameter d over one-fifteenth of  its length.
Elsewhere, the second and third bars have diameter 2d. All
three bars are subjected to the same axial load P.

Use the following numerical date: P � 1400 kN, 
L � 5 m, d � 80 mm, E � 110 GPa, and υ � 0.33.

(a) Find the change in length of each bar.
(b) Find the change in volume of each bar.
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1.7-3 The upper deck of a football stadium is supported
by braces, each of which transfers a load P � 700 kN to
the base of a column (see figure part a). A cap plate at the
bottom of the brace distributes the load P to four flange
plates (tf � 25 mm) through a pin (dp � 50 mm) to two gus-
set plates (tg � 38 mm) (see figure parts b and c).

Determine the following quantities.
(a) The average shear stress τaver in the pin.
(b) The average bearing stress between the flange

plates and the pin (σbf), and also between the gusset plates
and the pin (σbg).

(Disregard friction between the plates.)

Chapter 1  Tension, Compression, and Shear98

Shear Stress and Strain

1.7-1 An angle bracket having thickness t � 19 mm is
attached to the flange of a column by two 16 mm diame-
ter bolts (see figure). A uniformly distributed load from a
floor joist acts on the top face of the bracket with a pres-
sure p � 1.9 MPa. The top face of the bracket has length
L � 200 mm and width b � 75 mm.

Determine the average bearing pressure σb between
the angle bracket and the bolts and the average shear stress
τaver in the bolts. (Disregard friction between the bracket
and the column.)

1.7-2 Truss members supporting a roof are connected to a
26-mm-thick gusset plate by a 22-mm diameter pin as
shown in the figure and photo. The two end plates on the
truss members are each 14 mm thick.

(a) If  the load P � 80 kN, what is the largest bearing
stress acting on the pin?

(b) If  the ultimate shear stress for the pin is 190 MPa,
what force Pult is required to cause the pin to fail in shear?

(Disregard friction between the plates.)

Angle bracket

L

b

t

p

Floor joist

Floor slab

Angle bracket

Distributed pressure on angle bracket

PROB. 1.7-1

Roof structure

Truss
member

End
plates

t = 14 mm

26 mm

Pin

Gusset
plate

P
P

PROB. 1.7-2

Truss members supporting a roof
(Vince Streano/Getty Images)
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Problems Chapter 1 99

(a) Stadium brace

(b) Detail at bottom of brace

(c) Section through bottom of brace

Cap plate

Pin (dp = 50 mm)

Flange plate
 (tf = 25 mm)

Gusset plate
 (tg = 38 mm)

Cap plate

Pin (dp = 50 mm)

Flange plate
 (tf = 25 mm)

Gusset plate
 (tg = 38 mm)

P

P/2 P/2

P = 700 kN

P

PROB. 1.7-3

Typical rung

Ladder rail (tr = 4 mm)

Ladder shoe (ts = 5 mm)

Shoe bolt (dp = 8 mm)

Section at base

tr

ts

A

C

B

a = 1.8 m

Shoe bolt at A

Assume no slip at A.

b = 0.7 m

q 
= 

36
 N

/m

H = 7.5 m

PROB. 1.7-4

1.7-4 The inclined ladder AB supports a house painter
(85 kg) at C and the self  weight (q � 40 N/m) of the lad-
der itself. Each ladder rail (tr � 4 mm) is supported by a
shoe (ts � 5 mm) which is attached to the ladder rail by a
bolt of diameter dp � 8 mm.

(a) Find support reactions at A and B.
(b) Find the resultant force in the shoe bolt at A.
(c) Find maximum average shear (τ ) and bearing (σb)

stresses in the shoe bolt at A.

(© Barry Goodno)

(© Barry Goodno)
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Chapter 1  Tension, Compression, and Shear

1.7-7 A special-purpose eye bolt of  shank diameter 
d � 12 mm passes through a hole in a steel plate of thickness
tp � 19 mm (see figure) and is secured by a nut with thick-
ness t � 6 mm. The hexagonal nut bears directly against the
steel plate. The radius of the circumscribed circle for
the hexagon is r � 10 mm (which means that each side of the
hexagon has length 10 mm). The tensile forces in three cables
attached to the eye bolt are T1 � 3560 N, T2 � 2448 N, and
T3 � 5524 N.

(a) Find the resultant force acting on the eye bolt.
(b) Determine the average bearing stress σb between

the hexagonal nut on the eye bolt and the plate.
(c) Determine the average shear stress τaver in the nut

and also in the steel plate.

100

1.7-5 The force in the brake cable of the V-brake system
shown in the figure is T � 200 N. The pivot pin at A has
diameter dp � 6 mm and length Lp � 16 mm.

Use dimensions show in the figure. Neglect the weight
of the brake system.

(a) Find the average shear stress τaver in the pivot pin
where it is anchored to the bicycle frame at B.

(b) Find the average bearing stress σb,aver in the pivot
pin over segment AB.

Steel plate
(2.5 × 1.2 × 0.1 m)

Center of mass
of plate

b1 b2

a

L2

L1

Clevis
and pin 2

b = 1.0 m

Clevis 
and pin 1

a = 0.6 m

P

2.0 m

u

PROB. 1.7-6

1.7-6 A steel plate of dimensions 2.5 � 1.5 � 0.08 m and
weighing 23.1 kN is hoisted by steel cables with lengths 
L1 � 3.2 m and L2 � 3.9 m that are each attached to the plate
by a clevis and pin (see figure). The pins through the clevises
are 18 mm in diameter and are located 2.0 m apart. The ori-
entation angles are measured to be θ � 94.4� and α � 54.9�.

For these conditions, first determine the cable forces
T1 and T2, then find the average shear stress τaver in both
pin 1 and pin 2, and then the average bearing stress σb
between the steel plate and each pin. Ignore the mass of
the cables.

81 mm

Pivot pins
anchored to
frame (dP)

Lower end of front brake cable

Brake pads

25 mm

LP

C

A

B

D

T

PROB. 1.7-5

(© Barry Goodno)
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Problems Chapter 1 101

1.7-9 A joint between two concrete slabs A and B is
filled with a flexible epoxy that bonds securely to the
concrete (see figure). The height of  the joint is 
h � 100 mm, its length is L � 1.0 m, and its thickness is
t � 12 mm. Under the action of  shear forces V, the slabs
displace vertically through the distance d � 0.048 mm
relative to each other.

(a) What is the average shear strain γaver in the
epoxy?

(b) What is the magnitude of the forces V if  the shear
modulus of elasticity G for the epoxy is 960 MPa?

T2

T1

T3

tp

y

x

30�

30�

2r

t

Cables

Eye bolt

Steel plate

Nut

d

PROB. 1.7-7

t

d

h
V

V

A B

t

h

A

BL

PROB. 1.7-9

P—
2

P—
2

P

Rubber pad

Rubber pad

Section X-X

X

t = 9 mm

X

80 mm

t = 9 mm

160 mm

PROB. 1.7-10

a

b

V

t

PROB. 1.7-8

1.7-8 An elastomeric bearing pad consisting of two steel
plates bonded to a chloroprene elastomer (an artificial
rubber) is subjected to a shear force V during a static load-
ing test (see figure). The pad has dimensions a � 125 mm
and b � 240 mm, and the elastomer has thickness 
t � 50 mm. When the force V equals 12 kN, the top plate
is found to have displaced laterally 8.0 mm with respect to
the bottom plate.

What is the shear modulus of elasticity G of the
chloroprene?

1.7-10 A flexible connection consisting of rubber pads
(thickness t � 9 mm) bonded to steel plates is shown in the
figure. The pads are 160 mm long and 80 mm wide.

(a) Find the average shear strain γaver in the rubber if
the force P � 16 kN and the shear modulus for the rubber
is G � 1250 kPa.

(b) Find the relative horizontal displacement
δ between the interior plate and the outer plates.
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Chapter 1  Tension, Compression, and Shear

1.7-12 The clamp shown in the figure is used to support a
load hanging from the lower flange of a steel beam. The
clamp consists of two arms (A and B) joined by a pin at C.
The pin has diameter d � 12 mm. Because arm B straddles
arm A, the pin is in double shear.

Line 1 in the figure defines the line of action of the
resultant horizontal force H acting between the lower
flange of the beam and arm B. The vertical distance from
this line to the pin is h � 250 mm. Line 2 defines the line
of action of the resultant vertical force V acting between
the flange and arm B. The horizontal distance from this
line to the centerline of the beam is c � 100 mm. The force
conditions between arm A and the lower flange are sym-
metrical with those given for arm B.

Determine the average shear stress in the pin at C
when the load P � 18 kN.

102

1.7-11 Steel riser pipe hangs from a drill rig located off-
shore in deep water (see figure). Separate segments are
joined using bolted flange plages (see figure part b and
photo). Assume that there are six bolts at each pipe seg-
ment connection. Assume that the total length of riser pipe
is L � 1500 m; outer and inner diameters are d2 � 405 mm
and d1 � 380 mm; flange plate thickness tf � 44 mm; and
bolt and washer diameters are db � 28 mm, and dw � 47 mm.

(a) If  the entire length of the riser pipe were sus-
pended in air, find the average normal stress σ in each bolt,
the average bearing stress σb beneath each washer, and the
average shear stress τ through the flange plate at each bolt
location for the topmost bolted connection.

(b) If  the same riser pipe hangs from a drill rig at sea,
what are the normal, bearing, and shear stresses in the con-
nection? (Obtain the weight densities of steel and sea water
from Table H-1, Appendix H. Neglect the effect of buoy-
ant foam casings on the riser pipe.)

Arm A Arm B

Line 2

Line 1

P

C

c

Arm A

h

P

PROB. 1.7-12

PROB. 1.7-11

L
d1

Riser pipe (d2, d1 L)

d2

(a)

dw
db

tf

tf

d2

d2

Flange plate (tf), typical
bolt (db), and washer (dw)

Flange plate on riser pipe–
plan view (n = 6 bolts shown)

Flange plate on riser pipe

60°
r

r

x

y

(b)

(c)

(Courtesy of Transocean)
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Problems Chapter 1

1.7-13 A hitch-mounted bicycle rack is designed to carry
up to four 135 N bikes mounted on and strapped to two
arms GH (see bike loads in the figure part a). The rack is
attached to the vehicle at A and is assumed to be like a can-
tilever beam ABCDGH (figure part b). The weight of fixed
segment AB is W1 � 45 N, centered 225 mm from A (see
the figure part b) and the rest of the rack weighs W2 �

180 N, centered 480 mm from A. Segment ABCDG is a
steel tube, 50 � 50 mm, of thickness t � 3 mm. Segment
BCDGH pivots about a bolt at B of diameter dB � 6 mm
to allow access to the rear of the vehicle without removing

103

the hitch rack. When in use, the rack is secured in an
upright position by a pin at C (diameter of pin dp � 8 mm)
(see photo and figure part c). The overturning effect of the
bikes on the rack is resisted by a force couple F � h at BC.

(a) Find the support reactions at A for the fully loaded
rack.

(b) Find forces in the bolt at B and the pin at C.
(c) Find average shear stresses τaver in both the bolt at

B and the pin at C.
(d) Find average bearing stresses σb in the bolt at B

and the pin at C.

(c) Section a–a

C

D
50 � 50 � 3 mm
tube

54 mm

Pin at C

(b)

y

x
W1

B

C

G H

W2

D F

F

230 mm 200 mm

3 @ 100 mm

150 mm

685 mm

480 mm

54 mm
h = 175 mm

4 bike loads

(a)

Fixed
support
at A

50 mm � 50 mm � 3 mm

Bolt at B

(dB = 6 mm)

Release pins
at C & G
(dp = 8 mm)

G

A

B F

F

C
D

H

a

a

h = 175 mm

Bike loads

Bolt at B

Pin at C

PROB. 1.7-13
(© Barry Goodno)
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Chapter 1  Tension, Compression, and Shear104

1.7-14 A bicycle chain consists of a series of small links,
each 12 mm long between the centers of the pins (see
 figure). You might wish to examine a bicycle chain and
observe its construction. Note particularly the pins, which
we will assume to have a diameter of 2.5 mm.

In order to solve this problem, you must now make
two measurements on a bicycle (see figure): (1) the length L
of the crank arm from main axle to pedal axle, and (2) the
radius R of the sprocket (the toothed wheel, sometimes
called the chainring).

(a) Using your measured dimensions, calculate the
tensile force T in the chain due to a force F � 800 N
applied to one of the pedals.

(b) Calculate the average shear stress τaver in the pins.

1.7-15 A shock mount constructed as shown in the  figure is
used to support a delicate instrument. The mount consists
of an outer steel tube with inside diameter b, a central steel
bar of diameter d that supports the load P, and a hollow
rubber cylinder (height h) bonded to the tube and bar.

(a) Obtain a formula for the shear stress τ in the  rubber
at a radial distance r from the center of the shock mount.

(b) Obtain a formula for the downward displacement
δ of the central bar due to the load P, assuming that G is
the shear modulus of elasticity of the rubber and that the
steel tube and bar are rigid.

1.7-16 A removable sign post on a hurricane evacuation
route has a square base plate with four slots (or cut-outs) at
bolts 1 to 4 (see figure part b and photo) for ease of instal-
lation and removal. The upper portion of the post has a
separate base plate which is bolted to an anchored base (see
photo). Each of the four bolts has a diameter of db and a
washer with diameter of dw. The bolts are arranged in a
rectangular pattern (b � h). Consider only wind force Wy
applied in the y direction at the center of pressure of the
sign structure at a height z � L above the base. Neglect the
weight of the sign and post, and also neglect friction
between the upper and lower base plates. Assume that the
lower base plate and short anchored post are rigid.

(a) Find the average shear stress τ (MPa) at bolt 1 due
to the wind force Wy; repeat for bolt 4

(b) Find the average bearing stress σb (MPa) between
the bolt and the base plate (thickness t) at bolt 1; repeat for
bolt 4.

(c) Find the average bearing stress σb (MPa) between
base plate and washer at bolt 4 due to the wind force Wy
(assume the initial bolt pretension is zero).

(d) Find the average shear stress τ (MPa) through the
base plate at bolt 4 due to the wind force Wy.

(e) Find an expression for the normal stress σ in bolt
3 due to the wind force Wy.

See Prob. 1.8-15 for additional discussion of wind on
a sign, and the resulting forces acting on a conventional
base plate.

12 mm
2.5 mm

Links Pin

F
T

L

R

Sprocket

Chain

PROB. 1.7-14
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h

x

(a)

Wy

C.P

z

Steel tube

Steel bar

Rubber

r

d

P

b

h

PROB. 1.7-15

Numerical data

H � 150 mm b � 96 mm
h � 108 mm t � 14 mm 

db � 12 mm dw � 22 mm 
L � 2.75 m Wy � 667 N
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Problems Chapter 1 105

1.7-17 A spray nozzle for a garden hose requires a force
F � 22 N to open the spring-loaded spray chamber AB.
The nozzle hand grip pivots about a pin through a flange
at O. Each of the two flanges has thickness t � 1.5 mm,
and the pin has diameter dp � 3 mm (see figure part a). The
spray nozzle is attached to the garden hose with a quick
release fitting at B (see figure part b). Three brass balls
(diameter db � 4.5 mm) hold the spray head in place under

PROB. 1.7-16

(c)

(a)

Flange

Flange

Sprayer
hand grip

15�

F

F

A

B

c = 44 mm
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release
fittings
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C
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t

Pin

Top view at O
Pin at O

a = 19 mm

b = 38 mm

dp

3 brass retaining
balls at 120�,

diameter db = 4.5 mm

Water pressure

force on nozzle, fp

F

F

(b)

F

C

O

PROB. 1.7-17

b

h

h x

y

12

4

Plan view
of upper

base plate

(b)

Bolt and washer
(db, dw)

Slot in base plate
(db = slot width)

Square base plate
(H × H) of
thickness t

3

Wy

Slotted upper and lowerSlotted upper and lower
base platesbase plates
Slotted upper and lower
base plates

Base of positionBase of position
anchored inanchored in
groundground

Base of position
anchored in
ground

yyy
xxx

Upper removable sign postUpper removable sign post
with base platewith base plate
Upper removable sign post
with base plate

water pressure force fp � 135 N at C (see figure part c). Use
dimensions given in figure part a.

(a) Find the force in the pin at O due to applied force F.
(b) Find average shear stress τaver and bearing stress σb

in the pin at O.
(c) Find the average shear stress τaver in the brass

retaining balls at C due to water pressure force fp.

(© Barry Goodno)
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Chapter 1  Tension, Compression, and Shear106

1.7-18 A single steel strut AB with diameter ds � 8 mm
 supports the vehicle engine hood of mass 20 kg which pivots
about hinges at C and D (see figure parts a and b). The strut
is bent into a loop at its end and then attached to a bolt at A
with diameter db � 10 mm. Strut AB lies in a vertical plane.

(a) Find the strut force Fs and average normal stress σ
in the strut.

(b) Find the average shear stress τaver in the bolt at A.
(c) Find the average bearing stress σb on the bolt at A.

(a) Top part of pole saw

Rope, tension = T

a

2T

T

C

B

x

y

a

Saw blade

Collar Cutting
blade

D

Weak return spring

P

x
70�

BC = 150 mm

D

(b) Free-body diagram

T

P

B

20�

20�
50�

20�

70�

C

Cy
Cx

2T

DC = 25 mm

�

(c) Section a–a

150 mm

25 mm

C

B
�

�

Cutting blade

(tb = 2.4 mm)

Collar

(tc = 9 mm)

Pin at C

(dp = 3 mm)D

PROB. 1.7-19

1.7-19 The top portion of a pole saw used to trim small
branches from trees is shown in the figure part a. The cut-
ting blade BCD (see figure parts a and c) applies a force P
at point D. Ignore the effect of the weak return spring
attached to the cutting blade below B. Use properties and
dimensions given in the figure.

(a) Find the force P on the cutting blade at D if  the
tension force in the rope is T � 110 N (see free-body dia-
gram in figure part b).

(b) Find force in the pin at C.
(c) Find average shear stress τaver and bearing stress σb

in the support pin at C (see section a–a through cutting
blade in figure part c).

(a)

A

B

x
C

45�

h = 660 mm

30�

C

W

D

hc = 490 mm

y

Strut
ds = 8 mm

(b)

Hinge

Hood

b = 254 mm

a = 760 mm

h = 660 mm

H
 =

 1
04

1 
m

m

c = 506 mm

d = 150 mm

y

Fs

A

z

B

C

C

W

D

PROB. 1.7-18
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Problems Chapter 1

Allowable Loads

1.8-1 A bar of solid circular cross section is loaded in ten-
sion by forces P (see figure). The bar has length 
L � 380 mm and diameter d � 6 mm. The material is a mag-
nesium alloy having modulus of elasticity E � 42.7 GPa. The
allowable stress in tension is σallow � 89.6 GPa, and the elon-
gation of the bar must not exceed 0.08 mm.

What is the allowable value of the forces P?

107

d
PP

L

PROB. 1.8-1

t

P

dB dB

dW dW

PROB. 1.8-3

Section a–a

tBC

dBC

tAB

dp

dAB

tBC dBC

tAB dAB

C
BA

a

a

Pin

P

PROB. 1.8-4

d
T0

T0

T0

PROB. 1.8-2

Drive shaft coupling on a ship propulsion motor
(Courtesy of American Superconductor)

the fiberglass is 3.8 MPa, what is the allowable load Pallow
on the tie-down?

1.8-2 A torque T0 is transmitted between two flanged
shafts by means of ten 20-mm bolts (see figure and photo).
The diameter of the bolt circle is d � 250 mm.

If the allowable shear stress in the bolts is 85 MPa,
what is the maximum permissible torque? (Disregard fric-
tion between the flanges.)

1.8-4 Two steel tubes are joined at B by four pins 
(dp � 11 mm), as shown in the cross section a–a in the figure.
The outer diameters of the tubes are dAB � 41 mm and
dBC � 28 mm. The wall thicknesses are tAB � 6.5 mm and
tBC � 7.5 mm. The yield stress in tension for the steel is 
σY � 200 MPa and the ultimate stress in tension is 
σU � 340 MPa. The corresponding yield and ultimate values
in shear for the pin are 80 MPa and 140 MPa, respectively.
Finally, the yield and ultimate values in bearing between the
pins and the tubes are 260 MPa and 450 MPa, respectively.
Assume that the factors of safety with respect to yield stress
and ultimate stress are 3.5 and 4.5, respectively.

(a) Calculate the allowable tensile force Pallow consid-
ering tension in the tubes.

(b) Recompute Pallow for shear in the pins.
(c) Finally, recompute Pallow for bearing between the

pins and the tubes. Which is the controlling value of P?

1.8-3 A tie-down on the deck of a sailboat consists of a bent
bar bolted at both ends, as shown in the figure. The diameter
dB of the bar is 6 mm, the diameter dW of the washers is
22 mm, and the thickness t of the fiberglass deck is 10 mm.

If the allowable shear stress in the fiberglass is 2.1 MPa,
and the allowable bearing pressure between the washer and
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1.8-7 A lifeboat hangs from two ship’s davits, as shown in
the figure. A pin of diameter d � 20 mm passes through
each davit and supports two pulleys, one on each side of
the davit.

Cables attached to the lifeboat pass over the pulleys
and wind around winches that raise and lower the lifeboat.
The lower parts of the cables are vertical and the upper
parts make an angle α � 15� with the horizontal. The
allowable tensile force in each cable is 8 kN, and the allow-
able shear stress in the pins is 27.5 MPa.

If the lifeboat weighs 6.7 kN, what is the maximum
weight that should be carried in the lifeboat?

Chapter 1  Tension, Compression, and Shear

1.8-6 The rear hatch of a van (BDCF in figure part a) is
supported by two hinges at B1 and B2 and by two struts
A1B1 and A2B2 (diameter ds � 10 mm) as shown in figure
part b. The struts are supported at A1 and A2 by pins, each
with diameter dp � 9 mm and passing through an eyelet of
thickness t � 8 mm at the end of the strut (figure part b).
If  a closing force P � 50 N is applied at G and the mass of
the hatch Mh � 43 kg is concentrated at C:

(a) What is the force F in each strut? (Use the free-
body diagram of one half  of the hatch in the figure part c.)

(b) What is the maximum permissible force in the
strut, Fallow, if  the allowable stresses are as follows: com-
pressive stress in the strut, 70 MPa; shear stress in the pin,
45 MPa; and bearing stress between the pin and the end of
the strut, 110 MPa.

108

1.8-5 A steel pad supporting heavy machinery rests on
four short, hollow, cast iron piers (see figure). The ultimate
strength of the cast iron in compression is 344.5 MPa. The
outer diameter of the piers is d � 114 mm and the wall
thickness is t � 10 mm.

Using a factor of safety of 4.0 with respect to the ulti-
mate strength, determine the total load P that may be sup-
ported by the pad.

t

d

PROB. 1.8-5

t = 8 mm

B2
B1

D

A1

F
Mh

P

G
C

A2

(b)

Bottom
part of
strut

Eyelet

ds = 10 mm

F

(a)

P
2

—

(c)

Pin support

710 mm

460 mm

75 mm

10�

505 mm505 mm127 mm

Bx

By

G

2
—
Mh

� g

C
D

B

A

F

PROB. 1.8-6

T T

Davit

Pulley

Pin

Cable

   = 15�a

PROB. 1.8-7

1.8-8 A cable and pulley system in figure part a supports a
cage of mass 300 kg at B. Assume that this includes the
mass of the cables as well. The thickness of each the three
steel pulleys is t � 40 mm. The pin diameters are 
dpA � 25 mm, dpB � 30 mm and dpC � 22 mm (see figure
part a and part b).

(a) Find expressions for the resultant forces acting on
the pulleys at A, B, and C in terms of cable tension T.

77742_01_ch01_p002-121.qxd:77742_01_ch01_p002-121.qxd  3/2/12  2:28 PM  Page 108

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems Chapter 1 109

(a)

dpB = 30 mm

dpC = 22 mm

dpA = 25 mm
a

C

a

L1

L2

A

B

W

Cage

Cable

(b)

dp

dpB
t

Support
bracket

Section a–a: pulley support
detail at A and C

Pin

Pulley

tB

Cage at B

Section a–a: pulley
support detail at B

Cable

PROB. 1.8-8

Mast

Connecting
plate

Spar

P
Pin

PROB. 1.8-9

90�90�
50�

50 mm

10�
P

a

P

C

C

x

y

Ry

125 mm

b 
= 

38
 m

m

15 mm

Rx 140�

Pin

PROB. 1.8-10

(b) What is the maximum weight W that can be added
to the cage at B based on the following allowable stresses?
Shear stress in the pins is 50 MPa; bearing stress between
the pin and the pulley is 110 MPa.

1.8-9 A ship’s spar is attached at the base of a mast by a
pin connection (see figure). The spar is a steel tube of outer
diameter d2 � 80 mm and inner diameter d1 � 70 mm. The
steel pin has diameter d � 25 mm, and the two plates con-
necting the spar to the pin have thickness t � 12 mm. The
allowable stresses are as follows: compressive stress in the
spar, 75 MPa; shear stress in the pin, 50 MPa; and bearing
stress between the pin and the connecting plates, 120 MPa.

Determine the allowable compressive force Pallow in
the spar.

1.8-10 What is the maximum possible value of  the
clamping force C in the jaws of  the pliers shown in the
figure if  the ultimate shear stress in the 5-mm diameter
pin is 340 MPa?

What is the maximum permissible value of  the
applied load P if  a factor of safety of 3.0 with respect to
failure of the pin is to be maintained?
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Chapter 1  Tension, Compression, and Shear

1.8-12 A plane truss is subjected to loads 2P and P at
joints B and C, respectively, as shown in the figure part a.
The truss bars are made of two L102 � 76 � 6.4 steel
angles [see Table F-5(b): cross-sectional area of the two
angles, A � 2180 mm2, figure part b] having an ultimate
stress in tension equal to 390 MPa. The angles are con-
nected to an 12 mm-thick gusset plate at C (figure part c)
with 16-mm diameter rivets; assume each rivet transfers an
equal share of the member force to the gusset plate. The
ultimate stresses in shear and bearing for the rivet steel are
190 MPa and 550 MPa, respectively.

Determine the allowable load Pallow if  a safety factor
of 2.5 is desired with respect to the ultimate load that can
be carried. (Consider tension in the bars, shear in the riv-
ets, bearing between the rivets and the bars, and also bear-
ing between the rivets and the gusset plate. Disregard
friction between the plates and the weight of the truss
itself.)

110

1.8-11 A metal bar AB of weight W is suspended by a sys-
tem of steel wires arranged as shown in the figure. The
diameter of the wires is 2 mm, and the yield stress of the
steel is 45 MPa.

Determine the maximum permissible weight Wmax for
a factor of safety of 1.9 with respect to yielding.

1.5 m

A

W

B

1.5 m

0.6 m 0.6 m
2.1 m

PROB. 1.8-11
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a aa
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G

P2P FCD

C
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Gusset plate 6.4 mm
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PROB. 1.8-12
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Problems Chapter 1

1.8-13 A solid bar of circular cross section (diameter d)
has a hole of diameter d/5 drilled laterally through the cen-
ter of the bar (see figure). The allowable average tensile
stress on the net cross section of the bar is σallow.

(a) Obtain a formula for the allowable load Pallow that
the bar can carry in tension.

(b) Calculate the value of Pallow if  the bar is made of
brass with diameter d � 45 mm and σallow � 83 MPa.

(Hint: Use the formulas of Case 15, Appendix D.)

111

1.8-15 A sign of weight W is supported at its base by four
bolts anchored in a concrete footing. Wind pressure p acts
normal to the surface of the sign; the resultant of the uni-
form wind pressure is force F at the center of pressure. The
wind force is assumed to create equal shear forces F/4 in the
y direction at each bolt (see figure parts a and c). The over-
turning effect of the wind force also causes an uplift force R
at bolts A and C and a downward force (�R) at bolts B and
D (see figure part b). The resulting effects of the wind, and
the associated ultimate stresses for each stress condition, are:
normal stress in each bolt (σu � 410 MPa); shear through the
base plate (τu � 115 MPa); horizontal shear and bearing on
each bolt (τhu � 170 MPa and σbu � 520 MPa); and bearing
on the bottom washer at B (or D) (σbw � 340 MPa).

d
P P

d

d/5 d/5

PROB. 1.8-13
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PROB. 1.8-15

1.8-14 A solid steel bar of diameter d1 � 60 mm has a hole
of diameter d2 � 32 mm drilled through it (see figure). A
steel pin of diameter d2 passes through the hole and is
attached to supports.

Determine the maximum permissible tensile load
Pallow in the bar if  the yield stress for shear in the pin is
τY � 120 MPa, the yield stress for tension in the bar is
σY � 250 MPa and a factor of safety of 2.0 with respect to
yielding is required. (Hint: Use the formulas of Case 15,
Appendix D.)

Find the maximum wind pressure pmax (Pa) that can
be carried by the bolted support system for the sign if  a
safety factor of 2.5 is desired with respect to the ultimate
wind load that can be carried.

Use the following numerical data: bolt db � 19 mm;
washer dw � 38 mm; base plate tbp � 25 mm; base plate
 dimensions h � 350 mm and b � 300 mm; W � 2.25 kN; H �

5.2 m; sign dimensions (Lv � 3 m � Lh � 3.7 m); pipe column
diameter d � 150 mm, and pipe column thickness t � 10 mm.
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Chapter 1  Tension, Compression, and Shear

1.9-2 A copper alloy pipe having yield stress 
σY � 290 MPa is to carry an axial tensile load P � 1500 kN
(see figure part a). A factor of safety of 1.8 against yielding
is to be used.

(a) If  the thickness t of the pipe is to be one-eighth of
its outer diameter, what is the minimum required outer
diameter dmin?

(b) Repeat part (a) if  the tube has a hole of diameter
d/10 drilled through the entire tube as shown in the figure
part b.

112

1.8-16 The piston in an engine is attached to a connecting
rod AB, which in turn is connected to a crank arm BC (see
figure). The piston slides without friction in a cylinder and
is subjected to a force P (assumed to be constant) while
moving to the right in the figure. The connecting rod,
which has diameter d and length L, is attached at both
ends by pins. The crank arm rotates about the axle at C
with the pin at B moving in a circle of radius R. The axle
at C, which is supported by bearings, exerts a resisting
moment M against the crank arm.

(a) Obtain a formula for the maximum permissible
force Pallow based upon an allowable compressive stress σc
in the connecting rod.

(b) Calculate the force Pallow for the following data:
σc � 160 MPa, d � 9.00 mm, and R � 0.28L.

Design for Axial Loads and Direct
Shear

1.9-1 An aluminum tube is required to transmit an axial
tensile force P � 148 kN (see figure part a). The thickness
of the wall of the tube is to be 6 mm.

(a) What is the minimum required outer diameter dmin
if  the allowable tensile stress is 84 MPa?

(b) Repeat part (a) if  the tube will have a hole of
diameter d/10 at mid-length (see figure parts b and c).

1.9-3 A horizontal beam AB with cross-sectional dimen-
sions (b � 19 mm) � (h � 200 mm) is supported by an
inclined strut CD and carries a load P � 12 kN at joint B
(see figure part a). The strut, which consists of two bars
each of thickness 5b/8, is connected to the beam by a bolt
passing through the three bars meeting at joint C (see
 figure part b).

P
A

B
d C

M

Connecting rodCylinder Piston

RL

PROB. 1.8-16
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8
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d
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8
—

PROB. 1.9-2
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Problems Chapter 1

(a) If the allowable shear stress in the bolt is 90 MPa,
what is the minimum required diameter dmin of the bolt at C?

(b) If  the allowable bearing stress in the bolt is
130 MPa, what is the minimum required diameter dmin of
the bolt at C?

113

1.9-5 A plane truss has joint loads P, 2P, and 3P at joints
D, C, and B, respectively (see figure) where load variable 
P � 23 kN. All members have two end plates (see figure
for Prob. 1.7-2) which are pin-connected to gusset plates
(see also figure for Prob. 1.8-12). Each end plate has
thickness tp � 16 mm, and all gusset plates have thickness
tg � 28 mm. If  the allowable shear stress in each pin is
83 MPa and the allowable bearing stress in each pin is
124 MPa, what is the minimum required diameter dmin of
the pins used at either end of  member BE?

(a)
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D

C
B

A

0.9 m

1.2 m 1.5 m
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—

PROB. 1.9-3
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1 m

3P

Typical gusset plate

PROB. 1.9-5

1.9-4 Lateral bracing for an elevated pedestrian walk-
way is shown in the figure part a. The thickness of  the
clevis plate tc � 16 mm and the thickness of  the gusset
plate tg � 20 mm (see figure part b). The maximum force
in the diagonal bracing is expected to be F � 190 kN.

If the allowable shear stress in the pin is 90 MPa and
the allowable bearing stress between the pin and both the
clevis and gusset plates is 150 MPa, what is the minimum
required diameter dmin of the pin?

(© Barry Goodno)
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1.9-8 A cable and pulley system at D is used to bring a
230-kg pole (ACB) to a vertical position as shown in the
figure part a. The cable has tensile force T and is attached
at C. The length L of the pole is 6.0 m, the outer diameter
is d � 140 mm, and the wall thickness t � 12 mm. The pole
pivots about a pin at A in figure part b. The allowable
shear stress in the pin is 60 MPa and the allowable bearing
stress is 90 MPa.

Find the minimum diameter of the pin at A in order
to support the weight of the pole in the position shown in
the figure part a.

Chapter 1  Tension, Compression, and Shear

1.9-7 A square steel tube of  length L � 6 m and width
b2 � 250 mm is hoisted by a crane (see figure). The tube
hangs from a pin of  diameter d that is held by the cables
at points A and B. The cross section is a hollow square
with inner dimension b1 � 210 mm and outer dimension 
b2 � 250 mm. The allowable shear stress in the pin is
60 MPa, and the allowable bearing stress between the pin
and the tube is 90 MPa.

Determine the minimum diameter of  the pin in
order to support the weight of  the tube. (Note:
Disregard the rounded corners of  the tube when calcu-
lating its weight.)

114

1.9-6 A suspender on a suspension bridge consists of  a
cable that passes over the main cable (see figure) and
supports the bridge deck, which is far below. The sus-
pender is held in position by a metal tie that is prevented
from sliding downward by clamps around the suspender
cable.

Let P represent the load in each part of the suspender
cable, and let θ represent the angle of the suspender cable
just above the tie. Finally, let σallow represent the allowable
tensile stress in the metal tie.

(a) Obtain a formula for the minimum required cross-
sectional area of the tie.

(b) Calculate the minimum area if  P � 130 kN,
θ � 75�, and σallow � 80 MPa.

P P

Collar Suspender

TieClamp

Main 
cable

uu

PROB. 1.9-6
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b1

d

b2

Pin

A B

Square
tube

d

L

b2

Square
tube

PROB. 1.9-7

(a)

(b)

Pin support
plates

A Pin

ACB
d

30�

Pole

Cable
1.0 m

5.0 m
Pulley

4.0 m

a

a

A

B

D

T

C

PROB. 1.9-8
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(b)

A

D

C

B

F

H

y

x

a

b

b

b2

T2

b1

T1

W
2
—

b
2
—

g

g

a

u

(a)

D

A

F F

B

W

PROB. 1.9-11

60� 60�

Cable

Turnbuckle

Post
d2

PROB. 1.9-10

1.9-9 A pressurized circular cylinder has a sealed cover plate
fastened with steel bolts (see figure). The pressure p of the gas
in the cylinder is 1900 kPa, the inside diameter D of the cylin-
der is 250 mm, and the diameter dB of the bolts is 12 mm.

If the allowable tensile stress in the bolts is 70 MPa,
find the number n of bolts needed to fasten the cover.

1.9-10 A tubular post of outer diameter d2 is guyed by two
cables fitted with turnbuckles (see figure). The cables are
tightened by rotating the turnbuckles, thus producing ten-
sion in the cables and compression in the post. Both cables
are tightened to a tensile force of 110 kN. Also, the angle
between the cables and the ground is 60�, and the allowable
compressive stress in the post is σc � 35 MPa.

If  the wall thickness of the post is 15 mm, what is the
minimum permissible value of the outer diameter d2?

at two lift lines as shown in the figure part a. Cable 1 has
length L1 � 6.7 m and distances along the panel (see figure
part b) are a � L1/2 and b � L1/4. The cables are attached
at lift points B and D and the panel is rotated about its
base at A. However, as a worst case, assume that the panel
is momentarily lifted off the ground and its total weight
must be supported by the cables. Assuming the cable lift
forces F at each lift line are about equal, use the simplified
model of one half  of the panel in figure part b to perform
your analysis for the lift position shown. The total weight
of the panel is W � 378 kN. The orientation of the panel
is defined by the following angles: γ � 20� and θ � 10�.

Find the required cross-sectional area AC of the cable
if  its breaking stress is 630 MPa and a factor of safety of 4
with respect to failure is desired.

p

D

Cover plate

Steel bolt

Cylinder

PROB. 1.9-9

1.9-11 A large precast concrete panel for a warehouse is
being raised to a vertical position using two sets of cables

(Courtesy Tilt-Up Concrete Association)
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Chapter 1  Tension, Compression, and Shear

(b) Also re-check the normal tensile stress in rod BC
and bearing stress at B; if  either is inadequate under the
additional load from platform HF, redesign them to meet
the original design criteria.

116

1.9-12 A steel column of hollow circular cross section is
supported on a circular steel base plate and a concrete
pedestal (see figure). The column has outside diameter 
d � 250 mm and supports a load P � 750 kN.

(a) If  the allowable stress in the column is 55 MPa,
what is the minimum required thickness t? Based upon
your result, select a thickness for the column. (Select a
thickness that is an even integer, such as 10, 12, 14, . . . , in
units of millimeters.)

(b) If  the allowable bearing stress on the concrete
pedestal is 11.5 MPa, what is the minimum required diam-
eter D of the base plate if  it is designed for the allowable
load Pallow that the column with the selected thickness can
support?

Column

Base plate

P P

t

D

d

PROB. 1.9-12

1.9-13 An elevated jogging track is supported at intervals
by a wood beam AB (L � 2.3 m) which is pinned at A and
supported by steel rod BC and a steel washer at B. Both
the rod (dBC � 5 mm) and the washer (dB � 25 mm) were
designed using a rod tension force of TBC � 1890 N. The
rod was sized using a factor of safety of 3 against reaching
the ultimate stress σu � 410 MPa. An allowable bearing
stress σba � 3.9 MPa was used to size the washer at B.

Now, a small platform HF is to be suspended below a
section of the elevated track to support some mechanical
and electrical equipment. The equipment load is uniform
load q � 730 N/m and concentrated load WE � 780 N at
mid-span of beam HF. The plan is to drill a hole through
beam AB at D and install the same rod (dBC) and washer
(dB) at both D and F to support beam HF.

(a) Use σu and σba to check the proposed design for
rod DF and washer dF ; are they acceptable?

Original
structure

Steel rod,

dBC = 5 mm

Washer, dF
(same at D

above)

New steel rod, dDF = 5 mm

TBC =
1890 N

WE = 780 N q = 730 N/m

L = 2.3 m

H

Washer
dB = 25 mm

L
25
—

L
25
—

L
2
— L

2
—

F

A D

C

BWood beam supporting track

New beam to support equipment

PROB. 1.9-13

1.9-14 A flat bar of width b � 60 mm and thickness 
t � 10 mm is loaded in tension by a force P (see figure).
The bar is attached to a support by a pin of diameter d that
passes through a hole of the same size in the bar. The
allowable tensile stress on the net cross section of the bar
is σT � 140 MPa, the allowable shear stress in the pin is 
τS � 80 MPa, and the allowable bearing stress between the
pin and the bar is σB � 200 MPa.

(a) Determine the pin diameter dm for which the load
P will be a maximum.

(b) Determine the corresponding value Pmax of the
load.
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Some Additional Review Problems: Chapter 1

1.9-15 Two bars AB and BC of the same material sup-
port a vertical load P (see figure). The length L of the hor-
izontal bar is fixed, but the angle θ can be varied by
moving support A vertically and changing the length of
bar AC to correspond with the new position of support A.
The allowable stresses in the bars are the same in tension
and compression.

We observe that when the angle θ is reduced, bar AC
becomes shorter but the cross-sectional areas of both bars
increase (because the axial forces are larger). The opposite

117

d b

t

P

P

PROB. 1.9-14

L
P

A

B
C

θ

PROB. 1.9-15

effects occur if  the angle θ is increased. Thus, we see that
the weight of the structure (which is proportional to the
volume) depends upon the angle θ.

Determine the angle θ so that the structure has mini-
mum weight without exceeding the allowable stresses in the
bars. (Note: The weights of the bars are very small com-
pared to the force P and may be disregarded.)

SOME ADDITIONAL REVIEW PROBLEMS: CHAPTER 1

R-1.1 A plane truss has downward applied load P at
joint 2 and another load P applied leftward at joint 5. The
force in member 3–5 is:

(A) 0
(B)
(C)
(D) �1.5 P

�P
�P/2

R-1.2 The force in member FE of the plane truss below is
approximately:

(A)
(B)
(C) 3.9 kN
(D) 4.7 kN

�2.2 kN
�1.5 kN

P

P
L

L L

LL
1 6

2 4

53

A B C D

G

E

F

3 m

4.5 m

3 m
15 kN 5 kN

3 m

1 m

10 kN
3 m
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Chapter 1  Tension, Compression, and Shear

R-1.6 A steel plate weighing 27 kN is hoisted by a cable
sling that has a clevis at each end. The pins through the cle-
vises are 22 mm in diameter. Each half  of the cable is at an
angle of 35� to the vertical. The average shear stress in each
pin is approximately:

(A) 22 MPa
(B) 28 MPa
(C) 40 MPa
(D) 48 MPa

118

R-1.3 The moment reaction at A in the plane frame below is
approximately:

(A)
(B)
(C)
(D) �6400 N # m

�3600 N # m
�2280 N # m
�1400 N # m

R-1.4 A hollow circular post ABC (see figure) supports a
load acting at the top. A second load P2 is
uniformly distributed around the cap plate at B. The diam-
eters and thicknesses of the upper and lower parts of the
post are , , ,
and , respectively. The lower part of the post
must have the same compressive stress as the upper part.
The required magnitude of the load P2 is approximately:

(A) 18 kN
(B) 22 kN
(C) 28 kN
(D) 46 kN

tBC � 9 mm
dAB � 30 mm tAB � 12 mm dBC � 60 mm

P1 � 16 kN

R-1.5 A circular aluminum tube of length is
loaded in compression by forces P. The outside and inside
diameters are 80 mm and 68 mm, respectively. A strain
gage on the outside of the bar records a normal strain in
the longitudinal direction of . The shortening
of the bar is approximately:

(A) 0.12 mm
(B) 0.26 mm
(C) 0.36 mm
(D) 0.52 mm

400 � 10�6

L � 650 mm

B

C

A

900 N

3 m

4 m
Pin
connection

1200 N/m
1.2 m

A

B

C

P1

dAB

tAB

dBC

tBC

P2

Strain gage

L

PP

35°35°

Clevis

Cable sling

P

Steel plate
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Some Additional Review Problems: Chapter 1

R-1.7 A steel wire hangs from a high-altitude balloon. The
steel has unit weight 77 kN/m3 and yield stress of 280
MPa. The required factor of safety against yield is 2.0. The
maximum permissible length of the wire is approximately:

(A) 1800 m
(B) 2200 m
(C) 2600 m
(D) 3000 m

R-1.8 An aluminum bar of
diameter 50 mm cannot exceed a diameter of 50.1 mm
when compressed by axial force P. The maximum accept-
able compressive load P is approximately:

(A) 190 kN
(B) 200 kN
(C) 470 kN
(D) 860 kN

R-1.9 An aluminum bar of 
diameter 20 mm is stretched by axial forces P, causing its diam-
eter to decrease by 0.022 mm. The load P is approximately:

(A) 73 kN
(B) 100 kN
(C) 140 kN
(D) 339 kN

(E � 70 GPa, v � 0.33)

(E � 72 GPa, v � 0.33)

119

, and . Under loads P1 and P2,
wall thickness tBC increases by 0.0036 mm. Poisson’s ratio

for the pipe material is approximately:
(A) 0.27
(B) 0.30
(C) 0.31
(D) 0.34

ν

dBC � 70 mm tBC � 10 mm

R-1.10 An polyethylene bar of
diameter 80 mm is inserted in a steel tube of inside diame-
ter 80.2 mm and then compressed by axial force P. The gap
between steel tube and polyethylene bar will close when
compressive load P is approximately:

(A) 18 kN
(B) 25 kN
(C) 44 kN
(D) 60 kN

(E � 1.4 GPa, v � 0.4)

R-1.11 A pipe carries a load
at A and a uniformly distributed load

on the cap plate at B. Initial pipe diameters
and thicknesses are , ,dAB � 38 mm tAB � 12 mm
P2 � 100 kN
P1 � 120 kN

(E � 110 GPa)

R-1.13 An elastomeric bearing pad is subjected to a shear
force V during a static loading test. The pad has dimensions

and , and thickness
The lateral displacement of the top plate with respect to the
bottom plate is 14 mm under a load . The shear
modulus of elasticity G of the elastomer is approximately:

(A) 1.0 MPa
(B) 1.5 MPa
(C) 1.7 MPa
(D) 1.9 MPa

P � 16 kN

a � 150 mm b � 225 mm t � 55 mm.

R-1.12 A titanium bar with
square cross section and length
is subjected to tensile load . The increase in
volume of the bar is approximately:

(A) 1400 mm3

(B) 3500 mm3

(C) 4800 mm3

(D) 9200 mm3

P � 900 kN
(b � 75 mm) L � 3.0 m

(E � 100 GPa, v � 0.33)

d PP

d2d1

Steel
tube

Polyethylene
bar

P2

dABtAB

dBCtBC

AB
C Cap plate

P1

bb

P

L

P

a

b

V

t
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Chapter 1  Tension, Compression, and Shear

R-1.16 A copper tube with wall thickness of 8 mm must
carry an axial tensile force of 175 kN. The allowable ten-
sile stress is 90 MPa. The minimum required outer diame-
ter is approximately:

(A) 60 mm
(B) 72 mm
(C) 85 mm
(D) 93 mm

120

R-1.14 A bar of  diameter and length
is loaded in tension by forces P. The bar has

modulus and allowable normal stress of 180
MPa. The elongation of the bar must not exceed 2.7 mm.
The allowable value of forces P is approximately:

(A) 41 kN
(B) 46 kN
(C) 56 kN
(D) 63 kN

E � 45 GPa
L � 0.75 m

d � 18 mm

R-1.15 Two flanged shafts are connected by eight 18-mm
bolts. The diameter of the bolt circle is 240 mm. The allow-
able shear stress in the bolts is 90 MPa. Ignore friction
between the flange plates. The maximum value of torque
T0 is approximately:

(A) 19 kN�m
(B) 22 kN�m
(C) 29 kN�m
(D) 37 kN�m

d
PP

L

T0

T0

P P

d
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An oil drilling rig is
comprised of axially

loaded members that
must be designed for a

variety of loading condi-
tions, including self-
weight, impact, and
temperature effects.

(Joe Raedle/Reportage/
Getty Images)

C H A P T E R2
Axially Loaded Members
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I CHAPTER OVERVIEW
In Chapter 2, we consider several other aspects of
axially loaded members, beginning with the determi-
nation of  changes in lengths caused by loads
(Sections 2.2 and 2.3). The calculation of changes in
lengths is an essential ingredient in the analysis of
statically indeterminate structures, a topic we intro-
duce in Section 2.4. If  the member is statically inde-
terminate, we must augment the equations of statical
equilibrium with compatibility equations (which rely
on force-displacement relations) to solve for any
unknowns of interest, such as support reactions or
internal axial forces in members. Changes in lengths
also must be calculated whenever it is necessary to
control the displacements of a structure, whether for
aesthetic or functional reasons. In Section 2.5, we
discuss the effects of temperature on the length of a
bar, and we introduce the concepts of thermal stress
and thermal strain. Also included in this section is a
discussion of the effects of misfits and prestrains. 

A generalized view of the stresses in axially loaded
bars is presented in Section 2.6, where we discuss the
stresses on inclined sections (as distinct from cross
sections) of bars. Although only normal stresses act
on cross sections of axially loaded bars, both normal
and shear stresses act on inclined sections. Stresses
on inclined sections of axially loaded members are
investigated as a first step toward a more complete
consideration of plane stress states in later chapters.
We then introduce several additional topics of
importance in mechanics of materials, namely, strain
energy (Section 2.7), impact loading (Section 2.8),
fatigue (Section 2.9), stress concentrations (Sec -
tion 2.10), and nonlinear behavior (Sections 2.11 and
2.12). Although these subjects are discussed in the
context of members with axial loads, the discussions
provide the foundation for applying the same con-
cepts to other structural elements, such as bars in
torsion and beams in bending.

2.1 Introduction 124
2.2 Changes in Lengths of  Axially Loaded

Members 124
2.3 Changes in Lengths Under Nonuniform

Conditions 134
2.4 Statically Indeterminate Structures 142
2.5 Thermal Effects, Misfits, and Prestrains 153
2.6 Stresses on Inclined Sections 168
2.7 Strain Energy 180

*2.8 Impact Loading 191
*2.9 Repeated Loading and Fatigue 199

*2.10 Stress Concentrations 201
*2.11 Nonlinear Behavior 209
*2.12 Elastoplastic Analysis 214

Chapter Summary & Review 220
Problems 222

*Specialized and/or advanced topics

Chapter 2 is organized as follows:

77742_02_ch02_p122-261.qxd:77742_02_ch02_p122-261.qxd  3/2/12  2:33 PM  Page 123

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 2  Axially Loaded Members

2.1 INTRODUCTION
Structural components subjected only to tension or compression are
known as axially loaded members. Solid bars with straight longitudinal
axes are the most common type, although cables and coil springs also
carry axial loads. Examples of axially loaded bars are truss members, con-
necting rods in engines, spokes in bicycle wheels, columns in buildings, and
struts in aircraft engine mounts. The stress-strain behavior of such mem-
bers was discussed in Chapter 1, where we also obtained equations for the
stresses acting on cross sections (σ � P/A) and the strains in longitudinal
directions (ε � δ/L).

2.2 CHANGES IN LENGTHS OF AXIALLY
LOADED MEMBERS
When determining the changes in lengths of axially loaded members, it is
convenient to begin with a coil spring (Fig. 2-1). Springs of this type are
used in large numbers in many kinds of machines and devices—for
instance, there are dozens of them in every automobile.

When a load is applied along the axis of a spring, as shown in Fig. 2-1,
the spring gets longer or shorter depending upon the direction of the load.
If the load acts away from the spring, the spring elongates and we say that
the spring is loaded in tension. If the load acts toward the spring, the spring
shortens and we say it is in compression. However, it should not be inferred
from this terminology that the individual coils of a spring are subjected to
direct tensile or compressive stresses; rather, the coils act primarily in direct
shear and torsion (or twisting). Nevertheless, the overall stretching or short-
ening of a spring is analogous to the behavior of a bar in tension or com-
pression, and so the same terminology is used.

Springs
The elongation of  a spring is pictured in Fig. 2-2, where the upper part
of  the figure shows a spring in its natural length L (also called its
unstressed length, relaxed length, or free length), and the lower part of  the
figure shows the effects of  applying a tensile load. Under the action of
the force P, the spring lengthens by an amount δ and its final length
becomes L � δ. If  the material of  the spring is linearly elastic, the load
and elongation will be proportional:

(2-1a,b)

in which k and f are constants of proportionality.
The constant k is called the stiffness of the spring and is defined as

the force required to produce a unit elongation, that is, k � P/δ. Similarly,
the constant f is known as the flexibility and is defined as the elongation
produced by a load of unit value, that is, f � δ /P. Although we used a
spring in tension for this discussion, it should be obvious that Eqs. (2-1a)
and (2-1b) also apply to springs in compression.

P � kδ δ � fP

124

P

L

P

d

Fig. 2-1
Spring subjected to 

an axial load P

Fig. 2-2
Elongation of an 

axially loaded spring
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2.2 Changes in Lengths of Axially Loaded Members 125

From the preceding discussion it is apparent that the stiffness and
flexibility of  a spring are the reciprocal of  each other:

(2-2a,b)

The flexibility of a spring can easily be determined by measuring the elon-
gation produced by a known load, and then the stiffness can be calculated
from Eq. (2-2a). Other terms for the stiffness and flexibility of a spring are
the spring constant and compliance, respectively.

The spring properties given by Eqs. (2-1) and (2-2) can be used in the
analysis and design of various mechanical devices involving springs, as
illustrated later in Example 2-1.

Prismatic Bars
Axially loaded bars elongate under tensile loads and shorten under com-
pressive loads, just as springs do. To analyze this behavior, let us consider
the prismatic bar shown in Fig. 2-3. A prismatic bar is a structural mem-
ber having a straight longitudinal axis and constant cross section through-
out its length. Although we often use circular bars in our illustrations, we
should bear in mind that structural members may have a variety of cross-
sectional shapes, such as those shown in Fig. 2-4.

The elongation δ of a prismatic bar subjected to a tensile load P is
shown in Fig. 2-5. If  the load acts through the centroid of the end cross
section, the uniform normal stress at cross sections away from the ends is
given by the formula σ � P/A, where A is the cross-sectional area.
Furthermore, if  the bar is made of a homogeneous material, the axial
strain is ε � δ/L, where δ is the elongation and L is the length of the bar.

k �
1
f

f �
1
k

Fig. 2-3
Prismatic bar of 
circular cross section

Fig. 2-4
Typical cross sections 
of structural members

Fig. 2-5
Elongation of a prismatic 
bar in tension

P

Solid cross sections

Hollow or tubular cross sections

Thin-walled open cross sections

P

L

d

Let us also assume that the material is linearly elastic, which means
that it follows Hooke’s law. Then the longitudinal stress and strain are
related by the equation σ � Eε, where E is the modulus of elasticity.
Combining these basic relationships, we get the following equation for the
elongation of the bar:

(2-3)δ �
PL
EA
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Chapter 2  Axially Loaded Members

This equation shows that the elongation is directly proportional to the
load P and the length L and inversely proportional to the modulus of elas-
ticity E and the cross-sectional area A. The product EA is known as the
axial rigidity of the bar.

Although Eq. (2-3) was derived for a member in tension, it applies
equally well to a member in compression, in which case δ represents the
shortening of the bar. Usually we know by inspection whether a member
gets longer or shorter; however, there are occasions when a sign convention
is needed (for instance, when analyzing a statically indeterminate bar).
When that happens, elongation is usually taken as positive and shortening
as negative.

The change in length of a bar is normally very small in comparison to
its length, especially when the material is a structural metal, such as steel or
aluminum. As an example, consider an aluminum strut that is 2 m long and
subjected to a moderate compressive stress of 48 MPa. If the modulus of
elasticity is 72 GPa, the shortening of the strut [from Eq. (2-3) with P/A
replaced by σ ] is δ � 0.0013 m. Consequently, the ratio of the change in
length to the original length is 0.0013/2, or 1/1500, and the final length is
0.999 times the original length. Under ordinary conditions similar to these,
we can use the original length of a bar (instead of the final length) in cal-
culations.

The stiffness and flexibility of a prismatic bar are defined in the same
way as for a spring. The stiffness is the force required to produce a unit
elongation, or P/δ, and the flexibility is the elongation due to a unit load,
or δ/P. Thus, from Eq. (2-3) we see that the stiffness and flexibility of a
prismatic bar are, respectively,

(2-4a,b)

Stiffnesses and flexibilities of structural members, including those given by
Eqs. (2-4a) and (2-4b), have a special role in the analysis of large structures
by computer-oriented methods.

Cables
Cables are used to transmit large tensile forces, for example, when lifting
and pulling heavy objects, raising elevators, guying towers, and supporting
suspension bridges. Unlike springs and prismatic bars, cables cannot resist
compression. Furthermore, they have little resistance to bending and
therefore may be curved as well as straight. Nevertheless, a cable is consid-
ered to be an axially loaded member because it is subjected only to tensile
forces. Because the tensile forces in a cable are directed along the axis, the
forces may vary in both direction and magnitude, depending upon the con-
figuration of the cable.

Cables are constructed from a large number of wires wound in some
particular manner. While many arrangements are available depending upon
how the cable will be used, a common type of cable, shown in Fig. 2-6, is
formed by six strands wound helically around a central strand. Each strand
is in turn constructed of many wires, also wound helically. For this reason,
cables are often referred to as wire rope.

k �
EA
L

f �
L

EA

126

Steel cables on a pulley 
(© Barsik/Dreamstime.com)
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2.2 Changes in Lengths of Axially Loaded Members 127

Fig. 2-6
Typical arrangement of strands
and wires in a steel cable 
(Tom Grundy/Shutterstock)

Nominal diameter Approximate weight Effective area Ultimate load

mm N/m mm2 kN

12
20
25
32
38
44
50

6.1
13.9
24.4
38.5
55.9
76.4
99.8

76.7
173
304
481
697
948

1230

102
231
406
641
930

1260
1650

Table 2-1
Properties of steel cables*

The cross-sectional area of a cable is equal to the total cross-sectional
area of the individual wires, called the effective area or metallic area. This
area is less than the area of a circle having the same diameter as the cable
because there are spaces between the individual wires. For example, the
actual cross-sectional area (effective area) of a particular 25-mm diameter
cable is only 300 mm2, whereas the area of a 25-mm diameter circle is
491 mm2.

Under the same tensile load, the elongation of  a cable is greater than
the elongation of  a solid bar of  the same material and same metallic
cross-sectional area, because the wires in a cable “tighten up” in the same
manner as the fibers in a rope. Thus, the modulus of  elasticity (called the
effective modulus) of  a cable is less than the modulus of  the material of
which it is made. The effective modulus of  steel cables is about 140 GPa,
whereas the steel itself  has a modulus of  about 210 GPa.

When determining the elongation of a cable from Eq. (2-3), the effective
modulus should be used for E and the effective area should be used for A.

In practice, the cross-sectional dimensions and other properties of
cables are obtained from the manufacturers. However, for use in solving
problems in this book (and definitely not for use in engineering applica-
tions), we list in Table 2-1 the properties of a particular type of cable. Note
that the last column contains the ultimate load, which is the load that
would cause the cable to break. The allowable load is obtained from the
ultimate load by applying a safety factor that may range from 3 to 10,
depending upon how the cable is to be used. The individual wires in a cable
are usually made of high-strength steel, and the calculated tensile stress at
the breaking load can be as high as 1400 MPa.

The following examples illustrate techniques for analyzing simple
devices containing springs and bars. The solutions require the use of free-
body diagrams, equations of equilibrium, and equations for changes in
length. The problems at the end of the chapter provide many additional
examples.

* To be used solely for solving problems in this book.
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Chapter 2  Axially Loaded Members128

A small lab scale has a rigid L-shaped frame ABC consisting of a horizontal
arm AB (length b � 280 mm) and a vertical arm BC (length c � 250 mm)
pivoted at point B, as shown in Fig. 2-7a. The pivot is attached to the outer
frame BCD, which stands on a laboratory bench. The position of the
pointer at C is controlled by a spring (stiffness k � 750 N/m) that is
attached to a threaded rod. The position of the threaded rod is adjusted
by turning the knurled nut.

The pitch of the threads (that is, the distance from one thread to the
next) is p � 1.6 mm, which means that one full revolution of the nut will
move the rod by that same amount. Initially, when there is no weight on the
hanger, the nut is turned until the pointer at the end of arm BC is directly
over the reference mark on the outer frame.

(a) If a weight W � 9 N is placed on the hanger at A, how many revolutions
of the nut are required to bring the pointer back to the mark?
(Deformations of the metal parts of the device may be disregarded,
because they are negligible compared to the change in length of the
spring.)

(b) If a rotational spring of stiffness kr � kb2/4 is added at B, how many
revolutions of the nut are now required? (The rotational spring
 provides resisting moment kr (N m/radian) for unit angular rotations
of ABC.)

#

Example 2-1 • • •

Fig. 2-7
Example 2-1: (a) Small lab
scale, and (b) free-body 
diagram of L-frame ABC on
small lab scale

Spring kKnurled nut

Hanger
Frame

Threaded 
rod

c

b

C

D

W

A

(a)

B

b

C

BA

W

W

F

F

(b)

c
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2.2 Changes in Lengths of Axially Loaded Members 129

Solution
(a) Use an L-frame with translational spring k only.

Inspection of the device (Fig. 2-7a) shows that the weight W acting
downward will cause the pointer at C to move to the right. When the
pointer moves to the right, the spring stretches by an additional amount
that we can determine from the force in the spring.

To determine the force in the spring, we construct a free-body dia-
gram of frame ABC (Fig. 2-7b). In this diagram, W represents the force
applied by the hanger, and F represents the force applied by the spring.
The reactions at the pivot are indicated with slashes across the arrows
(see the discussion of reactions in Sections 1.2 and 1.9).

Taking moments about point B gives

(a)

The corresponding elongation of the spring [from Eq. (2-1a)] is

(b)

To bring the pointer back to the mark, we must turn the nut through
enough revolutions to move the threaded rod to the left an amount
equal to the elongation of the spring. Since each complete turn of the
nut moves the rod a distance equal to the pitch p, the total movement
of the rod is equal to np, where n is the number of turns. Therefore, we
obtain a formula for the required turns of the nut n as

(c, d)

Numerical results: Substitute numerical data into Eq. (d) to find the
required number of turns of the nut n:

This result shows that if we rotate the nut through nine revolutions, the
threaded rod will move to the left an amount equal to the elongation
of the spring caused by the 9 N load, thus returning the pointer to the
reference mark.

(b) Use an L-frame with translational spring k and rotational spring kr.

The rotational spring at B (Fig. 2-7c) provides additional resistance in the
form of a moment at B to movement of the pointer at C. A new free-
body diagram is required. If we apply a small rotation θ at joint B, the
resulting forces and moments are shown in Fig. 2-7d. Summing moments
about B, we obtain

(e, f)

Solving for rotation θ, we obtain

(g)

➥

θ �
Wb

kc2 � kr

�
Wb

kac2 �
b2

4
b

Fc � krθ � Wb or kc2θ � krθ � Wb

F �
Wb

c

δ �
F
k

�
Wb
ck

n �
Wb
ckp

�
9N(280 mm)

250 mma750
N
m
b (1.6 mm)

� 8.4 revolutions

np � δ �
Wb
ck

so n �
Wb
ckp

Continues ➥
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Chapter 2  Axially Loaded Members130

The force F in the translational spring is now

(h)

So, the elongation of the translational spring is

and the required number of revolutions of the nut is

The combination of a translational spring attached to the threaded rod and
a rotational spring at B results in a system with greater stiffness than that
having a translational spring only. Hence, the pointer at C moves less under
the load W, so fewer revolutions are required to re-center the pointer.

➥so n �
(9N)(280mm)(250mm)

a750
N
m
b(1.6mm) c(250mm)2 �

(280mm)2

4
d

� 6.4 revolutions

n �
Wbc

kpac2 �
b2

4
b

δ � np �
F

k
�

Wbc

kac2 �
b2

4
b

F � k(cθ ) � kcJ
Wb

kac2 �
b2

4
b K or F �

Wbc

ac2 �
b2

4
b

Example 2-1 - Continued• • •

Spring kKnurled nut

Hanger
Frame

Threaded 
rod

c

b

C

D

W

A

(c)

B

Rotational
spring kr

b

C

BA

W

W

F

(d)

c

F=k(cθ)

krθ

θ

θ

cθ

Fig. 2-7 (Continued)
Example 2-1: (c) Small lab scale
with rotational spring added 
at B, and (d) free-body
 diagram of frame ABC with
rotational spring added at B
and a small rotation θ applied
at B
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2.2 Changes in Lengths of Axially Loaded Members 131

The device shown in Fig. 2-8a consists of a horizontal beam ABC supported
by two vertical bars BD and CE. Bar CE is pinned at both ends but bar BD is
fixed to the foundation at its lower end. The distance from A to B is 450 mm
and from B to C is 225 mm. Bars BD and CE have lengths of 480 mm and
600 mm, respectively, and their cross-sectional areas are 1020 mm2 and
520 mm2, respectively. The bars are made of steel having a modulus of elas-
ticity E � 205 GPa.

Assuming that beam ABC is rigid determine the following.

(a) Find the maximum allowable load Pmax if the displacement of point A is
limited to 1.0 mm.

(b) If P � 25 kN, what is the required cross-sectional area of bar CE so that
the displacement at point A is equal to 1.0 mm?

Example 2-2• • •

Fig. 2-8
Example 2-2: Horizontal beam
ABC supported by two vertical
bars

(b)

P

A
B H

FBD FCE

C

450 mm 225 mm

(c)

A B

A" B" C'

C

A'

B'

450 mm 225 mm

  BD

  CE

  A

d

d

da

(a)

P

A B C

D

E

450 mm

120 mm

225 mm
600 mm

Continues ➥
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Solution
(a) Determine the maximum allowable load Pmax.

To find the displacement of point A, we need to know the displacements
of points B and C. Therefore, we must find the changes in lengths of bars
BD and CE, using the general equation δ � PL/EA [Eq. (2-3)].

We begin by finding the forces in the bars from a free-body diagram
of the beam (Fig. 2-8b). Because bar CE is pinned at both ends, it is a
“two-force” member and transmits only a vertical force FCE to the beam.
However, bar BD can transmit both a vertical force FBD and a horizontal
force H. From equilibrium of beam ABC in the horizontal direction, we
see that the horizontal force vanishes.

Two additional equations of equilibrium enable us to express the
forces FBD and FCE in terms of the load P. Thus, by taking moments about
point B and then summing forces in the vertical direction, we find

(a)

Note that the force FCE acts downward on bar ABC and the force FBD acts
upward. Therefore, member CE is in tension and member BD is in com-
pression.

The shortening of member BD is

(b)

Note that the shortening δBD is expressed in millimeters provided the
load P is expressed in newtons.

Similarly, the lengthening of member CE is

(c)

Again, the displacement is expressed in millimeters provided the load P
is expressed in newtons. Knowing the changes in lengths of the two
bars, we can now find the displacement of point A.

Displacement diagram. A displacement diagram showing the relative
positions of points A, B, and C is sketched in Fig. 2-8c. Line ABC represents
the original alignment of the three points. After the load P is applied, mem-
ber BD shortens by the amount δBD and point B moves to B�. Also, member
CE elongates by the amount δCE and point C moves to C�. Because the beam
ABC is assumed to be rigid, points A�, B�, and C� lie on a straight line.

For clarity, the displacements are highly exaggerated in the dia-
gram. In reality, line ABC rotates through a very small angle to its new
position A�B�C� (see Note 2 at the end of this example).

Using similar triangles, we can now find the relationships between the
displacements at points A, B, and C. From triangles A�A�C� and B�B�C� we get

(d)

in which all terms are expressed in millimeters.
Substituting for δBD and δCE from Eqs. (f) and (g) gives

δA � 11.26P � 10�6

450 � 225
�

6.887P � 10�6 � 11.26P � 10�6

225

A�A–

A–C�
�

B�B–

B–C�
or

δA � δCE

450 � 225
�

δBD � δCE

225

�
(2P)(600 mm)

(205 GPa)(520 mm2)
� 11.26P � 10�6 mm (P � newtons)

δCE �
FCELCE

EACE

�
(3P)(480 mm)

(205 GPa)(1020 mm2)
� 6.887P � 10�6 mm (P � newtons)

δBD �
FBDLBD

EABD

FCE � 2P FBD � 3P

Example 2-2 - Continued• • •

(c)

A B

A" B" C'

C

A'

B'

450 mm 225 mm

  BD

  CE

  A

d

d

da

Fig. 2-8 (Repeated)
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2.2 Changes in Lengths of Axially Loaded Members 133133

Finally, we substitute for δA its limiting value of 1.0 mm and solve the
equation for the load P. The result is

When the load reaches this value, the downward displacement at point
A is 1.0 mm.

Note 1: Since the structure behaves in a linearly elastic manner, the
displacements are proportional to the magnitude of the load. For
instance, if the load is one-half of Pmax, that is, if P � 11.6 kN, the down-
ward displacement of point A is 0.5 mm.

Note 2: To verify our premise that line ABC rotates through a very
small angle, we can calculate the angle of rotation α from the displace-
ment diagram (Fig. 2-8c), as follows:

(e)

The displacement δA of point A is 1.0 mm, and the elongation δCE of
bar CE is found from Eq. (g) by substituting P � 23,200 N; the result is 
δCE � 0.261 mm. Therefore, from Eq. (i) we get

from which α � 0.11�. This angle is so small that if we tried to draw the
displacement diagram to scale, we would not be able to distinguish
between the original line ABC and the rotated line A�B�C�.

Thus, when working with displacement diagrams, we usually can
consider the displacements to be very small quantities, thereby simplify-
ing the geometry. In this example we were able to assume that points A,
B, and C moved only vertically, whereas if the displacements were large,
we would have to consider that they moved along curved paths.

(b) Determine the required cross-sectional area of bar CE.

If P � 25 kN, what is the required cross-sectional area of bar CE so that
the displacement at point A is equal to 1.0 mm?

We start with the displacements relationship in Eq. (d):

(d repeated)

then substitute the required numerical value for δA and the force-
 displacement expressions from Eqs. (b) and (c), giving

(f)

After substituting expressions for FBD and FCE from Eq. (a), we can solve
Eq. (f) for ACE to get the expression:

(g)

Substituting numerical values, we find that the required cross-sectional
area of bar CE to ensure that point A displaces 1.0 mm under an applied
load P � 25 kN is

The applied load in part (b) of P � 25 kN is greater than Pmax � 23.2 kN
in part (a), so the cross-sectional area of CE is larger (as expected).

➥

➥

ACE �
4(1020 mm2)(600 mm)(25 kN)

(1020 mm2)(205 GPa)(1.0 mm) � 9(480 mm)(25 kN)
� 605 mm2

δA � δCE

450 mm � 225 mm
�

δBD � δCE

225 mm

tan α �
1.0 mm � 0.261 mm

675 mm
�

1.261 mm
675 mm

� 0.001868

tan α �
A�A–

A–C�
�

δA � δCE

675 mm

P � Pmax � 23,200 N (or 23.2kN)

δA � aFCE LCE

EACE

b
450 mm � 225 mm

�

aFBD LBD

EABD

b � aFCE LCE

EACE

b
225 mm

ACE �
4ABDLCEP

ABDEδA � 9LBDP

(c)

A B

A" B" C'

C

A'

B'

450 mm 225 mm

  BD

  CE

  A

d

d

da

Fig. 2-8 (Repeated)
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2.3 CHANGES IN LENGTHS UNDER
NONUNIFORM CONDITIONS
When a prismatic bar of linearly elastic material is loaded only at the ends,
we can obtain its change in length from the equation δ � PL/EA, as
described in the preceding section. In this section we will see how this same
equation can be used in more general situations.

Bars with Intermediate Axial Loads
Suppose, for instance, that a prismatic bar is loaded by one or more axial
loads acting at intermediate points along the axis (Fig. 2-9a). We can
determine the change in length of this bar by adding algebraically the
elongations and shortenings of the individual segments. The procedure is
as follows.

1. Identify the segments of the bar (segments AB, BC, and CD) as seg-
ments 1, 2, and 3, respectively.

2. Determine the internal axial forces N1, N2, and N3 in segments 1, 2,
and 3, respectively, from the free-body diagrams of Figs. 2-9b, c, and
d. Note that the internal axial forces are denoted by the letter N to
distinguish them from the external loads P. By summing forces in the
vertical direction, we obtain the following expressions for the axial
forces:

In writing these equations we used the sign convention given in the preced-
ing section (internal axial forces are positive when in tension and negative
when in compression).

N1 � �PB � PC � PD N2 � PC � PD N3 � PD

Chapter 2  Axially Loaded Members134

PB

B

C

D

A

L1

L3

L2

PC PC PC

PD

PB

B

C

D

PD

N2

N1

C

D

PD

N3

D

PD

(b) (c) (d)(a)

Fig. 2-9
(a) Bar with external loads 

acting at intermediate points;
(b), (c), and (d) free-body 

diagrams showing the internal
axial forces N1, N2, and N3
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2.3 Changes in Lengths Under Nonuniform Conditions 135

3. Determine the changes in the lengths of the segments from Eq. (2-3):

in which L1, L2, and L3 are the lengths of the segments and EA is the axial
rigidity of the bar.

4. Add δ1, δ2, and δ3 to obtain δ, the change in length of the entire bar:

As already explained, the changes in lengths must be added algebraically,
with elongations being positive and shortenings negative.

Bars Consisting of Prismatic Segments
This same general approach can be used when the bar consists of several
prismatic segments, each having different axial forces, different dimen-
sions, and different materials (Fig. 2-10). The change in length may be
obtained from the equation

(2-5)

in which the subscript i is a numbering index for the various segments of
the bar and n is the total number of segments. Note especially that Ni is
not an external load but is the internal axial force in segment i.

Bars with Continuously Varying Loads 
or Dimensions
Sometimes the axial force N and the cross-sectional area A vary contin-
uously along the axis of  a bar, as illustrated by the tapered bar of   
Fig. 2-11a. This bar not only has a continuously varying cross-sectional
area but also a continuously varying axial force. In this illustration, the
load consists of  two parts, a single force PB acting at end B of  the bar
and distributed forces p(x) acting along the axis. (A distributed force
has units of  force per unit distance, such as newtons per meter.) A dis-
tributed axial load may be produced by such factors as centrifugal
forces, friction forces, or the weight of  a bar hanging in a vertical
 position.

Under these conditions we can no longer use Eq. (2-5) to obtain the
change in length. Instead, we must determine the change in length of  a
differential element of  the bar and then integrate over the length of  the
bar.

We select a differential element at distance x from the left-hand end of
the bar (Fig. 2-11a). The internal axial force N(x) acting at this cross sec-
tion (Fig. 2-11b) may be determined from equilibrium using either seg-
ment AC or segment CB as a free body. In general, this force is a function
of x. Also, knowing the dimensions of the bar, we can express the cross-
sectional area A(x) as a function of x.

δ1 �
N1L1

EA
δ2 �

N2L2

EA
δ3 �

N3L3

EA

δ � a

n

i � 1

NiLi

EiAi

δ � a

3

i � 1

δi � δ1 � δ2 � δ3

Fig. 2-10
Bar consisting of prismatic 
segments having different axial
forces, different dimensions, 
and different materials

L2

L1

PA

E1

E2

A

B

C

PB
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Fig. 2-11
Bar with varying cross-sectional

area and varying axial force
PBBCA

dx

(a)

p(x)

dx

dx
d

x

L

CA

(b) (c)

x

N(x)p(x) p(x) N(x) + N(x)N(x)

The elongation dδ of  the differential element (Fig. 2-11c) may be
obtained from the equation δ � PL/EA by substituting N(x) for P, dx
for L, and A(x) for A, as follows:

(2-6)

The elongation of  the entire bar is obtained by integrating over the
length:

(2-7)

If  the expressions for N(x) and A(x) are not too complicated, the inte-
gral can be evaluated analytically and a formula for δ can be obtained,
as illustrated later in Example 2-4. However, if  formal integration is
either difficult or impossible, a numerical method for evaluating the inte-
gral should be used.

Limitations
Equations (2-5) and (2-7) apply only to bars made of linearly elastic mate-
rials, as shown by the presence of the modulus of elasticity E in the for-
mulas. Also, the formula δ � PL/EA was derived using the assumption
that the stress distribution is uniform over every cross section (because it
is based on the formula σ � P/A). This assumption is valid for prismatic
bars but not for tapered bars, and therefore Eq. (2-7) gives satisfactory
results for a tapered bar only if  the angle between the sides of the bar is
small.

As an illustration, if  the angle between the sides of a bar is 20�, the
stress calculated from the expression σ � P/A (at an arbitrarily selected
cross section) is 3% less than the exact stress for that same cross section
(calculated by more advanced methods). For smaller angles, the error is
even less. Consequently, we can say that Eq. (2-7) is satisfactory if  the
angle of taper is small. If  the taper is large, more accurate methods of
analysis are needed (Ref. 2-1).

The following examples illustrate the determination of changes in
lengths of nonuniform bars.

δ �
3

L

0

dδ �
3

L

0

N(x)dx

EA(x)

dδ �
N(x)dx

EA(x)
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2.3 Changes in Lengths Under Nonuniform Conditions 137

A vertical steel bar ABC is pin supported at its upper end and loaded by a
force P1 at its lower end (Fig. 2-12a). A horizontal beam BDE is pinned to the
vertical bar at joint B and supported at point D. The beam carries a load P2
at end E.

The upper part of the vertical bar (segment AB) has length L1 � 500 mm
and cross-sectional area A1 � 160 mm2; the lower part (segment BC) has
length L2 � 750 mm and area A2 � 100 mm2. The modulus of elasticity E of
the steel is 200 GPa. The left- and right-hand parts of beam BDE have
lengths a � 700 mm and b � 625 mm, respectively.

(a) Calculate the vertical displacement δC at point C if the load P1 � 10 kN
and the load P2 � 25 kN. (Disregard the weights of the bar and the
beam.)

(b) Where on segment DE should load P2 be applied if vertical displacement
δC must equal 0.25 mm?

(c) If load P2 is once again applied at E, what new value of cross sec-
tional area A2 is required so that vertical displacement δC is equal to
0.17 mm?

Example 2-3• • •

Continues ➥

(a)

b

P2

A2

A1

L1

L2

a

A

B D E

C

P1

Fig. 2-12
Example 2-3: Change in length
of a nonuniform bar (bar ABC)

(b)

(c)

b

P2

a

B D E

P3 RD

A

B

C

P1

RA

P3
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Chapter 2  Axially Loaded Members138

Solution
(a) Determine the vertical displacement at point C.

Axial forces in bar ABC. From Fig. 2-12a, we see that the vertical displace-
ment of point C is equal to the change in length of bar ABC. Therefore,
we must find the axial forces in both segments of this bar.

The axial force N2 in the lower segment is equal to the load P1. The
axial force N1 in the upper segment can be found if we know either the
vertical reaction at A or the force applied to the bar by the beam. The lat-
ter force can be obtained from a free-body diagram of the beam  
(Fig. 2-12b), in which the force acting on the beam (from the vertical bar)
is denoted P3 and the vertical reaction at support D is denoted RD. No hor-
izontal force acts between the bar and the beam, as can be seen from a
free-body diagram of the vertical bar itself (Fig. 2-12c). Therefore, there
is no horizontal reaction at support D of the beam.

Taking moments about point D for the free-body diagram of the
beam (Fig. 2-12b) gives

(a)

This force acts downward on the beam (Fig. 2-12b) and upward on the
vertical bar (Fig. 2-12c).

Now we can determine the downward reaction at support A
(Fig. 2-12c):

(b)

The upper part of the vertical bar (segment AB) is subjected to an axial
compressive force N1 equal to RA, or 12.3 kN. The lower part (segment
BC) carries an axial tensile force N2 equal to P1, or 10 kN.

Note: As an alternative to the preceding calculations, we can obtain
the reaction RA from a free-body diagram of the entire structure (instead
of from the free-body diagram of beam BDE).

Changes in length. With tension considered positive, Eq. (2-5) yields

(c)

in which δ is the change in length of bar ABC. Since δ is positive, the bar
elongates. The displacement of point C is equal to the change in length
of the bar:

This displacement is downward.

(b) Determine the location of load P2 on segment DE.

Load P2 is now positioned at some distance x to the right of point D (see
Fig. 2-12d):

(d)

From Eq. (b), we have RA � P3 � P1.

δ � a

n

i�1

NiLi

EiA i

�
N1L1

EA1

�
N2L2

EA2

�
�12.3 kN(500 mm)

200 GPa(160 mm2)
�

10 kN(750 mm)

200 GPa(100 mm2)

� �0.192 mm � 0.375 mm � 0.183 mm

©MD � 0 P3 �
P2x

a

δC � 0.183 mm ➥

RA � P3 � P1 � 22.3 kN � 10 kN � 12.3 kN

P3 �
P2b

a
�

25 kN(625 mm)
700 mm

� 22.3 kN

Example 2-3 - Continued• • •

Fig. 2-12 (Continued)
Example 2-3: (d) Load P2 at
some distance x to the right of
point D

(d)

ba

B D E

P2
P3 RD

x
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2.3 Changes in Lengths Under Nonuniform Conditions 139

Axial compressive force in AB is RA and axial tensile force in BC is P1,
so from Eq. (c), the downward displacement at joint C is

(e)

Substituting the expression for P3 from Eq. (d) and solving for x gives

(f)

and

(g)

Finally, insert numerical values and solve for distance x:

(c) Determine the new cross-sectional area A2.

Load P2 is now once again applied at joint E, so force P3 is obtained from
Eq. (a), and the revised Eq. (f) is

(h)

We can now solve for the cross-sectional area A2 in terms of other struc-
ture variables:

(i)

Substitution of numerical values into Eq. (i) provides the required area
of bar BC if δC � 0.17 mm under applied loads P1 and P2:

As expected, cross-sectional area A2 must increase, so that the vertical
displacement at C is reduced from that computed in Eq. (c).

� 103.4 mm2 ➥

A2 �
(750 mm)(10 kN)

(200 GPa)J (0.17 mm) �

(500 mm) c10 kN �
(25 kN)(625 mm)

(700 mm)
d

(160 mm2)(200 GPa)
K

A2 �
L2P1

EJ δC �

L1aP1 �
P2b
a b

A1E
K

δC �

� c a P2b
a
b � P1 dL1

EA1

�
P1L2

EA2

x �

700 mm[(160 mm2)(750 mm)(10 kN) �

(100 mm2)(500 mm)(10 kN) �

(160 mm2)(100 mm2)(200 GPa)(0.25 mm)]

(100 mm2)(500 mm)(25 kN)
� 504 mm ➥

x �
a(A1L2P1 � A2L1P1 � A1A2EδC)

A2L1P2

δC �

� c a P2x

a
b � P1 dL1

EA1

�
P1L2

EA2

δC �
�(P3 � P1)L1

EA1

�
P1L2

EA2
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Chapter 2  Axially Loaded Members140

A tapered bar AB of solid circular cross section and length L (Fig. 2-13a) is
supported at end B and subjected to a tensile load P at the free end A. The
diameters of the bar at ends A and B are dA and dB, respectively.

Determine the elongation of the bar due to the load P, assuming that
the angle of taper is small.

Example 2-4 • • •

P

L

B
A

dA

dB

(a)

dxx

LA

O

LB

L

d(x) dBdA

(b)

B
A

Fig. 2-13
Example 2-4: Change in length
of a tapered bar of solid
 circular cross section

Solution
The bar being analyzed in this example has a constant axial force (equal to
the load P ) throughout its length. However, the cross-sectional area varies
continuously from one end to the other. Therefore, we must use integration
[see Eq. (2-7)] to determine the change in length.

Cross-sectional area. The first step in the solution is to obtain an expres-
sion for the cross-sectional area A(x) at any cross section of the bar. For this
purpose, we must establish an origin for the coordinate x. One possibility is
to place the origin of coordinates at the free end A of the bar. However, the
integrations to be performed will be slightly simplified if we locate the ori-
gin of coordinates by extending the sides of the tapered bar until they meet
at point O, as shown in Fig. 2-13b.

The distances LA and LB from the origin O to ends A and B, respectively,
are in the ratio

(a)

as obtained from similar triangles in Fig. 2-13b. From similar triangles we
also get the ratio of the diameter d(x) at distance x from the origin to the
diameter dA at the small end of the bar:

(b)
d(x)
dA

�
x
LA

or d(x) �
dAx

LA

LA

LB
�

dA

dB
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2.3 Changes in Lengths Under Nonuniform Conditions 141

Therefore, the cross-sectional area at distance x from the origin is

(c)

Change in length. We now substitute the expression for A(x) into Eq. (2-7)
and obtain the elongation δ :

(d)

By performing the integration (see Appendix C for integration formulas)
and substituting the limits, we get

(e)

This expression for δ can be simplified by noting that

(f)

Thus, the equation for δ becomes

(g)

Finally, we substitute LA/LB�dA/dB [see Eq. (a)] and obtain

(2-8)

This formula gives the elongation of a tapered bar of solid circular cross sec-
tion. By substituting numerical values, we can determine the change in
length for any particular bar.

Note 1: A common mistake is to assume that the elongation of a
tapered bar can be determined by calculating the elongation of a prismatic
bar that has the same cross-sectional area as the midsection of the tapered
bar. Examination of Eq. (2-8) shows that this idea is not valid.

Note 2: The preceding formula for a tapered bar [Eq. (2-8)] can be
reduced to the special case of a prismatic bar by substituting dA � dB � d.
The result is

which we know to be correct.
A general formula such as Eq. (2-8) should be checked whenever pos-

sible by verifying that it reduces to known results for special cases. If the
reduction does not produce a correct result, the original formula is in
error. If a correct result is obtained, the original formula may still be incor-
rect but our confidence in it increases. In other words, this type of check is
a necessary but not sufficient condition for the correctness of the original
formula.

δ �
4PL

πEd2
�

PL
EA

δ �
4PL

πEdAdB
➥

δ �
4PL

πEdA
2
aLA

LB

b

1
LA

�
1
LB

�
LB � LA

LALB
�

L
LALB

δ �
4PLA

2

πEdA
2
c�1

x
d
LA

LB

�
4PLA

2

πEdA
2
a 1

LA

�
1
LB

b

δ �
L

N(x)dx
EA(x)

�
3

LB

LA

Pdx14LA
22

E1πdA
2x22 �

4PLA
2

πEdA
2 3

LB

LA

dx

x2

A(x) �
π [d(x)]2

4
�

πdA
2x2

4LA
2
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Chapter 2  Axially Loaded Members

2.4 STATICALLY INDETERMINATE
STRUCTURES
The springs, bars, and cables that we discussed in the preceding sections
have one important feature in common—their reactions and internal
forces can be determined solely from free-body diagrams and equations of
equilibrium. Structures of this type are classified as statically determinate.
We should note especially that the forces in a statically determinate
structure can be found without knowing the properties of  the materials.
Consider, for instance, the bar AB shown in Fig. 2-14. The calculations
for the internal axial forces in both parts of  the bar, as well as for the
reaction R at the base, are independent of  the material of  which the bar
is made.

Most structures are more complex than the bar of Fig. 2-14, and their
reactions and internal forces cannot be found by statics alone. This situa-
tion is illustrated in Fig. 2-15, which shows a bar AB fixed at both ends.
There are now two vertical reactions (RA and RB) but only one useful
equation of equilibrium—the equation for summing forces in the vertical
direction. Since this equation contains two unknowns, it is not sufficient
for finding the reactions. Structures of this kind are classified as statically
indeterminate. To analyze such structures we must supplement the equilib-
rium equations with additional equations pertaining to the displacements
of the structure.

To see how a statically indeterminate structure is analyzed, consider
the example of  Fig. 2-16a. The prismatic bar AB is attached to rigid
supports at both ends and is axially loaded by a force P at an interme-
diate point C. As already discussed, the reactions RA and RB cannot be
found by statics alone, because only one equation of equilibrium is
 available:

(2-9)

An additional equation is needed in order to solve for the two unknown
reactions.

The additional equation is based upon the observation that a bar with
both ends fixed does not change in length. If  we separate the bar from its
supports (Fig. 2-16b), we obtain a bar that is free at both ends and loaded
by the three forces, RA, RB, and P. These forces cause the bar to change in
length by an amount δAB, which must be equal to zero:

(2-10)

This equation, called an equation of compatibility, expresses the fact that
the change in length of the bar must be compatible with the conditions at
the supports.

In order to solve Eqs. (2-9) and (2-10), we must now express the com-
patibility equation in terms of the unknown forces RA and RB. The rela-
tionships between the forces acting on a bar and its changes in length are
known as force-displacement relations. These relations have various forms
depending upon the properties of the material. If  the material is linearly

δAB � 0

©Fvert � 0 RA � P � PB � 0

142

P1

P2

R

A

B

Fig. 2-14
Statically determinate bar

RA

RB

P

A

B

Fig. 2-15
Statically indeterminate bar
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2.4 Statically Indeterminate Structures 143

elastic, the equation δ � PL/EA can be used to obtain the force-displacement
relations.

Let us assume that the bar of Fig. 2-16 has cross-sectional area A and
is made of a material with modulus E. Then the changes in lengths of the
upper and lower segments of the bar are, respectively,

(2-11a,b)

where the minus sign indicates a shortening of the bar. Equations (2-11a)
and (2-11b) are the force-displacement relations.

We are now ready to solve simultaneously the three sets of equations
(the equation of equilibrium, the equation of compatibility, and the force-
displacement relations). In this illustration, we begin by combining the
force-displacement relations with the equation of compatibility:

(2-12)

Note that this equation contains the two reactions as unknowns.
The next step is to solve simultaneously the equation of equilibrium

[Eq. (2-9)] and the preceding equation [Eq. (2-12)]. The results are

(2-13a,b)

With the reactions known, all other force and displacement quanti-
ties can be determined. Suppose, for instance, that we wish to find the

RA �
Pb
L

RB �
Pa
L

δAB � δAC � δCB �
RAa

EA
�

RBb

EA
� 0

δAC �
RAa

EA
δCB � �

RBb

EA

RA

RB

A

C

B

a

b

RA

RB

A

C

B

PP

(b)(a)

L

Fig. 2-16
Analysis of a statically 
indeterminate bar
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Chapter 2  Axially Loaded Members

downward displacement δC of point C. This displacement is equal to the
elongation of segment AC:

(2-14)

Also, we can find the stresses in the two segments of the bar directly from
the internal axial forces (e.g., σAC � RA/A � Pb/AL).

General Comments
From the preceding discussion we see that the analysis of  a statically
indeterminate structure involves setting up and solving equations of
equilibrium, equations of  compatibility, and force-displacement rela-
tions. The equilibrium equations relate the loads acting on the structure
to the unknown forces (which may be reactions or internal forces), and
the compatibility equations express conditions on the displacements of
the structure. The force-displacement relations are expressions that use
the dimensions and properties of  the structural members to relate the
forces and displacements of  those members. In the case of  axially
loaded bars that behave in a linearly elastic manner, the relations are
based upon the equation δ � PL/EA. Finally, all three sets of  equa-
tions may be solved simultaneously for the unknown forces and
 displacements.

In the engineering literature, various terms are used for the conditions
expressed by the equilibrium, compatibility, and force-displacement equa-
tions. The equilibrium equations are also known as static or kinetic equa-
tions; the compatibility equations are sometimes called geometric
equations, kinematic equations, or equations of consistent deformations;
and the force-displacement relations are often referred to as constitutive
relations (because they deal with the constitution, or physical properties, of
the materials).

For the relatively simple structures discussed in this chapter, the
preceding method of  analysis is adequate. However, more formalized
approaches are needed for complicated structures. Two commonly used
methods, the flexibility method (also called the force method) and the
stiffness method (also called the displacement method), are described in
detail in textbooks on structural analysis. Even though these methods
are normally used for large and complex structures requiring the solu-
tion of  hundreds and sometimes thousands of  simultaneous equations,
they still are based upon the concepts described previously, that is, equi-
librium equations, compatibility equations, and force-displacement
relations.*

The following two examples illustrate the methodology for analyz-
ing statically indeterminate structures consisting of  axially loaded
 members.

δC � δAC �
RAa

EA
�

Pab
LEA

144

*From a historical viewpoint, it appears that Euler in 1774 was the first to analyze a statically indeterminate
system; he considered the problem of a rigid table with four legs supported on an elastic foundation (Refs. 2-2
and 2-3). The next work was done by the French mathematician and engineer L. M. H. Navier, who in 1825
pointed out that statically indeterminate reactions could be found only by taking into account the elasticity of
the structure (Ref. 2-4). Navier solved statically indeterminate trusses and beams.
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2.4 Statically Indeterminate Structures 145

A horizontal rigid bar ABC is pinned at end A and supported by two wires
(BD and CD) at points B and C (Fig. 2-17). A vertical load P acts at end C of
the bar. The bar has a length of 2b and wires BD and CD have lengths of L1
and L2, respectively. Also, wire BD has a diameter of d1 and modulus of elas-
ticity E1; wire CD has a diameter of d2 and modulus E2.

(a) Obtain formulas for the allowable load P if the allowable stresses in
wires BD and CD, respectively, are σ1 and σ2. (Disregard the weight of the
bar and cables.)

(b) Calculate the allowable load P for the following conditions: Wire BD is
made of aluminum with a modulus E1 � 72 GPa and a diameter of 
d1 � 4.2 mm. Wire CD is made of magnesium with a modulus E2 � 45 GPa
and a diameter of d2 � 3.2 mm. The allowable stresses in the aluminum
and magnesium wires are σ1 � 200 MPa and σ2 � 172 MPa, respectively.
Dimensions are a � 1.8 m and b � 1.2 m in Fig. 2-17.

Example 2-5• • •

Continues ➥

D

A B

L1
L2

C

P

x

y

b

(a)

a

b

Fig. 2-17
Example 2-5: (a) Analysis 
of a statically indeterminate
cable-bar structure, 
(b) free-body  diagram 
of bar ABC, and 
(c) elongation of wire BD

Solution
(a) Determine the formulas for allowable load P.

Equation of equilibrium. We begin the analysis by drawing a free-body
diagram of bar ABC (Fig. 2-17b). In this diagram, T1 and T2 are the
unknown tensile forces in the wires and Ax and Ay are the horizontal
and vertical components of the reaction at support A. We see immedi-
ately that the structure is statically indeterminate, because there are
four unknown forces (T1, T2, Ax, and Ay) but only three independent
equations of equilibrium.

Taking moments about point A (with counterclockwise moments
being positive) yields

(a)

The other two equations, obtained by summing forces in the horizontal
direction and summing forces in the vertical direction, are of no imme-
diate benefit in finding T1 and T2, because they introduce additional
unknowns Ax and Ay.

Equation of compatibility. To obtain an equation pertaining to the
displacements, we observe that the load P causes bar ABC to rotate
about the pin support at A, thereby stretching the wires. The resulting
displacements are shown in the displacement diagram of Fig. 2-17b,
where line ABC represents the original position of the rigid bar and line

or T1 sin (αB) � 2T2 sin (αC) � 2P

©MA � 0 T1(b) sin (αB) � T2(2b) sin (αC) � P(2b) � 0
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Chapter 2  Axially Loaded Members146

AB‘C’ represents the rotated position. The vertical downward displace-
ments ΔB and ΔC are used to find the elongations δ1 and δ2 of the wires.
Because these displacements are very small, the bar rotates through a
very small angle (shown highly exaggerated in the figure), and we can
make calculations on the assumption that points B and C move vertically
downward (instead of moving along the arcs of circles).

Because the horizontal distances AB and BC are equal, we obtain
the geometric relationship between the vertical displacements:

(b)

This is the compatibility equation that will allow us to find another rela-
tionship between the two cable forces once we have substituted the
force-displacement relations.

First, using geometry* (see Fig. 2-17c), we can relate the vertical dis-
placements to the wire elongations as

(c,d)

(e,f)

or

(g)

Force-displacement relations. Since the wires behave in a linearly elastic
manner, their elongations can be expressed in terms of the unknown
forces T1 and T2 by means of the expressions:

(h,i)δ1 � a L1

E1A1

bT1 � f1T1 and δ2 � a L2

E2A2

bT2 � f2T2

δ2 � 2a sin (αC)

sin (αB)
bδ1

¢C �
δ2

sin (αC)
and 2¢B � 2

δ1

sin (αB)

δ1 � ¢B sin (αB) and δ2 � ¢C sin (αC)

¢C � 2¢B

Example 2-5 - Continued• • •

Fig. 2-17 (Continued)

*Note: We also could use the dot product of ΔB (�j ) and a unit vector n � (cos (αB)i � sin(αB)j ) along
line DB to find δ1 and also the dot product of ΔC (�j ) and a unit vector n � (cos (αC)i � sin (αC)j )
along line DC to find δ2.

Fig. 2-17 (Continued)
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(b)

x

B b
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δ2
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C
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Ax A b

a

D

y

Δ
B
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2.4 Statically Indeterminate Structures 147

where f1 and f2 are the flexibilities of wires BD and CD, respectively, and
wire cross-sectional areas are

(j,k)

Solution of equations. We now solve simultaneously the three sets of
equations (equilibrium, compatibility, and force-displacement) to find
wire forces T1 and T2. First, we insert the force-displacement equations
[Eqs. (h, i)] into the compatibility equation [Eq. (g)]:

(l)

Solving for T2 gives (m)

Inserting this expression for T2 into the equilibrium equation [Eq. (a)]
and solving for T1 yields

(n)

and (o)

Allowable load P. Now that the statically indeterminate analysis is com-
pleted and the forces in the wires are known, we can determine the per-
missible value of the load P. The stress σ1 in wire BD and the stress σ2 in
wire CD are readily obtained from the forces [Eqs. (n) and (o)]:

We can solve each of these equations for a permissible value of load P
which depends on either allowable stress σ1 or σ2; the smaller value of
load P controls:

(2-15a)

(2-15b)➥

➥

P2 �
σ2A2

4
a f2 sin (αB)2 � 4f1 sin (αC)2

f1 sin (αC)
b

P1 �
σ1A1

2
a f2 sin (αB)2 � 4f1 sin (αC)2

f2 sin (αB)
b

A1 �
πd1

2

4
A2 �

πd2
2

4

T1 � a f2 sin (αB)

f2 sin (αB)2 � 4f1 sin (αC)2
b (2P)

T2 � 2a sin (αC)

sin (αB)
b a f1

f2

bT1

δ2 � 2a sin (αC)

sin (αB)
bδ1 � f2T2 � 2a sin (αC)

sin (αB)
bf1T1

σ2 �
T2

A2

� a f1 sin (αC)

f2 sin (αB)2 � 4f1 sin (αC)2
b a4 P

A2

b

σ1 �
T1

A1

� a f2 sin (αB)

f2 sin (αB)2 � 4f1 sin (αC)2
b a2 P

A1

b

T2 � a f1 sin (αC)

f2 sin (αB)2 � 4f1 sin (αC)2
b (4P)

Continues ➥
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Chapter 2  Axially Loaded Members148

(b) Find numerical value for allowable load P.

Using the numerical data and the preceding equations, we obtain the
numerical values:

Substituting these numerical values into Eqs. (2-15a, b) gives

The first result is based upon the allowable stress σ1 in the aluminum
wire, and the second is based upon the allowable stress σ2 in the mag-
nesium wire. The allowable load is the smaller of the two values:

At this load, the force T1 in the aluminum wire is 2771 N, and the stress
in the aluminum wire is 200 MPa (the allowable stress σ1), while the
force T2 in the magnesium wire is 1045 N, and the stress in the magne-
sium wire is (1780/2355)(172 MPa) � 130 MPa. As expected, this stress is
less than the allowable stress of σ2 � 172 MPa.

A1 �
π
4

d1
2 �

π
4

(4.2 mm)2 � 13.85442 mm2

➥

αC � tan�1 a a
2b
b � 36.87°

αB � tan�1 a a
b
b � 56.31°

P2 �
σ2A2

4
£ f2 sin (αB)2 � 4f1 sin (αC)2

f1 sin (αC)
≥ � 2355 N

P1 �
σ1A1

2
£ f2 sin (αB)2 � 4f1 sin (αC)2

f2 sin (αB)
≥ � 1780 N

A2 �
π
4

d2
2 �

π
4

(3.2 mm)2 � 8.04248 mm2

L2 � 3a2 � (2b)2 � 3(1.8 m)2 � (2.4 m)2 � 3 m

L1 � 3a2 � b2 � 3(1.8 m)2 � (1.2 m)2 � 2.16333 m

f1 �
L1

E1A1

�
2.16333 m

(72 GPa)(13.85442 mm2)
� 2.16871 � 10�3 mm

N

Pallow � 1780 N

f2 �
L2

E2A2

�
3 m

(45 GPa)(8.04248 mm2)
� 8.28932 � 10�3 mm

N

Example 2-5 - Continued• • •

77742_02_ch02_p122-261.qxd:77742_02_ch02_p122-261.qxd  3/2/12  2:35 PM  Page 148

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.4 Statically Indeterminate Structures 149

A solid circular steel cylinder S is encased in a hollow circular copper tube C
(Figs. 2-18a and b). The cylinder and tube are compressed between the
rigid plates of a testing machine by compressive forces P. The steel cylinder
has cross-sectional area As and modulus of elasticity Es, the copper tube has
area Ac and modulus Ec, and both parts have length L.

Determine the following quantities: (a) the compressive forces Ps in the
steel cylinder and Pc in the copper tube; (b) the corresponding compressive
stresses σs and σc; and (c) the shortening δ of the assembly.

Example 2-6• • •

Continues ➥

(b)

Ac

As
C

S

(a)

P

L

(d)

P

Pc

Ps

(c)

Ps

Pc

L

Fig. 2-18
Example 2-6: Analysis of a 
statically indeterminate
 structure
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Chapter 2  Axially Loaded Members150

Solution
(a) Compressive forces in the steel cylinder and copper tube. We begin by

removing the upper plate of the assembly in order to expose the com-
pressive forces Ps and Pc acting on the steel cylinder and copper tube,
respectively (Fig. 2-18c). The force Ps is the resultant of the uniformly dis-
tributed stresses acting over the cross section of the steel cylinder, and
the force Pc is the resultant of the stresses acting over the cross section
of the copper tube.

Equation of equilibrium. A free-body diagram of the upper plate is
shown in Fig. 2-18d. This plate is subjected to the force P and to the
unknown compressive forces Ps and Pc ; thus, the equation of equilibrium is

(f)©Fvert � 0 Ps � Pc � P � 0

Example 2-6 - Continued• • •

(b)

Ac

As
C

S

(a)

P

L

(d)

P

Pc

Ps

(c)

Ps

Pc

L

Fig. 2-18 (Repeated)
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2.4 Statically Indeterminate Structures 151

This equation, which is the only nontrivial equilibrium equation avail-
able, contains two unknowns. Therefore, we conclude that the structure
is statically indeterminate.

Equation of compatibility. Because the end plates are rigid, the steel
cylinder and copper tube must shorten by the same amount. Denoting
the shortenings of the steel and copper parts by δs and δc, respectively,
we obtain the following equation of compatibility:

(g)

Force-displacement relations. The changes in lengths of the cylinder
and tube can be obtained from the general equation δ � PL/EA.
Therefore, in this example the force-displacement relations are

(h,i)

Solution of equations. We now solve simultaneously the three sets
of equations. First, we substitute the force-displacement relations in the
equation of compatibility, which gives

(j)

This equation expresses the compatibility condition in terms of the
unknown forces.

Next, we solve simultaneously the equation of equilibrium [Eq. (f)]
and the preceding equation of compatibility [Eq. (j)] and obtain the axial
forces in the steel cylinder and copper tube:

(2-16a,b)

These equations show that the compressive forces in the steel and cop-
per parts are directly proportional to their respective axial rigidities and
inversely proportional to the sum of their rigidities.

(b) Compressive stresses in the steel cylinder and copper tube. Knowing the
axial forces, we can now obtain the compressive stresses in the two
materials:

(2-17a,b)➥

➥

σs �
Ps

As

�
PEs

EsAs � EcAc

σc �
Pc

Ac

�
PEc

EsAs � EcAc

Ps � Pa EsAs

EsAs � EcAc

b Pc � Pa EcAc

EsAs � EcAc

b

PsL

EsAs

�
PcL

EcAc

δs �
PsL

EsAs

δc �
PcL

EcAc

δs � δc

Continues ➥
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Chapter 2  Axially Loaded Members152

Note that the ratio σs/σc of the stresses is equal to the ratio Es/Ec of the
moduli of elasticity, showing that in general the “stiffer” material
always has the larger stress.

(c) Shortening of the assembly. The shortening δ of the entire assembly can
be obtained from either Eq. (h) or Eq. (i). Thus, upon substituting the
forces [from Eqs. (2-16a and b)], we get

(2-18)

This result shows that the shortening of the assembly is equal to the
total load divided by the sum of the stiffnesses of the two parts
[recall from Eq. (2-4a) that the stiffness of an axially loaded bar is 
k � EA/L].

Alternative solution of the equations. Instead of substituting the
force-displacement relations [Eqs. (h) and (i)] into the equation of com-
patibility, we could rewrite those relations in the form

(k,l)

and substitute them into the equation of equilibrium [Eq. (f)]:

(m)

This equation expresses the equilibrium condition in terms of the
unknown displacements. Then we solve simultaneously the equation of
compatibility [Eq. (g)] and the preceding equation, thus obtaining the
 displacements:

(n)

which agrees with Eq. (2-18). Finally, we substitute expression (n) into
Eqs. (k) and (l) and obtain the compressive forces Ps and Pc [see Eqs. (2-16a  
and b)].

Note: The alternative method of solving the equations is a simpli-
fied version of the stiffness (or displacement) method of analysis, and
the first method of solving the equations is a simplified version of the
flexibility (or force) method. The names of these two methods arise from
the fact that Eq. (m) has displacements as unknowns and stiffnesses as
coefficients [see Eq. (2-4a)], whereas Eq. (j) has forces as unknowns and
flexibilities as coefficients [see Eq. (2-4b)].

➥δ �
PsL

Es As

�
PcL

Ec Ac

�
PL

Es As � Ec Ac

δs � δc �
PL

EsAs � EcAc

EsAs

L
δs �

EcAc

L
δc � P

Ps �
EsAs

L
δs Pc �

EcAc

L
δc

Example 2-6 - Continued• • •
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2.5 Thermal Effects, Misfits, and Prestrains 153

2.5 THERMAL EFFECTS, MISFITS, 
AND PRESTRAINS
External loads are not the only sources of stresses and strains in a struc-
ture. Other sources include thermal effects arising from temperature
changes, misfits resulting from imperfections in construction, and pre-
strains that are produced by initial deformations. Still other causes are set-
tlements (or movements) of  supports, inertial loads resulting from
accelerating motion, and natural phenomenon such as earthquakes.

Thermal effects, misfits, and prestrains are commonly found in both
mechanical and structural systems and are described in this section. As a
general rule, they are much more important in the design of statically inde-
terminate structures that in statically determinate ones.

Thermal Effects
Changes in temperature produce expansion or contraction of structural
materials, resulting in thermal strains and thermal stresses. A simple illus-
tration of thermal expansion is shown in Fig. 2-19, where the block of
material is unrestrained and therefore free to expand. When the block is
heated, every element of the material undergoes thermal strains in all
directions, and consequently the dimensions of the block increase. If  we
take corner A as a fixed reference point and let side AB maintain its orig-
inal alignment, the block will have the shape shown by the dashed lines.

For most structural materials, thermal strain εT is proportional to the
temperature change ΔT; that is,

(2-19)

in which α is a property of the material called the coefficient of thermal
expansion. Since strain is a dimensionless quantity, the coefficient of ther-
mal expansion has units equal to the reciprocal of temperature change. In
SI units the dimensions of α can be expressed as either 1/K (the reciprocal
of kelvins) or 1/�C (the reciprocal of degrees Celsius). The value of α is the
same in both cases because a change in temperature is numerically the
same in both kelvins and degrees Celsius.* Typical values of α are listed in
Table H-4 of Appendix H.

When a sign convention is needed for thermal strains, we usually
assume that expansion is positive and contraction is negative.

To demonstrate the relative importance of thermal strains, we will com-
pare thermal strains with load-induced strains in the following manner.
Suppose we have an axially loaded bar with longitudinal strains given by the
equation ε � σ /E, where σ is the stress and E is the modulus of elasticity.
Then suppose we have an identical bar subjected to a temperature change
ΔT, which means that the bar has thermal strains given by Eq. (2-19).
Equating the two strains gives the equation

σ � Eα(¢T)

εT � α(¢T )

*For a discussion of temperature units and scales, see Section A.3 of Appendix A.

Fig. 2-19
Block of material subjected to 
an increase in temperature

BA
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Chapter 2  Axially Loaded Members

From this equation we can calculate the axial stress σ that produces the
same strain as does the temperature change ΔT. For instance, consider a
stainless steel bar with E � 210 GPa and α � 17 � 10�6/�C. A quick cal-
culation from the preceding equation for σ shows that a change in
 temperature of 60�C produces the same strain as a stress of 214 MPa. This
stress is in the range of typical allowable stresses for stainless steel. Thus,
a relatively modest change in temperature produces strains of the same
magnitude as the strains caused by ordinary loads, which shows that tem-
perature effects can be important in engineering design.

Ordinary structural materials expand when heated and contract when
cooled, and therefore an increase in temperature produces a positive thermal
strain. Thermal strains usually are reversible, in the sense that the member
returns to its original shape when its temperature returns to the original
value. However, a few special metallic alloys have recently been developed
that do not behave in the customary manner. Instead, over certain tempera-
ture ranges their dimensions decrease when heated and increase when cooled.

Water is also an unusual material from a thermal standpoint—it
expands when heated at temperatures above 4�C and also expands when
cooled below 4�C. Thus, water has its maximum density at 4�C.

Now let us return to the block of material shown in Fig. 2-19. We
assume that the material is homogeneous and isotropic and that the tem-
perature increase ΔT is uniform throughout the block. We can calculate
the increase in any dimension of the block by multiplying the original
dimension by the thermal strain. For instance, if  one of the dimensions is
L, then that dimension will increase by the amount

(2-20)

Equation (2-20) is a temperature-displacement relation, analogous to the
force-displacement relations described in the preceding section. It can be
used to calculate changes in lengths of structural members subjected to
uniform temperature changes, such as the elongation δT of the prismatic
bar shown in Fig. 2-20. (The transverse dimensions of the bar also change,
but these changes are not shown in the figure since they usually have no
effect on the axial forces being transmitted by the bar.)

In the preceding discussions of thermal strains, we assumed that the
structure had no restraints and was able to expand or contract freely. These
conditions exist when an object rests on a frictionless surface or hangs in
open space. In such cases no stresses are produced by a uniform tempera-
ture change throughout the object, although nonuniform temperature

δT � εTL � α(¢T)L

154

  T

ΔT

L

d

Fig. 2-20
Increase in length of a prismatic
bar due to a uniform increase in

temperature [Eq. (2-20)]
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2.5 Thermal Effects, Misfits, and Prestrains 155

changes may produce internal stresses. However, many structures have sup-
ports that prevent free expansion and contraction, in which case thermal
stresses will develop even when the temperature change is uniform through-
out the structure.

To illustrate some of these ideas about thermal effects, consider the two-
bar truss ABC of Fig. 2-21 and assume that the temperature of bar AB is
changed by ΔT1 and the temperature of bar BC is changed by ΔT2. Because
the truss is statically determinate, both bars are free to lengthen or shorten,
resulting in a displacement of joint B. However, there are no stresses in
either bar and no reactions at the supports. This conclusion applies gener-
ally to statically determinate structures; that is, uniform temperature changes
in the members produce thermal strains (and the corresponding changes in
lengths) without producing any corresponding stresses.

A statically indeterminate structure may or may not develop temperature
stresses, depending upon the character of the structure and the nature of the
temperature changes. To illustrate some of the possibilities, consider the stat-
ically indeterminate truss shown in Fig. 2-22. Because the supports of this
structure permit joint D to move horizontally, no stresses are developed when
the entire truss is heated uniformly. All members increase in length in propor-
tion to their original lengths, and the truss becomes slightly larger in size.

However, if  some bars are heated and others are not, thermal stresses
will develop because the statically indeterminate arrangement of the bars
prevents free expansion. To visualize this condition, imagine that just one
bar is heated. As this bar becomes longer, it meets resistance from the
other bars, and therefore stresses develop in all members.

The analysis of a statically indeterminate structure with temperature
changes is based upon the concepts discussed in the preceding section, namely
equilibrium equations, compatibility equations, and force-displacement rela-
tions. The principal difference is that we now use temperature-displacement
relations [Eq. (2-20)] in addition to force-displacement relations (such as 
δ � PL/EA) when performing the analysis. The following two examples illus-
trate the procedures in detail.

Fig. 2-21
Statically determinate truss with
a uniform temperature change
in each member

ΔT1

ΔT2

A

C

B

A D

CB Fig. 2-22
Statically indeterminate truss
subjected to temperature
changes

Forces can develop in statically
indeterminate trusses due to
temperature and prestrain
(Barros & Barros/Getty Images)
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Chapter 2  Axially Loaded Members156

A prismatic bar AB of length L, made of linearly elastic material, is held
between immovable supports (Fig. 2-23a). The bar has a modulus of elastic-
ity E and a coefficient of thermal expansion α.

(a) If the temperature of the bar is raised uniformly by an amount ΔT, derive
a formula for the thermal stress σT developed in the bar.

(b) Modify the formula in part (a) if the rigid support at B is replaced by an
elastic support having a spring constant k (Fig. 2-23b); assume that only
bar AB is subject to the uniform temperature increase ΔT.

(c) Repeat part (b) but now assume that the bar is heated nonuniformly
such that the temperature increase at distance x from A is given by 
ΔT(x) � ΔT0(1�x2/L2) (see Fig. 2-23c).

Example 2-7 • • •

Fig. 2-23
(a) Example 2-7: Statically
indeterminate bar with uni-
form temperature increase ΔT,
(b) statically indeterminate bar
with elastic support and uni-
form temperature increase ΔT,
and (c) statically indeterminate
bar with elastic support and
nonuniform temperature
increase ΔT(x)

(a)

A ΔT B

L

RA RB

(b)

ΔTA B

x
L

RcRA k
C

(c)

ΔT0

ΔT(x)

A B

x
L

RcRA k
C

Solution
(a) Determine thermal stress in the bar fixed at A and B subjected to uni-

form temperature increase ΔT.

Because the temperature increases, the bar tends to elongate but is
restrained by the rigid supports at A and B. Therefore, reactions RA and
RB are developed at the supports, and the bar is subjected to uniform
compressive stresses.
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2.5 Thermal Effects, Misfits, and Prestrains 157

Equation of Equilibrium. The only nontrivial equation of static equi-
librium is that reactions RA and RB must sum to zero. Thus, we have one
equation but two unknowns, which is a one-degree statically indetermi-
nate problem:

(a)

We will select reaction RB as the redundant and use the superposition of
two statically determinate “released” structures (Fig. 2-23d) to develop an
additional equation: an equation of compatibility. The first released struc-
ture is subjected to the temperature increase ΔT and hence elongates by
amount δT. The second elongates δB under redundant RB, which is applied
as a load. We are using a statics sign convention, so forces and displace-
ments in the x direction are assumed to be positive.

Equation of compatibility. The equation of compatibility expresses
the fact that the net change in length of the bar is zero, because sup-
ports A and B are fully restrained:

(b)

©Fx � 0 RA � RB � 0

δT � δB � 0

Continues ➥

(b)

ΔTA

A

B

B

δT

δB

RB

Fig. 2-23 (Continued)
Example 2-7: (d) Statically
determinate bars with 
support B removed 
(i.e., released  structures)

Temperature-displacement and force-displacement relations. The
increase in length of the bar due to temperature is [Eq. (2-20)]

(c)

where α is the coefficient of thermal expansion of the material. The
increase in bar length due to unknown applied force RB is obtained from
the force-displacement relation:

(d)

in which E is the modulus of elasticity, A is the bar cross-sectional area,
and fAB is the flexibility of the bar.

Solution of equations. Substituting Eqs. (c) and (d) into compatibil-
ity equation (b) and solving for redundant RB gives

(e)RB �
�α(¢T )L

fAB

� �EAα(¢T )

δB � RBa L
EA
b � RBfAB

δT � α (¢T )L
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Chapter 2  Axially Loaded Members158

and from the equilibrium equation Eq. (a), we get

(f)

By using a statics sign convention, we now know that RB is in the nega-
tive x direction, while RA is in the positive x direction. As a final step, we
compute the compressive stress in the bar (assuming that ΔT is positive
and therefore an increase in temperature) to be

(g)

Note 1: In this example, the reactions are independent of the length of
the bar, and the stress is independent of both the length and the cross-
sectional area [see Eqs. (f) and (g)]. Thus, once again, we see the useful-
ness of a symbolic solution, because these important features of the
bar’s behavior might not be noticed in a purely numerical solution.

Note 2: When determining the thermal elongation of the bar 
[Eq. (c)], we assumed that the material was homogeneous and that the
increase in temperature was uniform throughout the volume of the bar.
Also, when determining the increase in length due to the reactive force
[Eq. (d)], we assumed linearly elastic behavior of the material. These lim-
itations always should be kept in mind when writing equations, such as
Eqs.(c) and (d).

Note 3: The bar in this example has zero longitudinal displacements,
not only at the fixed ends but also at every cross section. Thus, there are
no axial strains in this bar, and we have the special situation of longitu-
dinal stresses without longitudinal strains. Of course, there are trans-
verse strains in the bar, from both the temperature change and the axial
compression.

(b) Determine thermal stress in the bar fixed at A with elastic support at B
and  subjected to uniform temperature change ΔT.

The structure in Fig. 2-23b is one-degree statically indeterminate, so we
select reaction RC as the redundant and once again use the superposition
of two released structures to solve the problem.

First, statical equilibrium of the original indeterminate structure
requires that

(h)

while compatibility of displacements at joint C for the two released
structures is expressed as

(i)

In the first released structure, we apply uniform temperature change ΔT
to bar AB only, so

(c, repeated)

➥

δT � α(¢T )L

δT � δC � 0

RA � RC � 0

RA � �RB � EAα(¢T)

σT �
RA

A
� Eα(¢T)

Example 2-7 - Continued• • •
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2.5 Thermal Effects, Misfits, and Prestrains 159

Note that the spring displaces in the positive x direction but is not deformed
by the temperature change. Next, redundant RC is applied to the end of the
spring in the second released structure, resulting in displacement in the pos-
itive x direction. Both bar AB and the spring are subject to force RC, so the
total displacement at C is the sum of the elongations of bar and spring:

(j)

where f � 1/k is the flexibility of the spring. Substituting the tempera-
ture-displacement equation [Eq. (c)] and force-displacement equation
[Eq. (j)] into the compatibility equation [Eq. (i)], then solving for redun-
dant RC gives

(k)

Then from the equilibrium equation [Eq. (h)], we see that

(l)

Recall that we are using a statics sign convention, so reaction force RA is
in the positive x direction, while reaction force RC is in the negative x
direction. Finally, the compressive stress in the bar is

(m)

Note that if the spring stiffness k goes to infinity, Eq. (l) becomes Eq. (f)
and Eq. (m) becomes Eq. (g). In effect, use of an infinitely stiff spring
moves the rigid support from C back to B.

(c) Determine thermal stress in the bar fixed at A with elastic support at B
and subjected to nonuniform temperature change.
The structure in Fig. 2-23c is one-degree statically indeterminate. So,
once again, we select reaction RC as the redundant and, as in parts (a)
and (b), use superposition of two released structures to solve the one-
degree statically indeterminate problem (Fig. 2-23e,f).

➥σT �
RA

A
�

Eα(¢T )

1 �
EA
kL

RA � �RC �
EAα(¢T )

1 �
EA
kL

RC �
�α(¢T )L
fAB � f

�
�α(¢T )L
L

EA
�

1
k

or RC � �J
EAα(¢T)

1 �
EA
kL
K

δC � RCa L
EA
b �

RC

k
� RC(fAB � f)

Continues ➥

(e)

A B

x

k C

δT

ΔT0

ΔT(x)

Fig. 2-23 (Continued)
Example 2-7: (e) Statically 
determinate bar with support C
removed (i.e., released
 structure) under nonuniform
temperature increase 
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Chapter 2  Axially Loaded Members160

The equation of static equilibrium for the overall structure is Eq. (h), and
the equation of compatibility is Eq. (i). First, we solve for displacement
δT in the first released structure (Fig. 2-23e) as

(n)

and δC for the second released structure (Fig. 2-23f) is the same as Eq. (j),
giving

(j, repeated)

Substituting the temperature-displacement equation [Eq. (n)] and the
force-displacement equation [Eq. (j)] into the compatibility equation 
[Eq. (i)] gives

(o)

From the statical equilibrium equation [Eq. (h)], we get

(p)

Finally, the compressive stress in the bar under nonuniform temperature
change ΔT(x) � ΔT0 (1 � (x/L)2) is

(q)

We note once again that use of an infinitely stiff spring eliminates the
EA/kL term from Eq. (q) and provides the solution for a prismatic bar fixed
at A and B under nonuniform temperature change ΔT(x) � ΔT0 (1 � (x/L)2).

➥

δT �
3

L

0
α[¢T(x)]dx �

3

L

0
αe¢T0 c1 � ax

L
b2 d fdx �

2

3
α(¢T0)L

δC � RC(fAB � f)

RC �

�2
3

α(¢T0)L

fAB � f
�

�2α(¢T0)L

3a L
EA

�
1
k
b

or RC � �a2
3
b J

EAα(¢T0)

1 �
EA
kL
K

σT �
RA

A
� a2

3
b J

Eα(¢T0)

1 �
EA

kL
K

RA � �RC � a2
3
b J

EAα(¢T0)

1 �
EA
kL
K

Example 2-7 - Continued• • •

Fig. 2-23 (Continued)
(f) Statically determinate bar
with support C removed (i.e.,
released  structure) under
applied force RC

Rc

(f)

A B

x

k C

δc
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2.5 Thermal Effects, Misfits, and Prestrains 161

A sleeve in the form of a circular tube of length L is placed around a bolt
and fitted between washers at each end (Fig. 2-24a). The nut is then turned
until it is just snug. The sleeve and bolt are made of different materials and
have different cross-sectional areas. (Assume that the coefficient of thermal
expansion αS of the sleeve is greater than the coefficient αB of the bolt.)

(a) If the temperature of the entire assembly is raised by an amount ΔT, what
stresses σS and σB are developed in the sleeve and bolt, respectively?

(b) What is the increase δ in the length L of the sleeve and bolt?

Example 2-8• • •

Continues ➥

  1

  2

  3

  4

(a)

(b)

(c)

ΔT

PB PS

Nut Washer Sleeve Bolt head

L

Bolt

d

d

d

d

d

Fig. 2-24
Example 2-8: Sleeve and bolt
assembly with uniform
 temperature increase ΔT

Solution
Because the sleeve and bolt are of different materials, they will elongate by
different amounts when heated and allowed to expand freely. However,
when they are held together by the assembly, free expansion cannot occur
and thermal stresses are developed in both materials. To find these stresses,
we use the same concepts as in any statically indeterminate analysis—
 equilibrium equations, compatibility equations, and displacement relations.
However, we cannot formulate these equations until we disassemble the
structure.

A simple way to cut the structure is to remove the head of the bolt,
thereby allowing the sleeve and bolt to expand freely under the tempera-
ture change ΔT (Fig. 2-24b). The resulting elongations of the sleeve and bolt
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Chapter 2  Axially Loaded Members162

are denoted δ1 and δ2, respectively, and the corresponding temperature-
displacement relations are

(g,h)

Since αS is greater than αB, the elongation δ1 is greater than δ2, as shown in
Fig. 2-24b.

The axial forces in the sleeve and bolt must be such that they shorten
the sleeve and stretch the bolt until the final lengths of the sleeve and bolt
are the same. These forces are shown in Fig. 2-24c, where PS denotes the
compressive force in the sleeve and PB denotes the tensile force in the bolt.
The corresponding shortening δ3 of the sleeve and elongation δ4 of the
bolt are

(i,j)

in which ESAS and EBAB are the respective axial rigidities. Equations (i) and
(j) are the load-displacement relations.

Now we can write an equation of compatibility expressing the fact that
the final elongation δ is the same for both the sleeve and bolt. The elonga-
tion of the sleeve is δ1 � δ3 and of the bolt is δ2 � δ4; therefore,

(k)

Substituting the temperature-displacement and load-displacement relations
[Eqs. (g) to (j)] into this equation gives

(l)

from which we get

(m)

which is a modified form of the compatibility equation. Note that it contains
the forces PS and PB as unknowns.

An equation of equilibrium is obtained from Fig. 2-24c, which is a
free-body diagram of the part of the assembly remaining after the head
of the bolt is removed. Summing forces in the horizontal direction gives

(n)

which expresses the obvious fact that the compressive force in the sleeve is
equal to the tensile force in the bolt.

We now solve simultaneously Eqs. (m) and (n) and obtain the axial
forces in the sleeve and bolt:

(2-21)PS � PB �
(αS � αB)(¢T)ESASEBAB

ESAS � EBAB

PS � PB

PSL

ESAS

�
PBL

EBAB

� αS(¢T)L � αB(¢T)L

δ � αS(¢T)L �
PSL

ESAS

� αB(¢T)L �
PBL

EBAB

δ � δ1 � δ3 � δ2 � δ4

δ3 �
PSL

ESAS

δ4 �
PBL

EBAB

δ1 � αS(¢T)L δ2 � αB(¢T)L

Example 2-8 - Continued• • •
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2.5 Thermal Effects, Misfits, and Prestrains 163

When deriving this equation, we assumed that the temperature increased
and that the coefficient αS was greater than the coefficient αB. Under these
conditions, PS is the compressive force in the sleeve and PB is the tensile force
in the bolt.

The results will be quite different if the temperature increases but the
coefficient αS is less than the coefficient αB. Under these conditions, a gap
will open between the bolt head and the sleeve and there will be no stresses
in either part of the assembly.

(a) Stresses in the sleeve and bolt. Expressions for the stresses σS and σB in
the sleeve and bolt, respectively, are obtained by dividing the correspon-
ding forces by the appropriate areas:

(2-22a)

(2-22b)

Under the assumed conditions, the stress σS in the sleeve is compressive
and the stress σB in the bolt is tensile. It is interesting to note that
these stresses are independent of the length of the assembly and their
magnitudes are inversely proportional to their respective areas (that is,
σS/σB � AB/AS).

(b) Increase in length of the sleeve and bolt. The elongation δ of the assem-
bly can be found by substituting either PS or PB from Eq. (2-21) into 
Eq. (l), yielding

(2-23)

With the preceding formulas available, we can readily calculate the
forces, stresses, and displacements of the assembly for any given set of
numerical data.

Note: As a partial check on the results, we can see if Eqs. (2-21), (2-22),
and (2-23) reduce to known values in simplified cases. For instance, sup-
pose that the bolt is rigid and therefore unaffected by temperature
changes. We can represent this situation by setting αB � 0 and letting EB
become infinitely large, thereby creating an assembly in which the sleeve
is held between rigid supports. Substituting these values into Eqs. (2-21),
(2-22), and (2-23), we find

These results agree with those of Example 2-7 for a bar held between
rigid supports.

As a second special case, suppose that the sleeve and bolt are made
of the same material. Then both parts will expand freely and will
lengthen the same amount when the temperature changes. No forces or
stresses will be developed. To see if the derived equations predict this
behavior, we substitute αS � αB � α into Eqs. (2-21), (2-22), and (2-23)
and obtain

which are the expected results.

➥

➥

➥

PS � PB � 0 σS � σB � 0 δ � α(¢T)L

PS � ESASαS(¢T) σS � ESαS(¢T) δ � 0

δ �
(αSESAS � αBEBAB)(¢T)L

ESAS � EBAB

σB �
PB

AB

�
(αS � αB)(¢T)ESASEB

ESAS � EBAB

σS �
PS

AS

�
(αS � αB)(¢T)ESASEB

ESAS � EBAB
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Chapter 2  Axially Loaded Members

Misfits and Prestrains
Suppose that a member of a structure is manufactured with its length
slightly different from its prescribed length. Then the member will not fit
into the structure in its intended manner, and the geometry of the structure
will be different from what was planned. We refer to situations of this kind
as misfits. Sometimes misfits are intentionally created in order to introduce
strains into the structure at the time it is built. Because these strains exist
before any loads are applied to the structure, they are called prestrains.
Accompanying the prestrains are prestresses, and the structure is said to be
prestressed. Common examples of prestressing are spokes in bicycle wheels
(which would collapse if  not prestressed), the pretensioned faces of tennis
racquets, shrink-fitted machine parts, and prestressed concrete beams.

If a structure is statically determinate, small misfits in one or more mem-
bers will not produce strains or stresses, although there will be departures
from the theoretical configuration of the structure. To illustrate this statement,
consider a simple structure consisting of a horizontal beam AB supported by
a vertical bar CD (Fig. 2-25a). If bar CD has exactly the correct length L, the
beam will be horizontal at the time the structure is built. However, if the bar
is slightly longer than intended, the beam will make a small angle with the hor-
izontal. Nevertheless, there will be no strains or stresses in either the bar or the
beam attributable to the incorrect length of the bar. Furthermore, if a load P
acts at the end of the beam (Fig. 2-25b), the stresses in the structure due to
that load will be unaffected by the incorrect length of bar CD.

In general, if  a structure is statically determinate, the presence of small
misfits will produce small changes in geometry but no strains or stresses.
Thus, the effects of a misfit are similar to those of a temperature change.

The situation is quite different if  the structure is statically indetermi-
nate, because then the structure is not free to adjust to misfits (just as it is
not free to adjust to certain kinds of temperature changes). To show this,
consider a beam supported by two vertical bars (Fig. 2-26a). If  both bars
have exactly the correct length L, the structure can be assembled with no
strains or stresses and the beam will be horizontal.

Suppose, however, that bar CD is slightly longer than the prescribed
length. Then, in order to assemble the structure, bar CD must be com-
pressed by external forces (or bar EF stretched by external forces), the bars
must be fitted into place, and then the external forces must be released. As
a result, the beam will deform and rotate, bar CD will be in compression,
and bar EF will be in tension. In other words, prestrains will exist in all
members and the structure will be prestressed, even though no external

164

L
BDA

C

(b) P

L
BDA

C

(a)

Fig. 2-25
Statically determinate structure

with a small misfit
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2.5 Thermal Effects, Misfits, and Prestrains 165

loads are acting. If  a load P is now added (Fig. 2-26b), additional strains
and stresses will be produced.

The analysis of a statically indeterminate structure with misfits and
prestrains proceeds in the same general manner as described previously for
loads and temperature changes. The basic ingredients of the analysis are
equations of equilibrium, equations of compatibility, force-displacement
relations, and (if  appropriate) temperature-displacement relations. The
methodology is illustrated in Example 2-9.

Bolts and Turnbuckles
Prestressing a structure requires that one or more parts of the structure be
stretched or compressed from their theoretical lengths. A simple way to
produce a change in length is to tighten a bolt or a turnbuckle. In the case
of a bolt (Fig. 2-27) each turn of the nut will cause the nut to travel along
the bolt a distance equal to the spacing p of the threads (called the pitch
of the threads). Thus, the distance traveled by the nut is

(2-24)

in which n is the number of revolutions of the nut (not necessarily an inte-
ger). Depending upon how the structure is arranged, turning the nut can
stretch or compress a member.

In the case of a double-acting turnbuckle (Fig. 2-28), there are two end
screws. Because a right-hand thread is used at one end and a left-hand
thread at the other, the device either lengthens or shortens when the buckle
is rotated. Each full turn of the buckle causes it to travel a distance p along
each screw, where again p is the pitch of the threads. Therefore, if  the turn-
buckle is tightened by one turn, the screws are drawn closer together by a
distance 2p and the effect is to shorten the device by 2p. For n turns, we have

(2-25)

Turnbuckles are often inserted in cables and then tightened, thus creating
initial tension in the cables, as illustrated in the following example.

δ

δ � 2np

δ � np

L
BFA

E

L
D

C

(b) P

L
BFA

E

L
D

C

(a)

PP

Fig. 2-26
Statically indeterminate structure
with a small misfit

Fig. 2-28
Double-acting turnbuckle (Each
full turn of the turnbuckle
 shortens or lengthens the cable
by 2p, where p is the pitch of
the screw threads.)

Fig. 2-27
The pitch of the threads is the
distance from one thread to the
next

p
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Chapter 2  Axially Loaded Members166

The mechanical assembly shown in Fig. 2-29a consists of a copper tube, a
rigid end plate, and two steel cables with turnbuckles. The slack is removed
from the cables by rotating the turnbuckles until the assembly is snug but
with no initial stresses. (Further tightening of the turnbuckles will produce
a prestressed condition in which the cables are in tension and the tube is in
compression.)

(a) Determine the forces in the tube and cables (Fig. 2-29a) when the
 turnbuckles are tightened by n turns.

(b) Determine the shortening of the tube.

Example 2-9• • •

Fig. 2-29
Example 2-9: Statically
 indeterminate assembly with  
a copper tube in compression
and two steel cables in tension

(a)

(b)

(c)

L

Ps

Pc

Ps

Turnbuckle
Rigid
plate

1

Steel cableCopper tube

1

2
3

d

d
d

d

Solution
We begin the analysis by removing the plate at the right-hand end of the
assembly so that the tube and cables are free to change in length (Fig. 2-29b).
Rotating the turnbuckles through n turns will shorten the cables by a
 distance

(o)

as shown in Fig. 2-29b.
The tensile forces in the cables and the compressive force in the tube

must be such that they elongate the cables and shorten the tube until their
final lengths are the same. These forces are shown in Fig. 2-29c, where Ps
denotes the tensile force in one of the steel cables and Pc denotes the com-
pressive force in the copper tube. The elongation of a cable due to the
force Ps is

(p)δ2 �
PsL

EsAs

δ1 � 2np

77742_02_ch02_p122-261.qxd:77742_02_ch02_p122-261.qxd  3/2/12  2:37 PM  Page 166

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.5 Thermal Effects, Misfits, and Prestrains 167

in which EsAs is the axial rigidity and L is the length of a cable. Also, the com-
pressive force Pc in the copper tube causes it to shorten by

(q)

in which EcAc is the axial rigidity of the tube. Equations (p) and (q) are the
load-displacement relations.

The final shortening of one of the cables is equal to the shortening δ1
caused by rotating the turnbuckle minus the elongation δ2 caused by the
force Ps. This final shortening of the cable must equal the shortening δ3 of
the tube:

(r)

which is the equation of compatibility.
Substituting the turnbuckle relation [Eq. (o)] and the load-displacement

relations [Eqs. (p) and (q)] into the preceding equation yields

(s)

or

(t)

which is a modified form of the compatibility equation. Note that it contains
Ps and Pc as unknowns.

From Fig. 2-29c, which is a free-body diagram of the assembly with the
end plate removed, we obtain the following equation of equilibrium:

(u)

(a) Forces in the cables and tube. Now we solve simultaneously Eqs. (t)
and (u) and obtain the axial forces in the steel cables and copper tube,
respectively:

(2-26a,b)

Recall that the forces Ps are tensile forces and the force Pc is compressive.
If desired, the stresses σs and σc in the steel and copper can now be
obtained by dividing the forces Ps and Pc by the cross-sectional areas As
and Ac, respectively.

(b) Shortening of the tube. The decrease in length of the tube is the quan-
tity δ3 [see Fig. 2-29 and Eq. (q)]:

(2-27)

With the preceding formulas available, we can readily calculate the
forces, stresses, and displacements of the assembly for any given set of
numerical data.

➥

➥

δ3 �
PcL

EcAc

�
4npEsAs

EcAc � 2EsAs

Ps �
2npEcAcEsAs

L(EcAc � 2EsAs)
Pc �

4npEcAcEsAs

L(EcAc � 2EsAs)

2Ps � Pc

PsL

EsAs

�
PcL

EcAc

� 2np

2np �
PsL

EsAs

�
PcL

EcAc

δ1 � δ2 � δ3

δ3 �
PcL

EcAc
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Chapter 2  Axially Loaded Members

2.6 STRESSES ON INCLINED SECTIONS
In our previous discussions of tension and compression in axially loaded
members, the only stresses we considered were the normal stresses acting
on cross sections. These stresses are pictured in Fig. 2-30, where we con-
sider a bar AB subjected to axial loads P.

When the bar is cut at an intermediate cross section by a plane mn
(perpendicular to the x axis), we obtain the free-body diagram shown in
Fig. 2-30b. The normal stresses acting over the cut section may be calcu-
lated from the formula σx � P/A provided that the stress distribution is
uniform over the entire cross-sectional area A. As explained in Chapter 1,
this condition exists if  the bar is prismatic, the material is homogeneous,
the axial force P acts at the centroid of the cross-sectional area, and the
cross section is away from any localized stress concentrations. Of course,
there are no shear stresses acting on the cut section, because it is perpen-
dicular to the longitudinal axis of the bar.

For convenience, we usually show the stresses in a two-dimensional
view of the bar (Fig. 2-30c) rather than the more complex three-
 dimensional view (Fig. 2-30b). However, when working with two-
 dimensional figures we must not forget that the bar has a thickness
perpendicular to the plane of the figure. This third dimension must be
considered when making derivations and calculations.
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Fig. 2-30
Prismatic bar in tension showing

the stresses acting on cross 
section mn: (a) bar with axial

forces P, (b) three-dimensional
view of the cut bar showing the

normal stresses, and 
(c) two-dimensional view
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2.6 Stresses on Inclined Sections 169

Stress Elements
The most useful way of representing the stresses in the bar of Fig. 2-30 is
to isolate a small element of material, such as the element labeled C in  
Fig. 2-30c, and then show the stresses acting on all faces of this element.
An element of this kind is called a stress element. The stress element at
point C is a small rectangular block (it doesn’t matter whether it is a cube
or a rectangular parallelepiped) with its right-hand face lying in cross
 section mn.

The dimensions of a stress element are assumed to be infinitesimally
small, but for clarity we draw the element to a large scale, as in Fig. 2-31a.
In this case, the edges of the element are parallel to the x, y, and z axes,
and the only stresses are the normal stresses σx acting on the x faces (recall
that the x faces have their normals parallel to the x axis). Because it is
more convenient, we usually draw a two-dimensional view of the element
(Fig. 2-31b) instead of a three-dimensional view.

Stresses on Inclined Sections
The stress element of Fig. 2-31 provides only a limited view of the stresses
in an axially loaded bar. To obtain a more complete picture, we need to
investigate the stresses acting on inclined sections, such as the section cut
by the inclined plane pq in Fig. 2-32a. Because the stresses are the same
throughout the entire bar, the stresses acting over the inclined section must
be uniformly distributed, as pictured in the free-body diagrams of Fig. 2-32b
(three-dimensional view) and Fig. 2-32c (two-dimensional view). From the
equilibrium of the free body we know that the resultant of the stresses
must be a horizontal force P. (The resultant is drawn with a dashed line in
Figs. 2-32b and 2-32c.)

(a) (b)

P
A

 x =
P
A

  x =

x

y

z

O

x

y

O

  x   x 

s

s s

s

Fig. 2-31
Stress element at point C of 
the axially loaded bar shown in
Fig. 2-30c: (a) three-dimensional
view of the element, and 
(b) two-dimensional view of 
the element

As a preliminary matter, we need a scheme for specifying the orienta-
tion of the inclined section pq. A standard method is to specify the angle
θ between the x axis and the normal n to the section (see Fig. 2-33a). Thus,
the angle θ for the inclined section shown in the figure is approximately
30�. By contrast, cross section mn (Fig. 2-30a) has an angle θ equal to zero
(because the normal to the section is the x axis). For additional examples,
consider the stress element of Fig. 2-31. The angle θ for the right-hand
face is 0, for the top face is 90� (a longitudinal section of the bar), for the
left-hand face is 180�, and for the bottom face is 270� (or �90�).
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Chapter 2  Axially Loaded Members

Let us now return to the task of finding the stresses acting on section pq
(Fig. 2-33b). As already mentioned, the resultant of these stresses is a force
P acting in the x direction. This resultant may be resolved into two compo-
nents, a normal force N that is perpendicular to the inclined plane pq and a
shear force V that is tangential to it. These force components are

(2-28a,b)

Associated with the forces N and V are normal and shear stresses that are
uniformly distributed over the inclined section (Figs. 2-33c and d). The
normal stress is equal to the normal force N divided by the area of the sec-
tion, and the shear stress is equal to the shear force V divided by the area
of the section. Thus, the stresses are

(2-29a,b)

in which A1 is the area of the inclined section, as follows:

(2-30)

As usual, A represents the cross-sectional area of the bar. The stresses σ
and τ act in the directions shown in Figs. 2-33c and d, that is, in the same
directions as the normal force N and shear force V, respectively.

A1 �
A

cos θ

σ �
N
A1

τ �
V
A1

N � P cos θ V � P sin θ
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Fig. 2-32
Prismatic bar in tension showing
the stresses acting on an inclined

section pq: (a) bar with axial
forces P, (b) three-dimensional

view of the cut bar showing the
stresses, and (c) two-dimensional

view
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2.6 Stresses on Inclined Sections 171

At this point we need to establish a standardized notation and sign
 convention for stresses acting on inclined sections. We will use a subscript θ
to indicate that the stresses act on a section inclined at an angle θ
(Fig. 2-34), just as we use a subscript x to indicate that the stresses act on a
section perpendicular to the x axis (see Fig. 2-30). Normal stresses σθ
are positive in tension and shear stresses τθ are positive when they tend to
produce counterclockwise rotation of the material, as shown in Fig. 2-34.

For a bar in tension, the normal force N produces positive normal
stresses σθ (see Fig. 2-33c) and the shear force V produces negative shear
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Fig. 2-33
Prismatic bar in tension showing
the stresses acting on an inclined
section pq

P O

y

x
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Fig. 2-34
Sign convention for stresses
 acting on an inclined section.
(Normal stresses are positive
when in tension and shear
stresses are positive when they
tend to produce counterclock-
wise rotation.)
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Chapter 2  Axially Loaded Members172

stresses τθ (see Fig. 2-33d). These stresses are given by the following
 equations [see Eqs. (2-28), (2-29), and (2-30)]:

Introducing the notation σx � P/A, in which σx is the normal stress on a
cross section, and also using the trigonometric relations

we get the following expressions for the normal and shear stresses:

(2-31a)

(2-31b)

These equations give the stresses acting on an inclined section oriented at
an angle θ to the x axis (Fig. 2-34).

It is important to recognize that Eqs. (2-31a) and (2-31b) were derived
only from statics, and therefore they are independent of the material.
Thus, these equations are valid for any material, whether it behaves lin-
early or nonlinearly, elastically or inelastically.

Maximum Normal and Shear Stresses
The manner in which the stresses vary as the inclined section is cut at var-
ious angles is shown in Fig. 2-35. The horizontal axis gives the angle θ
as it varies from �90� to �90�, and the vertical axis gives the stresses σθ
and τθ. Note that a positive angle θ is measured counterclockwise from
the x axis (Fig. 2-34) and a negative angle is measured clockwise.

As shown on the graph, the normal stress σθ equals σx when θ � 0.
Then, as θ increases or decreases, the normal stress diminishes until at
θ � 	90� it becomes zero, because there are no normal stresses on sec-
tions cut parallel to the longitudinal axis. The maximum normal stress
occurs at θ � 0 and is

(2-32)σ max � σx

τθ � �σx sinθ cosθ � �
σx

2
(sin 2θ)

σθ � σx cos2θ �
σx

2
(1 � cos 2θ)

cos2θ �
1
2

(1 � cos 2θ) sinθ cosθ �
1
2

(sin 2θ)

σθ �
N
A1

�
P
A

cos2θ τθ � �
V
A1

� �
P
A

sinθ cosθ

  x

0.5  x
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Fig. 2-35
Graph of normal stress σθ and

shear stress τθ versus angle θ of
the inclined section [see Fig. 2-34

and Eqs. (2-31a and b)]
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2.6 Stresses on Inclined Sections 173

Also, we note that when θ � 	45�, the normal stress is one-half  the
 maximum value.

The shear stress τθ is zero on cross sections of  the bar (θ � 0) as well
as on longitudinal sections (θ � 	90�). Between these extremes, the stress
varies as shown on the graph, reaching the largest positive value when 
θ � �45� and the largest negative value when θ � �45�. These maximum
shear stresses have the same magnitude:

(2-33)

but they tend to rotate the element in opposite directions.
The maximum stresses in a bar in tension are shown in Fig. 2-36. Two

stress elements are selected—element A is oriented at θ � 0� and element B
is oriented at θ � 45�. Element A has the maximum normal stresses  
[Eq. (2-32)] and element B has the maximum shear stresses [Eq. (2-33)]. 
In the case of element A (Fig. 2-36b), the only stresses are the maximum
normal stresses (no shear stresses exist on any of the faces).

τ max �
σx
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Fig. 2-36
Normal and shear stresses
 acting on stress elements
 oriented at θ � 0� and θ � 45�

for a bar in tension

In the case of element B (Fig. 2-36c), both normal and shear stresses
act on all faces (except, of course, the front and rear faces of the element).
Consider, for instance, the face at 45� (the upper right-hand face). On this
face the normal and shear stresses [from Eqs. (2-31a and b)] are σx/2
and �σx/2, respectively. Hence, the normal stress is tension (positive) and
the shear stress acts clockwise (negative) against the element. The stresses
on the remaining faces are obtained in a similar manner by substituting
θ � 135�, �45�, and �135� into Eqs. (2-31a and b).

Thus, in this special case of an element oriented at θ � 45�, the nor-
mal stresses on all four faces are the same (equal to σx/2) and all four shear
stresses have the maximum magnitude (equal to σx/2). Also, note that the
shear stresses acting on perpendicular planes are equal in magnitude and
have directions either toward, or away from, the line of intersection of the
planes, as discussed in detail in Section 1.7.
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Chapter 2  Axially Loaded Members174

If  a bar is loaded in compression instead of tension, the stress σx will
be compression and will have a negative value. Consequently, all stresses
acting on stress elements will have directions opposite to those for a bar in
tension. Of course, Eqs. (2-31a and b) can still be used for the calculations
simply by substituting σx as a negative quantity.

Even though the maximum shear stress in an axially loaded bar is only
one-half  the maximum normal stress, the shear stress may cause failure if
the material is much weaker in shear than in tension. An example of a
shear failure is pictured in Fig. 2-37, which shows a block of wood that
was loaded in compression and failed by shearing along a 45� plane.

A similar type of behavior occurs in mild steel loaded in tension.
During a tensile test of a flat bar of low-carbon steel with polished surfaces,
visible slip bands appear on the sides of the bar at approximately 45� to the
axis (Fig. 2-38). These bands indicate that the material is failing in shear
along the planes on which the shear stress is maximum. Such bands were
first observed by G. Piobert in 1842 and W. Lüders in 1860 (see 
Refs. 2-5 and 2-6), and today they are called either Lüders’ bands or Piobert’s
bands. They begin to appear when the yield stress is reached in the bar
(point B in Fig. 1-10 of Section 1.4).

Uniaxial Stress
The state of stress described throughout this section is called uniaxial
stress, for the obvious reason that the bar is subjected to simple tension or
compression in just one direction. The most important orientations of
stress elements for uniaxial stress are θ � 0 and θ � 45� (Fig. 2-36b and c);
the former has the maximum normal stress and the latter has the maxi-
mum shear stress. If  sections are cut through the bar at other angles, the
stresses acting on the faces of the corresponding stress elements can be
determined from Eqs. (2-31a and b), as illustrated in Examples 2-10 and 
2-11 that follow.

Uniaxial stress is a special case of a more general stress state known
as plane stress, which is described in detail in Chapter 7.

Load

Load

Fig. 2-38
Slip bands (or Lüders’ bands) 

in a polished steel 
specimen loaded in tension 

(Jim Gere)

Fig. 2-37
Shear failure along a 45�

plane of a wood block loaded 
in  compression (Jim Gere)

Load

Load
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2.6 Stresses on Inclined Sections 175

A prismatic brass bar with a length of L � 0.5 m and having a cross-sectional
area A � 1200 mm2 is compressed by an axial load P � 90 kN (Fig. 2-39a).

(a) Determine the complete state of stress acting on an inclined section pq
cut through the bar at an angle θ � 25�, and show the stresses on a prop-
erly oriented stress element.

(b) If the bar is now fixed between supports A and B (Fig. 2-39b) and then
subjected to a temperature increase of ΔT � 33�C, the compressive stress
on plane rs is known to be 65 MPa. Find the shear stress τθ on plane rs.
What is angle θ? (Assume that modulus of elasticity E � 110 GPa and
coefficient of thermal expansion α � 20 � 10�6 / �C.)

(c) If the allowable normal stress is 	 82 MPa and the allowable shear stress
is 	 40 MPa, find the maximum permissible temperature increase (ΔT) in
the bar if allowable stress values in the bar are not to be exceeded.

Example 2-10• • •

Continues ➥

(a)

O

y

p

q

P P = 90 kN
x

   = 25°u

Fig. 2-39
Example 2-10: (a) Stresses on
inclined section pq through
bar, and (b) Stresses on inclined
 section rs through bar

Solution
(a) Determine the complete state of stress on stress element aligned with

inclined section pq.

To find the state of stress on inclined section pq, we start by finding
 compressive normal stress σx due to applied load P:

Next, we find normal and shear stresses from Eqs. (2-31a) and (2-31b)
with θ � 25� as

➥

➥

� 28.7 MPa

τθ � �σx sin (θ) � cos (θ) � �(�75 MPa) sin (25°) � cos (25°)

σθ � σx cos (θ)2 � (�75 MPa) cos (25°)2 � �61.6 MPa

σx �
�P
A

�
�90 kN

1200 mm2
� �75 MPa

(b)

y

r
A

RA

sL

RB

B

x

θΔT
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Chapter 2  Axially Loaded Members176

These stresses are shown acting on the inclined section pq in Fig. 2-39c.
Stress element face ab (Fig. 2-39d) is aligned with section pq. Note that
the normal stress σθ is negative (compressive), and the shear stress τθ is
positive (counterclockwise). We must now use Eqs. (2-31a) and (2-31b) to
find normal and shear stresses on the remaining three faces of the stress
element (see Fig. 2-39d).

Example 2-10 - Continued• • •

Fig. 2-39 (Continued)
Example 2-10: (c) Stresses on
element inclined section pq
through bar, and (d) complete
state of stress on element at
inclined section pq through
bar

(c)

P

28.7 MPa
61.6 MPa

25°

(d)

13.4 MPa

13.4 MPa

28.7 MPa

28.7 MPa
28.7 MPa

28.7 MPa
61.6 MPa

25°
61.6 MPa

b

d

c

a

The normal and shear stresses on face cb are computed using angle 
θ � 90� � 115� in Eqs. (2-31a) and (2-31b):

The stresses on the opposite face cd are the same as those on face ab, which
can be verified by substituting θ � 25� � 180� � 205� into Eqs. (2-31a) and
(2-31b). For face ad we substitute θ � 25� � 90� � �65� into Eqs.  
(2-31a) and (2-31b). The complete state of stress is shown in Fig. 2-39d.

(b) Determine the normal and shear stresses due to temperature increase
on the stress element aligned with inclined section rs.

From Example 2-7, we know that reactions RA and RB (Fig. 2-39b) due to
temperature increase ΔT � 33� are

(a)

and the resulting axial compressive thermal stress is

(b)σT �
RA

A
� Eα(¢T )

RA � �RB � EAα(¢T )

� �28.7 MPa

τcb � �σx sin (115°) cos (115°) � �(�75 MPa)[ sin (115°) cos (115°)]

σcb � σx cos (115°)2 � (�75 MPa) cos (115°)2 � �13.4 MPa
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2.6 Stresses on Inclined Sections 177

So

Since the compressive stress on plane rs is known to be 65 MPa, we can
find angle θ for inclined plane rs from Eq. (2-31a) as

and from Eq. (2-31b), we find shear stress τθ on inclined plane rs to be

➥

➥

� 22.2 MPa

τθ � �σx(sin (θrs) cos (θrs)) � �(�72.6 MPa) sin (18.878°) cos (18.878°)

θrs � cos�1 £
C

σθ

σx
≥ � cos�1 £

C
�65 MPa

�72.6 MPa
≥ � 18.878°

σX � �(110 GPa)[20 � 10�6/°C](33°C) � �72.6 MPa

(e)

RA

22.2 MPa

65 MPa
18.88°

Fig. 2-39 (Continued)
Example 2-10: (e) Normal and
shear stresses on element at
inclined section rs through bar

(c) Determine the maximum permissible temperature increase (ΔT) in the
bar based on allowable stress values.

The maximum normal stress σmax occurs on a stress element inclined at 
θ � 0 [Eq. (2-32)] so σmax � σx. If we equate thermal stress from Eq. (b)
to allowable normal stress σa � 82 MPa, we can find the value of ΔTmax
based on allowable normal stress:

(c)

From Eq. (2-33), we see that maximum shear stress τmax occurs at a sec-
tion inclination of 45� for which τmax � σx/2. Using the given allowable
shear stress value, τa � 40 MPa and the relationship between maximum
normal and shear stresses in Eq. (2-33), we can compute a second value
for ΔTmax as

The lower temperature increase value, based on not exceeding allow-
able shear stress τa, controls. We could have anticipated this because
τallow 
 σallow/2.

➥¢T max2 �
2τa

Eα
�

2(40 MPa)

(110 GPa)[20 � 10�6/°C]
� 36.4°C

¢T max1 �
σa

Eα
�

82 MPa

(110 GPa)[20 � 10�6/°C]
� 37.3°C
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Chapter 2  Axially Loaded Members178

A compression bar having a square cross section of width b must support a
load P � 35 kN (Fig. 2-40a). The bar is constructed from two pieces of mate-
rial that are connected by a glued joint (known as a scarf joint) along plane
pq, which is at an angle α � 40� to the vertical. The material is a structural
plastic for which the allowable stresses in compression and shear are
7.5 MPa and 4.0 MPa, respectively. Also, the allowable stresses in the glued
joint are 5.2 MPa in compression and 3.4 MPa in shear.

Determine the minimum width b of the bar.

Solution
For convenience, let us rotate a segment of the bar to a horizontal position
(Fig. 2-40b) that matches the figures used in deriving the equations for the
stresses on an inclined section (see Figs. 2-33 and 2-34). With the bar in this
position, we see that the normal n to the plane of the glued joint (plane pq)
makes an angle β � 90� � α, or 50�, with the axis of the bar. Since the angle
θ is defined as positive when counterclockwise (Fig. 2-34), we conclude that
θ � �50� for the glued joint.

The cross-sectional area of the bar is related to the load P and the stress
σx acting on the cross sections by the equation

(a)

Therefore, to find the required area, we must determine the value of σx cor-
responding to each of the four allowable stresses. Then the smallest value
of σx will determine the required area. The values of σx are obtained by rear-
ranging Eqs. (2-31a and b) as

(2-34a,b)

We will now apply these equations to the glued joint and to the plastic.

(a) Values of σx based upon the allowable stresses in the glued joint. For
compression in the glued joint we have σθ � �5.2 MPa and θ � �50�.
Substituting into Eq. (2-34a), we get

(b)

For shear in the glued joint we have an allowable stress of 3.4 MPa.
However, it is not immediately evident whether τθ is �3.4 MPa or 
�3.4 MPa. One approach is to substitute both �3.4 MPa and �3.4 MPa
into  Eq. (2-34b) and then select the value of σx that is negative. The
other value of σx will be positive (tension) and does not apply to this
bar. Another approach is to inspect the bar itself (Fig. 2-40b) and
observe from the directions of the loads that the shear stress will act
clockwise against plane pq, which means that the shear stress is
 negative. Therefore, we substitute τθ � �3.4 MPa and θ � �50� into
Eq. (2-34b) and obtain

(c)σx � �
�3.4 MPa

(sin (�50°))(cos (�50°))
� �6.9 MPa

σx �
�5.2 MPa

(cos (�50°))2
� �12.6 MPa

σx �
σθ

cos2θ
σx � �

τθ

sinθ cosθ

A �
P
σx

Example 2-11 • • •
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2.6 Stresses on Inclined Sections 179

(b) Values of σx based upon the allowable stresses in the plastic. The maxi-
mum compressive stress in the plastic occurs on a cross section.
Therefore, since the allowable stress in compression is 7.5 MPa, we know
immediately that

(d)

The maximum shear stress occurs on a plane at 45� and is numerically
equal to σx/2 [see Eq. (2-33)]. Since the allowable stress in shear is 4 MPa,
we obtain

(e)

This same result can be obtained from Eq. (2-34b) by substituting 
τθ � 4 MPa and θ � 45�.

(c) Minimum width of the bar. Comparing the four values of σx [Eqs. (b), (c),
(d), and (e)], we see that the smallest is σx � �6.9 MPa. Therefore, this
value governs the design. Substituting into Eq. (a), and using only numer-
ical values, we obtain the required area:

Since the bar has a square cross section (A � b2), the minimum width is

Any width larger than bmin will ensure that the allowable stresses are
not exceeded.

➥b min � 3A � 35072 mm2 � 71.2 mm

A �
35 kN

6.9 MPa
� 5072 mm2

σx � �8 MPa

σx � �7.5 MPa

Fig. 2-40
Example 2-11: Stresses on  
an inclined section
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Chapter 2  Axially Loaded Members

2.7 STRAIN ENERGY
Strain energy is a fundamental concept in applied mechanics, and strain-
energy principles are widely used for determining the response of
machines and structures to both static and dynamic loads. In this section
we introduce the subject of  strain energy in its simplest form by consid-
ering only axially loaded members subjected to static loads. More com-
plicated structural elements are discussed in later chapters—bars in
torsion in Section 3.9 and beams in bending in Section 9.8. In addition,
the use of  strain energy in connection with dynamic loads is described in
Sections 2.8 and 9.10.

To illustrate the basic ideas, let us again consider a prismatic bar of
length L subjected to a tensile force P (Fig. 2-41). We assume that the load
is applied slowly, so that it gradually increases from zero to its maximum
value P. Such a load is called a static load because there are no dynamic or
inertial effects due to motion. The bar gradually elongates as the load is
applied, eventually reaching its maximum elongation δ at the same time

180

P

L

d

Fig. 2-41
Prismatic bar subjected to 

a statically applied load

that the load reaches its full value P. Thereafter, the load and elongation
remain unchanged.

During the loading process, the load P moves slowly through the dis-
tance δ and does a certain amount of work. To evaluate this work, we
recall from elementary mechanics that a constant force does work equal to
the product of the force and the distance through which it moves.
However, in our case the force varies in magnitude from zero to its maxi-
mum value P. To find the work done by the load under these conditions,
we need to know the manner in which the force varies. This information is
supplied by a load-displacement diagram, such as the one plotted in Fig. 2-42.
On this diagram the vertical axis represents the axial load and the horizon-
tal axis represents the corresponding elongation of the bar. The shape of
the curve depends upon the properties of the material.

Let us denote by P1 any value of the load between zero and the max-
imum value P, and let us denote the corresponding elongation of the bar
by δ1. Then an increment dP1 in the load will produce an increment dδ1 in
the elongation. The work done by the load during this incremental elon-
gation is the product of the load and the distance through which it moves,
that is, the work equals P1dδ1. This work is represented in the figure by the
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2.7 Strain Energy 181

area of the shaded strip below the load-displacement curve. The total
work done by the load as it increases from zero to the maximum value P
is the summation of all such elemental strips:

(2-35)

In geometric terms, the work done by the load is equal to the area below the
load-displacement curve.

When the load stretches the bar, strains are produced. The presence of
these strains increases the energy level of the bar itself. Therefore, a new
quantity, called strain energy, is defined as the energy absorbed by the bar
during the loading process. From the principle of conservation of energy,
we know that this strain energy is equal to the work done by the load pro-
vided no energy is added or subtracted in the form of heat. Therefore,

(2-36)

in which U is the symbol for strain energy. Sometimes strain energy is
referred to as internal work to distinguish it from the external work done
by the load.

Work and energy are expressed in the same units. In SI, the unit of
work and energy is the joule (J), which is equal to one newton meter 
(1 J � 1 N�m).*

Elastic and Inelastic Strain Energy
If  the force P (Fig. 2-41) is slowly removed from the bar, the bar will
shorten. If  the elastic limit of  the material is not exceeded, the bar will
return to its original length. If  the limit is exceeded, a permanent set
will remain (see Section 1.5). Thus, either all or part of  the strain

U � W �
3

δ

0
P1dδ1

W �
3

δ

0
P1dδ1

*Conversion factors for work and energy are given in Appendix A, Table A-2.

P

dP1

d  1
O

P

P1

  1
d d

d

d

Fig. 2-42
Load-displacement diagram
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Chapter 2  Axially Loaded Members

energy will be recovered in the form of  work. This behavior is shown
on the load-displacement diagram of  Fig. 2-43. During loading, the
work done by the load is equal to the area below the curve (area
OABCDO). When the load is removed, the load-displacement diagram
follows line BD if  point B is beyond the elastic limit, and a permanent
elongation OD remains. Thus, the strain energy recovered during
unloading, called the elastic strain energy, is represented by the shaded
triangle BCD. Area OABDO represents energy that is lost in the
process of  permanently deforming the bar. This energy is known as the
inelastic strain energy.

Most structures are designed with the expectation that the material
will remain within the elastic range under ordinary conditions of service.
Let us assume that the load at which the stress in the material reaches the
elastic limit is represented by point A on the load-displacement curve  
(Fig. 2-43). As long as the load is below this value, all of the strain energy
is recovered during unloading and no permanent elongation remains.
Thus, the bar acts as an elastic spring, storing and releasing energy as the
load is applied and removed.

Linearly Elastic Behavior
Let us now assume that the material of the bar follows Hooke’s law, so that
the load-displacement curve is a straight line (Fig. 2-44). Then the strain
energy U stored in the bar (equal to the work W done by the load) is

(2-37)

which is the area of the shaded triangle OAB in the figure.*
The relationship between the load P and the elongation δ for a bar

of linearly elastic material is given by the equation

(2-38)

Combining this equation with Eq. (2-37) enables us to express the strain
energy of a linearly elastic bar in either of the following forms:

(2-39a,b)

The first equation expresses the strain energy as a function of the load and
the second expresses it as a function of the elongation.

From the first equation we see that increasing the length of a bar
increases the amount of strain energy even though the load is unchanged
(because more material is being strained by the load). On the other hand,
increasing either the modulus of elasticity or the cross-sectional area
decreases the strain energy because the strains in the bar are reduced.
These ideas are illustrated in Examples 2-12 and 2-15.

U �
P2L
2EA

U �
EAδ2

2L

δ �
PL
EA

U � W �
Pδ
2

182

*The principle that the work of the external loads is equal to the strain energy (for the case of linearly  elastic
behavior) was first stated by the French engineer B. P. E. Clapeyron (1799–1864) and is known as Clapeyron’s
theorem (Ref. 2-7).

Fig. 2-43
Elastic and inelastic strain energy

P

A
B

CDO

Elastic
strain
energy

Inelastic
strain
energy

d

Fig. 2-44
Load-displacement diagram for a

bar of linearly elastic material

P
A

B
O

P

P  
2

U =

d
d

d
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2.7 Strain Energy 183

Strain-energy equations analogous to Eqs. (2-39a) and (2-39b) can be
written for a linearly elastic spring by replacing the stiffness EA/L of the
prismatic bar by the stiffness k of the spring. Thus,

(2-40a,b)

Other forms of these equations can be obtained by replacing k by 1/f,
where f is the flexibility.

Nonuniform Bars
The total strain energy U of a bar consisting of several segments is equal
to the sum of the strain energies of the individual segments. For instance,
the strain energy of the bar pictured in Fig. 2-45 equals the strain energy
of segment AB plus the strain energy of segment BC. This concept is
expressed in general terms by the following equation:

(2-41)

in which Ui is the strain energy of segment i of the bar and n is the num-
ber of segments. (This relation holds whether the material behaves in a lin-
ear or nonlinear manner.)

Now assume that the material of the bar is linearly elastic and that the
internal axial force is constant within each segment. We can then use 
Eq. (2-39a) to obtain the strain energies of the segments, and Eq. (2-41)
becomes

(2-42)

in which Ni is the axial force acting in segment i and Li, Ei, and Ai are prop-
erties of segment i. (The use of this equation is illustrated in Examples 2-12
and 2-15 at the end of the section.)

We can obtain the strain energy of a nonprismatic bar with continuously
varying axial force (Fig. 2-46) by applying Eq. (2-39a) to a differential element
(shown shaded in the figure) and then integrating along the length of the bar:

(2-43)

In this equation, N(x) and A(x) are the axial force and cross-sectional area
at distance x from the end of the bar. (Example 2-13 illustrates the use of
this equation.)

Comments
The preceding expressions for strain energy [Eqs. (2-39) through (2-43)]
show that strain energy is not a linear function of the loads, not even when
the material is linearly elastic. Thus, it is important to realize that we

U �
3

L

0

[N(x)]2dx

2EA(x)

U � a

n

i � 1

Ni
2Li

2EiAi

U � a

n

i � 1

Ui

U �
P2

2k
U �

kδ2

2

Fig. 2-45
Bar consisting of prismatic
 segments having different  
cross-sectional areas and 
different axial forces

B

A

C

P1

P2

Fig. 2-46
Nonprismatic bar with varying
axial force

B

A

P

L

x

dx
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Chapter 2  Axially Loaded Members

 cannot obtain the strain energy of a structure supporting more than one load
by combining the strain energies obtained from the individual loads acting
 separately.

In the case of the nonprismatic bar shown in Fig. 2-45, the total strain
energy is not the sum of the strain energy due to load P1 acting alone and
the strain energy due to load P2 acting alone. Instead, we must evaluate the
strain energy with all of the loads acting simultaneously, as demonstrated
later in Example 2-13.

Although we considered only tension members in the preceding dis-
cussions of strain energy, all of the concepts and equations apply equally
well to members in compression. Since the work done by an axial load is
positive regardless of whether the load causes tension or compression, it
follows that strain energy is always a positive quantity. This fact is also evi-
dent in the expressions for strain energy of linearly elastic bars [such as
Eqs. (2-39a) and (2-39b)]. These expressions are always positive because
the load and elongation terms are squared.

Strain energy is a form of potential energy (or “energy of position”)
because it depends upon the relative locations of the particles or elements
that make up the member. When a bar or a spring is compressed, its par-
ticles are crowded more closely together; when it is stretched, the distances
between particles increase. In both cases the strain energy of the member
increases as compared to its strain energy in the unloaded position.

Displacements Caused by a Single Load
The displacement of a linearly elastic structure supporting only one load
can be determined from its strain energy. To illustrate the method, consider
a two-bar truss (Fig. 2-47) loaded by a vertical force P. Our objective is to
determine the vertical displacement δ at joint B where the load is applied.

When applied slowly to the truss, the load P does work as it moves
through the vertical displacement δ. However, it does no work as it moves
laterally, that is, sideways. Therefore, since the load-displacement diagram
is linear [see Fig. 2-44 and Eq. (2-37)], the strain energy U stored in the
structure, equal to the work done by the load, is

from which we get

(2-44)

This equation shows that under certain special conditions, as outlined in
the following paragraph, the displacement of a structure can be deter-
mined directly from the strain energy.

The conditions that must be met in order to use Eq. (2-44) are as fol-
lows: (1) the structure must behave in a linearly elastic manner, and (2) only
one load may act on the structure. Furthermore, the only displacement that
can be determined is the displacement corresponding to the load itself (that
is, the displacement must be in the direction of the load and must be at the
point where the load is applied). Therefore, this method for finding displace-
ments is extremely limited in its application and is not a good indicator of
the great importance of strain-energy principles in structural mechanics.
However, the method does provide an introduction to the use of strain
energy. (The method is illustrated later in Example 2-14.)

δ �
2U
P

U � W �
Pδ
2

184

Fig. 2-47
Structure supporting a 

single load P
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C

B

P
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2.7 Strain Energy 185

Strain-Energy Density
In many situations it is convenient to use a quantity called strain-energy
 density, defined as the strain energy per unit volume of material. Expressions
for strain-energy density in the case of linearly elastic materials can be
obtained from the formulas for strain energy of a prismatic bar [Eqs. (2-39a
and b)]. Since the strain energy of the bar is distributed uniformly through-
out its volume, we can determine the strain-energy density by dividing the
total strain energy U by the volume AL of the bar. Thus, the strain-energy
density, denoted by the symbol u, can be expressed in either of these forms:

(2-45a,b)

If  we replace P/A by the stress σ and δ /L by the strain ε, we get

(2-46a,b)

These equations give the strain-energy density in a linearly elastic material
in terms of either the normal stress σ or the normal strain ε.

The expressions in Eqs. (2-46a and b) have a simple geometric inter-
pretation. They are equal to the area σε/2 of the triangle below the stress-
strain diagram for a material that follows Hooke’s law (σ � Eε). In more
general situations where the material does not follow Hooke’s law, the
strain-energy density is still equal to the area below the stress-strain curve,
but the area must be evaluated for each particular material.

Strain-energy density has units of energy divided by volume. The SI
units are joules per cubic meter (J/m3). Since all of these units reduce to
units of stress (recall that 1 J � 1 N�m), we can also use units such as pas-
cals (Pa) for strain-energy density.

The strain-energy density of the material when it is stressed to the pro-
portional limit is called the modulus of resilience ur. It is found by substi-
tuting the proportional limit σpl into Eq. (2-46a):

(2-47)

For example, a mild steel having σpl � 210 MPa and E � 210 GPa has a
modulus of resilience ur � 149 kPa. Note that the modulus of resilience is
equal to the area below the stress-strain curve up to the proportional limit.
Resilience represents the ability of a material to absorb and release energy
within the elastic range.

Another quantity, called toughness, refers to the ability of a material
to absorb energy without fracturing. The corresponding modulus, called
the modulus of toughness ut, is the strain-energy density when the material
is stressed to the point of failure. It is equal to the area below the entire
stress-strain curve. The higher the modulus of toughness, the greater the
ability of the material to absorb energy without failing. A high modulus of
toughness is therefore important when the material is subject to impact
loads (see Section 2.8).

The preceding expressions for strain-energy density [Eqs. (2-45)
through (2-47)] were derived for uniaxial stress, that is, for materials sub-
jected only to tension or compression. Formulas for strain-energy density
in other stress states are presented in Chapters 3 and 7.

ur �
σpl

2

2E

u �
σ2

2E
u �

Eε2

2

u �
P2

2EA2 u �
Eδ2

2L2
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Chapter 2  Axially Loaded Members186

Three round bars having the same length L but different shapes are
shown in Fig. 2-48. The first bar has diameter d over its entire length, the
second has diameter d over one-fifth of its length, and the third has
diameter d over one-fifteenth of its length. Elsewhere, the second and
third bars have diameter 2d. All three bars are subjected to the same axial
load P.

Compare the amounts of strain energy stored in the bars, assuming lin-
early elastic behavior. (Disregard the effects of stress concentrations and the
weights of the bars.)

Solution
(a) Strain energy U1 of the first bar. The strain energy of the first bar is

found directly from Eq. (2-39a):

(a)

in which A � πd2/4.

(b)  Strain energy U2 of the second bar. The strain energy is found by sum-
ming the strain energies in the three segments of the bar [see Eq. (2-42)].
Thus,

(b)

which is only 40% of the strain energy of the first bar. Thus, increasing
the cross-sectional area over part of the length has greatly reduced the
amount of strain energy that can be stored in the bar.

(c) Strain energy U3 of the third bar. Again using Eq. (2-42), we get

(c)

The strain energy has now decreased to 30% of the strain energy of the
first bar.

Note: Comparing these results, we see that the strain energy
decreases as the part of the bar with the larger area increases. If the
same amount of work is applied to all three bars, the highest stress will
be in the third bar, because the third bar has the least energy-absorbing
capacity. If the region having diameter d is made even smaller, the
energy-absorbing capacity will decrease further.

We therefore conclude that it takes only a small amount of work to
bring the tensile stress to a high value in a bar with a groove, and the
narrower the groove, the more severe the condition. When the loads are
dynamic and the ability to absorb energy is important, the presence of
grooves is very damaging.

In the case of static loads, the maximum stresses are more important
than the ability to absorb energy. In this example, all three bars have the
same maximum stress P/A (provided stress concentrations are alleviated),
and therefore all three bars have the same load-carrying capacity when
the load is applied statically.

➥

➥

➥

U3 � a

n

i�1

Ni
2Li

2EiAi

�
P2(L/15)

2EA
�

P2(14L/15)
2E(4A)

�
3P2L
20EA

�
3U1

10

U2 � a

n

i�1

Ni
2Li

2EiAi

�
P2(L/5)

2EA
�

P2(4L/5)
2E(4A)

�
P2L
5EA

�
2U1

5

U1 �
P2L
2EA

Example 2-12• • •

Fig. 2-48
Example 2-12: Calculation of
strain energy
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2.7 Strain Energy 187

Determine the strain energy of a prismatic bar suspended from its upper
end (Fig. 2-49). Consider the following loads: (a) the weight of the bar itself,
and (b) the weight of the bar plus a load P at the lower end. (Assume lin-
early elastic behavior.)

Example 2-13• • •

Solution
(a) Strain energy due to the weight of the bar itself (Fig. 2-49a). The bar is

subjected to a varying axial force, the internal force being zero at the
lower end and maximum at the upper end. To determine the axial force,
we consider an element of length dx (shown shaded in the figure) at dis-
tance x from the upper end. The internal axial force N(x) acting on this
element is equal to the weight of the bar below the element:

(d)

in which γ is the weight density of the material and A is the cross-
 sectional area of the bar. Substituting into Eq. (2-43) and integrating
gives the total strain energy:

(2-48)

(b) Strain energy due to the weight of the bar plus the load P (Fig. 2-49b).
In this case the axial force N(x) acting on the element is

(e)

[compare with Eq. (d)]. From Eq. (2-43) we now obtain

(2-49)

Note: The first term in this expression is the same as the strain
energy of a bar hanging under its own weight [Eq. (2-48)], and the last
term is the same as the strain energy of a bar subjected only to an axial
force P [Eq. (2-39a)]. However, the middle term contains both γ and P,
showing that it depends upon both the weight of the bar and the mag-
nitude of the applied load.

Thus, this example illustrates that the strain energy of a bar subjected
to two loads is not equal to the sum of the strain energies produced by
the individual loads acting separately.

➥

➥

U �
3

L

0

[γA(L � x) � P]2dx

2EA
�

γ 2AL3

6E
�

γ PL2

2E
�

P2L
2EA

N(x) � γA(L � x) � P

U �
3

L

0

[N(x)]2dx
2EA(x)

�
3

L

0

[γA(L � x)]2dx

2EA
�

γ 2AL3

6E

N(x) � γA(L � x)

Fig. 2-49
Example 2-13: (a) Bar hanging
under its own weight, and 
(b) bar hanging under its own
weight and also supporting a
load P

P

L

x

dx

(a)

L

x

dx
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Chapter 2  Axially Loaded Members188

Determine the vertical displacement δB of joint B of the truss shown in
Fig. 2-50. Note that the only load acting on the truss is a vertical load P at
joint B. Assume that both members of the truss have the same axial rigid-
ity EA.

Example 2-14• • •

Fig. 2-50
Example 2-14: Displacement of a
truss supporting a single load P

B

A C

H

P

b b

Solution
Since there is only one load acting on the truss, we can find the displace-
ment corresponding to that load by equating the work of the load to the
strain energy of the members. However, to find the strain energy we must
know the forces in the members [see Eq. (2-39a)].

From the equilibrium of forces acting at joint B we see that the axial
force F in either bar is

(f)

in which β is the angle shown in the figure.
Also, from the geometry of the truss we see that the length of each

bar is

(g)

in which H is the height of the truss.
We can now obtain the strain energy of the two bars from Eq. (2-39a):

(h)

Also, the work of the load P [from Eq. (2-37)] is

(i)

where δB is the downward displacement of joint B. Equating U and W and
solving for δB, we obtain

(2-50)

Note: We found this displacement using only equilibrium and strain
energy—we did not need to draw a displacement diagram at joint B.

➥δB �
PH

2EA cos3 β

W �
PδB

2

U � (2)
F2L1

2EA
�

P2H

4EA cos3β

L1 �
H

cos β

F �
P

2 cos β
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2.7 Strain Energy 189

The cylinder for a compressed air machine is clamped by bolts that pass
through the flanges of the cylinder (Fig. 2-51a). A detail of one of the bolts
is shown in part (b) of the figure. The diameter d of the shank is 13 mm and
the root diameter dr of the threaded portion is 10 mm. The grip g of the
bolts is 40 mm and the threads extend a distance t � 6.5 mm into the grip.
Under the action of repeated cycles of high and low pressure in the cham-
ber, the bolts may eventually break.

To reduce the likelihood of the bolts failing, the designers suggest two
possible modifications: (1) Machine down the shanks of the bolts so that the
shank diameter is the same as the thread diameter dr, as shown in Fig. 2-52a.
(2) Replace each pair of bolts by a single long bolt, as shown in Fig. 2-52b.
The long bolts are similar to the original bolts (Fig. 2-51b) except that the
grip is increased to the distance L � 340 mm.

Compare the energy-absorbing capacity of the three bolt configura-
tions: (a) original bolts, (b) bolts with reduced shank diameter, and (c) long
bolts. (Assume linearly elastic behavior and disregard the effects of stress
concentrations.)

Example 2-15• • •

Continues ➥

Fig. 2-51
Example 2-15: (a) Cylinder with
piston and clamping bolts, and
(b) detail of one bolt

Chamber
Piston

Cylinder Bolt

t

d

(a) (b)

dr

g

d

Solution
(a) Original bolts. The original bolts can be idealized as bars consisting of

two segments (Fig. 2-51b). The left-hand segment has length g � t and
diameter d, and the right-hand segment has length t and diameter dr.
The strain energy of one bolt under a tensile load P can be obtained by
adding the strain energies of the two segments [Eq. (2-42)]:

(j)

in which As is the cross-sectional area of the shank and Ar is the cross-
sectional area at the root of the threads; thus,

(k)

Substituting these expressions into Eq. (j), we get the following formula
for the strain energy of one of the original bolts:

(l)U1 �
2P2(g � t)

πEd2
�

2P2t

πEdr
2

As �
πd2

4
Ar �

πdr
2

4

U1 � a

n

i�1

Ni
2Li

2EiAi

�
P2(g � t)

2EAs

�
P2t

2EAr
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Chapter 2  Axially Loaded Members190

(b) Bolts with reduced shank diameter. These bolts can be idealized as pris-
matic bars having length g and diameter dr (Fig. 2-52a). Therefore, the
strain energy of one bolt [see Eq. (2-39a)] is

(m)

The ratio of the strain energies for cases (1) and (2) is

(n)

or, upon substituting numerical values,

Thus, using bolts with reduced shank diameters results in a 52% increase
in the amount of strain energy that can be absorbed by the bolts. If
implemented, this scheme should reduce the number of failures caused
by the impact loads.

(c) Long bolts. The calculations for the long bolts (Fig. 2-52b) are the same
as for the original bolts except the grip g is changed to the grip L.
Therefore, the strain energy of one long bolt [compare with Eq. (l)] is

(o)

Since one long bolt replaces two of the original bolts, we must compare
the strain energies by taking the ratio of U3 to 2U1, as

(p)

Substituting numerical values gives

Thus, using long bolts increases the energy-absorbing capacity by 287%
and achieves the greatest safety from the standpoint of strain energy.

Note: When designing bolts, designers must also consider the max-
imum tensile stresses, maximum bearing stresses, stress concentrations,
and many other matters.

➥

➥

U2

U1
�

gd2

(g � t)dr
2 � td2

U2 �
P2g

2EAr

�
2P2g

πEdr
2

U2

U1

�
(40 mm)(13 mm)2

(40 mm � 6.5 mm)(10 mm)2 � (6.5 mm)(13 mm)2
� 1.52

U3

2U1

�
(340 mm � 6.5 mm)(10 mm)2 � (6.5 mm)(13 mm)2

2(40 mm � 6.5 mm)(10 mm)2 � 2(6.5 mm)(13 mm)2
� 3.87

U3

2U1

�
(L � t)dr

2 � td2

2(g � t)dr
2 � 2td2

U3 �
2P2(L � t)

πEd2
�

2P2t

πEdr
2

Example 2-15 - Continued• • •

t

(a)

drdr

g

d

(b)

L

Fig. 2-52
Example 2-15: Proposed modi-
fications to the bolts: (a) Bolts
with reduced shank diameter,
and (b) bolts with increased
length
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2.8 Impact Loading 191

*2.8 IMPACT LOADING
Loads can be classified as static or dynamic depending upon whether they
remain constant or vary with time. A static load is applied slowly, so that
it causes no vibrational or dynamic effects in the structure. The load
increases gradually from zero to its maximum value, and thereafter it
remains constant.

A dynamic load may take many forms—some loads are applied and
removed suddenly (impact loads), others persist for long periods of time
and continuously vary in intensity (fluctuating loads). Impact loads are
produced when two objects collide or when a falling object strikes a struc-
ture. Fluctuating loads are produced by rotating machinery, traffic, wind
gusts, water waves, earthquakes, and manufacturing processes.

As an example of how structures respond to dynamic loads, we will
discuss the impact of an object falling onto the lower end of a prismatic
bar (Fig. 2-53). A collar of mass M, initially at rest, falls from a height h
onto a flange at the end of bar AB. When the collar strikes the flange, the
bar begins to elongate, creating axial stresses within the bar. In a very
short interval of time, such as a few milliseconds, the flange will move
downward and reach its position of maximum displacement. Thereafter,
the bar shortens, then lengthens, then shortens again as the bar vibrates
longitudinally and the end of the bar moves up and down. The vibrations
are analogous to those that occur when a spring is stretched and then
released, or when a person makes a bungee jump. The vibrations of the
bar soon cease because of various damping effects, and then the bar comes
to rest with the mass M supported on the flange.

The response of the bar to the falling collar is obviously very compli-
cated, and a complete and accurate analysis requires the use of advanced
mathematical techniques. However, we can make an approximate analysis
by using the concept of strain energy (Section 2.7) and making several
simplifying assumptions.

Let us begin by considering the energy of the system just before the
collar is released (Fig. 2-53a). The potential energy of the collar with
respect to the elevation of the flange is Mgh, where g is the acceleration of
gravity.* This potential energy is converted into kinetic energy as the col-
lar falls. At the instant the collar strikes the flange, its potential energy
with respect to the elevation of the flange is zero and its kinetic energy is
Mv2/2, where is its velocity.**

During the ensuing impact, the kinetic energy of the collar is trans-
formed into other forms of energy. Part of the kinetic energy is trans-
formed into the strain energy of the stretched bar. Some of the energy is
dissipated in the production of heat and in causing localized plastic defor-
mations of the collar and flange. A small part remains as the kinetic
energy of the collar, which either moves further downward (while in con-
tact with the flange) or else bounces upward.

To make a simplified analysis of this very complex situation, we will
idealize the behavior by making the following assumptions. (1) We assume

v � 12gh

*In SI units, the acceleration of gravity g � 9.81 m/s2. For more precise values of g, or for a discussion of
mass and weight, see Appendix A.

**In engineering work, velocity is usually treated as a vector quantity. However, since kinetic energy is a
scalar, we will use the word “velocity” to mean the magnitude of the velocity, or the speed.

Fig. 2-53
Impact load on a prismatic bar
AB due to a falling object of
mass M

h
B

(a)

Sliding collar
of mass M

Flange

A

L

h

  max

B

M

A

(b)

d
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Chapter 2  Axially Loaded Members

that the collar and flange are so constructed that the collar “sticks” to the
flange and moves downward with it (that is, the collar does not rebound).
This behavior is more likely to prevail when the mass of the collar is large
compared to the mass of the bar. (2) We disregard all energy losses and
assume that the kinetic energy of the falling mass is transformed entirely
into strain energy of the bar. This assumption predicts larger stresses in
the bar than would be predicted if  we took energy losses into account. 
(3) We disregard any change in the potential energy of  the bar itself  (due
to the vertical movement of  elements of  the bar), and we ignore the exis-
tence of  strain energy in the bar due to its own weight. Both of these
effects are extremely small. (4) We assume that the stresses in the bar
remain within the linearly elastic range. (5) We assume that the stress dis-
tribution throughout the bar is the same as when the bar is loaded stati-
cally by a force at the lower end, that is, we assume the stresses are
uniform throughout the volume of the bar. (In reality longitudinal stress
waves will travel through the bar, thereby causing variations in the stress
distribution.)

On the basis of the preceding assumptions, we can calculate the max-
imum elongation and the maximum tensile stresses produced by the
impact load. (Recall that we are disregarding the weight of the bar itself
and finding the stresses due solely to the falling collar.)

Maximum Elongation of the Bar
The maximum elongation δmax (Fig. 2-53b) can be obtained from the
principle of  conservation of energy by equating the potential energy lost
by the falling mass to the maximum strain energy acquired by the bar.
The potential energy lost is W(h � δmax), where W � Mg is the weight
of  the collar and h � δmax is the distance through which it moves. The
strain energy of  the bar is , where EA is the axial rigidity and
L is the length of  the bar [see Eq. (2-39b)]. Thus, we obtain the follow-
ing equation:

(2-51)

This equation is quadratic in δmax and can be solved for the positive root;
the result is

(2-52)

Note that the maximum elongation of the bar increases if  either the
weight of the collar or the height of fall is increased. The elongation
diminishes if  the stiffness EA/L is increased.

The preceding equation can be written in simpler form by introducing
the notation

(2-53)δst �
WL
EA

�
MgL

EA

δ max �
WL
EA

� c aWL
EA
b2

� 2haWL
EA
b d1/2

W(h � δ max) �
EAδ max

2

2L

EAδ max
2 /2L

192
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2.8 Impact Loading 193

in which δst is the elongation of the bar due to the weight of the collar
under static loading conditions. Equation (2-52) now becomes

(2-54)

or

(2-55)

From this equation we see that the elongation of the bar under the impact
load is much larger than it would be if  the same load were applied stati-
cally. Suppose, for instance, that the height h is 40 times the static displace-
ment δst; the maximum elongation would then be 10 times the static
elongation.

When the height h is large compared to the static elongation, we can
disregard the “ones” on the right-hand side of Eq. (2-55) and obtain

(2-56)

in which M � W/g and is the velocity of  the falling mass
when it strikes the flange. This equation can also be obtained directly
from Eq. (2-51) by omitting δmax on the left-hand side of  the equation
and then solving for δmax. Because of  the omitted terms, values of  δmax
calculated from Eq. (2-56) are always less than those obtained from  
Eq. (2-55).

Maximum Stress in the Bar
The maximum stress can be calculated easily from the maximum elongation
because we are assuming that the stress distribution is uniform throughout
the length of the bar. From the general equation δ � PL/EA � σL/E, we
know that

(2-57)

Substituting from Eq. (2-52), we obtain the following equation for the
maximum tensile stress:

(2-58)

Introducing the notation

(2-59)

in which σst is the stress when the load acts statically, we can write Eq. (2-58)
in the form

(2-60)σ max � σst � aσst
2 �

2hE
L

σstb
1/2

σst �
W
A

�
Mg

A
�

Eδst

L

σ max �
W
A

� c aW
A
b2

�
2WhE

AL
d1/2

σ max �
Eδ max

L

v � 32gh

δ max � 32hδst �
C

Mv2L
EA

δ max � δst c1 � a1 �
2h
δst

b1/2 d

δ max � δst � (δst
2 � 2hδst)

1/2
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Chapter 2  Axially Loaded Members

or

(2-61)

This equation is analogous to Eq. (2-55) and again shows that an impact
load produces much larger effects than when the same load is applied
statically.

Again considering the case where the height h is large compared to the
elongation of the bar [compare with Eq. (2-56)], we obtain

(2-62)

From this result we see that an increase in the kinetic energy Mv2/2 of the
falling mass will increase the stress, whereas an increase in the volume AL
of the bar will reduce the stress. This situation is quite different from static
tension of the bar, where the stress is independent of the length L and the
modulus of elasticity E.

The preceding equations for the maximum elongation and maximum
stress apply only at the instant when the flange of the bar is at its lowest
position. After the maximum elongation is reached in the bar, the bar will
vibrate axially until it comes to rest at the static elongation. From then on,
the elongation and stress have the values given by Eqs. (2-53) and (2-59).

Although the preceding equations were derived for the case of a pris-
matic bar, they can be used for any linearly elastic structure subjected to a
falling load, provided we know the appropriate stiffness of the structure. In
particular, the equations can be used for a spring by substituting the stiffness
k of the spring (see Section 2.2) for the stiffness EA/L of the prismatic bar.

Impact Factor
The ratio of the dynamic response of a structure to the static response (for
the same load) is known as an impact factor. For instance, the impact fac-
tor for the elongation of the bar of Fig. 2-53 is the ratio of the maximum
elongation to the static elongation:

(2-63)

This factor represents the amount by which the static elongation is ampli-
fied due to the dynamic effects of the impact.

Equations analogous to Eq. (2-63) can be written for other impact
factors, such as the impact factor for the stress in the bar (the ratio of σmax
to σst). When the collar falls through a considerable height, the impact fac-
tor can be very large, such as 100 or more.

Suddenly Applied Load
A special case of impact occurs when a load is applied suddenly with no
initial velocity. To explain this kind of loading, consider again the pris-
matic bar shown in Fig. 2-53 and assume that the sliding collar is lowered
gently until it just touches the flange. Then the collar is suddenly released.
Although in this instance no kinetic energy exists at the beginning of
extension of the bar, the behavior is quite different from that of static

Impact factor �
δ max

δst

σ max �
C

2hEσst

L
�

C
Mv2E

AL

σ max � σst c1 � a1 �
2hE
Lσst

b1/2 d
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2.8 Impact Loading 195

loading of the bar. Under static loading conditions, the load is released
gradually and equilibrium always exists between the applied load and the
resisting force of the bar.

However, consider what happens when the collar is released suddenly
from its point of contact with the flange. Initially the elongation of the bar
and the stress in the bar are zero, but then the collar moves downward
under the action of its own weight. During this motion the bar elongates
and its resisting force gradually increases. The motion continues until at
some instant the resisting force just equals W, the weight of the collar. At
this particular instant the elongation of the bar is δst. However, the collar
now has a certain kinetic energy, which it acquired during the downward
displacement δst. Therefore, the collar continues to move downward until
its velocity is brought to zero by the resisting force in the bar. The maxi-
mum elongation for this condition is obtained from Eq. (2-55) by setting
h equal to zero; thus,

(2-64)

From this equation we see that a suddenly applied load produces an elon-
gation twice as large as the elongation caused by the same load applied
statically. Thus, the impact factor is 2.

After the maximum elongation 2δst has been reached, the end of the bar
will move upward and begin a series of up and down vibrations, eventually
coming to rest at the static elongation produced by the weight of the collar.*

Limitations
The preceding analyses were based upon the assumption that no energy
losses occur during impact. In reality, energy losses always occur, with most
of the lost energy being dissipated in the form of heat and localized defor-
mation of the materials. Because of these losses, the kinetic energy of a sys-
tem immediately after an impact is less than it was before the impact.
Consequently, less energy is converted into strain energy of the bar than we
previously assumed. As a result, the actual displacement of the end of the
bar of Fig. 2-53 is less than that predicted by our simplified analysis.

We also assumed that the stresses in the bar remain within the propor-
tional limit. If  the maximum stress exceeds this limit, the analysis becomes
more complicated because the elongation of the bar is no longer propor-
tional to the axial force. Other factors to consider are the effects of stress
waves, damping, and imperfections at the contact surfaces. Therefore, we
must remember that all of the formulas in this section are based upon
highly idealized conditions and give only a rough approximation of the
true conditions (usually overestimating the elongation).

Materials that exhibit considerable ductility beyond the proportional
limit generally offer much greater resistance to impact loads than do brit-
tle materials. Also, bars with grooves, holes, and other forms of stress con-
centrations (see Sections 2.9 and 2.10) are very weak against impact—a
slight shock may produce fracture, even when the material itself  is ductile
under static loading.

δ max � 2δst

*Equation (2-64) was first obtained by the French mathematician and scientist J. V. Poncelet (1788–1867); 
see Ref. 2-8.
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Chapter 2  Axially Loaded Members196

A round, prismatic steel bar (E � 210 GPa) of length L � 2.0 m and diame-
ter d � 15 mm hangs vertically from a support at its upper end (Fig. 2-54).
A sliding collar of mass M � 20 kg drops from a height h � 150 mm onto
the flange at the lower end of the bar without rebounding.

Example 2-16• • •

L = 2.0 m

d = 15 mm

h = 150 mm

M = 20 kg

Fig. 2-54
Example 2-16: Impact load 
on a vertical bar

(a) Calculate the maximum elongation of the bar due to the impact and
determine the corresponding impact factor.

(b) Calculate the maximum tensile stress in the bar and determine the
 corresponding impact factor.

Solution
Because the arrangement of the bar and collar in this example matches the
arrangement shown in Fig. 2-53, we can use the equations derived previ-
ously [Eqs. (2-49) to (2-60)].

(a) Maximum elongation. The elongation of the bar produced by the falling
collar can be determined from Eq. (2-55). The first step is to determine
the static elongation of the bar due to the weight of the collar. Since the
weight of the collar is Mg, we calculate

From this result we see that

h
δst

�
150 mm

0.0106 mm
� 14,150

δst �
MgL

EA
�

(20.0 kg)(9.81 m/s2)(2.0 m)

(210 GPa)(π /4)(15 mm)2
� 0.0106 mm
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2.8 Impact Loading 197

The preceding numerical values may now be substituted into Eq. (2-55)
to obtain the maximum elongation:

Since the height of fall is very large compared to the static elongation,
we obtain nearly the same result by calculating the maximum elonga-
tion from Eq. (2-56):

The impact factor is equal to the ratio of the maximum elongation to the
static elongation:

This result shows that the effects of a dynamically applied load can be
very large as compared to the effects of the same load acting statically.

(b) Maximum tensile stress. The maximum stress produced by the falling col-
lar is obtained from Eq. (2-57), as follows:

This stress may be compared with the static stress [see Eq. (2-59)], which is

The ratio of σmax to σst is 188/1.11 � 169, which is the same impact factor
as for the elongations. This result is expected, because the stresses are
directly proportional to the corresponding elongations [see Eqs. (2-57)
and (2-59)].

➥

➥

➥� 1.79 mm

� (0.0106 mm)[1 � 31 � 2(14,150)]

δ max � δst c1 � 1a1 �
2h
δst

b1/2 d

δ max � 32hδst � [2(150 mm)(0.0106 mm)]1/2 � 1.78 mm

σ max �
Eδ max

L
�

(210 GPa)(1.79 mm)
2.0 m

� 188 MPa

Impact factor �
δ max

δst

�
1.79 mm

0.0106 mm
� 169

σst �
W
A

�
Mg

A
�

(20 kg)(9.81 m/s2)

(π/4)(15 mm)2
� 1.11 MPa
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A horizontal bar AB of length L is struck at its free end by a heavy block of
mass M moving horizontally with velocity v (Fig. 2-55).

(a) Determine the maximum shortening δmax of the bar due to the impact
and determine the corresponding impact factor.

(b) Determine the maximum compressive stress σmax and the corresponding
impact factor. (Let EA represent the axial rigidity of the bar.)

Solution
The loading on the bar in this example is quite different from the loads on
the bars pictured in Figs. 2-53 and 2-54. Therefore, we must make a new
analysis based upon conservation of energy.

(a) Maximum shortening of the bar. For this analysis we adopt the same
assumptions as those described previously. Thus, we disregard all energy
losses and assume that the kinetic energy of the moving block is trans-
formed entirely into strain energy of the bar.

The kinetic energy of the block at the instant of impact is Mv2/2. The
strain energy of the bar when the block comes to rest at the instant of
maximum shortening is , as given by Eq. (2-39b). Therefore,
we can write the following equation of conservation of energy:

(2-65)

Solving for δmax, we get

(2-66)

This equation is the same as Eq. (2-56), which we might have anticipated.
To find the impact factor, we need to know the static displacement

of the end of the bar. In this case the static displacement is the shorten-
ing of the bar due to the weight of the block applied as a compressive
load on the bar [see Eq. (2-53)]:

Thus, the impact factor is

(2-67)

The value determined from this equation may be much larger than 1.

(b) Maximum compressive stress in the bar. The maximum stress in the bar is
found from the maximum shortening by means of Eq. (2-57):

(2-68)

This equation is the same as Eq. (2-62).
The static stress σst in the bar is equal to W/A or Mg/A, which [in

combination with Eq. (2-68)] leads to the same impact factor as before
[Eq. (2-67)].

➥
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Example 2-17• • •

Fig. 2-55
Example 2-17: Impact load 
on a horizontal bar
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2.9 Repeated Loading and Fatigue 199

*2.9 REPEATED LOADING AND FATIGUE
The behavior of a structure depends not only upon the nature of the mate-
rial but also upon the character of the loads. In some situations the loads
are static—they are applied gradually, act for long periods of time, and
change slowly. Other loads are dynamic in character—examples are
impact loads acting suddenly (Section 2.8) and repeated loads recurring
for large numbers of cycles.

Some typical patterns for repeated loads are sketched in Fig. 2-56. The
first graph (a) shows a load that is applied, removed, and applied again,
always acting in the same direction. The second graph (b) shows an alter-
nating load that reverses direction during every cycle of loading, and the
third graph (c) illustrates a fluctuating load that varies about an average
value. Repeated loads are commonly associated with machinery, engines,
turbines, generators, shafts, propellers, airplane parts, automobile parts,
and the like. Some of these structures are subjected to millions (and even
billions) of loading cycles during their useful life.

A structure subjected to dynamic loads is likely to fail at a lower stress
than when the same loads are applied statically, especially when the loads
are repeated for a large number of cycles. In such cases failure is usually
caused by fatigue, or progressive fracture. A familiar example of a fatigue
failure is stressing a metal paper clip to the breaking point by repeatedly
bending it back and forth. If  the clip is bent only once, it does not break.
But if  the load is reversed by bending the clip in the opposite direction,
and if  the entire loading cycle is repeated several times, the clip will finally
break. Fatigue may be defined as the deterioration of a material under
repeated cycles of stress and strain, resulting in progressive cracking that
eventually produces fracture.

In a typical fatigue failure, a microscopic crack forms at a point of
high stress (usually at a stress concentration, discussed in the next section)
and gradually enlarges as the loads are applied repeatedly. When the crack
becomes so large that the remaining material cannot resist the loads, a sud-
den fracture of the material occurs (Fig. 2-57). Depending upon the nature
of the material, it may take anywhere from a few cycles of loading to hun-
dreds of millions of cycles to produce a fatigue failure.

O
Time

(a)

Load

O
Time

(b)

Load

O
Time

(c)

Load

Fig. 2-57
Fatigue failure of a bar loaded
repeatedly in tension; the crack
spread gradually over the cross
section until fracture occurred
suddenly. (Courtesy of MTS
Systems Corporation)

The magnitude of the load causing a fatigue failure is less than the load
that can be sustained statically, as already pointed out. To determine the
failure load, tests of the material must be performed. In the case of
repeated loading, the material is tested at various stress levels and the num-
ber of cycles to failure is counted. For instance, a specimen of material is

Fig. 2-56
Types of repeated loads: (a) load
acting in one direction only, 
(b) alternating or reversed load,
and (c) fluctuating load that
varies about an average value

77742_02_ch02_p122-261.qxd:77742_02_ch02_p122-261.qxd  3/2/12  2:43 PM  Page 199

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 2  Axially Loaded Members

placed in a fatigue-testing machine and loaded repeatedly to a certain
stress, say σ1. The loading cycles are continued until failure occurs, and the
number n of loading cycles to failure is noted. The test is then repeated for
a different stress, say σ2. If  σ2 is greater than σ1, the number of cycles to
failure will be smaller. If σ2 is less than σ1, the number will be larger.
Eventually, enough data are accumulated to plot an endurance curve, or  
S-N diagram, in which failure stress (S) is plotted versus the number (N) of
cycles to failure (Fig. 2-58). The vertical axis is usually a linear scale and the
horizontal axis is usually a logarithmic scale.

The endurance curve of Fig. 2-58 shows that the smaller the stress, the
larger the number of cycles to produce failure. For some materials the
curve has a horizontal asymptote known as the fatigue limit or endurance
limit. When it exists, this limit is the stress below which a fatigue failure
will not occur regardless of how many times the load is repeated. The pre-
cise shape of an endurance curve depends upon many factors, including
properties of the material, geometry of the test specimen, speed of testing,
pattern of loading, and surface condition of the specimen. The results of
numerous fatigue tests, made on a great variety of materials and structural
components, have been reported in the engineering literature.

Typical S-N diagrams for steel and aluminum are shown in Fig. 2-59.
The ordinate is the failure stress, expressed as a percentage of the ultimate
stress for the material, and the abscissa is the number of cycles at which
failure occurred. Note that the number of cycles is plotted on a logarith-
mic scale. The curve for steel becomes horizontal at about 107 cycles, and
the fatigue limit is about 50% of the ultimate tensile stress for ordinary
static loading. The fatigue limit for aluminum is not as clearly defined as
that for steel, but a typical value of the fatigue limit is the stress at 5 � 108

cycles, or about 25% of the ultimate stress.

200
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80
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Since fatigue failures usually begin with a microscopic crack at a point
of high localized stress (that is, at a stress concentration), the condition of
the surface of the material is extremely important. Highly polished speci-
mens have higher endurance limits. Rough surfaces, especially those at stress
concentrations around holes or grooves, greatly lower the endurance limit.
Corrosion, which creates tiny surface irregularities, has a similar effect. For
steel, ordinary corrosion may reduce the fatigue limit by more than 50%.

Fig. 2-58
Endurance curve, or S-N

diagram, showing fatigue limit

O
Number n of cycles to failure

Failure
stress

 

Fatigue limit

s

Fig. 2-59
Typical endurance curves for

steel and aluminum in 
alternating (reversed) 

loading
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2.10 Stress Concentrations 201

*2.10 STRESS CONCENTRATIONS
When determining the stresses in axially loaded bars, we customarily use
the basic formula σ � P/A, in which P is the axial force in the bar and A is
its cross-sectional area. This formula is based upon the assumption that the
stress distribution is uniform throughout the cross section. In reality, bars
often have holes, grooves, notches, keyways, shoulders, threads, or other
abrupt changes in geometry that create a disruption in the otherwise uni-
form stress pattern. These discontinuities in geometry cause high stresses in
very small regions of the bar, and these high stresses are known as stress
concentrations. The discontinuities themselves are known as stress raisers.

Stress concentrations also appear at points of loading. For instance, a
load may act over a very small area and produce high stresses in the region
around its point of application. An example is a load applied through a pin
connection, in which case the load is applied over the bearing area of the pin.

The stresses existing at stress concentrations can be determined either
by experimental methods or by advanced methods of analysis, including
the finite-element method. The results of such research for many cases of
practical interest are readily available in the engineering literature (for
example, Ref. 2-9). Some typical stress-concentration data are given later
in this section and also in Chapters 3 and 5.

Saint-Venant’s Principle
To illustrate the nature of stress concentrations, consider the stresses in a bar
of rectangular cross section (width b, thickness t) subjected to a concen-
trated load P at the end (Fig. 2-60). The peak stress directly under the load
may be several times the average stress P/bt, depending upon the area over
which the load is applied. However, the maximum stress diminishes rapidly
as we move away from the point of load application, as shown by the stress
diagrams in the figure. At a distance from the end of the bar equal to the
width b of the bar, the stress distribution is nearly uniform, and the maxi-
mum stress is only a few percent larger than the average stress. This obser-
vation is true for most stress concentrations, such as holes and grooves.

Thus, we can make a general statement that the equation σ � P/A gives
the axial stresses on a cross section only when the cross section is at least a dis-
tance b away from any concentrated load or discontinuity in shape, where b is
the largest lateral dimension of the bar (such as the width or diameter).

The preceding statement about the stresses in a prismatic bar is part
of a more general observation known as Saint-Venant’s principle. With
rare exceptions, this principle applies to linearly elastic bodies of all types.
To understand Saint-Venant’s principle, imagine that we have a body with
a system of loads acting over a small part of its surface. For instance, sup-
pose we have a prismatic bar of width b subjected to a system of several
concentrated loads acting at the end (Fig. 2-61a). For simplicity, assume
that the loads are symmetrical and have only a vertical resultant.

Next, consider a different but statically equivalent load system acting
over the same small region of the bar. (“Statically equivalent” means the two
load systems have the same force resultant and same moment resultant.) For
instance, the uniformly distributed load shown in Fig. 2-61b is statically
equivalent to the system of concentrated loads shown in Fig. 2-61a. Saint-
Venant’s principle states that the stresses in the body caused by either of the
two systems of loading are the same, provided we move away from the

P

b

P
bt

=

P
bt

=

P
bt

  =s

s

s

Fig. 2-60
Stress distributions near the end
of a bar of rectangular cross
 section (width b, thickness t)
subjected to a concentrated 
load P acting over a small area
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Chapter 2  Axially Loaded Members

loaded region a distance at least equal to the largest dimension of the loaded
region (distance b in our example). Thus, the stress distributions shown in
Fig. 2-60 are an illustration of Saint-Venant’s principle. Of course, this
“principle” is not a rigorous law of mechanics but is a common-sense obser-
vation based upon theoretical and practical experience.

Saint-Venant’s principle has great practical significance in the design
and analysis of bars, beams, shafts, and other structures encountered in
mechanics of materials. Because the effects of stress concentrations are
localized, we can use all of the standard stress formulas (such as σ � P/A)
at cross sections a sufficient distance away from the source of the concentra-
tion. Close to the source, the stresses depend upon the details of the loading
and the shape of the member. Furthermore, formulas that are applicable to
entire members, such as formulas for elongations, displacements, and strain
energy, give satisfactory results even when stress concentrations are present.
The explanation lies in the fact that stress concentrations are localized and
have little effect on the overall behavior of a member.*

Stress-Concentration Factors
Now let us consider some particular cases of stress concentrations caused
by discontinuities in the shape of a bar. We begin with a bar of rectangu-
lar cross section having a circular hole and subjected to a tensile force P
(Fig. 2-62a). The bar is relatively thin, with its width b being much larger
than its thickness t. Also, the hole has diameter d.

The normal stress acting on the cross section through the center of
the hole has the distribution shown in Fig. 2-62b. The maximum stress
σmax occurs at the edges of  the hole and may be significantly larger than
the nominal stress σ � P/ct at the same cross section. (Note that ct is the
net area at the cross section through the hole.) The intensity of  a stress

202

*Saint-Venant’s principle is named for Barré de Saint-Venant (1797–1886), a famous French mathematician
and elastician (Ref. 2-10). It appears that the principle applies generally to solid bars and beams but not to all
thin-walled open sections. For a discussion of the limitations of Saint-Venant’s principle, see Ref. 2-11.

Fig. 2-61
Illustration of Saint-Venant’s

principle: (a) system of 
concentrated loads acting 

over a small region of a bar, and
(b) statically equivalent system

b b

(a) (b)
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P
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Fig. 2-60 (Repeated) 
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2.10 Stress Concentrations 203

concentration is usually expressed by the ratio of  the maximum stress to
the nominal stress, called the stress-concentration factor K:

(2-69)

For a bar in tension, the nominal stress is the average stress based upon the
net cross-sectional area. In other cases, a variety of stresses may be used.
Thus, whenever a stress concentration factor is used, it is important to
note carefully how the nominal stress is defined.

A graph of the stress-concentration factor K for a bar with a hole is
given in Fig. 2-63. If  the hole is tiny, the factor K equals 3, which means
that the maximum stress is three times the nominal stress. As the hole
becomes larger in proportion to the width of the bar, K becomes smaller
and the effect of the concentration is not as severe.

K �
σ max

σnom

  max

PP

P

(a)

(b)

c/2

d

c/2

b

s

Fig. 2-62
Stress distribution in a flat bar
with a circular hole
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Fig. 2-63
Stress-concentration factor K for
flat bars with circular holes
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Chapter 2  Axially Loaded Members

From Saint-Venant’s principle, we know that, at distances equal to the
width b of the bar away from the hole in either axial direction, the stress
distribution is practically uniform and equal to P divided by the gross
cross-sectional area (σ � P/bt).

To reduce the stress-concentration effects (see Fig. 2-64), fillets are
used to round off  the re-entrant corners.* Stress-concentration factors for
two other cases of practical interest are given in Figs. 2-65 and 2-66. These
graphs are for flat bars and circular bars, respectively, that are stepped
down in size, forming a shoulder. Without the fillets, the stress-concentra-
tion factors would be extremely large, as indicated at the left-hand side of
each graph where K approaches infinity as the fillet radius R approaches

204
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*A fillet is a curved concave surface formed where two other surfaces meet. Its purpose is to round off what
would otherwise be a sharp re-entrant corner.

Fig. 2-64
Stress distribution in a flat bar

with shoulder fillets

P

R

c
(a)

P
b

P

(b)

Fig. 2-65
Stress-concentration factor K

for flat bars with shoulder 
fillets. The dashed line is for a

full quarter-circular fillet.

Fig. 2-66
Stress-concentration factor K for
round bars with shoulder fillets.

The dashed line is for a full
quarter-circular fillet.
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2.10 Stress Concentrations 205

zero. In both cases, the maximum stress occurs in the smaller part of the
bar in the region of the fillet.*

Designing for Stress Concentrations
Because of the possibility of fatigue failures, stress concentrations are
especially important when the member is subjected to repeated loading.
As explained in the preceding section, cracks begin at the point of highest
stress and then spread gradually through the material as the load is
repeated. In practical design, the fatigue limit (Fig. 2-58) is considered to
be the ultimate stress for the material when the number of cycles is
extremely large. The allowable stress is obtained by applying a factor of
safety with respect to this ultimate stress. Then the peak stress at the stress
concentration is compared with the allowable stress.

In many situations the use of the full theoretical value of the stress-
concentration factor is too severe. Fatigue tests usually produce failure at
higher levels of the nominal stress than those obtained by dividing the
fatigue limit by K. In other words, a structural member under repeated
loading is not as sensitive to a stress concentration as the value of K indi-
cates, and a reduced stress-concentration factor is often used.

Other kinds of dynamic loads, such as impact loads, also require that
stress-concentration effects be taken into account. Unless better informa-
tion is available, the full stress-concentration factor should be used.
Members subjected to low temperatures also are highly susceptible to fail-
ures at stress concentrations, and therefore special precautions should be
taken in such cases.

The significance of stress concentrations when a member is subjected
to static loading depends upon the kind of material. With ductile materials,
such as structural steel, a stress concentration can often be ignored. The
reason is that the material at the point of maximum stress (such as around
a hole) will yield and plastic flow will occur, thus reducing the intensity of
the stress concentration and making the stress distribution more nearly uni-
form. On the other hand, with brittle materials (such as glass) a stress con-
centration will remain up to the point of fracture. Therefore, we can make
the general observation that with static loads and a ductile material the
stress-concentration effect is not likely to be important, but with static
loads and a brittle material the full stress-concentration factor should be
considered.

Stress concentrations can be reduced in intensity by properly propor-
tioning the parts. Generous fillets reduce stress concentrations at re-entrant
corners. Smooth surfaces at points of high stress, such as on the inside of a
hole, inhibit the formation of cracks. Proper reinforcing around holes can
also be beneficial. There are many other techniques for smoothing out the
stress distribution in a structural member and thereby reducing the stress-
concentration factor. These techniques, which are usually studied in engi-
neering design courses, are extremely important in the design of aircraft,
ships, and machines. Many unnecessary structural failures have occurred
because designers failed to recognize the effects of stress concentrations and
fatigue.

*The stress-concentration factors given in the graphs are theoretical factors for bars of linearly elastic
material. The graphs are plotted from the formulas given in Ref. 2-9.
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Chapter 2  Axially Loaded Members206

A stepped brass bar with a hole (Fig. 2-67a) has widths of b � 9.0 cm and  
c � 6.0 cm and a thickness of t � 1.0 cm. The fillets have radii equal to 0.5 cm
and the hole has a diameter of d � 1.8 cm. The ultimate strength of the brass
is 200 MPa.

(a) If a factor of safety of 2.8 is required, what is the maximum allowable
tensile load Pmax?

(b) Find the hole diameter dmax at which the two segments of the bar have
tensile load carrying capacity equal to that for the fillet region of the
stepped bar.

Example 2-18• • •

P P
bd cd

(a)

Fig. 2-67
Example 2-18: (a) Stress
 concentrations in stepped bar
with a hole, and (b) selection
of factor Kh using Fig. 2-63

Solution
(a) Determine the maximum allowable tensile load.

The maximum allowable tensile load is determined by comparing the
product of the nominal stress times the net area in each segment of the
stepped bar (i.e., segment with hole and segment with fillets).

For the segment of the bar of width b and thickness t and having a
hole of diameter d, the net cross-sectional area is (b � d)(t), and the
nominal axial stress may be computed as

(a,b)σ1 �
P

(b � d)t
and σ1 �

σallow

Khole

�

a σU

FSU

b
Khole

(b)

b

P
d

c/2

c/2

b
PK

t = thickness
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σmax
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2.10 Stress Concentrations 207

where the maximum stress has been set equal to the allowable stress
and the stress concentration factor Khole is obtained from Fig. 2-63.
Next, we equate the nominal stress expressions in Eqs. (a) and (b) and
solve for Pmax:

(c)

Using the given numerical properties of the bar, we see that 
d/b � 1.8/9.0 � 0.2, so Khole is approximately 2.51 from Fig. 2-63 (see
Fig. 2-67b). We now can compute the allowable tensile load on
the stepped bar accounting for stress concentrations at the hole using
Eq. (c) as

(d)

Next, we must investigate the tensile load carrying capacity of the
stepped bar in the segment having fillets of radius R � 0.5 cm.
Following the procedure we used to find Pmax1 in Eqs. (a),(b), and (c),
we now find

(e)

The stress concentration factor Kfillet is obtained from Fig. 2-65 using two
parameters: the ratio of fillet radius to reduced width c (R/c � 0.1) and
the ratio of the bar’s full width to reduced width (b/c � 1.5). The stress
concentration factor is approximately 2.35 (see Fig. 2-67c), and so the
maximum allowable tensile load based on stress concentrations in the
fillet region of the bar is

(f)

Comparing Eqs. (d) and (f), we see that the lesser value of the maximum
allowable tensile load Pmax2, which is based on stress concentrations in
the fillet region of the stepped bar, controls here.

P max2 �

a200 MPa
2.8

b
2.35

(6 cm)(1 cm) � 18.24 kN ➥

P max2 �

a σU

FSU

b
Kfillet

(ct)

Pmax1 �

a200 MPa

2.8
b

2.51
(9.0 cm � 1.8 cm)(1.0 cm) � 20.5 kN

σ1 �
P

(b � d)t
�

a σU

FSU

b
Khole

so P max 1 �

a σU

FSU

b
Khole

(b � d)t

Continues ➥
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Chapter 2  Axially Loaded Members208

(b) Determine the maximum hole diameter.

Comparing Eqs. (d) and (f), we see that the segment of the stepped bar
with a hole has greater tensile load capacity Pmax than the segment with
the fillets. If we enlarge the hole, we will reduce the net cross sectional
area, Anet � (b � d)(t), (note that width b and thickness t remain
unchanged), but at the same time, we will reduce the stress concentra-
tion factor Khole (see Fig. 2-63) because ratio d/b increases.

If we use the right-hand side of Eq. (f) to Pmax2 and simplify the
resulting expression, we get

(g)

Substituting numerical values produces the following

(h)

We can tabulate a few values of stress concentration factor Khole for corre-
sponding values of the d/b ratio from Fig. 2-63 as follows (see Table 2-2),
showing that the required d/b ratio lies between 0.3 and 0.4. Several itera-
tions using trial-and-error and values from Fig. 2-63 reveal that

(i)

Hence, the maximum hole diameter dmax is approximately 3.0 cm if
the two segments of the stepped bar are to have equal tensile load
capacities.

➥

a σU

FSU

b
Khole

(b � d)t � P max2 or

a1 �
d
b
b

Khole

�
P max2

a σU

FSU

b
a 1

bt
b

d
b

�
2.97

9
� 0.33 so

(1 � 0.33)
2.36

� 0.284 so dmax � 2.97 cm

Ratio �

a1 �
d
b
b

Khole

�
18.24 kN

a200 MPa
2.8

b
c 1
9 cm(1 cm)

d � 0.284

Example 2-18 - Continued• • •

K

R =

b

R

PP

t = thickness
ct

c

P

c
b

c
R

σnom =K = 
σmax
σnom

= 2

b – c
2

1.1 1.2

1.3

1.5

3.0

2.5
2.35

2.0

1.5
0 0.05 0.10 0.15

(c)

0.20 0.25 0.30

Fig. 2-67 (Continued)
Example 2-18: (c) Selection of
factor Kf using Fig. 2-64

d/b Khole Ratio

0.2 2.51 0.32
0.3 2.39 0.29
0.4 2.32 0.26
0.5 2.25 0.22

Table 2-2
Stress Concentration Factors 
and d/b values from Fig. 2-63
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2.11 Nonlinear Behavior 209

*2.11 NONLINEAR BEHAVIOR
Up to this point, our discussions have dealt primarily with members and
structures composed of materials that follow Hooke’s law. Now we will
consider the behavior of axially loaded members when the stresses exceed
the proportional limit. In such cases the stresses, strains, and displace-
ments depend upon the shape of the stress-strain curve in the region
beyond the proportional limit (see Section 1.4 for some typical stress-
strain diagrams).

Nonlinear Stress-Strain Curves
For purposes of  analysis and design, we often represent the actual
stress-strain curve of  a material by an idealized stress-strain curve that
can be expressed as a mathematical function. Some examples are shown
in Fig. 2-68. The first diagram (Fig. 2-68a) consists of  two parts, an ini-
tial linearly elastic region followed by a nonlinear region defined by an
appropriate mathematical expression. The behavior of  aluminum alloys
can sometimes be represented quite accurately by a curve of  this type,
at least in the region before the strains become excessively large (com-
pare Fig. 2-68a with Fig. 1-13).

In the second example (Fig. 2-68b), a single mathematical expression
is used for the entire stress-strain curve. The best known expression of this
kind is the Ramberg-Osgood stress-strain law, which is described later in
more detail.

The stress-strain diagram frequently used for structural steel is
shown in Fig. 2-68c. Because steel has a linearly elastic region followed

O

Nonlinear

Linearly elastic   
= 

E´
 

   = ƒ(  )

(a)

O

Nonlinear

   
= 

ƒ(
  )

(b)

s

s

s

´

´

´

´

s

s

  Y

  Y

O

Perfectly plastic

Linearly elastic

(c)

´´

s

s

O

Strain hardening

Linearly elastic

(d)

´

s

Fig. 2-68
Types of idealized material
behavior: (a) elastic-nonlinear
stress-strain curve, (b) general
nonlinear stress-strain curve, 
(c) elastoplastic stress-strain
curve, and (d) bilinear  
stress-strain curve
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Chapter 2  Axially Loaded Members210

by a region of  considerable yielding (see the stress-strain diagrams of
Figs. 1-10 and 1-12), its behavior can be represented by two straight lines.
The material is assumed to follow Hooke’s law up to the yield stress σY,
after which it yields under constant stress, the latter behavior being
known as perfect plasticity. The perfectly plastic region continues until
the strains are 10 or 20 times larger than the yield strain. A material hav-
ing a stress-strain diagram of  this kind is called an elastoplastic material
(or elastic-plastic material).

Eventually, as the strain becomes extremely large, the stress-strain
curve for steel rises above the yield stress due to strain hardening, as
explained in Section 1.4. However, by the time strain hardening begins, the
displacements are so large that the structure will have lost its usefulness.
Consequently, it is common practice to analyze steel structures on the
basis of the elastoplastic diagram shown in Fig. 2-68c, with the same dia-
gram being used for both tension and compression. An analysis made with
these assumptions is called an elastoplastic analysis, or simply, plastic
analysis, and is described in the next section.

Figure 2-68d shows a stress-strain diagram consisting of two lines
having different slopes, called a bilinear stress-strain diagram. Note that in
both parts of the diagram the relationship between stress and strain is lin-
ear, but only in the first part is the stress proportional to the strain
(Hooke’s law). This idealized diagram may be used to represent materials
with strain hardening or it may be used as an approximation to diagrams
of the general nonlinear shapes shown in Figs. 2-68a and b.

Changes in Lengths of Bars
The elongation or shortening of  a bar can be determined if  the stress-
strain curve of  the material is known. To illustrate the general procedure,
we will consider the tapered bar AB shown in Fig. 2-69a. Both the cross-
sectional area and the axial force vary along the length of  the bar, and
the material has a general nonlinear stress-strain curve (Fig. 2-69b).
Because the bar is statically determinate, we can determine the internal
axial forces at all cross sections from static equilibrium alone. Then we
can find the stresses by dividing the forces by the cross-sectional areas,
and we can find the strains from the stress-strain curve. Lastly, we can
determine the change in length from the strains, as described in the fol-
lowing paragraph.

x

L

(a)

dx

BA

(b)
O

s

´

Fig. 2-69
Change in length of a tapered

bar consisting of a material 
having a nonlinear 

stress-strain curve
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2.11 Nonlinear Behavior 211

The change in length of an element dx of the bar (Fig. 2-69a) is εdx,
where ε is the strain at distance x from the end. By integrating this expres-
sion from one end of the bar to the other, we obtain the change in length of
the entire bar:

(2-70)

where L is the length of the bar. If  the strains are expressed analytically,
that is, by algebraic formulas, it may be possible to integrate Eq. (2-70) by
formal mathematical means and thus obtain an expression for the change
in length. If  the stresses and strains are expressed numerically, that is, by a
series of numerical values, we can proceed as follows. We can divide the
bar into small segments of length Δx, determine the average stress and
strain for each segment, and then calculate the elongation of the entire bar
by summing the elongations for the individual segments. This process is
equivalent to evaluating the integral in Eq. (2-70) by numerical methods
instead of by formal integration.

If the strains are uniform throughout the length of the bar, as in the case
of a prismatic bar with constant axial force, the integration of Eq. (2-70) is
trivial and the change in length is

(2-71)

as expected [compare with Eq. (1-2) in Section 1.3].

δ � εL

δ �
3

L

0
εdx

Fig. 2-70
Stress-strain curve for an
 aluminum alloy using the
Ramberg-Osgood equation  
[Eq. (2-74)]
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Chapter 2  Axially Loaded Members

Ramberg-Osgood Stress-Strain Law
Stress-strain curves for several metals, including aluminum and magne-
sium, can be accurately represented by the Ramberg-Osgood equation:

(2-72)

In this equation, σ and ε are the stress and strain, respectively, and ε0, σ0,
α, and m are constants of the material (obtained from tension tests). An
alternative form of the equation is

(2-73)

in which E�σ0/ε0 is the modulus of elasticity in the initial part of the
stress-strain curve.*

A graph of Eq. (2-73) is given in Fig. 2-70 for an aluminum alloy
for which the constants are as follows: E � 70 GPa, σ0 � 260 MPa, 
α � 3/7, and m � 10. The equation of this particular stress-strain curve
(E � 70 GPa, σ0 � 260 MPa, α � 3/7, and m � 10), is as follows:

(2-74)

where σ has units of megapascals (MPa). The calculation of the change
in length of a bar, using Eq. (2-73) for the stress-strain relationship, is illus-
trated in Example 2-19.

Statically Indeterminate Structures
If  a structure is statically indeterminate and the material behaves nonlin-
early, the stresses, strains, and displacements can be found by solving the
same general equations as those described in Section 2.4 for linearly elas-
tic structures, namely, equations of equilibrium, equations of compatibil-
ity, and force-displacement relations (or equivalent stress-strain relations).
The principal difference is that the force-displacement relations are now
nonlinear, which means that analytical solutions cannot be obtained
except in very simple situations. Instead, the equations must be solved
numerically, using a suitable computer program.

ε �
σ

70,000
�

1
628.2

a σ
260
b10

ε �
σ
E

�
σ0α
E
a σ

σ0

bm

ε
ε0

�
σ
σ0

� αaσ
σ
bm

212

*The Ramberg-Osgood stress-strain law is presented in Ref. 2-12.
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2.11 Nonlinear Behavior 213

A prismatic bar AB of length L � 2.2 m and cross-sectional area A � 480 mm2

supports two concentrated loads P1 � 108 kN and P2 � 27 kN, as shown in
Fig. 2-71. The material of the bar is an aluminum alloy having a nonlinear
stress-strain curve described by the following Ramberg-Osgood equation
[Eq. (2-74)]:

in which σ has units of MPa. (The general shape of this stress-strain curve
is shown in Fig. 2-70.)

Determine the displacement δB of the lower end of the bar under each
of the following conditions: (a) the load P1 acts alone, (b) the load P2 acts
alone, and (c) the loads P1 and P2 act simultaneously.

Solution
(a) Displacement due to the load P1 acting alone. The load P1 produces a

uniform tensile stress throughout the length of the bar equal to P1/A, or
225 MPa. Substituting this value into the stress-strain relation gives 
ε � 0.003589. Therefore, the elongation of the bar, equal to the displace-
ment at point B, is [see Eq. (2-71)]

(b) Displacement due to the load P2 acting alone. The stress in the upper
half of the bar is P2/A or 56.25 MPa, and there is no stress in the lower
half. Proceeding as in part (a), we obtain the following elongation:

(c) Displacement due to both loads acting simultaneously. The stress in the
lower half of the bar is P1/A and in the upper half is (P1 � P2)/A. The cor-
responding stresses are 225 MPa and 281.25 MPa, and the corresponding
strains are 0.003589 and 0.007510 (from the Ramberg-Osgood equation).
Therefore, the elongation of the bar is

The three calculated values of δB illustrate an important principle pertain-
ing to a structure made of a material that behaves nonlinearly:

In a nonlinear structure, the displacement produced by two (or
more) loads acting simultaneously is not equal to the sum of the dis-
placements produced by the loads acting separately.

➥

➥

➥

� 3.95 mm � 8.26 mm � 12.2 mm

δB � (0.003589)(1.1 m) � (0.007510)(1.1 m)

δB � εL/2 � (0.0008036)(1.1 m) � 0.884 mm

δB � εL � (0.003589)(2.2 m) � 7.90 mm

ε �
σ

70,000
�

1
628.2

a σ
260
b10

Example 2-19• • •

Fig. 2-71
Example 2-19: Elongation of a
bar of nonlinear material using
the Ramberg-Osgood equation
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Chapter 2  Axially Loaded Members

*2.12 Elastoplastic Analysis
In the preceding section we discussed the behavior of  structures when the
stresses in the material exceed the proportional limit. Now we will con-
sider a material of  considerable importance in engineering design—steel,
the most widely used structural metal. Mild steel (or structural steel) can
be modeled as an elastoplastic material with a stress-strain diagram as
shown in Fig. 2-72. An elastoplastic material initially behaves in a linearly
elastic manner with a modulus of  elasticity E. After plastic yielding
begins, the strains increase at a more-or-less constant stress, called the
yield stress σY. The strain at the onset of  yielding is known as the yield
strain εY.

The load-displacement diagram for a prismatic bar of elastoplastic
material subjected to a tensile load (Fig. 2-73) has the same shape as the
stress-strain diagram. Initially, the bar elongates in a linearly elastic man-
ner and Hooke’s law is valid. Therefore, in this region of loading we can
find the change in length from the familiar formula δ � PL/EA. Once the
yield stress is reached, the bar may elongate without an increase in load,
and the elongation has no specific magnitude. The load at which yielding
begins is called the yield load PY and the corresponding elongation of the
bar is called the yield displacement δY. Note that for a single prismatic bar,
the yield load PY equals σYA and the yield displacement δY equals
PYL/EA, or σYL/E. (Similar comments apply to a bar in compression, pro-
vided buckling does not occur.)

If  a structure consisting only of axially loaded members is statically
determinate (Fig. 2-74), its overall behavior follows the same pattern. The
structure behaves in a linearly elastic manner until one of its members
reaches the yield stress. Then that member will begin to elongate (or
shorten) with no further change in the axial load in that member. Thus, the
entire structure will yield, and its load-displacement diagram has the same
shape as that for a single bar (Fig. 2-73).

Statically Indeterminate Structures
The situation is more complex if  an elastoplastic structure is statically
indeterminate. If  one member yields, other members will continue to resist
any increase in the load. However, eventually enough members will yield
to cause the entire structure to yield.

To illustrate the behavior of a statically indeterminate structure, we will
use the simple arrangement shown in Fig. 2-75 on the next page. This struc-
ture consists of three steel bars supporting a load P applied through a rigid
plate. The two outer bars have length L1, the inner bar has length L2, and
all three bars have the same cross-sectional area A. The stress-strain dia-
gram for the steel is idealized as shown in Fig. 2-72, and the modulus of
elasticity in the linearly elastic region is E � σY /εY.

As is normally the case with a statically indeterminate structure, we
begin the analysis with the equations of equilibrium and compatibility.
From equilibrium of the rigid plate in the vertical direction we obtain

(2-75)2F1 � F2 � P

214

Fig. 2-72
Idealized stress-strain diagram

for an elastoplastic material,
such as structural steel
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2.12 Elastoplastic Analysis 215

where F1 and F2 are the axial forces in the outer and inner bars, respec-
tively. Because the plate moves downward as a rigid body when the load is
applied, the compatibility equation is

(2-76)

where δ1 and δ2 are the elongations of  the outer and inner bars, respec-
tively. Because they depend only upon equilibrium and geometry, the two
preceding equations are valid at all levels of  the load P; it does not mat-
ter whether the strains fall in the linearly elastic region or in the plastic
region.

When the load P is small, the stresses in the bars are less than the yield
stress σY and the material is stressed within the linearly elastic region.
Therefore, the force-displacement relations between the bar forces and their
elongations are

(2-77a,b)

Substituting in the compatibility equation [Eq. (2-76)], we get

(2-78)

Solving simultaneously Eqs. (2-75) and (2-78), we obtain

(2-79a,b)

Thus, we have now found the forces in the bars in the linearly elastic
region. The corresponding stresses are

(2-80a,b)

These equations for the forces and stresses are valid provided the stresses
in all three bars remain below the yield stress σY.

As the load P gradually increases, the stresses in the bars increase until
the yield stress is reached in either the inner bar or the outer bars. Let us
assume that the outer bars are longer than the inner bar, as sketched in
Fig. 2-75:

(2-81)

Then the inner bar is more highly stressed than the outer bars [see 
Eqs. (2-80a and b)] and will reach the yield stress first. When that hap-
pens, the force in the inner bar is F2 � σYA. The magnitude of  the load
P when the yield stress is first reached in any one of  the bars is called the
yield load PY. We can determine PY by setting F2 equal to σYA in Eq. (2-79b)
and solving for the load:

(2-82)

δ1 � δ2

PY � σYAa1 �
2L2

L1

b

L1 7 L2

σ1 �
F1

A
�

PL2

A(L1 � 2L2)
σ2 �

F2

A
�

PL1

A(L1 � 2L2)

F1 �
PL2

L1 � 2L2

F2 �
PL1

L1 � 2L2

F1L1 � F2L2

δ1 �
F1L1

EA
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F2L2

EA

P
Rigid
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F1

L1

F2

F1

L1

L2

Fig. 2-75
Elastoplastic analysis of a statically
indeterminate structure
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Chapter 2  Axially Loaded Members

As long as the load P is less than PY, the structure behaves in a linearly
elastic manner and the forces in the bars can be determined from 
Eqs. (2-79a and b).

The downward displacement of the rigid bar at the yield load, called
the yield displacement δY, is equal to the elongation of the inner bar when
its stress first reaches the yield stress σY:

(2-83)

The relationship between the applied load P and the downward displace-
ment δ of the rigid bar is portrayed in the load-displacement diagram
of Fig. 2-76. The behavior of the structure up to the yield load PY is rep-
resented by line OA.

δY �
F2L2

EA
�

σ2L2

E
�

σYL2

E

216

P

A

B C
PY

  Y
O

PP

  Pd dd

Fig. 2-76
Load-displacement diagram for

the statically indeterminate
structure shown in Fig. 2-75

With a further increase in the load, the forces F1 in the outer bars
increase but the force F2 in the inner bar remains constant at the value
σYA because this bar is now perfectly plastic (see Fig. 2-73). When the
forces F1 reach the value σYA, the outer bars also yield and therefore the
structure cannot support any additional load. Instead, all three bars will
elongate plastically under this constant load, called the plastic load PP.
The plastic load is represented by point B on the load-displacement dia-
gram (Fig. 2-76), and the horizontal line BC represents the region of
continuous plastic deformation without any increase in the load.

The plastic load PP can be calculated from static equilibrium [Eq. (2-75)]
knowing that

(2-84 a,b)

Thus, from equilibrium we find

(2-85)

The plastic displacement δP at the instant the load just reaches the plastic
load PP is equal to the elongation of the outer bars at the instant they
reach the yield stress. Therefore,

(2-86)δP �
F1L1

EA
�

σ1L1

E
�

σYL1

E

PP � 3σYA

F1 � σYA F2 � σYA

77742_02_ch02_p122-261.qxd:77742_02_ch02_p122-261.qxd  3/2/12  2:45 PM  Page 216

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.12 Elastoplastic Analysis 217

Comparing δP with δY, we see that in this example the ratio of the plastic
displacement to the yield displacement is

(2-87)

Also, the ratio of the plastic load to the yield load is

(2-88)

For example, if L1 � 1.5L2, the ratios are δP/δY � 1.5 and PP/PY � 9/7 � 1.29.
In general, the ratio of the displacements is always larger than the ratio of
the corresponding loads, and the partially plastic region AB on the load-
 displacement diagram (Fig. 2-76) always has a smaller slope than does
the elastic region OA. Of course, the fully plastic region BC has the smallest
slope (zero).

General Comments
To understand why the load-displacement graph is linear in the partially
plastic region (line AB in Fig. 2-76) and has a slope that is less than in the
linearly elastic region, consider the following. In the partially plastic
region of the structure, the outer bars still behave in a linearly elastic man-
ner. Therefore, their elongation is a linear function of the load. Since their
elongation is the same as the downward displacement of the rigid plate,
the displacement of the rigid plate must also be a linear function of the
load. Consequently, we have a straight line between points A and B.
However, the slope of the load-displacement diagram in this region is less
than in the initial linear region because the inner bar yields plastically and
only the outer bars offer increasing resistance to the increasing load. In
effect, the stiffness of the structure has diminished.

From the discussion associated with Eq. (2-85) we see that the calcu-
lation of the plastic load PP requires only the use of statics, because all
members have yielded and their axial forces are known. In contrast, the
calculation of the yield load PY requires a statically indeterminate analy-
sis, which means that equilibrium, compatibility, and force-displacement
equations must be solved.

After the plastic load PP is reached, the structure continues to deform
as shown by line BC on the load-displacement diagram (Fig. 2-76). Strain
hardening occurs eventually, and then the structure is able to support
additional loads. However, the presence of very large displacements usu-
ally means that the structure is no longer of use, and so the plastic load PP
is usually considered to be the failure load.

The preceding discussion has dealt with the behavior of a structure
when the load is applied for the first time. If  the load is removed before the
yield load is reached, the structure will behave elastically and return to its
original unstressed condition. However, if  the yield load is exceeded, some
members of the structure will retain a permanent set when the load is
removed, thus creating a prestressed condition. Consequently, the struc-
ture will have residual stresses in it even though no external loads are act-
ing. If  the load is applied a second time, the structure will behave in a
different manner.

PP

PY

�
3L1

L1 � 2L2

δP

δY

�
L1

L2
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Chapter 2  Axially Loaded Members218

The structure shown in Fig. 2-77a consists of a horizontal beam AB (assumed
to be rigid) supported by two identical bars (bars 1 and 2) made of an elasto-
plastic material. The bars have length L and cross-sectional area A, and
the material has yield stress σY, yield strain εY, and modulus of elasticity 
E � σY /εY. The beam has length 3b and supports a load P at end B.

(a) Determine the yield load PY and the corresponding yield displacement δY
at the end of the bar (point B).

(b) Determine the plastic load PP and the corresponding plastic displace-
ment δP at point B.

(c) Construct a load-displacement diagram relating the load P to the dis-
placement δB of point B.

Example 2-20• • •

Solution
Equation of equilibrium. Because the structure is statically indeterminate,
we begin with the equilibrium and compatibility equations. Considering the
equilibrium of beam AB, we take moments about point A and obtain

in which F1 and F2 are the axial forces in bars 1 and 2, respectively. This equa-
tion simplifies to

(g)

Equation of compatibility. The compatibility equation is based upon the
geometry of the structure. Under the action of the load P the rigid beam
rotates about point A, and therefore the downward displacement at every
point along the beam is proportional to its distance from point A. Thus, the
compatibility equation is

(h)

where δ2 is the elongation of bar 2 and δ1 is the elongation of bar 1.

δ2 � 2δ1

F1 � 2F2 � 3P

©MA � 0 F1(b) � F2(2b) � P(3b) � 0

(b)(a)

P

P

BA
A

B C
PY

  B  Y
O

  P = 2  Y

PYPP = 6
5

F1 F2

b b b

L1 2

dddd

Fig. 2-77
Example 2-20: Elastoplastic
analysis of a statically
 indeterminate structure
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2.12 Elastoplastic Analysis 219

(a) Yield load and yield displacement. When the load P is small and the
stresses in the material are in the linearly elastic region, the force-
 displacement relations for the two bars are

(i,j)

Combining these equations with the compatibility condition [Eq. (h)]
gives

(k)

Now substituting into the equilibrium equation [Eq. (g)], we find

(l,m)

Bar 2, which has the larger force, will be the first to reach the yield
stress. At that instant the force in bar 2 will be F2 � σYA. Substituting
that value into Eq. (m) gives the yield load PY, as follows:

(2-89)

The corresponding elongation of bar 2 [from Eq. (j)] is δ2 � σYL/E, and
therefore the yield displacement at point B is

(2-90)

Both PY and δY are indicated on the load-displacement diagram 
(Fig. 2-77b).

(b) Plastic load and plastic displacement. When the plastic load PP is reached,
both bars will be stretched to the yield stress and both forces F1 and F2
will be equal to σYA. It follows from equilibrium [Eq. (g)] that the plas-
tic load is

(2-91)

At this load, the left-hand bar (bar 1) has just reached the yield stress;
therefore, its elongation [from Eq. (i)] is δ1 � σYL/E, and the plastic dis-
placement of point B is

(2-92)

The ratio of the plastic load PP to the yield load PY is 6/5, and the ratio
of the plastic displacement δP to the yield displacement δY is 2. These val-
ues are also shown on the load-displacement diagram.

(c) Load-displacement diagram. The complete load-displacement behavior
of the structure is pictured in Fig. 2-77b. The behavior is linearly elastic in
the region from O to A, partially plastic from A to B, and fully plastic
from B to C.

➥

➥

➥

➥

δP � 3δ1 �
3σYL

E

PP � σYA

δY �
3δ2

2
�

3σYL

2E

PY �
5σYA

6

δ1 �
F1L

EA
δ2 �

F2L

EA

F2L

EA
� 2

F1L

EA
or F2 � 2F1

F1 �
3P
5

F2 �
6P
5
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220

CHAPTER SUMMARY & REVIEW

In Chapter 2, we investigated the behavior of axially loaded bars acted on
by distributed loads, such as self-weight, and also temperature changes
and prestrains. We developed force-displacement relations for use in com-
puting changes in lengths of bars under both uniform (i.e., constant force
over its entire length) and nonuniform conditions (i.e., axial forces, and
perhaps also cross-sectional area, vary over the length of the bar). Then,
equilibrium and compatibility equations were developed for statically
indeterminate structures in a superposition procedure leading to solution
for all unknown forces, stresses, etc. We developed equations for normal
and shear stresses on inclined sections and, from these equations, found
maximum normal and shear stresses along the bar. The major concepts
presented in this chapter are as follows:

1. The elongation or shortening (δ) of prismatic bars subjected to ten-
sile or compressive centroidal loads is proportional to both the load
(P) and the length (L) of the bar, and inversely proportional to the
axial rigidity (EA) of the bar; this relationship is called a force-
 displacement relation.

2. Cables are tension-only elements, and an effective modulus of elastic-
ity (Ee) and effective cross-sectional area (Ae) should be used to
account for the tightening effect that occurs when cables are placed
under load.

3. The axial rigidity per unit length of a bar is referred to as its stiffness
(k), and the inverse relationship is the flexibility (f) of the bar.

4. The summation of the displacements of the individual segments of
a nonprismatic bar equals the elongation or shortening of the entire
bar (δ).

δ �a

n

i � 1

NiLi

EiAi

δ � Pf �
P
k

f �
L

EA
�

1
k

δ �
PL
EA
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221221

Free-body diagrams are used to find the axial force (Ni) in each seg-
ment i; if  axial forces and/or cross-sectional areas vary continuously,
an integral expression is required.

5. If  the bar structure is statically indeterminate, additional equations
(beyond those available from statics) are required to solve for
unknown forces. Compatibility equations are used to relate bar dis-
placements to support conditions and thereby generate additional
relationships among the unknowns. It is convenient to use a superpo-
sition of “released” (or statically determinate) structures to represent
the actual statically indeterminate bar structure.

6. Thermal effects result in displacements proportional to the tempera-
ture change (ΔT) and the length (L) of the bar but not stresses in
statically determinate structures. The coefficient of thermal expan-
sion (α) of the material also is required to compute axial strains (εT)
and axial displacements (δT) due to thermal effects.

7. Misfits and prestrains induce axial forces only in statically indetermi-
nate bars.

8. Maximum normal (σmax) and shear stresses (τmax) can be obtained by
considering an inclined stress element for a bar loaded by axial
forces. The maximum normal stress occurs along the axis of the bar,
but the maximum shear stress occurs at an inclination of 45� to the
axis of the bar, and the maximum shear stress is one-half  of the
maximum normal stress.

9. A number of advanced topics were also discussed in Chapter 2 but
are not discussed in this summary. These advanced topics include:
strain energy, impact loading, fatigue, stress concentrations, nonlin-
ear behavior, and elastoplastic analysis.

δ �
3

L

0
dδ �

3

L

0

N(x)dx

EA(x)

σ max � σx τ max �
σx

2

εT � α (¢T) δT � εTL � α (¢T)L
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222 Chapter 2  Axially Loaded Members

Changes in Lengths of Axially
Loaded Members

2.2-1 The L-shaped arm ABCD shown in the figure lies in
a vertical plane and pivots about a horizontal pin at A. The
arm has constant cross-sectional area and total weight W.
A vertical spring of stiffness k supports the arm at point B.

(a) Obtain a formula for the elongation of the spring
due to the weight of the arm.

(b) Repeat part (a) if the pin support at A is moved to D.

PROBLEMS CHAPTER 2

2.2-3 A steel wire and an aluminum alloy wire have equal
lengths and support equal loads P (see figure). The moduli of
elasticity for the steel and aluminum alloy are Es � 206 GPa
and Ea � 76 GPa, respectively.

(a) If  the wires have the same diameters, what is the
ratio of the elongation of the aluminum alloy wire to the
elongation of the steel wire?

(b) If  the wires stretch the same amount, what is the
ratio of the diameter of the aluminum alloy wire to the
diameter of the steel wire?

(c) If  the wires have the same diameters and same load
P, what is the ratio of the initial length of the aluminum
alloy wire to that of the steel wire if  the aluminum alloy
wire stretches 1.5 times that of the steel wire?

(d) If  the wires have the same diameters, same initial
length, and same load P, what is the material of the upper
wire if  it elongates 1.7 times that of the steel wire?

bb

A B C

D

k

b
2
—

2.2-2 A steel cable with nominal diameter 25 mm (see
Table 2-1) is used in a construction yard to lift a bridge
 section weighing 38 kN, as shown in the figure. The cable
has an effective modulus of elasticity E � 140 GPa.

(a) If  the cable is 14 m long, how much will it stretch
when the load is picked up?

(b) If the cable is rated for a maximum load of 70 kN,
what is the factor of safety with respect to failure of the cable?

P

Steel
wire

P

Aluminum alloy
wire

2.2-4 By what distance h does the cage shown in the figure
move downward when the weight W is placed inside it?
(See the figure.)

Consider only the effects of the stretching of the cable,
which has axial rigidity EA � 10,700 kN. The pulley at A
has diameter dA � 300 mm and the pulley at B has diame-
ter dB � 150 mm. Also, the distance L1 � 4.6 m, the dis-
tance L2 � 10.5 m, and the weight W � 22 kN. (Note:
When calculating the length of the cable, include the parts
of the cable that go around the pulleys at A and B.)

PROB. 2.2-1

PROB. 2.2-2

PROB. 2.2-3
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2.2-5 A safety valve on the top of a tank containing steam
under pressure p has a discharge hole of diameter d (see
figure). The valve is designed to release the steam when the
pressure reaches the value pmax.

If  the natural length of the spring is L and its stiffness
is k, what should be the dimension h of the valve? (Express
your result as a formula for h.)

(c) Let x � 7b/8. What is Pmax (N) if θ cannot exceed 2�?
Include spring kr in your analysis.

(d) Now, if  the weight of the pointer ABC is known to
be Wp � 3 N and the weight of the spring is Ws � 2.75 N,
what initial angular position (i.e., θ in degrees) of the
pointer will result in a zero reading on the angular scale
once the pointer is released from rest? Assume P � kr � 0.

(e) If  the pointer is rotated to a vertical position (see
figure part c), find the required load P, applied at mid-
height of the pointer, that will result in a pointer reading
of θ � 2.5� on the scale. Consider the weight of the pointer
Wp in your analysis.

L1

L2

A

B

W

Cage

h

p

d

2.2-6 The device shown in the figure consists of a pris-
matic rigid pointer ABC supported by a uniform transla-
tional spring of stiffness k � 950 N/m. The spring is
positioned at distance b = 165 mm from the pinned end A
of the pointer. The device is adjusted so that when there is
no load P, the pointer reads zero on the angular scale.

(a) If  the load P � 11 N, at what distance x should
the load be placed so that the pointer will read θ � 2.5� on
the scale (see figure part a)?

(b) Repeat part (a) if  a rotational spring kr � kb2 is
added at A (see figure part b).

k

kr

0
θ

A B

P

C
x

b b/2

k

0
A B

P

(a)

(b)

C
x

b b/2

kr

Wp

(c)

k

0

A

B

P

C

b

b/2

3b/4

PROB. 2.2-4

PROB. 2.2-5

PROB. 2.2-6
223Problems Chapter 2
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Chapter 2  Axially Loaded Members224

2.2-7 Two rigid bars are connected to each other by two
linearly elastic springs. Before loads are applied, the
lengths of the springs are such that the bars are parallel
and the springs are without stress.

(a) Derive a formula for the displacement δ4 at point 4
when the load P is applied at joint 3 and moment PL is
applied at joint 1, as shown in the figure part a. (Assume
that the bars rotate through very small angles under the
action of the load P.)

(b) Repeat part (a) if  a rotational spring, kr � kL2, is
now added at joint 6. What is the ratio of the deflection δ4
in the figure part a to that in the figure part b ?

P

L

2L/3

L/3

k

δ4

2k

PL
1 2Rigid bar

Rigid bar

3

5

(a)

4 6

P

L kr = kL2
2L/3

L/3

k

δ4

2k

PL
1 2Rigid bar

Rigid bar

3

5

(b)

4
6

2.2-8 The three-bar truss ABC shown in the figure part a
has a span L � 3 m and is constructed of steel pipes hav-
ing cross-sectional area A � 3900 mm2 and modulus of
elasticity E � 200 GPa. Identical loads P act both verti-
cally and horizontally at joint C, as shown.

(a) If  P � 475 kN, what is the horizontal displace-
ment of joint B?

(b) What is the maximum permissible load value Pmax
if the displacement of joint B is limited to 1.5 mm?

(c) Repeat parts (a) and (b) if  the plane truss is
replaced by a space truss (see figure part b).

L

A B
45° 45°

P

P

C

(a)

y

P

P

Cz

Az
Ay

Ax
Bz

By

C L

L/2

A

B
x

c

z

aL/2

L/2

(b)

2.2-9 An aluminum wire having a diameter d � 2 mm and
length L � 3.8 m is subjected to a tensile load P (see
 figure). The aluminum has modulus of elasticity E �

75 GPa.
If the maximum permissible elongation of the wire is

3 mm and the allowable stress in tension is 60 MPa, what
is the allowable load Pmax?

P
dP

  L 

PROB. 2.2-7

PROB. 2.2-8

PROB. 2.2-9
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Problems Chapter 2

2.2-10 A uniform bar AB of weight W � 25 N is sup-
ported by two springs, as shown in the figure. The spring
on the left has stiffness k1 � 300 N/m and natural length
L1 � 250 mm. The corresponding quantities for the spring
on the right are k2 � 400 N/m and L2 � 200 mm. The dis-
tance between the springs is L � 350 mm, and the spring
on the right is suspended from a support that is distance
h � 80 mm below the point of support for the spring on
the left. Neglect the weight of the springs.

(a) At what distance x from the left-hand spring 
(figure part a) should a load P � 18 N be placed in order
to bring the bar to a horizontal position?

(b) If  P is now removed, what new value of k1 is
required so that the bar (figure part a) will hang in a hori-
zontal position under weight W?

(c) If  P is removed and k1 � 300 N/m, what distance
b should spring k1 be moved to the right so that the bar
(figure part a) will hang in a horizontal position under
weight W?

(d) If  the spring on the left is now replaced by two
springs in series (k1 � 300N/m, k3) with overall natural
length L1 � 250 mm (see figure part b), what value of k3 is
required so that the bar will hang in a horizontal position
under weight W?

225

2.2-11 A hollow, circular, cast-iron pipe (Ec � 83 GPa) sup-
ports a brass rod (Eb � 96 GPa) and weight W � 9 kN, as
shown. The outside diameter of the pipe is dc � 150 mm.

(a) If the allowable compressive stress in the pipe is
35 MPa and the allowable shortening of the pipe is 0.5 mm,
what is the minimum required wall thickness tc,min? (Include
the weights of the rod and steel cap in your calculations.)

(b) What is the elongation of the brass rod δr due to
both load W and its own weight?

(c) What is the minimum required clearance h?

(a)

L1
2
—

W

h

L

A

k3

L1
2
—

k1 k2
L2

B

P

W

New position of
k1 for part (c) only

Load P for
part (a) only

x

h

L

A

k1
L1 k2

L2

B

b

(b)

Steel cap
(ts = 25 mm)

Cast iron pipe
(dc = 150 mm, tc)

W

Lc  = 1.25 m

h

Lr = 1.1 m

Nut and washer
(dw = 18 mm)

Brass rod
(dr = 12 mm)

2.2-12 The horizontal rigid beam ABCD is supported by
vertical bars BE and CF and is loaded by vertical forces  
P1 � 400 kN and P2 � 360 kN acting at points A and D,
respectively (see figure). Bars BE and CF are made of steel
(E � 200 GPa) and have cross-sectional areas ABE �

11,100 mm2 and ACF � 9280 mm2. The distances between
various points on the bars are shown in the figure.

Determine the vertical displacements δA and δD of
points A and D, respectively.

A

P1 = 400 kN P2 = 360 kN

B C

1.5 m 1.5 m

2.4 m

0.6 m

2.1 m

D

F

E

PROB. 2.2-10 PROB. 2.2-12

PROB. 2.2-11
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Chapter 2  Axially Loaded Members

(b) Repeat part (a) if  a translational spring k1 � k/2 is
added at C and a rotational spring kr � kb2/2 is added at A
(see figure part b).

2.2-15 Solve the preceding problem for the following data:
b � 300 mm, k = 7.8 kN/m, α � 55�, and P � 100 N.

226

2.2-13 Two pipe columns (AB, FC) are pin connected to a
rigid beam (BCD), as shown in the figure. Each pipe col-
umn has a modulus of E, but heights (L1 or L2) and outer
diameters (d1 or d2) are different for each column. Assume
the inner diameter of each column is 3/4 of outer diame-
ter. Uniformly distributed downward load q � 2P/L is
applied over a distance of 3L/4 along BC, and concen-
trated load P/4 is applied downward at D.

(a) Derive a formula for the displacement δD at point
D in terms of P and column flexibilities f1 and f2.

(b) If  d1 � (9/8)d2, find the L1/L2 ratio so that beam
BCD displaces downward to a horizontal position under
the load system in part (a).

(c) If  L1 � 2L2, find the d1/d2 ratio so that beam BCD
displaces downward to a horizontal position under the
load system in part (a).

(d) If  d1 � (9/8)d2 and L1/L2 � 1.5, at what horizon-
tal distance x from B should load P/4 be placed so that
beam BCD displaces downward to a horizontal position
under the load system in part (a)?

3L/4

Rigid beam
Pin

2

Pin

L2,

d2d1

x

B DC

P/4q = 2P/L

EL1, E

A F

3L/4

1

L/4

2.2-14 A framework ABC consists of two rigid bars AB
and BC, each having a length b (see the first part of the
 figure part a). The bars have pin connections at A, B, and
C, and are joined by a spring of stiffness k. The spring is
attached at the midpoints of the bars. The framework has
a pin support at A and a roller support at C, and the bars
are at an angle α to the horizontal.

When a vertical load P is applied at joint B (see the
second part of the figure part a) the roller support C moves
to the right, the spring is stretched, and the angle of the
bars decreases from α to the angle θ.

(a) Determine the angle θ and the increase δ in the
 distance between points A and C. Also find reactions at A
and C. (Use the following data: b = 200 mm, k � 3.2 kN/m,
α � 45�, and P � 50 N.)

a a

k

A C

B

b
2
—

b
2
—

b
2
—

b
2
—

A C

B

uu

P

(a) Initial and displaced structures

A
C

B

uu

P

k
kr

k1

(b) Displaced structures

PROB. 2.2-14 and 2.2-15

Changes in Lengths Under
Nonuniform Conditions

2.3-1 (a) Calculate the elongation of a copper bar of solid
circular cross section with tapered ends when it is stretched
by axial loads of magnitude 14 kN (see figure).

The length of  the end segments is 500 mm and the
length of  the prismatic middle segment is 1250 mm. Also,
the diameters at cross sections A, B, C, and D are 12, 24,
24, and 12 mm, respectively, and the modulus of  elasticity
is 120 GPa. (Hint: Use the result of  Example 2-4.)

PROB. 2.2-13
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Problems Chapter 2

(b) If  the total elongation of the bar cannot exceed
0.635 mm, what are the required diameters at B and C?
Assume that diameters at A and D remain at 12 mm.

227

(c) If  P3 remains at 5780 N, what revised cross-sec-
tional area for segment AB will result in no change of
length when all three loads are applied?

PROB. 2.3-1

2.3-2 A long, rectangular copper bar under a tensile load
P hangs from a pin that is supported by two steel posts
(see figure). The copper bar has a length of 2.0 m, a cross-
sectional area of 4800 mm2, and a modulus of elasticity 
Ec � 120 GPa. Each steel post has a height of 0.5 m, a
cross-sectional area of 4500 mm2, and a modulus of elas-
ticity Es � 200 GPa.

(a) Determine the downward displacement δ of the
lower end of the copper bar due to a load P � 180 kN.

(b) What is the maximum permissible load Pmax if  the
displacement δ is limited to 1.0 mm?

P

Steel
post

Copper
bar

PROB. 2.3-2

2.3-3 An aluminum bar AD (see figure) has a cross-
sectional area of  A � 250 mm2 and is loaded by forces
P1 � 7560 N, P2 � 5340 N, and P3 � 5780 N. The
lengths of  the segments of  the bar are a � 1525 mm,
b � 610 mm, and c � 910 mm.

(a) Assuming that the modulus of  elasticity 
E � 72 GPa, calculate the change in length of the bar. Does
the bar elongate or shorten?

(b) By what amount P should the load P3 be
increased so that the bar does not change in length when
the three loads are applied?

a b c

B

P1 P2
P3

A C D

PROB. 2.3-3

2.3-4 A rectangular bar of  length L has a slot in the mid-
dle half  of  its length (see figure). The bar has width b,
thickness t, and modulus of  elasticity E. The slot has
width b/4.

(a) Obtain a formula for the elongation δ of the bar
due to the axial loads P.

(b) Calculate the elongation of the bar if  the material
is high-strength steel, the axial stress in the middle region
is 160 MPa, the length is 750 mm, and the modulus of elas-
ticity is 210 GPa.

(c) If  the total elongation of  the bar is limited to
δmax � 0.475 mm, what is the maximum length of  the
slotted region? Assume that the axial stress in the middle
region remains at 160 MPa.

PROBS. 2.3-4 and 2.3-5

b
4
—

L
4
—

L
4
—

L
2
—

b t

P

P

2.3-5 Solve the preceding problem if the axial stress in the
middle region is E � 207 GPa, the length is L � 760 mm,
and the modulus of elasticity is σmid � 165 MPa. In part (c),
assume that δmax � 0.5 mm.

A B
C

D

14 kN500 mm

500 mm
14 kN

1250 mm
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Chapter 2  Axially Loaded Members

2.3-8 A bar ABC of length L consists of  two parts of
equal lengths but different diameters. Segment AB has
diameter d1 � 100 mm, and segment BC has diameter 
d2 � 60 mm. Both segments have length L/2 � 0.6 m. A
longitudinal hole of  diameter d is drilled through segment
AB for one-half  of  its length (distance L/4 � 0.3 m).
The bar is made of plastic having modulus of  elasticity 
E � 4.0 GPa. Compressive loads P � 110 kN act at the
ends of  the bar.

(a) If  the shortening of the bar is limited to 8.0 mm,
what is the maximum allowable diameter dmax of the hole?
(See figure part a.)

(b) Now, if  dmax is instead set at d2/2, at what distance
b from end C should load P be applied to limit the bar
shortening to 8.0 mm? (See figure part b.)

(c) Finally, if loads P are applied at the ends and 
dmax � d2/2, what is the permissible length x of the hole if
shortening is to be limited to 8.0 mm? (See figure part c.)

228

2.3-6 A two-story building has steel columns AB in the first
floor and BC in the second floor, as shown in the figure.
The roof load P1 equals 400 kN and the second-floor load
P2 equals 720 kN. Each column has length L � 3.75 m. The
cross-sectional areas of the first- and second-floor columns
are 11,000 mm2 and 3900 mm2, respectively.

(a) Assuming that E � 206 GPa, determine the total
shortening δAC of the two columns due to the combined
action of the loads P1 and P2.

(b) How much additional load P0 can be placed at the
top of the column (point C) if  the total shortening δAC is
not to exceed 4.0 mm?

P1 = 400 kN

P2 = 720 kN
B

A

C

L = 3.75 m

L = 3.75 m

2.3-7 A steel bar 2.4 m long has a circular cross section of
diameter d1 � 20 mm over one-half  of its length and diam-
eter d2 � 12 mm over the other half  (see figure part a). The
modulus of elasticity is E � 205 GPa.

(a) How much will the bar elongate under a tensile
load P � 22 kN?

(b) If  the same volume of material is made into a bar
of constant diameter d and length 2.4 m, what will be the
elongation under the same load P?

(c) If the uniform axial centroidal load q � 18.33 kN/m
is applied to the left over segment 1 (see figure part b), find
the ratio of the total elongation of the bar to that in parts
(a) and (b).

d1 = 20 mm

P

d2 = 12 mm

1.2 m 1.2 m

P = 22 kN

(a)

(c)

d2

d1P P

A B
C

x L
2 � x— L

2
—

dmax =
d2
2
—

d1 = 20 mm d2 = 12 mm

1.2 m 1.2 m

P = 22 kN

q = 18.33 kN/m

(b)

PROB. 2.3-6

PROB. 2.3-7 PROB. 2.3-8

(b)

d2

d1

L
4

P

P

b

A B
C

— L
4

— L
2

—

dmax =
d2
2
—

(a)

d2
dmax

d1

L
4

P P

A B
C

— L
4

— L
2

—
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Problems Chapter 2

2.3-9 A wood pile, driven into the earth, supports a load
P entirely by friction along its sides (see figure part a).
The friction force f per unit length of  pile is assumed to
be uniformly distributed over the surface of  the pile. The
pile has length L, cross-sectional area A, and modulus of
elasticity E.

229

(a) Derive a formula for the shortening δ of the pile in
terms of P, L, E, and A.

(b) Draw a diagram showing how the compressive
stress σc varies throughout the length of the pile.

(c) Repeat parts (a) and (b) if  skin friction f varies
 linearly with depth (see figure part b).

L

P

(a)

f

f

SkinSkin
friction friction ff
uniformuniform

Skin
friction f
uniform

L

y

P

f

f(y) = f0 (1 – y/L)

Skin friction f
varies linearly
with depth

f0

(b)

PROB. 2.3-9

2.3-10 Consider the copper tubes joined below using a
“sweated” joint. Use the properties and dimensions given.

(a) Find the total elongation of segment 2-3-4 (δ2-4) for
an applied tensile force of P � 5 kN. Use Ec � 120 GPa.

(b) If  the yield strength in shear of the tin-lead solder
is τy � 30 MPa and the tensile yield strength of the copper

is σy � 200 MPa, what is the maximum load Pmax that can
be applied to the joint if  the desired factor of safety in
shear is FSτ � 2 and in tension is FSσ � 1.7?

(c) Find the value of L2 at which tube and solder
capacities are equal.

PROB. 2.3-10

(© Barry Goodno)

Solder joints

Tin-lead solder in space
between copper tubes;
assume thickness of
solder equals zero

Segment number

L2 L4L3

Sweated
joint

1 2 3 4 5
P P

d0 = 22.2 mm
t = 1.65 mm

d0 = 18.9 mm
t = 1.25 mm

L3 = 40 mm
L2 = L4 = 18 mm
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Chapter 2  Axially Loaded Members

(b) What is the elongation δB of the entire bar?
(c) What is the ratio β of the elongation of the upper

half of the bar to the elongation of the lower half of the bar?
(d) If bar AB is a riser pipe hanging from a drill rig at

sea, what is the total elongation of the pipe? Let L � 1500 m,
A � 0.0157 m2, E � 210 GPa. See Appendix H for weight
densities of steel and sea water. (See Probs. 1.4-2 and 1.7-11
for additional figures.)

230

2.3-11 The nonprismatic cantilever circular bar shown has
an internal cylindrical hole of diameter d/2 from 0 to x, so
the net area of the cross section for segment 1 is (3/4)A.
Load P is applied at x, and load P/2 is applied at x � L.
Assume that E is constant.

(a) Find reaction force R1.
(b) Find internal axial forces Ni in segments 1 and 2.
(c) Find x required to obtain axial displacement at

joint 3 of δ3 � PL/EA.
(d) In part (c), what is the displacement at joint 2, δ2?
(e) If  P acts at x � 2L/3 and P/2 at joint 3 is replaced

by βP, find β so that δ3 � PL/EA.
(f) Draw the axial force (AFD: N(x), 0 � x � L) and

axial displacement diagrams (ADD: δ(x), 0 � x � L) using
results from parts (b) through (d).

2 3

d
A

Segment 1 Segment 2

R1

d
2
—

P
2
—

A
3
4
—

L – xx

00AFD

00ADD

P

PROB. 2.3-11

2.3-12 A prismatic bar AB of length L, cross-sectional
area A, modulus of elasticity E, and weight W hangs ver-
tically under its own weight (see figure).

(a) Derive a formula for the downward displacement
δC of point C, located at distance h from the lower end of
the bar.

L

h

B

A

C

PROB. 2.3-12

P

P

t

b1

b2

L

PROB. 2.3-13

2.3-13 A flat bar of rectangular cross section, length L,
and constant thickness t is subjected to tension by forces P
(see figure). The width of the bar varies linearly from b1 at
the smaller end to b2 at the larger end. Assume that the
angle of taper is small.

(a) Derive the following formula for the elongation
of  the bar:

(b) Calculate the elongation, assuming L � 1.5 m, 
t � 25 mm, P � 125 kN, b1 � 100 mm, b2 � 150 mm, and 
E � 200 GPa.

δ �
PL

Et(b2 � b1)
ln

b2

b1
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Problems Chapter 2 231

2.3-15 A long, slender bar in the shape of a right circular
cone with length L and base diameter d hangs vertically
under the action of its own weight (see figure). The weight
of the cone is W and the modulus of elasticity of the mate-
rial is E.

Derive a formula for the increase δ in the length of
the bar due to its own weight. (Assume that the angle of
taper of the cone is small.)

H

P

A

B

A b

b

B 1.5b

1.5b

PROB. 2.3-14

d

L

PROB. 2.3-15

2.3-14 A post AB supporting equipment in a laboratory is
tapered uniformly throughout its height H (see figure).
The cross sections of the post are square, with dimensions
b � b at the top and 1.5b � 1.5b at the base.

Derive a formula for the shortening δ of the post due
to the compressive load P acting at the top. (Assume that
the angle of taper is small and disregard the weight of the
post itself.)

P

(a)

(b)

P

B
x

L

P
A

dA

dA

dB

B
x

L

P
A

dA

d(x)

dB

t constant

PROB. 2.3-16

2.3-16 A uniformly tapered tube AB of circular cross sec-
tion and length L is shown in the figure. The average diam-
eters at the ends are dA and dB � 2dA. Assume E is
constant. Find the elongation δ of the tube when it is
 subjected to loads P acting at the ends. Use the following
numerical data: dA � 35 mm, L � 300 mm, E � 2.1 GPa,
P � 25 kN. Consider the following cases:

(a) A hole of constant diameter dA is drilled from B
toward A to form a hollow section of length x � L/2;

(b) A hole of variable diameter d(x) is drilled from B
toward A to form a hollow section of length x � L/2 and
constant thickness t � dA/20.
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Chapter 2  Axially Loaded Members

stant angular speed ω. Each half  of the bar (AC and BC)
has weight W1 and supports a weight W2 at its end.

Derive the following formula for the elongation of
one-half  of  the bar (that is, the elongation of  either AC
or BC):

in which E is the modulus of elasticity of the material of
the bar and g is the acceleration of gravity.

δ �
L2ω2

3gEA
(W1 � 3W2)

232

2.3-17 The main cables of a suspension bridge (see figure
part a) follow a curve that is nearly parabolic because the
primary load on the cables is the weight of the bridge deck,
which is uniform in intensity along the horizontal.
Therefore, let us represent the central region AOB of one
of the main cables (see part b of the figure) as a parabolic
cable supported at points A and B and carrying a uniform
load of intensity q along the horizontal. The span of the
cable is L, the sag is h, the axial rigidity is EA, and the ori-
gin of coordinates is at midspan.

(a) Derive the following formula for the elongation of
cable AOB shown in part b of the figure:

(b) Calculate the elongation δ of the central span of
one of the main cables of the Golden Gate Bridge, for
which the dimensions and properties are L � 1300 m, 
h � 140 m, q � 185 kN/m, and E � 200 GPa. The cable
consists of 27,572 parallel wires of diameter 5 mm.

Hint: Determine the tensile force T at any point in the
cable from a free-body diagram of part of the cable; then
determine the elongation of an element of the cable of
length ds; finally, integrate along the curve of the cable to
obtain an equation for the elongation δ.

δ �
qL3

8hEA
a1 �

16h2

3L2
b

BA

O

L
2

q

y

(b)

(a)

x

h 

— L
2
—

PROB. 2.3-17

2.3-18 A bar ABC revolves in a horizontal plane about a
vertical axis at the midpoint C (see figure). The bar, which
has length 2L and cross-sectional area A, revolves at con-

A C B
v

L L

W2 W1 W1 W2

PROB. 2.3-18

Statically Indeterminate Structures

2.4-1 The assembly shown in the figure consists of a brass
core (diameter d1 � 6 mm) surrounded by a steel shell
(inner diameter d2 � 7 mm, outer diameter d3 � 9 mm).
A load P compresses the core and shell, which have length
L � 85 mm. The moduli of elasticity of the brass and steel
are Eb � 100 GPa and Es � 200 GPa, respectively.

(a) What load P will compress the assembly by
0.1 mm?

(b) If  the allowable stress in the steel is 180 MPa and
the allowable stress in the brass is 140 MPa, what is the
allowable compressive load Pallow? (Suggestion: Use the
equations derived in Example 2-6.)

P

Steel shell
Brass core

d3

d1

d2

L

PROB. 2.4-1
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Problems Chapter 2

2.4-2 A cylindrical assembly consisting of a brass core and
an aluminum collar is compressed by a load P (see figure).
The length of the aluminum collar and brass core is
350 mm, the diameter of the core is 25 mm, and the out-
side diameter of the collar is 40 mm. Also, the moduli of
elasticity of the aluminum and brass are 72 GPa and
100 GPa, respectively.

(a) If  the length of the assembly decreases by 0.1%
when the load P is applied, what is the magnitude of the
load?

(b) What is the maximum permissible load Pmax if  the
allowable stresses in the aluminum and brass are 80 MPa
and 120 MPa, respectively? (Suggestion: Use the equations
derived in Example 2-6.)

233

2.4-4 A circular bar ACB of diameter d having a cylindri-
cal hole of length x and diameter d/2 from A to C is held
between rigid supports at A and B. A load P acts at L/2
from ends A and B. Assume E is constant.

(a) Obtain formulas for the reactions RA and RB at
supports A and B, respectively, due to the load P (see fig-
ure part a).

(b) Obtain a formula for the displacement δ at the
point of load application (see figure part a).

(c) For what value of x is RB � (6/5)RA? (See figure
part a.)

(d) Repeat part (a) if  the bar is now rotated to a verti-
cal position, load P is removed, and the bar is hanging
under its own weight (assume mass density � ρ). (See fig-
ure part b.) Assume that x � L/2.

PROB. 2.4-2

Aluminum collar

Brass core

25 mm

40 mm

P

350 mm

2.4-3 Three prismatic bars, two of material A and one of
material B, transmit a tensile load P (see figure). The two
outer bars (material A) are identical. The cross-sectional
area of the middle bar (material B) is 50% larger than the
cross-sectional area of  one of  the outer bars. Also,
the modulus of elasticity of material A is twice that of
material B.

(a) What fraction of the load P is transmitted by the
middle bar?

(b) What is the ratio of the stress in the middle bar to
the stress in the outer bars?

(c) What is the ratio of the strain in the middle bar to
the strain in the outer bars?

A

A

B
P

PROB. 2.4-3

P, d

d
d
2
—

L
2
—

(a)

C B
A

L – xx

d

d
2
—

C

B

A

L – x

x

(b)

PROB. 2.4-4
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Chapter 2  Axially Loaded Members

2.4-7 A tube structure is acted on by loads at B and D, as
shown in the figure. The tubes are joined using two flange
plates at C, which are bolted together using six 12.5 mm
diameter bolts.

(a) Derive formulas for the reactions RA and RE at the
ends of the bar.

(b) Determine the axial displacements δB, δc, and δD
at points B, C, and D, respectively.

(c) Draw an axial-displacement diagram (ADD) in
which the abscissa is the distance x from support A to any
point on the bar and the ordinate is the horizontal dis-
placement δ at that point.

(d) Find the maximum value of the load variable P if
allowable normal stress in the bolts is 96 MPa.

234

2.4-5 Three steel cables jointly support a load of 60 kN
(see figure). The diameter of the middle cable is 20 mm and
the diameter of each outer cable is 12 mm. The tensions in
the cables are adjusted so that each cable carries one-third
of the load (i.e., 20 kN). Later, the load is increased by
40 kN to a total load of 100 kN.

(a) What percent of the total load is now carried by
the middle cable?

(b) What are the stresses σM and σO in the middle and
outer cables, respectively? (Note: See Table 2-1 in Section 2.2
for properties of cables.)

PROB. 2.4-5

2.4-6 A plastic rod AB of length L � 0.5 m has a diame-
ter d1 � 30 mm (see figure). A plastic sleeve CD of length
c � 0.3 m and outer diameter d2 � 45 mm is securely
bonded to the rod so that no slippage can occur between
the rod and the sleeve. The rod is made of an acrylic with
modulus of elasticity E1 � 3.1 GPa and the sleeve is made
of a polyamide with E2 � 2.5 GPa.

(a) Calculate the elongation δ of the rod when it is
pulled by axial forces P � 12 kN.

(b) If  the sleeve is extended for the full length of the
rod, what is the elongation?

(c) If  the sleeve is removed, what is the elongation?

L

c bb

P P

A BC D

d1 d2

PROB. 2.4-6

PROB. 2.4-7

2.4-8 The fixed-end bar ABCD consists of three prismatic
segments, as shown in the figure. The end segments
have cross-sectional area A1 � 840 mm2 and length 
L1 � 200 mm. The middle segment has cross-sectional area 
A2 � 1260 mm2 and length L2 � 250 mm. Loads PB and PC
are equal to 25.5 kN and 17.0 kN, respectively.

(a) Determine the reactions RA and RD at the fixed
supports.

(b) Determine the compressive axial force FBC in the
middle segment of the bar.

A1 A1A2

A D
B C

PB PC

L1 L1L2

PROB. 2.4-8

2.4-9 The aluminum and steel pipes shown in the figure
are fastened to rigid supports at ends A and B and to a
rigid plate C at their junction. The aluminum pipe is twice
as long as the steel pipe. Two equal and symmetrically
placed loads P act on the plate at C.

(a) Obtain formulas for the axial stresses σa and σs in
the aluminum and steel pipes, respectively.

EA

x

A B C D E

Flange
plate

Flange plates at C joined
by six bolts

Bolt

EA/2

L/4 L/4

2P at x = L/4
3P at x = 3L/4

L/4 L/4
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Problems Chapter 2

(b) Calculate the stresses for the following data: P �

50 kN, cross-sectional area of aluminum pipe Aa � 6000 mm2,
cross-sectional area of steel pipe As � 600 mm2, modulus
of elasticity of aluminum Ea � 70 GPa, and modulus of
elasticity of steel Es � 200 GPa.

235

2.4-11 A bimetallic bar (or composite bar) of  square
cross section with dimensions 2b � 2b is constructed of
two different metals having moduli of  elasticity E1 and
E2 (see figure). The two parts of  the bar have the same
cross-sectional dimensions. The bar is compressed by
forces P acting through rigid end plates. The line of
action of  the loads has an eccentricity e of  such magni-
tude that each part of  the bar is stressed uniformly in
compression.

(a) Determine the axial forces P1 and P2 in the two
parts of the bar.

(b) Determine the eccentricity e of the loads.
(c) Determine the ratio σ1/σ2 of the stresses in the two

parts of the bar.

P

C

P

B

A Steel pipe

Aluminum
pipe

2L

L

PROB. 2.4-9

2.4-10 A hollow circular pipe (see figure) supports a load
P which is uniformly distributed around a cap plate at the
top of the lower pipe. The inner and outer diameters of the
upper and lower parts of the pipe are d1 � 50 mm, 
d2 � 60 mm, d3 � 57 mm, and d4 � 64 mm, respectively.
Pipe lengths are L1 � 2 m and L2 � 3 m. Neglect the self-
weight of the pipes. Assume that cap plate thickness is
small  compared to L1 and L2. Let E � 110 MPa.

(a) If  the tensile stress in the upper part is 
σ1 � 10.5 MPa, what is load P? Also, what are reactions 
R1 at the upper support and R2 at the lower support? What
is the stress σ2 (MPa) in the lower part?

(b) Find displacement δ (mm) at the cap plate. Plot
the Axial Force Diagram, AFD [N(x)] and Axial
Displacement Diagram, ADD [δ (x)].

(c) Add the uniformly distributed load q along the cen-
troidal axis of pipe segment 2. Find q (kN/m) so that R2 � 0.
Assume that load P from part (a) is also applied.

q

P

x

Cap plate

(Part (c) only)

L2

L1

d3

d4

d1

d2

PROB. 2.4-10

2b

P

e

b
b

b
b

P

e
E1

E2

PROB. 2.4-11

2.4-12 A rigid bar of weight W � 800 N hangs from three
equally spaced vertical wires (length L � 150 mm, spacing
a � 50 mm): two of steel and one of aluminum. The wires
also support a load P acting on the bar. The diameter of
the steel wires is ds � 2 mm, and the diameter of the 
aluminum wire is da � 4 mm. Assume Es � 210 GPa and 
Ea � 70 GPa.

(a) What load Pallow can be supported at the midpoint
of the bar (x � a) if  the allowable stress in the steel wires is
220 MPa and in the aluminum wire is 80 MPa? (See figure
part a.)

(b) What is Pallow if  the load is positioned at x � a/2?
(See figure part a.)

(c) Repeat part (b) if  the second and third wires are
switched as shown in figure part b.

(a)

x

aa

P

Rigid bar
of weight W

S A SL

(b)

x

aa

P

Rigid bar
of weight W

S S AL

PROB. 2.4-12
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Chapter 2  Axially Loaded Members

2.4-15 A rigid bar AB of length L � 1600 mm is hinged
to a support at A and supported by two vertical wires
attached at points C and D (see figure). Both wires have
the same cross-sectional area (A � 16 mm2) and are made
of the same material (modulus E � 200 GPa). The wire at
C has length h � 0.4 m and the wire at D has length twice
that amount. The horizontal distances are c � 0.5 m and  
d � 1.2 m.

(a) Determine the tensile stresses σC and σD in the
wires due to the load P � 970 N acting at end B of the bar.

(b) Find the downward displacement δB at end B of
the bar.

236

2.4-13 A horizontal rigid bar of weight W � 32 kN is sup-
ported by three slender circular rods that are equally spaced
(see figure). The two outer rods are made of aluminum 
(E1 � 70 GPa) with diameter d1 � 10 mm and length 
L1 � 1 m. The inner rod is magnesium (E2 � 42 GPa) with
diameter d2 and length L2. The allowable stresses in the alu-
minum and magnesium are 165 MPa and 90 MPa, respec-
tively.

If  it is desired to have all three rods loaded to their
maximum allowable values, what should be the diameter d2
and length L2 of the middle rod?

W = weight of rigid bar

d1d1

d2

L2

L1

PROB. 2.4-13

2.4-14 Three-bar truss ABC (see figure) is constructed of
steel pipes having a cross-sectional area A � 3500 mm2 and
a modulus of elasticity E = 210 GPa. Member BC is of
length L � 2.5 m, and the angle between members AC and
AB is known to be 60�. Member AC length is b � 0.71L.
Loads P � 185 kN and 2P � 370 kN act vertically and
horizontally at joint C, as shown. Joints A and B are
pinned supports. (Use the law of sines and law of cosines
to find missing dimensions and angles in the figure.)

(a) Find the support reactions at joints A and B. Use
horizontal reaction Bx as the redundant.

(b) What is the maximum permissible value of load
variable P if  the allowable normal stress in each truss
member is 150 MPa?

y

x

P

C

L
uC

uB
uA = 60°

A
B

c

b

2P

PROB. 2.4-14

P

A BDC

L

c

d

h

2h

PROB. 2.4-15

2.4-16 A rigid bar ABCD is pinned at point B and sup-
ported by springs at A and D (see figure). The springs at A
and D have stiffnesses k1 � 10 kN/m and k2 � 25 kN/m,
respectively, and the dimensions a, b, and c are 250 mm,
500 mm, and 200 mm, respectively. A load P acts at point C.

If  the angle of rotation of the bar due to the action of
the load P is limited to 3�, what is the maximum permissi-
ble load Pmax?

A B C

P

D

c = 200 mm

k1 = 10 kN/m
k2 = 25 kN/m

a = 250 mm b = 500 mm

PROB. 2.4-16

77742_02_ch02_p122-261.qxd:77742_02_ch02_p122-261.qxd  3/2/12  2:47 PM  Page 236

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems Chapter 2

2.4-17 A trimetallic bar is uniformly compressed by an axial
force P � 12 kN applied through a rigid end plate (see fig-
ure). The bar consists of a circular steel core surrounded by
brass and copper tubes. The steel core has diameter 10 mm,
the brass tube has outer diameter 15 mm, and the copper
tube has outer diameter 20 mm. The corresponding moduli
of elasticity are Es � 210 GPa, Eb � 100 GPa, and 
Ec � 120 GPa.

Calculate the compressive stresses σs, σb, and σc in the
steel, brass, and copper, respectively, due to the force P.

237

2.5-3 A rigid bar of weight W � 3560 N hangs from three
equally spaced wires, two of steel and one of aluminum
(see figure). The diameter of the wires is 32 mm. Before
they were loaded, all three wires had the same length.

What temperature increase ΔT in all three wires will
result in the entire load being carried by the steel wires?
(Assume Es � 205 GPa, αs � 12 � 10�6/�C, and 
αa � 24 � 10�6/�C.)

P = 12 kN
Copper tube Brass tube

Steel core

10
mm

15
mm

20 
mm

PROB. 2.4-17

Thermal Effects

2.5-1 The rails of  a railroad track are welded together at
their ends (to form continuous rails and thus eliminate
the clacking sound of  the wheels) when the temperature
is 10�C.

What compressive stress σ is produced in the rails
when they are heated by the sun to 52�C if  the coefficient
of thermal expansion α � 12 � 10�6/�C and the modulus
of elasticity E � 200 GPa?

2.5-2 An aluminum pipe has a length of 60 m at a temper-
ature of 10�C. An adjacent steel pipe at the same tempera-
ture is 5 mm longer than the aluminum pipe.

At what temperature (degrees Celsius) will the alu-
minum pipe be 15 mm longer than the steel pipe? (Assume
that the coefficients of thermal expansion of aluminum
and steel are αa � 23 � 10�6/�C and αs � 12 � 10�6/�C,
respectively.)

W = 3560 N

S A S

PROB. 2.5-3

2.5-4 A steel rod of 15-mm diameter is held snugly (but
without any initial stresses) between rigid walls by the
arrangement shown in figure part a. (For the steel rod, use
α � 12 � 10�6/�C and E � 200 GPa.)

(a) Calculate the temperature drop ΔT (degrees
Celsius) at which the average shear stress in the 12-mm
diameter bolt becomes 45 MPa. Also, what is the normal
stress in the rod?

(b) What are the average bearing stresses in the bolt
and clevis at A and between the washer (dw � 20 mm) and
wall (t � 18 mm) at B?

(c) If the connection to the wall at B is changed to an
end plate with two bolts (see figure part b), what is the
required diameter db of each bolt if the temperature drop is
ΔT � 38�C and the allowable bolt stress is 90 MPa?

15 mm

(a)

18 mm

12-mm diameter bolt

Clevis,
t = 10 mm

Washer,
dw = 20 mm

A

ΔT B

15 mm

(b)

Mounting
plate (t)

12-mm diameter bolt

Clevis,
t = 10 mm

Bolt and washer
(db, dw)

A

ΔT

PROB. 2.5-4
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Chapter 2  Axially Loaded Members

2.5-7 A circular steel rod AB (diameter d1 � 15 mm, length
L1 � 1100 mm) has a bronze sleeve (outer diameter d2 �

21 mm, length L2 � 400 mm) shrunk onto it so that the two
parts are securely bonded (see figure).

Calculate the total elongation δ of the steel bar due
to a temperature rise ΔT � 350�C. (Material properties are
as follows: for steel, Es � 210 GPa and αs � 12 � 10�6/�C;
for bronze, Eb � 110 GPa and αb � 20 � 10�6/�C.)

238

2.5-5 A bar AB of length L is held between rigid supports
and heated nonuniformly in such a manner that the tem-
perature increase ΔT at distance x from end A is given by
the expression ΔT � ΔTBx3/L3, where ΔTB is the increase in
temperature at end B of the bar (see figure part a).

(a) Derive a formula for the compressive stress σc in
the bar. (Assume that the material has modulus of elastic-
ity E and coefficient of thermal expansion α).

(b) Now modify the formula in part (a) if  the rigid
support at A is replaced by an elastic support at A having
a spring constant k (see figure part b). Assume that only
bar AB is subject to the temperature increase.

(a)

L

A

ΔT
ΔTB

B

x

0

(b)

L

Ak

ΔT
ΔTB

B

x

0

PROB. 2.5-5

2.5-6 A plastic bar ACB having two different solid circu-
lar cross sections is held between rigid supports as shown
in the figure. The diameters in the left- and right-hand
parts are 50 mm and 75 mm, respectively. The correspon-
ding lengths are 225 mm and 300 mm. Also, the modulus
of elasticity E is 6.0 GPa, and the coefficient of thermal
expansion α is 100 � 10�6/�C. The bar is subjected to a
uniform temperature increase of 30�C.

(a) Calculate the following quantities: (1) the com-
pressive force N in the bar; (2) the maximum compressive
stress σc; and (3) the displacement δC of point C.

(b) Repeat part (a) if  the rigid support at A is replaced
by an elastic support having spring constant k � 50 MN/m
(see figure part b; assume that only the bar ACB is subject
to the temperature increase).

(a)

300 mm

75 mm

225 mm

A BC50 mm

(b)

300 mm

75 mm

225 mm

A BC50 mmk

PROB. 2.5-6

d2d1
A B

L2

L1

PROB. 2.5-7

2.5-8 A brass sleeve S is fitted over a steel bolt B (see fig-
ure), and the nut is tightened until it is just snug. The bolt
has a diameter dB � 25 mm, and the sleeve has inside and
outside diameters d1 � 26 mm and d2 � 36 mm, respec-
tively.

Calculate the temperature rise ΔT that is required
to produce a compressive stress of 25 MPa in the sleeve.
(Use material properties as follows: for the sleeve, 
αS � 21 � 10�6/�C and ES � 100 GPa; for the bolt, 
αB � 10 � 10�6/�C and EB � 200 GPa.) (Suggestion: Use
the results of Example 2-8.)

Sleeve (S)

Bolt (B)

d2
d1

dB

PROB. 2.5-8
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Problems Chapter 2

2.5-9 Rectangular bars of copper and aluminum are held
by pins at their ends, as shown in the figure. Thin spacers
provide a separation between the bars. The copper bars
have cross-sectional dimensions 12 mm � 50 mm, and the
aluminum bar has dimensions 25 mm � 50 mm.

Determine the shear stress in the 11-mm diameter pins
if  the temperature is raised by 40�C. (For copper, 
Ec � 124 GPa and αc � 20 � 10�6/�C; for aluminum, 
Ea � 69 GPa and αa � 26 � 10�6/�C.) Suggestion: Use the
results of Example 2-8.

239

Copper bar

Copper bar

Aluminum bar

PROB. 2.5-9

2.5-10 A rigid bar ABCD is pinned at end A and supported
by two cables at points B and C (see figure). The cable at B
has nominal diameter dB � 12 mm and the cable at C has
nominal diameter dC � 20 mm. A load P acts at end D of
the bar.

What is the allowable load P if  the temperature rises
by 60�C and each cable is required to have a factor of
safety of at least 5 against its ultimate load?

(Note: The cables have effective modulus of elasticity
E � 140 GPa and coefficient of  thermal expansion 
α � 12 � 10�6/�C. Other properties of the cables can be
found in Table 2-1, Section 2.2.)

P

DCBA

b2b

dB dC

2b

PROB. 2.5-10

2.5-11 A rigid triangular frame is pivoted at C and held by
two identical horizontal wires at points A and B (see 
figure). Each wire has axial rigidity EA � 540 kN and
coefficient of thermal expansion α � 23 � 10�6/�C.

(a) If a vertical load P � 2.2 kN acts at point D, what
are the tensile forces TA and TB in the wires at A and B,
respectively?

(b) If, while the load P is acting, both wires have their
temperatures raised by 100�C, what are the forces TA and TB?

(c) What further increase in temperature will cause the
wire at B to become slack?

Misfits and Prestrains

2.5-12 A steel wire AB is stretched between rigid supports
(see figure). The initial prestress in the wire is 42 MPa
when the temperature is 20�C.

(a) What is the stress σ in the wire when the tem -
perature drops to 0�C?

(b) At what temperature T will the stress in the wire
become zero? (Assume α � 14 � 10�6/�C and E � 200 GPa.)

B

CD

A

P

b

b

2b

PROB. 2.5-11

A B

Steel wire

PROB. 2.5-12

2.5-13 A copper bar AB of length 0.635 m and diameter
50 mm is placed in position at room temperature with a
gap of 0.2 mm between end A and a rigid restraint (see fig-
ure). The bar is supported at end B by an elastic spring
with spring constant k � 210 MN/m.

(a) Calculate the axial compressive stress σc in the bar
if  the temperature of the bar only rises 27�C. (For copper,
use α � 17.5 � 10�6/�C and E � 110 GPa.)

(b) What is the force in the spring? (Neglect gravity
effects.)

(c) Repeat part (a) if  k : .

PROB. 2.5-13

0.635 m

0.2 mm

A

d = 50 mm

B

C

k
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Chapter 2  Axially Loaded Members

2.5-16 A nonprismatic bar ABC made up of segments AB
(length L1, cross-sectional area A1) and BC (length L2,
cross-sectional area A2) is fixed at end A and free at end C
(see figure). The modulus of elasticity of the bar is E. 
A small gap of dimension s exists between the end of the
bar and an elastic spring of length L3 and spring constant k3.
If  bar ABC only (not the spring) is subjected to tempera-
ture increase ΔT, determine the following.

(a) Write an expression for reaction forces RA and RD
if  the elongation of ABC exceeds gap length s.

(b) Find expressions for the displacements of points B
and C if  the elongation of ABC exceeds gap length s.

240

2.5-14 A bar AB having length L and axial rigidity EA is
fixed at end A (see figure). At the other end a small gap of
dimension s exists between the end of the bar and a rigid
surface. A load P acts on the bar at point C, which is two-
thirds of the length from the fixed end.

If the support reactions produced by the load P are to
be equal in magnitude, what should be the size s of the gap?

2.5-15 Pipe 2 has been inserted snugly into Pipe 1, but the
holes for a connecting pin do not line up: there is a gap s.
The user decides to apply either force P1 to Pipe 1 or force
P2 to Pipe 2, whichever is smaller. Determine the following
using the numerical properties in the box.

(a) If  only P1 is applied, find P1 (kN) required to close
gap s; if  a pin is then inserted and P1 removed, what are
reaction forces RA and RB for this load case?

(b) If  only P2 is applied, find P2 (kN) required to close
gap s; if  a pin is inserted and P2 removed, what are reac-
tion forces RA and RB for this load case?

(c) What is the maximum shear stress in the pipes, for
the loads in parts (a) and (b)?

(d) If  a temperature increase ΔT is to be applied to the
entire structure to close gap s (instead of applying forces P1
and P2), find the ΔT required to close the gap. If  a pin is
inserted after the gap has closed, what are reaction forces
RA and RB for this case?

(e) Finally, if  the structure (with pin inserted) then
cools to the original ambient temperature, what are reac-
tion forces RA and RB?

BA C

P

2L
3

— L
3
L
3

—
s

PROB. 2.5-14

Numerical properties
E1 = 210 GPa, E2 = 96 GPa
a1 = 12 � 10–6/°C, a2 = 21 � 10–6/°C
Gap s = 1.25 mm
L1 = 1.4 m, d1 = 152 mm, t1 = 12.5 mm, A1 = 5478 mm2

L2 = 0.9 m, d2 = 127 mm, t2 = 6.5 mm, A2 = 2461 mm2

Pipe 1 (steel) Pipe 2 (brass)
Gap s

P1

P2 at
L2
2

—

P2 P1 at L1

L2L1
RA RB

PROB. 2.5-15

s

L2, EA2 L3, k3L1, EA1

a, �TRA RDD

CBA

PROB. 2.5-16

2.5-17 Wires B and C are attached to a support at the left-
hand end and to a pin-supported rigid bar at the right-
hand end (see figure). Each wire has cross-sectional area 
A � 19.3 mm2 and modulus of elasticity E � 210 GPa.
When the bar is in a vertical position, the length of each
wire is L � 2.032 m. However, before being attached to the
bar, the length of wire B was 2.031 m and wire C was
2.030 m.

Find the tensile forces TB and TC in the wires under
the action of a force P � 3.115 kN acting at the upper end
of the bar.

2.5-18 A rigid steel plate is supported by three posts of
high-strength concrete each having an effective cross-
 sectional area A � 40,000 mm2 and length L � 2 m (see
figure). Before the load P is applied, the middle post is
shorter than the others by an amount s � 1.0 mm.

Determine the maximum allowable load Pallow if
the allowable compressive stress in the concrete is 
σallow � 20 MPa. (Use E � 30 GPa for concrete.)

B

C

2.032 m

3.115 kN

b

b

b

PROB. 2.5-17
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Problems Chapter 2 241

 elasticity for the plastic Ep � 7.5 GPa, cross-sectional
area of  one bolt As � 36.0 mm2, and cross-sectional area
of  the plastic cylinder Ap � 960 mm2.

S

P

CC C L

s

PROB. 2.5-18

2.5-19 A capped cast-iron pipe is compressed by a brass
rod, as shown. The nut is turned until it is just snug, then
add an additional quarter turn to pre-compress the
CI pipe. The pitch of the threads of the bolt is p � 1.3 mm.
Use the numerical properties provided.

(a) What stresses σp and σr will be produced in the
cast-iron pipe and brass rod, respectively, by the additional
quarter turn of the nut?

(b) Find the bearing stress σb beneath the washer and
the shear stress τc in the steel cap.

PROB. 2.5-19

L
Steel
bolt

2.5-21 Solve the preceding problem if the data for the assem-
bly are as follows: length L � 300 mm, pitch of the bolt
threads p � 1.5 mm, modulus of elasticity for steel Es �

210 GPa, modulus of elasticity for the plastic Ep � 3.5 GPa,
cross- sectional area of one bolt As � 50 mm2, and cross-sec-
tional area of the plastic cylinder Ap � 1000 mm2.

2.5-22 Consider the sleeve made from two copper tubes
joined by tin-lead solder over distance s. The sleeve has brass
caps at both ends, which are held in place by a steel bolt and
washer with the nut turned just snug at the outset. Then, two
“loadings” are applied: n � 1/2 turn applied to the nut; at the
same time the internal temperature is raised by ΔT � 30�C.

(a) Find the forces in the sleeve and bolt, Ps and PB,
due to both the prestress in the bolt and the temper -
ature increase. For copper, use Ec � 120 GPa and 
αc � 17 � 10�6/�C; for steel, use Es � 200 GPa and 
αs � 12 � 10�6/�C. The pitch of  the bolt threads is 
p � 1.0 mm. Assume s � 26 mm and bolt diameter 
db � 5 mm.

(b) Find the required length of the solder joint, s, if
shear stress in the sweated joint cannot exceed the allow-
able shear stress τaj � 18.5 MPa.

(c) What is the final elongation of the entire assem-
blage due to both temperature change ΔT and the initial
prestress in the bolt?

PROBS. 2.5-20 and 2.5-21

2.5-20 A plastic cylinder is held snugly between a rigid
plate and a foundation by two steel bolts (see figure).

Determine the compressive stress σp in the plastic
when the nuts on the steel bolts are tightened by one com-
plete turn.

Data for the assembly are as follows: length 
L � 200 mm, pitch of  the bolt threads p � 1.0 mm, mod-
ulus of  elasticity for steel Es � 200 GPa, modulus of PROB. 2.5-22

Lci  = 1.6 m

Steel cap
(tc = 25 mm)

Cast iron pipe
(do = 150 mm,
di = 143 mm)

Modulus of elasticity, E:
Steel (210 GPa)
Brass (96 GPa)
Cast iron (83 GPa)

Nut and washer
(dw = 19 mm)

Brass rod
(dr = 12 mm)

Brass
cap

d = np

Steel
bolt

L
1 

=
 4

0 
m

m
 

d 1
 =

 2
5 

m
m

t 1
 =

 4
 m

m

L
2 

=
 5

0 
m

m
d 2

 =
 1

7 
m

m
t 2

 =
 3

 m
m

� T

� T

Copper
sleeve

S
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Chapter 2  Axially Loaded Members

Concrete is then poured around the wires to form a beam,
as shown in figure part b.

After the concrete sets properly, the jacks are released
and the force Q is removed (see part c of the figure). Thus,
the beam is left in a prestressed condition, with the wires in
tension and the concrete in compression.

Let us assume that the prestressing force Q produces
in the steel wires an initial stress σ0 � 620 MPa. If  the
moduli of  elasticity of  the steel and concrete are in the
ratio 12:1 and the cross-sectional areas are in the ratio
1:50, what are the final stresses σs and σc in the two
materials?

242

2.5-23 A polyethylene tube (length L) has a cap which
when installed compresses a spring (with undeformed
length L1 � L) by amount δ � (L1 � L). Ignore deforma-
tions of the cap and base. Use the force at the base of the
spring as the redundant. Use numerical properties in the
boxes given.

(a) What is the resulting force in the spring, Fk?
(b) What is the resulting force in the tube, Ft?
(c) What is the final length of the tube, Lf?
(d) What temperature change ΔT inside the tube will

result in zero force in the spring?

PROB. 2.5-23

2.5-24 Prestressed concrete beams are sometimes manu-
factured in the following manner. High-strength steel wires
are stretched by a jacking mechanism that applies a force
Q, as represented schematically in part a of the figure.

PROB. 2.5-24

2.5-25 A polyethylene tube (length L) has a cap which is
held in place by a spring (with undeformed length L1 
 L).
After installing the cap, the spring is post-tensioned by
turning an adjustment screw by amount δ. Ignore defor-
mations of the cap and base. Use the force at the base of
the spring as the redundant. Use numerical properties in
the boxes below.

(a) What is the resulting force in the spring, Fk?
(b) What is the resulting force in the tube, Ft?
(c) What is the final length of the tube, Lf?
(d) What temperature change ΔT inside the tube will

result in zero force in the spring?

Q

Q

Q

Q

(a)

(b)

(c)

Steel wires

Concrete

Cap (assume rigid)

Tube
(d0, t, L, a t, Et)

d = L1 – L

Spring (k, L1 > L)

Modulus of elasticity
Polyethylene tube (Et = 0.7 GPa)

Coefficients of thermal expansion
at = 140 � 10–6/°C, ak = 12 � 10–6/°C

d0 = 150 mm t = 3 mm

kN
m

–––

Properties and dimensions

L1 = 308 mm > L = 305 mm k = 262.5
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Problems Chapter 2

Stresses on Inclined Sections

2.6-1 A steel bar of  square cross section 
(50 mm � 50 mm) carries a tensile load P (see figure).
The allowable stresses in tension and shear are 125 MPa
and 76 MPa, respectively. Determine the maximum per-
missible load Pmax.

243

2.6-3 A standard brick (dimensions 200 mm � 100 mm �
65 mm) is compressed lengthwise by a force P, as shown in
the  figure. If  the ultimate shear stress for brick is 8 MPa
and the ultimate compressive stress is 26 MPa, what force
Pmax is required to break the brick?

PROB. 2.5-25

P P

50 mm

50 mm

PROB. 2.6-1

2.6-2 A circular steel rod of diameter d is subjected to a
tensile force P � 3.5 kN (see figure). The allowable stresses
in tension and shear are 118 MPa and 48 MPa, respec-
tively. What is the minimum permissible diameter dmin of
the rod?

P = 3.5 kNP
d

PROB. 2.6-2

P

65 mm200 mm
100 mm

PROB. 2.6-3

2.6-4 A brass wire of diameter d � 2.42 mm is stretched
tightly between rigid supports so that the tensile force is 
T � 98 N (see figure). The coefficient of thermal expansion
for the wire is 19.5 � 10�6/�C and the modulus of elasticity
is E � 110 GPa.

(a) What is the maximum permissible temperature
drop ΔT if  the allowable shear stress in the wire is 60 MPa?

(b) At what temperature change does the wire go
slack?

T d T

PROBS. 2.6-4 and 2.6-5

Cap (assume rigid)

Tube
(d0, t, L, at, Et)

Spring (k, L1 < L)

Adjustment
screw

d = L – L1

Modulus of elasticity
Polyethylene tube (Et = 0.7 GPa)

Coefficients of thermal expansion
at = 140 � 10–6/°C, ak = 12 � 10–6/°C

d0 = 150 mm t = 3mm

kN
m

–––L1 = 305 mm > L = 302 mm k = 262.5

Properties and dimensions
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Chapter 2  Axially Loaded Members

2.6-9 The plane truss below is assembled from steel 
channels (UPN 220) (see Table E-3 in Appendix E).
Assume that L � 3 m and b � 0.71L.

(a) If  load variable P � 220 kN, what is the maximum
shear stress τmax in each truss member?

(b) What is the maximum permissible value of load
variable P if  the allowable normal stress is 96 MPa and the
allowable shear stress is 52 MPa?

244

2.6-5 A brass wire of diameter d � 1.6 mm is stretched
between rigid supports with an initial tension T of 200 N
(see figure). (Assume that the coefficient of thermal expan-
sion is 21.2 � 10�6/�C and the modulus of elasticity is 
110 GPa.)

(a) If  the temperature is lowered by 30�C, what is the
maximum shear stress τmax in the wire?

(b) If  the allowable shear stress is 70 MPa, what is the
maximum permissible temperature drop?

(c) At what temperature change ΔT does the wire go
slack?

2.6-6 A steel bar with diameter d � 12 mm is subjected to
a tensile load P � 9.5 kN (see figure).

(a) What is the maximum normal stress σmax in the
bar?

(b) What is the maximum shear stress τmax?
(c) Draw a stress element oriented at 45� to the axis of

the bar and show all stresses acting on the faces of this
 element.

(d) Repeat part (c) for a stress element oriented at
22.5� to the axis of the bar.

P = 9.5 kNP
d = 12 mm

PROB. 2.6-6

2.6-7 During a tension test of a mild-steel specimen (see
figure), the extensometer shows an elongation of 0.004 mm
with a gage length of 50 mm. Assume that the steel is
stressed below the proportional limit and that the modulus
of elasticity E � 210 GPa.

(a) What is the maximum normal stress σmax in the
specimen?

(b) What is the maximum shear stress τmax?
(c) Draw a stress element oriented at an angle of 45�

to the axis of the bar and show all stresses acting on the
faces of this element.

T T
50 mm

PROB. 2.6-7

2.6-8 A copper bar with a rectangular cross section is held
without stress between rigid supports (see figure).
Subsequently, the temperature of the bar is raised 50�C.

(a) Determine the stresses on all faces of the elements
A and B, and show these stresses on sketches of the ele-
ments. (Assume α � 17.5 � 10�6/�C and E � 120 GPa.)

(b) If  the shear stress at B is known to be 48 MPa at
some inclination θ, find angle θ and show the stresses on a
sketch of a properly oriented element.

A B

45°

PROB. 2.6-8

y

x

P

C

L
uC

uB
uA = 60°

A
B

c

b

2P

PROB. 2.6-9

2.6-10 A plastic bar of diameter d � 32 mm is compressed
in a testing device by a force P � 190 N applied as shown
in the figure.

(a) Determine the normal and shear stresses acting on
all faces of stress elements oriented at (1) an angle θ � 0�,
(2) an angle θ � 22.5�, and (3) an angle θ � 45�. In each
case, show the stresses on a sketch of a properly oriented
element. What are σmax and τmax?

(b) Find σmax and τmax in the plastic bar if a re-centering
spring of stiffness k is inserted into the testing device, as
shown in the figure. The spring stiffness is 1/6 of the axial
stiffness of the plastic bar.
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Problems Chapter 2

2.6-11 A plastic bar of rectangular cross section (b � 38 mm
and h � 75 mm) fits snugly between rigid supports at room
temperature (20�C) but with no initial stress (see figure).
When the temperature of the bar is raised to 70�C, the
 compressive stress on an inclined plane pq at midspan
becomes 8.7 MPa.

(a) What is the shear stress on plane pq? (Assume 
α � 95 � 10�6/�C and E � 2.4 GPa.)

(b) Draw a stress element oriented to plane pq and
show the stresses acting on all faces of this element.

(c) If  the allowable normal stress is 23 MPa and the
allowable shear stress is 11.3 MPa, what is the maximum
load P (in �x direction) which can be added at the quarter
point (in addition to thermal effects given) without exceed-
ing allowable stress values in the bar?

245

(b) If  the temperature increases by the maximum per-
missible amount, what are the stresses on plane pq?

(c) If  the temperature rise ΔT � 28�C, how far to the
right of end A (distance βL, expressed as a fraction of
length L) can load P � 15 kN be applied without exceed-
ing allowable stress values in the bar? Assume that 
σa � 75 MPa and τa � 35 MPa.

Plastic bar Re-centering
spring

(Part (b) only)

100 mm
P = 190 N

d = 32 mm k

300 mm

u

200 mm

PROB. 2.6-10

q

p

Load P for part (c) only

P u

L—
4

L—
2

L—
2

PROBS. 2.6-11

2.6-12 A copper bar of  rectangular cross section 
(b � 18 mm and h � 40 mm) is held snugly (but without
any initial stress) between rigid supports (see figure). The
allowable stresses on the inclined plane pq at midspan, for
which θ � 55�, are specified as 60 MPa in compression and
30 MPa in shear.

(a) What is the maximum permissible temperature rise
ΔT if  the allowable stresses on plane pq are not to be
exceeded? (Assume α � 17 � 10�6/�C and E � 120 GPa.)

q

A B

p

P u

bL

L—
2

L—
2

Load for part (c) only

PROBS. 2.6-12

2.6-13 A circular brass bar of  diameter d is member AC
in truss ABC which has load P � 30 kN applied at joint
C. Bar AC is composed of  two segments brazed together
on a plane pq making an angle α � 36� with the axis of
the bar (see figure). The allowable stresses in the brass
are 90 MPa in tension and 48 MPa in shear. On the
brazed joint, the allowable stresses are 40 MPa in tension
and 20 MPa in shear. What is the tensile force NAC in bar
AC? What is the minimum required diameter dmin of
bar AC?

u = 60°

q

A

B

C

P

p

d

a

NAC

NAC

PROB. 2.6-13
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Chapter 2  Axially Loaded Members

2.6-17 The normal stress on plane pq of a prismatic bar in
tension (see figure) is found to be 57 MPa. On plane rs,
which makes an angle β � 30� with plane pq, the stress is
found to be 23 MPa.

Determine the maximum normal stress σmax and max-
imum shear stress τmax in the bar.

246

2.6-14 Two boards are joined by gluing along a scarf
joint, as shown in the figure. For purposes of cutting and
gluing, the angle α between the plane of the joint and the
faces of the boards must be between 10� and 40�. Under a
tensile load P, the normal stress in the boards is 4.9 MPa.

(a) What are the normal and shear stresses acting on
the glued joint if  α � 20�?

(b) If the allowable shear stress on the joint is 2.25 MPa,
what is the largest permissible value of the angle α?

(c) For what angle a will the shear stress on the glued
joint be numerically equal to twice the normal stress on the
joint?

PP

a

PROB. 2.6-14

2.6-15 Acting on the sides of a stress element cut from a
bar in uniaxial stress are tensile stresses of 60 MPa and
20 MPa, as shown in the figure.

(a) Determine the angle θ and the shear stress τθ
and show all stresses on a sketch of the element.

(b) Determine the maximum normal stress σmax and
the maximum shear stress τmax in the material.

   = 60 MPa

20 MPa60 MPa

20 MPa

u

tu tu

tu tu

su

PROB. 2.6-15

2.6-16 A prismatic bar is subjected to an axial force that pro-
duces a tensile stress σθ � 65 MPa and a shear stress 
τθ � 23 MPa on a certain inclined plane (see figure).
Determine the stresses acting on all faces of  a stress ele-
ment oriented at θ � 30� and show the stresses on a
sketch of  the element.

23 MPa

65 MPa
u

PROB. 2.6-16

q

p

r

P P

s

b

PROB. 2.6-17

2.6-18 A tension member is to be constructed of two
pieces of plastic glued along plane pq (see figure). For pur-
poses of cutting and gluing, the angle θ must be between
25� and 45�. The allowable stresses on the glued joint in
tension and shear are 5.0 MPa and 3.0 MPa, respectively.

(a) Determine the angle θ so that the bar will carry
the largest load P. (Assume that the strength of the glued
joint controls the design.)

(b) Determine the maximum allowable load Pmax if
the cross-sectional area of the bar is 225 mm2.

q

pP Pu

PROB. 2.6-18

2.6-19 Plastic bar AB of rectangular cross section 
(b � 19 mm and h � 38 mm) and length L � 0.6 m is fixed
at A and has a spring support (k � 3150 kN/m) at C (see fig-
ure). Initially, the bar and spring have no stress. When the
temperature of the bar is raised by 48�C, the compressive
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Problems Chapter 2

stress on an inclined plane pq at Lθ � 0.46 m becomes
5.3 MPa. Assume the spring is massless and is unaffected
by the temperature change. Let α � 95 � 10�6/�C and 
E � 2.8 GPa.

(a) What is the shear stress τθ on plane pq? What is
angle θ ?

(b) Draw a stress element oriented to plane pq, and
show the stresses acting on all faces of this element.

(c) If  the allowable normal stress is 	6.9 MPa and the
allowable shear stress is 	3.9 MPa, what is the maximum
permissible value of spring constant k if  allowable stress
values in the bar are not to be exceeded?

(d) What is the maximum permissible length L of the
bar if  allowable stress values in the bar are not be
exceeded? (Assume k � 3150 kN/m.)

(e) What is the maximum permissible temperature
increase (ΔT) in the bar if  allowable stress values in the bar
are not to be exceeded? (Assume L � 0.6 m and k �

3150 kN/m.)

247

2.7-2 A bar of circular cross section having two different
diameters d and 2d is shown in the figure. The length of
each segment of the bar is L/2 and the modulus of elastic-
ity of the material is E.

(a) Obtain a formula for the strain energy U of the bar
due to the load P.

(b) Calculate the strain energy if  the load P � 27 kN,
the length L � 600 mm, the diameter d � 40 mm, and the
material is brass with E � 105 GPa.

A p

q

BL = 0.6 m

Lu = 0.46 m

k
C

b

h
u

PROB. 2.6-19

Strain Energy

When solving the problems for Section 2.7, assume that the
material behaves linearly elastically.

2.7-1 A prismatic bar AD of length L, cross-sectional area
A, and modulus of elasticity E is subjected to loads 5P, 3P,
and P acting at points B, C, and D, respectively (see fig-
ure). Segments AB, BC, and CD have lengths L/6, L/2, and
L/3, respectively.

(a) Obtain a formula for the strain energy U of the
bar.

(b) Calculate the strain energy if  P � 27 kN, L �

130 cm, A � 18 cm2, and the material is aluminum with 
72 GPa.

A B C D

5P 3P P

L
6
— L

2
— L

3
—

PROB. 2.7-1

P P

2d
d

L
2

— L
2

—

PROB. 2.7-2

2.7-3 A three-story steel column in a building supports
roof and floor loads as shown in the figure. The story
height H is 3 m, the cross-sectional area A of the column
is 7500 mm2, and the modulus of elasticity E of the steel is
200 GPa.

Calculate the strain energy U of the column assuming
P1 � 150 kN and P2 � P3 � 300 kN.

P1

P2

P3

H

H

H

PROB. 2.7-3
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Chapter 2  Axially Loaded Members

2.7-7 The truss ABC shown in the figure supports a hori-
zontal load P1 � 1.3 kN and a vertical load P2 � 4 kN.
Both bars have cross-sectional area A � 1500 mm2 and are
made of steel with E � 200 GPa.

(a) Determine the strain energy U1 of the truss when
the load P1 acts alone (P2 � 0).

(b) Determine the strain energy U2 when the load P2
acts alone (P1 � 0).

(c) Determine the strain energy U3 when both loads
act simultaneously.

248

2.7-4 The bar ABC shown in the figure is loaded by a force
P acting at end C and by a force Q acting at the midpoint
B. The bar has constant axial rigidity EA.

(a) Determine the strain energy U1 of the bar when
the force P acts alone (Q � 0).

(b) Determine the strain energy U2 when the force Q
acts alone (P � 0).

(c) Determine the strain energy U3 when the forces P
and Q act simultaneously upon the bar.

A B C

PQ

L
2
—L

2
—

PROB. 2.7-4

2.7-5 Determine the strain energy per unit volume (units
of kN/m2) and the strain energy per unit weight (units of
m) that can be stored in each of the materials listed in the
accompanying table, assuming that the material is stressed
to the proportional limit.

Weight Modulus of Proportional
density elasticity limit

Material (kN/m3) (GPa) (MPa)

Mild steel 77.1 207 248
Tool steel 77.1 207 827
Aluminum 26.7 72 345
Rubber (soft) 11.0 2 1.38

DATA FOR PROBLEM 2.7-5

2.7-6 The truss ABC shown in the figure is subjected to a
horizontal load P at joint B. The two bars are identical
with cross-sectional area A and modulus of elasticity E.

(a) Determine the strain energy U of the truss if  the
angle β � 60�.

(b) Determine the horizontal displacement δB of joint
B by equating the strain energy of the truss to the work
done by the load.

b b

PB

CA

L

PROB. 2.7-6

P1 = 1.3 kN

P2 = 4 kN

BC

A

1.5 m

30°

PROB. 2.7-7

2.7-8 The statically indeterminate structure shown in the
figure consists of a horizontal rigid bar AB supported by
five equally spaced springs. Springs 1, 2, and 3 have stiff-
nesses 3k, 1.5k, and k, respectively. When unstressed, the
lower ends of all five springs lie along a horizontal line.
Bar AB, which has weight W, causes the springs to elon-
gate by an amount δ.

(a) Obtain a formula for the total strain energy U of
the springs in terms of the downward displacement δ of
the bar.

(b) Obtain a formula for the displacement δ by
equating the strain energy of  the springs to the work
done by the weight W.

(c) Determine the forces F1, F2, and F3 in the springs.
(d) Evaluate the strain energy U, the displacement

δ, and the forces in the springs if  W � 600 N and 
k � 7.5 N/mm.

1.5k 1.5k

A B

W

k

3k3k1 2 12 3

PROB. 2.7-8
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Problems Chapter 2

2.7-9 A slightly tapered bar AB of rectangular cross sec-
tion and length L is acted upon by a force P (see figure).
The width of the bar varies uniformly from b2 at end A to
b1 at end B. The thickness t is constant.

(a) Determine the strain energy U of the bar.
(b) Determine the elongation δ of the bar by equat-

ing the strain energy to the work done by the force P.

249

(a) Draw a force-displacement diagram with the force
P as ordinate and the displacement x of the block as
abscissa.

(b) From the diagram, determine the strain energy U1
of the springs when x � 2s.

(c) Explain why the strain energy U1 is not equal to
Pδ /2, where δ � 2s.

b2

b1

L

A B
P

PROB. 2.7-9

2.7-10 A compressive load P is transmitted through a
rigid plate to three magnesium-alloy bars that are identical
except that initially the middle bar is slightly shorter than
the other bars (see figure). The dimensions and properties
of the assembly are as follows: length L � 1.0 m, cross-
 sectional area of each bar A � 3000 mm2, modulus of elas-
ticity E � 45 GPa, and the gap s � 1.0 mm.

(a) Calculate the load P1 required to close the gap.
(b) Calculate the downward displacement δ of the

rigid plate when P � 400 kN.
(c) Calculate the total strain energy U of the three

bars when P � 400 kN.
(d) Explain why the strain energy U is not equal to

Pδ /2. (Hint: Draw a load-displacement diagram.)

L

P

s

PROB. 2.7-10

2.7-11 A block B is pushed against three springs by a force
P (see figure). The middle spring has stiffness k1 and the
outer springs each have stiffness k2. Initially, the springs
are unstressed and the middle spring is longer than the
outer springs (the difference in length is denoted s).

P
B

x

k2

k1

k2

s

PROB. 2.7-11

2.7-12 A bungee cord that behaves linearly elastically
has an unstressed length L0 � 760 mm and a stiffness 
k � 140 N/m. The cord is attached to two pegs, distance 
b � 380 mm apart, and pulled at its midpoint by a force 
P � 80 N (see figure).

(a) How much strain energy U is stored in the cord?
(b) What is the displacement δC of the point where

the load is applied?
(c) Compare the strain energy U with the quantity

PδC/2.
(Note: The elongation of the cord is not small com-

pared to its original length.)

Impact Loading

The problems for Section 2.8 are to be solved on the basis of
the assumptions and idealizations described in the text. In par-
ticular, assume that the material behaves linearly elastically
and no energy is lost during the impact.

PROB. 2.7-12

C
P

B

A
b
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Chapter 2  Axially Loaded Members250

2.8-5 Solve the preceding problem if the block weighs 
W � 8 N, h � 300 mm, and k � 125 N/m.

2.8-6 A small rubber ball (weight W � 450 mN) is
attached by a rubber cord to a wood paddle (see figure).
The natural length of the cord is L0 � 200 mm, its cross-
sectional area is A � 1.6 mm2, and its modulus of elastic-
ity is E � 2.0 MPa. After being struck by the paddle, the
ball stretches the cord to a total length L1 � 900 mm.

What was the velocity v of the ball when it left the
paddle? (Assume linearly elastic behavior of the rubber
cord, and disregard the potential energy due to any change
in elevation of the ball.)

2.8-1 A sliding collar of weight W � 650 N falls from a
height h � 50 mm onto a flange at the bottom of a slender
vertical rod (see figure). The rod has length L � 1.2 m,
cross-sectional area A � 5 cm2, and modulus of elasticity
E � 210 GPa.

Calculate the following quantities: (a) the maximum
downward displacement of the flange, (b) the maximum
tensile stress in the rod, and (c) the impact factor.

Collar

Rod

Flange

L

h

PROBS. 2.8-1, 2.8-2 and 2.8-3

2.8-2 Solve the preceding problem if  the collar has mass
M � 80 kg, the height h � 0.5 m, the length L � 3.0 m, the
cross-sectional area A � 350 mm2, and the modulus of
elasticity E � 170 GPa.

2.8-3 Solve Problem 2.8-1 if  the collar has weight 
W � 200 N, the height h � 50 mm, the length L � 0.9 m,
the cross-sectional area A � 1.5 cm2, and the modulus of
elasticity E � 210 GPa.

2.8-4 A block weighing W � 5.0 N drops inside a cylinder
from a height h � 200 mm onto a spring having stiffness 
k � 90 N/m (see figure). (a) Determine the maximum
shortening of the spring due to the impact, and (b) deter-
mine the impact factor.

hCylinder

Block

k

PROBS. 2.8-4 and 2.8-5

PROB. 2.8-6

2.8-7 A weight W � 20 kN falls from a height h onto a ver-
tical wood pole having length L � 5.5 m, diameter d �

300 mm, and modulus of elasticity E � 10 GPa (see figure).
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Problems Chapter 2 251

If the allowable stress in the wood under an impact
load is 17 MPa, what is the maximum permissible height h?

2.8-10 A bumping post at the end of a track in a railway
yard has a spring constant k � 8.0 MN/m (see figure). The
maximum possible displacement d of the end of the strik-
ing plate is 450 mm.

What is the maximum velocity vmax that a railway car
of weight W � 545 kN can have without damaging the
bumping post when it strikes it?

v

k

PROB. 2.8-11

2.8-11 A bumper for a mine car is constructed with a spring
of stiffness k � 176 kN/m (see figure). If a car weighing
14 kN is traveling at velocity v � 8 km/h when it strikes the
spring, what is the maximum shortening of the spring?

PROB. 2.8-12

d = 300 mm

W = 20 kN

h

L = 5.5 mm

PROB. 2.8-7

Restrainer

Cable

Slider

h

L

PROBS. 2.8-8 and 2.8-9

2.8-8 A cable with a restrainer at the bottom hangs vertically
from its upper end (see figure). The cable has an effective
cross-sectional area A � 40 mm2 and an effective modulus of
elasticity E � 130 GPa. A slider of mass M � 35 kg drops
from a height h � 1.0 m onto the restrainer.

If  the allowable stress in the cable under an impact
load is 500 MPa, what is the minimum permissible length
L of the cable?

d

k

v

PROB. 2.8-10

2.8-9 Solve the preceding problem if  the slider has weight
W � 145 N, h � 120 cm, A � 0.5 cm2, E � 150 GPa, and
the allowable stress is 480 MPa.

2.8-12 A bungee jumper having a mass of 55 kg leaps
from a bridge, braking her fall with a long elastic shock
cord having axial rigidity EA � 2.3 kN (see figure).

If the jumpoff point is 60 m above the water, and if it is
desired to maintain a clearance of 10 m between the jumper
and the water, what length L of cord should be used?
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Chapter 2  Axially Loaded Members

(a) For the bar with a circular hole, determine the max-
imum stresses for hole diameters d � 25 mm and d �

50 mm if the width b � 150 mm.
(b) For the stepped bar with shoulder fillets, determine

the maximum stresses for fillet radii R � 6 mm and R �

13 mm if the bar widths are b � 100 mm and c � 65 mm.

252

2.8-13 A weight W rests on top of a wall and is attached
to one end of a very flexible cord having cross-sectional
area A and modulus of elasticity E (see figure). The other
end of the cord is attached securely to the wall. The weight
is then pushed off the wall and falls freely the full length of
the cord.

(a) Derive a formula for the impact factor.
(b) Evaluate the impact factor if  the weight, when

hanging statically, elongates the band by 2.5% of its origi-
nal length.

W W

PROB. 2.8-13

2.8-14 A rigid bar AB having mass M � 1.0 kg and length
L � 0.5 m is hinged at end A and supported at end B by a
nylon cord BC (see figure). The cord has cross- sectional
area A � 30 mm2, length b � 0.25 m, and modulus of elas-
ticity E � 2.1 GPa.

If  the bar is raised to its maximum height and then
released, what is the maximum stress in the cord?

A B

C

W

b

L

PROB. 2.8-14

Stress Concentrations

The problems for Section 2.10 are to be solved by considering
the stress-concentration factors and assuming linearly elastic
behavior.

2.10-1 The flat bars shown in parts a and b of the  figure
are subjected to tensile forces P � 13 kN. Each bar has
thickness t � 6 mm.

P

P

P

P

b

db

(a)

(b)

c

R

PROBS. 2.10-1 and 2.10-2

2.10-2 The flat bars shown in parts a and b of the  figure
are subjected to tensile forces P � 2.5 kN. Each bar has
thickness t � 5.0 mm.

(a) For the bar with a circular hole, determine the
maximum stresses for hole diameters d � 12 mm and 
d � 20 mm if  the width b � 60 mm.

(b) For the stepped bar with shoulder fillets, deter-
mine the maximum stresses for fillet radii R � 6 mm and
R � 10 mm if the bar widths are b � 60 mm and c � 40 mm.

2.10-3 A flat bar of width b and thickness t has a hole of
diameter d drilled through it (see figure). The hole may
have any diameter that will fit within the bar.

What is the maximum permissible tensile load Pmax if
the allowable tensile stress in the material is σt?

PP
b d

PROB. 2.10-3
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Problems Chapter 2

2.10-4 A round brass bar of diameter d1 � 20 mm has
upset ends of diameter d2 � 26 mm (see figure). The lengths
of the segments of the bar are L1 � 0.3 m and L2 � 0.1 m.
Quarter-circular fillets are used at the shoulders of the bar,
and the modulus of elasticity of the brass is E � 100 GPa.

If the bar lengthens by 0.12 mm under a tensile load
P, what is the maximum stress σmax in the bar?

253

2.10-7 A stepped bar with a hole (see figure) has widths 
b � 60 mm and c � 40 mm. The fillets have radii equal to 
5 mm.

What is the diameter dmax of the largest hole that can
be drilled through the bar without reducing the load-
 carrying capacity?

L1

d1d2 d2

L2 L2

PP

PROBS. 2.10-4 and 2.10-5

2.10-5 Solve the preceding problem for a bar of monel metal
having the following properties: d1 � 25 mm, d2 � 36 mm, 
L1 � 500 mm, L2 � 125 mm, and E � 170 GPa. Also, the
bar lengthens by 0.1 mm when the tensile load is applied.

2.10-6 A prismatic bar of diameter d0 � 20 mm is being
compared with a stepped bar of  the same diameter 
(d1 � 20 mm) that is enlarged in the middle region to a
diameter d2 � 25 mm (see figure). The radius of the fillets
in the stepped bar is 2.0 mm.

(a) Does enlarging the bar in the middle region make
it stronger than the prismatic bar? Demonstrate your
answer by determining the maximum permissible load P1
for the prismatic bar and the maximum permissible load
P2 for the enlarged bar, assuming that the allowable stress
for the material is 80 MPa.

(b) What should be the diameter d0 of the prismatic
bar if  it is to have the same maximum permissible load as
does the stepped bar?

P1

P2

d1

d0d1

d2

P2

P1

PROB. 2.10-6

P P
bd c

PROB. 2.10-7

Nonlinear Behavior (Changes  
in Lengths of Bars)

2.11-1 A bar AB of length L and weight density γ hangs
vertically under its own weight (see figure). The stress-
strain relation for the material is given by the Ramberg-
Osgood equation [Eq. (2-73)]:

Derive the following formula

for the elongation of the bar.

δ �
γL2

2E
�

σ0αL

(m � 1)E
a γL

σ0

bm

ε �
σ
E

�
σ0α
E
a σ

σ0

bm

A

B

L

PROB. 2.11-1

77742_02_ch02_p122-261.qxd:77742_02_ch02_p122-261.qxd  3/2/12  2:47 PM  Page 253

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 2  Axially Loaded Members

2.11-5 An aluminum bar subjected to tensile forces P has
length L � 3.8 m and cross-sectional area A � 1290 mm2.
The stress-strain behavior of the aluminum may be repre-
sented approximately by the bilinear stress-strain diagram
shown in the figure.

Calculate the elongation δ of the bar for each of the
following axial loads: P � 35, 70, 106, 140 and 180 kN.
From these results, plot a diagram of load P versus elon-
gation δ (load-displacement diagram).

254

2.11-2 A prismatic bar of length L � 1.8 m and cross-
 sectional area A � 480 mm2 is loaded by forces P1 � 30 kN
and P2 � 60 kN (see figure). The bar is constructed of
magnesium alloy having a stress-strain curve described by
the following Ramberg-Osgood equation:

in which σ has units of megapascals.
(a) Calculate the displacement δC of the end of the

bar when the load P1 acts alone.
(b) Calculate the displacement when the load P2 acts

alone.
(c) Calculate the displacement when both loads act

simultaneously.

ε �
σ

45,000
�

1
618
a σ

170
b10

(σ � MPa)

P2
P1A B C

L
3

——2L
3

PROB. 2.11-2

2.11-3 A circular bar of length L � 810 mm and diameter
d � 19 mm is subjected to tension by forces P (see figure).
The wire is made of a copper alloy having the following
hyperbolic stress-strain relationship:

(a) Draw a stress-strain diagram for the material.
(b) If  the elongation of the wire is limited to 6 mm

and the maximum stress is limited to 275 MPa, what is the
allowable load P?

σ � a 18,000ε
1 � 300ε

b � 6.809 0 … ε … 0.03 (σ � MPa)

P P

L

d

PROB. 2.11-3

2.11-4 A prismatic bar in tension has length L � 2.0 m
and cross-sectional area A � 249 mm2. The material of the
bar has the stress-strain curve shown in the figure.

Determine the elongation δ of the bar for each of the
following axial loads: P � 10 kN, 20 kN, 30 kN, 40 kN,
and 45 kN. From these results, plot a diagram of load P
versus elongation δ (load-displacement diagram).

   (MPa)

0
0

200

100

0.005 0.010

s

´

PROB. 2.11-4

E2 = 16.5 GPa

E1 = 69 GPa

0

83 MPa

s

´

PROB. 2.11-5

2.11-6 A rigid bar AB, pinned at end A, is supported by a
wire CD and loaded by a force P at end B (see figure). The
wire is made of high-strength steel having modulus of
 elasticity E � 210 GPa and yield stress σY � 820 MPa.
The length of the wire is L � 1.0 m and its diameter is 
d � 3 mm. The stress-strain diagram for the steel is defined
by the modified power law, as follows:

σ � σYaEε
σY

bn

σ Ú σY

σ � Eε 0 … σ … σY
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Problems Chapter 2

(a) Assuming n � 0.2, calculate the displacement δB
at the end of the bar due to the load P. Take values of P
from 2.4 kN to 5.6 kN in increments of 0.8 kN.

(b) Plot a load-displacement diagram showing P
 versus δB.

255

2.12-3 A horizontal rigid bar AB supporting a load P is
hung from five symmetrically placed wires, each of cross-
sectional area A (see figure). The wires are fastened to a
curved surface of radius R.

(a) Determine the plastic load PP if  the material of
the wires is elastoplastic with yield stress σY.

(b) How is PP changed if  bar AB is flexible instead of
rigid?

(c) How is PP changed if  the radius R is increased?

P

A D

C

B

L

b2b

PROB. 2.11-6

Elastoplastic Analysis

The problems for Section 2.12 are to be solved assuming that
the material is elastoplastic with yield stress σY, yield strain
εY, and modulus of elasticity E in the linearly elastic region
(see Fig. 2-72).

2.12-1 Two identical bars AB and BC support a vertical
load P (see figure). The bars are made of steel having a
stress-strain curve that may be idealized as elastoplastic
with yield stress σY. Each bar has cross-sectional area A.

Determine the yield load PY and the plastic load PP.

P

B

A Cu u

PROB. 2.12-1

2.12-2 A stepped bar ACB with circular cross sections is
held between rigid supports and loaded by an axial force P
at midlength (see figure). The diameters for the two parts
of the bar are d1 � 20 mm and d2 � 25 mm, and the mate-
rial is elastoplastic with yield stress σY � 250 MPa.

Determine the plastic load PP.

d2d1

L
2
— L

2
—

A BC P

PROB. 2.12-2

A B

P

R

PROB. 2.12-3

2.12-4 A load P acts on a horizontal beam that is sup-
ported by four rods arranged in the symmetrical pattern
shown in the figure. Each rod has cross-sectional area A
and the material is elastoplastic with yield stress σY.
Determine the plastic load PP.

PROB. 2.12-4

P

aa

77742_02_ch02_p122-261.qxd:77742_02_ch02_p122-261.qxd  3/2/12  2:48 PM  Page 255

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 2  Axially Loaded Members

2.12-8 A rigid bar ACB is supported on a fulcrum at C
and loaded by a force P at end B (see figure). Three identi-
cal wires made of an elastoplastic material (yield stress σY
and modulus of elasticity E) resist the load P. Each wire
has cross-sectional area A and length L.

(a) Determine the yield load PY and the correspon-
ding yield displacement δY at point B.

(b) Determine the plastic load PP and the correspon-
ding displacement δP at point B when the load just reaches
the value PP.

(c) Draw a load-displacement diagram with the load P
as ordinate and the displacement δB of point B as abscissa.

256

2.12-5 The symmetric truss ABCDE shown in the figure is
constructed of four bars and supports a load P at joint E.
Each of the two outer bars has a cross-sectional area of
200 mm2, and each of the two inner bars has an area of
400 mm2. The material is elastoplastic with yield stress 
σY � 250 MPa.

Determine the plastic load PP.

0.7 m 0.7 m1.8 m

A B C D

P

1.2 m

E

PROB. 2.12-5

2.12-6 Five bars, each having a diameter of 10 mm, support
a load P as shown in the figure. Determine the plastic 
load PP if  the material is elastoplastic with yield stress 
σY � 250 MPa.

P

b b b b

2b

PROB. 2.12-6

2.12-7 A circular steel rod AB of diameter d � 15 mm is
stretched tightly between two supports so that initially the
tensile stress in the rod is 60 MPa (see figure). An axial force
P is then applied to the rod at an intermediate location C.

(a) Determine the plastic load PP if  the material is
elastoplastic with yield stress σY � 290 MPa.

(b) How is PP changed if  the initial tensile stress is
doubled to 120 MPa?

BA

d

PROB. 2.12-7

PROB. 2.12-8

P

A C B

L

L

a a a a

2.12-9 The structure shown in the figure consists of a hor-
izontal rigid bar ABCD supported by two steel wires, one
of length L and the other of length 3L/4. Both wires have
cross-sectional area A and are made of elastoplastic mate-
rial with yield stress σY and modulus of elasticity E. A ver-
tical load P acts at end D of the bar.

(a) Determine the yield load PY and the correspon-
ding yield displacement δY at point D.

(b) Determine the plastic load PP and the correspon-
ding displacement δP at point D when the load just reaches
the value PP.

(c) Draw a load-displacement diagram with the load
P as ordinate and the displacement δD of point D as
abscissa.
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Problems Chapter 2

2.12-10 Two cables, each having a length L of approxi-
mately 40 m, support a loaded container of weight W (see
figure). The cables, which have effective cross-sectional
area A � 48.0 mm2 and effective modulus of elasticity 
E � 160 GPa, are identical except that one cable is longer
than the other when they are hanging separately and
unloaded. The difference in lengths is d � 100 mm. The
cables are made of steel having an elastoplastic stress-
strain diagram with σY � 500 MPa. Assume that the
weight W is initially zero and is slowly increased by the
addition of material to the container.

(a) Determine the weight WY that first produces yield-
ing of the shorter cable. Also, determine the corresponding
elongation δY of the shorter cable.

(b) Determine the weight WP that produces yielding
of both cables. Also, determine the elongation δP of the
shorter cable when the weight W just reaches the value WP.

(c) Construct a load-displacement diagram showing
the weight W as ordinate and the elongation δ of the
shorter cable as abscissa. (Hint: The load displacement dia-
gram is not a single straight line in the region 0 � W � WY.)

257

2.12-11 A hollow circular tube T of length L � 380 mm is
uniformly compressed by a force P acting through a rigid
plate (see figure). The outside and inside diameters of the
tube are 76 and 70 mm, respectively. A concentric solid
 circular bar B of 38 mm diameter is mounted inside the
tube. When no load is present, there is a clearance c �

0.26 mm between the bar B and the rigid plate. Both bar and
tube are made of steel having an elastoplastic stress-strain
diagram with E � 200 GPa and σY � 250 MPa.

(a) Determine the yield load PY and the correspon-
ding shortening δY of the tube.

(b) Determine the plastic load PP and the correspon-
ding shortening δP of the tube.

(c) Construct a load-displacement diagram showing
the load P as ordinate and the shortening δ of the tube as
abscissa. (Hint: The load-displacement diagram is not a
single straight line in the region 0 � P � PY.)

2b

L

A

P

DCB

3L
4

b b

PROB. 2.12-9

L

W

PROB. 2.12-10

c

L

P

T B T B

T

PROB. 2.12-11
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Chapter 2  Axially Loaded Members

R-2.3 A brass rod with a cross-sectional
area of  250 mm2 is loaded by forces ,

, and . Segment lengths of the bar
are , , and . The change
in length of the bar is approximately:

a � 2.0 m b � 0.75 m c � 1.2 m
P2 � 10 kN P3 � 8 kN

P1 � 15 kN
(E � 110 GPa)

258

R-2.1 Two wires, one copper and the other steel, of equal
length stretch the same amount under an applied load P.
The moduli of elasticity for each is and

. The ratio of the diameter of the copper
wire to that of the steel wire is approximately:

(A) 1.00
(B) 1.08
(C) 1.19
(D) 1.32

Ec � 120 GPa
Es � 210 GPa

SOME ADDITIONAL REVIEW PROBLEMS: CHAPTER 2
(A) 0.9 mm
(B) 1.6 mm
(C) 2.1 mm
(D) 3.4 mm

R-2.4 A brass bar of length
has diameter over one-half  of its length and
diameter over the other half. Compare this
nonprismatic bar to a prismatic bar of the same volume of
material with constant diameter d and length L. The elon-
gation of  the prismatic bar under the same load

is approximately:
(A) 3 mm
(B) 4 mm
(C) 5 mm
(D) 6 mm

P � 25 kN

d2 � 12 mm
d1 � 18 mm

(E � 110 MPa) L � 2.5 m

R-2.2 A plane truss with span length is con-
structed using cast iron pipes with a cross-
sectional area of 4500 mm2. The displacement of joint B
cannot exceed 2.7 mm. The maximum value of loads P is
approximately:

(A) 340 kN
(B) 460 kN
(C) 510 kN
(D) 600 kN

(E � 170 GPa)
L � 4.5 m

P

Steel
wire

P

Copper 
wire

L

A B
45° 45°

P

P

C

a b c

B

P1 P2
P3

A C D

d1

P

d2

L/2 L/2

P

2 3

d
A

Segment 1 Segment 2

d
2
—

P
2
—

A
3
4
—

L – xx

P

R-2.5 A nonprismatic cantilever bar has an internal cylin-
drical hole of diameter d/2 from 0 to x, so the net area of
the cross section for Segment 1 is (3/4)A. Load P is applied
at x, and load is applied at . Assume that E is
constant. The length of the hollow segment, x, required to
obtain axial displacement at the free end is:

(A)
(B)
(C)
(D) x � 3L/5

x � L/3
x � L/4
x � L/5

δ � PL/EA

�P/2 x � L
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Some Additional Review Problems: Chapter 2

R-2.6 A nylon bar with diameter 12 mm,
length 4.5 m, and weight 5.6 N hangs vertically under its
own weight. The elongation of the bar at its free end is
approximately:

(A) 0.05 mm
(B) 0.07 mm
(C) 0.11 mm
(D) 0.17 mm

(E � 2.1 GPa)

259

the allowable shear stress in the pin is 45 MPa and the
allowable normal stress in the rod is 70 MPa, the maxi-
mum permissible temperature drop �T is approximately:

(A) 14 �C
(B) 20 �C
(C) 28 �C
(D) 40 �C

R-2.10 A steel bolt is
enclosed by a copper tube area �

and the end nut is turned until
it is just snug. The pitch of the bolt threads is 1.25 mm.
The bolt is now tightened by a quarter turn of the nut. The
resulting stress in the bolt is approximately:

(A) 56 MPa
(B) 62 MPa
(C) 74 MPa
(D) 81 MPa

400 mm2, Ec � 110 GPa)

(area � 130 mm2, Es � 210 GPa)
(length � 0.5 m,

R-2.9 A threaded steel rod
is held stress-free between rigid

walls by a nut and washer assembly at
each end. If  the allowable bearing stress between the
washer and wall is 55 MPa and the allowable  normal stress
in the rod is 90 MPa, the maximum permissible tempera-
ture drop �T is approximately:

(A) 25 �C
(B) 30 �C
(C) 38 �C
(D) 46 �C

αs � 12 � 10�6/°C.)
(Es � 210 GPa, dr � 15 mm,

(dw � 22 mm)

R-2.7 A monel shell
encloses a brass core

. Initially, both shell and core are a length of
100 mm. A load P is applied to both shell and core through
a cap plate. The load P required to compress both shell
and core by 0.10 mm is approximately:

(A) 10.2 kN
(B) 13.4 kN
(C) 18.5 kN
(D) 21.0 kN

d1 � 6 mm)
d2 � 8 mm) (Eb � 96 GPa,

(Em � 170 GPa, d3 � 12 mm,

L

B

A

P

Monel shell
Brass core

d3

d1

d2

L

Rod, dr

Pin, dp

Clevis

ΔT

Rod, dr Washer, dw
ΔT

Steel bolt

Copper tube

R-2.8 A steel rod 
is held stress-free between rigid walls

by a clevis and pin assembly at each end. If(dp � 15 mm)
αs � 12 � 10�6/°C)

(Es � 210 GPa, dr � 12 mm,
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Chapter 2  Axially Loaded Members

R-2.14 A steel plane truss is loaded at B and C by forces
. The cross-sectional area of each member is

. Truss dimensions are and
. The maximum shear stress in bar AB is approx-

imately:
(A) 27 MPa
(B) 33 MPa
(C) 50 MPa
(D) 69 MPa

L � 4 m
A � 3970 mm2 H � 3 m
P � 200 kN

260

R-2.11 A steel bar of  rectangular cross section
carries a tensile load P. The

allowable stresses in tension and shear are 100 MPa and
48 MPa, respectively. The maximum permissible load Pmax
is approximately:

(A) 56 kN
(B) 62 kN
(C) 74 kN
(D) 91 kN

(a � 38 mm, b � 50 mm)

R-2.15 A plane stress element on a bar in uniaxial stress
has a tensile stress of (see fig.). The maxi-
mum shear stress in the bar is approximately:

(A) 29 MPa
(B) 37 MPa
(C) 50 MPa
(D) 59 MPa

σθ � 78 MPa

R-2.13 A copper bar is
loaded by tensile load . The maximum shear
stress in the bar is approximately:

(A) 73 MPa
(B) 87 MPa
(C) 145 MPa
(D) 150 MPa

P � 11.5 kN
(d � 10 mm, E � 110 GPa)

R-2.12 A brass wire is pre-
tensioned to . The coefficient of thermal expan-
sion for the wire is . The temperature
change at which the wire goes slack is approximately:

(A)
(B)
(C)
(D) �18.2 °C

�12.6 °C
�12.6 °C
�5.7 °C

19.5 � 10�6/°C
T � 85 N

(d � 2.0 mm, E � 110 GPa)

P P
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Some Additional Review Problems: Chapter 2

R-2.16 A prismatic bar (diameter ) is loaded
by force P1. A stepped bar (diameters and

with radius of fillets ) is loaded
by force P2. The allowable axial stress in the material is
75 MPa. The ratio of the maximum permissible
loads that can be applied to the bars, considering stress
concentration effects in the stepped bar, is:

(A) 0.9
(B) 1.2
(C) 1.4
(D) 2.1

P1/P2

d2 � 25 mm R � 2 mm
d1 � 20 mm

d0 � 18 mm

261

FIG. 2-66 Stress-concentration factor K for round bars with shoulder fillets.
The dashed line is for a full quarter-circular fillet.
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3
Torsion

Circular shafts are essential components in machines and devices for power generation and transmission. 
(R. Scott Lewis at ACCO Engineered Systems)

C H A P T E R
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I CHAPTER OVERVIEW
Chapter 3 is concerned with the twisting of circular
bars and hollow shafts acted upon by torsional
moments. First, we consider uniform torsion which
refers to the case in which torque is constant over the
length of a prismatic shaft, while nonuniform torsion
describes cases in which the torsional moment and/or
the torsional rigidity of the cross section varies over
the length. As for the case of axial deformations, we
must relate stress and strain and also applied loading
and deformation. For torsion, recall that Hooke’s
Law for shear states that shearing stresses, τ, are
 proportional to shearing strains, γ, with the constant
of proportionality being G, the shearing modulus of
elasticity. Both shearing stresses and shearing strains
vary linearly with increasing radial distance in the
cross section, as described by the torsion formula. The
angle of twist, φ, is proportional to the internal

3.1 Introduction 264
3.2 Torsional Deformations of a Circular Bar 265
3.3 Circular Bars of Linearly Elastic Materials 268
3.4 Nonuniform Torsion 280
3.5 Stresses and Strains in Pure Shear 291
3.6 Relationship Between Moduli of Elasticity E

and G 298
3.7 Transmission of Power by Circular Shafts 299
3.8 Statically Indeterminate Torsional Members 304

3.9 Strain Energy in Torsion and Pure Shear 308
3.10 Torsion of Noncircular Prismatic Shafts 315
3.11 Thin-Walled Tubes 324

*3.12 Stress Concentrations in Torsion 332
Chapter Summary & Review 336
Problems 338

*Specialized and/or advanced topics

Chapter 3 is organized as follows:

 torsional moment and the torsional flexibility of the
circular bar. Most of the discussion in this chapter is
devoted to linear elastic behavior and small rotations
of statically determinate members. However, if the
bar is statically indeterminate, we must augment the
equations of statical equilibrium with compatibility
equations (which rely on torque-displacement rela-
tions) to solve for any unknowns of interest, such as
support moments or internal torsional moments in
members. Stresses on inclined sections also are inves-
tigated as a first step toward a more complete
 consideration of plane stress states in later chapters.
Finally, a number of specialized and advanced topics
(such as strain energy, torsion of noncircular shafts,
shear flow in thin-walled tubes, and stress concen -
trations in torsion) are introduced at the end of
this chapter.
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Chapter 3  Torsion

3.1 INTRODUCTION
In Chapters 1 and 2, we discussed the behavior of the simplest type of
structural member—namely, a straight bar subjected to axial loads.
Now we consider a slightly more complex type of behavior known as
torsion. Torsion refers to the twisting of a straight bar when it is loaded
by moments (or torques) that tend to produce rotation about the longi-
tudinal axis of the bar. For instance, when you turn a screwdriver  
(Fig. 3-1a), your hand applies a torque T to the handle (Fig. 3-1b) and
twists the shank of the screwdriver. Other examples of bars in torsion
are drive shafts in automobiles, axles, propeller shafts, steering rods,
and drill bits.

An idealized case of torsional loading is pictured in Fig. 3-2a,
which shows a straight bar supported at one end and loaded by two
pairs of equal and opposite forces. The first pair consists of the forces
P1 acting near the midpoint of the bar and the second pair consists of
the forces P2 acting at the end. Each pair of forces forms a couple that
tends to twist the bar about its longitudinal axis. As we know from
statics, the moment of a couple is equal to the product of one of the
forces and the perpendicular distance between the lines of action of
the forces; thus, the first couple has a moment T1 � P1d1 and the sec-
ond has a moment T2 � P2d2. The SI unit for moment is the newton
meter (N�m).

The moment of a couple may be represented by a vector in the
form of a double-headed arrow (Fig. 3-2b). The arrow is perpendi cular
to the plane containing the couple, and therefore in this case both
arrows are parallel to the axis of the bar. The direction (or sense) of the
moment is indicated by the right-hand rule for moment vectors—
namely, using your right hand, let your fingers curl in the direction of
the moment, and then your thumb will point in the direction of the
vector.

An alternative representation of a moment is a curved arrow acting in
the direction of rotation (Fig. 3-2c). Both the curved arrow and vector
representations are in common use, and both are used in this book. The
choice depends upon convenience and personal preference.

Moments that produce twisting of a bar, such as the moments T1
 and T2 in Fig. 3-2, are called torques or twisting moments. Cylindrical
members that are subjected to torques and transmit power through rota-
tion are called shafts; for instance, the drive shaft of an automobile or
the propeller shaft of a ship. Most shafts have circular cross sections,
either solid or tubular.

In this chapter we begin by developing formulas for the deformations
and stresses in circular bars subjected to torsion. We then analyze the
state of stress known as pure shear and obtain the relationship between
 the moduli of elasticity E and G in tension and shear, respectively. Next,
 we analyze rotating shafts and determine the power they transmit.
Finally,  we cover several additional topics related to torsion, namely,
statically indeterminate members, strain energy, thin-walled tubes of
noncircular cross section, and stress concentrations.

264

(b)

(a)

T

Fig. 3-1
Torsion of a screwdriver due to

a torque T applied to the handle
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T1 = P1d1 T2 = P2d2
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d1 P2

P2
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Fig. 3-2
Circular bar subjected to torsion

by torques T1 and T2
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3.2 Torsional Deformations of a Circular Bar 265

3.2 TORSIONAL DEFORMATIONS 
OF A CIRCULAR BAR
We begin our discussion of torsion by considering a prismatic bar of cir-
cular cross section twisted by torques T acting at the ends (Fig. 3-3a).
Since every cross section of the bar is identical, and since every cross sec-
tion is subjected to the same internal torque T, we say that the bar is in
pure torsion. From considerations of symmetry, it can be proved that cross
sections of the bar do not change in shape as they rotate about the longi-
tudinal axis. In other words, all cross sections remain plane and circular
and all radii remain straight. Furthermore, if the angle of rotation
between one end of the bar and the other is small, neither the length of the
bar nor its radius will change.

To aid in visualizing the deformation of the bar, imagine that the left-
hand end of the bar (Fig. 3-3a) is fixed in position. Then, under the action
of the torque T, the right-hand end will rotate (with respect to the left-hand
end) through a small angle φ, known as the angle of twist (or angle of rota-
tion). Because of this rotation, a straight longitudinal line pq on the surface
of the bar will become a helical curve pq�, where q� is the position of point
q after the end cross section has rotated through the angle φ (Fig. 3-3b).

The angle of twist changes along the axis of the bar, and at interme-
diate cross sections it will have a value φ(x) that is between zero at the left-
hand end and φ at the right-hand end. If every cross section of the bar has
the same radius and is subjected to the same torque (pure torsion), the
angle φ(x) will vary linearly between the ends.

(a)

(b)

  (x)

T T
p

x

L

r
q

q'
r

q

q'

f
f

f

Fig. 3-3
Deformations of a circular 
bar in pure torsion

Shear Strains at the Outer Surface
Now consider an element of the bar between two cross sections distance dx
apart (see Fig. 3-4a on the next page). This element is shown enlarged in
Fig. 3-4b. On its outer surface we identify a small element abcd, with sides ab
and cd that initially are parallel to the longitudinal axis. During twisting of
the bar, the right-hand cross section rotates with respect to the left-hand
cross section through a small angle of twist dφ, so that points b and c move
to b� and c�, respectively. The lengths of the sides of the element, which is
now element ab�c�d, do not change during this small rotation.
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Chapter 3  Torsion

However, the angles at the corners of the element (Fig. 3-4b) are no
longer equal to 90�. The element is therefore in a state of pure shear, which
means that the element is subjected to shear strains but no normal strains
(see Fig. 1-28 of Section 1.4). The magnitude of the shear strain at the
outer surface of the bar, denoted γmax, is equal to the decrease in the angle
at point a, that is, the decrease in angle bad. From Fig. 3-4b we see that
the decrease in this angle is

(3-1)

where γmax is measured in radians, bb� is the distance through which point b
moves, and ab is the length of the element (equal to dx). With r denoting the
radius of the bar, we can express the distance bb� as rdφ, where dφ also is
measured in radians. Thus, the preceding equation becomes

(3-2)

This equation relates the shear strain at the outer surface of the bar to the
angle of twist.

The quantity dφ/dx is the rate of change of the angle of twist φ with
respect to the distance x measured along the axis of the bar. We will
denote dφ/dx by the symbol θ and refer to it as the rate of twist, or the
angle of twist per unit length:

(3-3)

With this notation, we can now write the equation for the shear strain at
the outer surface [Eq. (3-2)] as

(3-4)

For convenience, we discussed a bar in pure torsion when deriving
Eqs. (3-3) and (3-4). However, both equations are valid in more general

γ max �
rdφ
dx

� rθ

θ �
dφ
dx

γ max �
bb¿

ab

γ max �
rdφ
dx
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from a bar in torsion
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Fig. 3-3b (Repeated)
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3.2 Torsional Deformations of a Circular Bar 267

cases of torsion, such as when the rate of twist θ is not constant but varies
with the distance x along the axis of the bar.

In the special case of pure torsion, the rate of twist is equal to the total
angle of twist φ divided by the length L, that is, θ � φ /L. Therefore, for
pure torsion only, we obtain

(3-5)

This equation can be obtained directly from the geometry of Fig. 3-3a by
noting that γmax is the angle between lines pq and pq�, that is, γmax is the
angle qpq�. Therefore, γmaxL is equal to the distance qq� at the end of
the bar. But since the distance qq� also equals rφ (Fig. 3-3b), we obtain
rφ � γmaxL, which agrees with Eq. (3-5).

Shear Strains Within the Bar
The shear strains within the interior of the bar can be found by the same
method used to find the shear strain γmax at the surface. Because radii in
the cross sections of a bar remain straight and undistorted during twist-
ing, we see that the preceding discussion for an element abcd at the outer
surface (Fig. 3-4b) will also hold for a similar element situated on the sur-
face of an interior cylinder of radius ρ (Fig. 3-4c). Thus, interior elements
are also in pure shear with the corresponding shear strains given by the
equation [compare with Eq. (3-4)]:

(3-6)

This equation shows that the shear strains in a circular bar vary linearly
with the radial distance ρ from the center, with the strain being zero at the
center and reaching a maximum value γmax at the outer surface.

Circular Tubes
A review of the preceding discussions will show that the equations for
the shear strains [Eqs. (3-2) to (3-4)] apply to circular tubes (Fig. 3-5) as
well as to solid circular bars. Figure 3-5 shows the linear variation in
shear strain between the maximum strain at the outer surface and the
minimum strain at the interior surface. The equations for these strains
are as follows:

(3-7a,b)

in which r1 and r2 are the inner and outer radii, respectively, of the tube.
All of the preceding equations for the strains in a circular bar are

based upon geometric concepts and do not involve the material proper-
ties. Therefore, the equations are valid for any material, whether it
behaves elastically or inelastically, linearly or nonlinearly. However, the
equations are limited to bars having small angles of twist and small
strains.

γ max �
r2φ
L

γ min �
r1

r2

γ max �
r1φ
L

γ max � rθ �
rφ
L

γ � ρθ �
ρ
r
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T
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Fig. 3-5
Shear strains in a circular tube
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Chapter 3  Torsion

3.3 CIRCULAR BARS OF LINEARLY
ELASTIC MATERIALS
Now that we have investigated the shear strains in a circular bar in torsion
(see Figs. 3-3 to 3-5), we are ready to determine the directions and magni-
tudes of the corresponding shear stresses. The directions of the stresses
can be determined by inspection, as illustrated in Fig. 3-6a. We observe
that the torque T tends to rotate the right-hand end of the bar counter-
clockwise when viewed from the right. Therefore the shear stresses τ act-
ing on a stress element located on the surface of the bar will have the
directions shown in the figure.

For clarity, the stress element shown in Fig. 3-6a is enlarged in 
Fig. 3-6b, where both the shear strain and the shear stresses are shown. As
explained previously in Section 2.6, we customarily draw stress elements
in two dimensions, as in Fig. 3-6b, but we must always remember that
stress elements are actually three-dimensional objects with a thickness per-
pendicular to the plane of the figure.

The magnitudes of the shear stresses can be determined from the
strains by using the stress-strain relation for the material of the bar. If the
material is linearly elastic, we can use Hooke’s law in shear [Eq. (1-21)]:

(3-8)

in which G is the shear modulus of elasticity and γ is the shear strain in
radians. Combining this equation with the equations for the shear strains
[Eqs. (3-2) and (3-4)], we get

(3-9a,b)

in which τmax is the shear stress at the outer surface of the bar (radius r), τ
is the shear stress at an interior point (radius ρ), and θ is the rate of twist.
(In these equations, θ has units of radians per unit of length.)

τ max � Grθ τ � Gρθ �
ρ
r

τ max

τ � Gγ
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Fig. 3-6
Shear stresses in a circular 

bar in torsion
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3.3 Circular Bars of Linearly Elastic Materials 269

Equations (3-9a) and (3-9b) show that the shear stresses vary linearly
with the distance from the center of the bar, as illustrated by the triangu-
lar stress diagram in Fig. 3-6c. This linear variation of stress is a conse-
quence of Hooke’s law. If the stress-strain relation is nonlinear, the
stresses will vary nonlinearly and other methods of analysis will be
needed.

The shear stresses acting on a cross-sectional plane are accompanied
by shear stresses of the same magnitude acting on longitudinal planes
(Fig. 3-7). This conclusion follows from the fact that equal shear stresses
always exist on mutually perpendicular planes, as explained in Section 1.7.
If the material of the bar is weaker in shear on longitudinal planes than on
cross-sectional planes, as is typical of wood when the grain runs parallel
to the axis of the bar, the first cracks due to torsion will appear on the sur-
face in the longitudinal direction.

The state of pure shear at the surface of a bar (Fig. 3-6b) is equivalent
to equal tensile and compressive stresses acting on an element oriented at
an angle of 45�, as explained later in Section 3.5. Therefore, a rectangular
element with sides at 45� to the axis of the shaft will be subjected to ten-
sile and compressive stresses, as shown in Fig. 3-8. If a torsion bar is made
of a material that is weaker in tension than in shear, failure will occur in
tension along a helix inclined at 45� to the axis, as you can demonstrate by
twisting a piece of classroom chalk.

The Torsion Formula
The next step in our analysis is to determine the relationship between the
shear stresses and the torque T. Once this is accomplished, we will be able
to calculate the stresses and strains in a bar due to any set of applied
torques.

The distribution of the shear stresses acting on a cross section is pic-
tured in Figs. 3-6c and 3-7. Because these stresses act continuously around
the cross section, they have a resultant in the form of a moment—a
moment equal to the torque T acting on the bar. To determine this result-
ant, we consider an element of area dA located at radial distance ρ from
the axis of the bar (Fig. 3-9). The shear force acting on this element is
equal to τ dA, where τ is the shear stress at radius ρ. The moment of this

  max

  max

τ

τ

Fig. 3-7
Longitudinal and transverse
shear stresses in a circular bar
subjected to torsion

T T

Fig. 3-8
Tensile and compressive  
stresses acting on a stress 
element  oriented at 45� to 
the  longitudinal axis
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Chapter 3  Torsion

force about the axis of the bar is equal to the force times its distance from
the center, or τρdA. Substituting for the shear stress τ from Eq. (3-9b), we
can express this elemental moment as

The resultant moment (equal to the torque T ) is the summation over the
entire cross-sectional area of all such elemental moments:

(3-10)

in which

(3-11)

is the polar moment of inertia of the circular cross section.
For a circle of radius r and diameter d, the polar moment of inertia is

(3-12)

as given in Appendix D, Case 9. Note that moments of inertia have units
of length to the fourth power.*

An expression for the maximum shear stress can be obtained by rear-
ranging Eq. (3-10), as follows:

(3-13)

This equation, known as the torsion formula, shows that the maximum
shear stress is proportional to the applied torque T and inversely propor-
tional to the polar moment of inertia IP.

Typical units used with the torsion formula are as follows. In SI,
the torque T is usually expressed in newton meters (N�m), the radius r
in meters (m), the polar moment of inertia IP in meters to the fourth
power (m4), and the shear stress τ in pascals (Pa).

τ max �
Tr
IP

dM � τρdA �
τ max

r
ρ2dA

IP �
3A

ρ2dA

T �
3A

dM �
τ max

r 3A

ρ2dA �
τ max

r
IP

IP �
πr4

2
�

πd4

32

270

*Polar moments of inertia are discussed in Section 12.6 of Chapter 12.

r

dA

τ
ρ

Fig. 3-9
Determination of the 

resultant of the shear stresses
acting on a cross section
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3.3 Circular Bars of Linearly Elastic Materials 271

Substituting r � d/2 and IP � πd4/32 into the torsion formula, we get
the following equation for the maximum stress:

(3-14)

This equation applies only to bars of solid circular cross section, whereas
the torsion formula itself [Eq. (3-13)] applies to both solid bars and circu-
lar tubes, as explained later. Equation (3-14) shows that the shear stress is
inversely proportional to the cube of the diameter. Thus, if the diameter is
doubled, the stress is reduced by a factor of eight.

The shear stress at distance ρ from the center of the bar is

(3-15)

which is obtained by combining Eq. (3-9b) with the torsion formula
[Eq. (3-13)]. Equation (3-15) is a generalized torsion formula, and we see
once again that the shear stresses vary linearly with the radial distance
from the center of the bar.

Angle of Twist
The angle of twist of a bar of linearly elastic material can now be related
to the applied torque T. Combining Eq. (3-9a) with the torsion formula,
we get

(3-16)

in which θ has units of radians per unit of length. This equation shows
that the rate of twist θ is directly proportional to the torque T and
inversely proportional to the product GIP, known as the torsional rigidity
of the bar.

For a bar in pure torsion, the total angle of twist φ, equal to the rate
of twist times the length of the bar (that is, φ � θL), is

(3-17)

in which φ is measured in radians. The use of the preceding equations in
both analysis and design is illustrated later in Examples 3-1 and 3-2.

The quantity GIP /L, called the torsional stiffness of the bar, is the
torque required to produce a unit angle of rotation. The torsional flexibil-
ity is the reciprocal of the stiffness, or L/GIP, and is defined as the angle
of rotation produced by a unit torque. Thus, we have the following
expressions:

(3-18a,b)kT �
GIP

L
fT �

L
GIP

φ �
TL
GIP

τ max �
16T
πd3

τ �
ρ
r

τ max �
Tρ
IP

θ �
T

GIP
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Chapter 3  Torsion

These quantities are analogous to the axial stiffness k � EA/L and axial
flexibility f � L/EA of a bar in tension or compression [compare with  
Eqs. (2-4a) and (2-4b)]. Stiffnesses and flexibilities have important roles in
structural analysis.

The equation for the angle of twist [Eq. (3-17)] provides a conven-
ient way to determine the shear modulus of elasticity G for a material.
By conducting a torsion test on a circular bar, we can measure the angle
of twist φ produced by a known torque T. Then the value of G can be
calculated from Eq. (3-17).

Circular Tubes
Circular tubes are more efficient than solid bars in resisting torsional
loads. As we know, the shear stresses in a solid circular bar are maximum
at the outer boundary of the cross section and zero at the center.
Therefore, most of the material in a solid shaft is stressed significantly
below the maximum shear stress. Furthermore, the stresses near the cen-
ter of the cross section have a smaller moment arm ρ for use in determin-
ing the torque [see Fig. 3-9 and Eq. (3-10)].

By contrast, in a typical hollow tube most of the material is near the
outer boundary of the cross section where both the shear stresses and the
moment arms are highest (Fig. 3-10). Thus, if weight reduction and sav-
ings of material are important, it is advisable to use a circular tube. For
instance, large drive shafts, propeller shafts, and generator shafts usually
have hollow circular cross sections.

The analysis of the torsion of a circular tube is almost identical to that
for a solid bar. The same basic expressions for the shear stresses may be
used [for instance, Eqs. (3-9a) and (3-9b)]. Of course, the radial distance ρ
is limited to the range r1 to r2, where r1 is the inner radius and r2 is the
outer radius of the bar (Fig. 3-10).

The relationship between the torque T and the maximum stress is
given by Eq. (3-10), but the limits on the integral for the polar moment of
inertia [Eq. (3-11)] are ρ � r1 and ρ � r2. Therefore, the polar moment of
inertia of the cross-sectional area of a tube is

(3-19)

The preceding expressions can also be written in the following forms:

(3-20)

in which r is the average radius of the tube, equal to (r1 � r2)/2; d is the aver-
age diameter, equal to (d1 � d2)/2; and t is the wall thickness (Fig. 3-10),
equal to r2 � r1. Of course, Eqs. (3-19) and (3-20) give the same results, but
sometimes the latter is more convenient.

If the tube is relatively thin so that the wall thickness t is small com-
pared to the average radius r, we may disregard the terms t2 in Eq. (3-20).

IP �
πrt
2

(4r2 � t2) �
πdt
4

(d2 � t2)

IP �
π
2

(r2
4 � r1

4) �
π
32

(d2
4 � d1

4)

272

max

r1

r2

t

t

t

Fig. 3-10
Circular tube in torsion
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3.3 Circular Bars of Linearly Elastic Materials 273

With this simplification, we obtain the following approximate formulas for
the polar moment of inertia:

(3-21)

These expressions are given in Case 22 of Appendix D.
Reminders: In Eqs. (3-20) and (3-21), the quantities r and d are the aver-

age radius and diameter, not the maximums. Also, Eqs. (3-19) and (3-20)
are exact; Eq. (3-21) is approximate.

The torsion formula [Eq. (3-13)] may be used for a circular tube of
 linearly elastic material provided IP is evaluated according to Eq. (3-19),
Eq. (3-20), or, if appropriate, Eq. (3-21). The same comment applies to the
general equation for shear stress [Eq. (3-15)], the equations for rate of
twist and angle of twist [Eqs. (3-16) and (3-17)], and the equations for
stiffness and flexibility [Eqs. (3-18a and b)].

The shear stress distribution in a tube is pictured in Fig. 3-10. From
the figure, we see that the average stress in a thin tube is nearly as great as
the maximum stress. This means that a hollow bar is more efficient in the
use of material than is a solid bar, as explained previously and as demon-
strated later in Examples 3-2 and 3-3.

When designing a circular tube to transmit a torque, we must be sure
that the thickness t is large enough to prevent wrinkling or buckling of the
wall of the tube. For instance, a maximum value of the radius to thickness
ratio, such as (r2/t)max � 12, may be specified. Other design considerations
include environmental and durability factors, which also may impose
requirements for minimum wall thickness. These topics are discussed in
courses and textbooks on mechanical design.

Limitations
The equations derived in this section are limited to bars of circular cross
 section (either solid or hollow) that behave in a linearly elastic manner. In
other words, the loads must be such that the stresses do not exceed the pro-
portional limit of the material. Furthermore, the equations for stresses are
valid only in parts of the bars away from stress concentrations (such as
holes and other abrupt changes in shape) and away from cross sections
where loads are applied. (Stress concentrations in torsion are discussed later
in Section 3.12.)

Finally, it is important to emphasize that the equations for the torsion of
circular bars and tubes cannot be used for bars of other shapes. Noncircular
bars, such as rectangular bars and bars having I-shaped cross sections, behave
quite differently than do circular bars. For instance, their cross sections do not
remain plane and their maximum stresses are not located at the farthest
 distances from the midpoints of the cross sections. Thus, these bars require
more advanced methods of analysis, such as those presented in books on
 theory of elasticity and advanced mechanics of materials.* (A brief overview
of torsion of noncircular prismatic shafts is presented in Section 3.10.)

*The torsion theory for circular bars originated with the work of the famous French scientist  
C. A. de Coulomb (1736–1806); further developments were due to Thomas Young and A. Duleau (Ref. 3-1).
The  general theory of torsion (for bars of any shape) is due to the most famous elastician of all time,  
Barré de Saint-Venant (1797–1886); see Ref. 2-10.

IP L 2πr3t �
πd3t

4
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Chapter 3  Torsion274

Example 3-1• • •
A solid steel bar of circular cross section (Fig. 3-11) has diameter d � 40 mm,
length L � 1.3 m, and shear modulus of elasticity G � 80 GPa. The bar is
 subjected to torques T acting at the ends.

(a) If the torques have magnitude T � 340 N m, what is the maximum shear
stress in the bar? What is the angle of twist between the ends?

(b) If the allowable shear stress is 42 MPa and the allowable angle of twist
is 2.5�, what is the maximum permissible torque?

#

T T

L = 1.3 m

d = 40 mmFig. 3-11
Example 3-1: Bar in pure
 torsion

Solution
(a) Maximum shear stress and angle of twist. Because the bar has a solid circu-

lar cross section, we can find the maximum shear stress from Eq. (3-14), as

In a similar manner, the angle of twist is obtained from Eq. (3-17) with
the polar moment of inertia given by Eq. (3-12):

Thus, the analysis of the bar under the action of the given torque is
completed.

(b) Maximum permissible torque. The maximum permissible torque is deter-
mined either by the allowable shear stress or by the allowable angle of twist.
Beginning with the shear stress, we rearrange Eq. (3-14) and calculate as

Any torque larger than this value will result in a shear stress that exceeds
the allowable stress of 42 MPa.

Using a rearranged Eq. (3-17), we now calculate the torque based
upon the angle of twist:

Any torque larger than T2 will result in the allowable angle of twist
being exceeded.

The maximum permissible torque is the smaller of T1 and T2:

In this example, the allowable shear stress provides the limiting condition.

➥

➥

➥

Tmax � 528 N # m

� 674 N # m

T2 �
GIPφallow

L
�

(80 GPa)(2.51 � 10�7 m4)(2.5°)(πrad/180°)

1.3 m

T1 �
πd3τallow

16
�

π
16

(0.04 m)3(42 MPa) � 528 N # m

φ �
TL
GIP

�
(340 N # m)(1.3 m)

(80 GPa)(2.51 � 10�7 m4)
� 0.02198 rad � 1.26°

IP �
πd4

32
�

π(0.04 m)4

32
� 2.51 � 10�7 m4

τ max �
16T

πd3
�

16(340 N # m)

π(0.04 m)3
� 27.1 MPa
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3.3 Circular Bars of Linearly Elastic Materials 275

• • •

Continues ➥

A steel shaft is to be manufactured either as a solid circular bar or as a cir-
cular tube (Fig. 3-12). The shaft is required to transmit a torque of 1200 N.m
without exceeding an allowable shear stress of 40 MPa nor an allowable
rate of twist of 0.75�/m. (The shear modulus of elasticity of the steel is
78 GPa.)

(a) Determine the required diameter d0 of the solid shaft.
(b) Determine the required outer diameter d2 of the hollow shaft if the

thickness t of the shaft is specified as one-tenth of the outer diameter.
(c) Determine the ratio of diameters (that is, the ratio d2/d0) and the ratio

of weights of the hollow and solid shafts.

Example 3-2

t =

(b)(a)

d2
10

d1

d2

d0

Fig. 3-12
Example 3-2: Torsion of a steel
shaft

Solution
(a) Solid shaft. The required diameter d0 is determined either from the

allowable shear stress or from the allowable rate of twist. In the case of
the allowable shear stress we rearrange Eq. (3-14) and obtain

from which we get

In the case of the allowable rate of twist, we start by finding the
required polar moment of inertia [see Eq. (3-16)]:

IP �
T

Gθallow

�
1200 N # m

(78 GPa)(0.75°/m)(πrad/180°)
� 1175 � 10�9 m4

d0 � 0.0535 m � 53.5 mm

d0
3 �

16T
πτallow

�
16(1200 N # m)

π (4 MPa)
� 152.8 � 10�6 m3

(© culture-images GmbH/Alamy)
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Chapter 3  Torsion276

Example 3-2 - Continued• • •
Since the polar moment of inertia is equal to πd4/32, the required
 diameter is

or

Comparing the two values of d0, we see that the rate of twist governs
the design and the required diameter of the solid shaft is

In a practical design, we would select a diameter slightly larger than the
calculated value of d0; for instance, 60 mm.

(b) Hollow shaft. Again, the required diameter is based upon either the
allowable shear stress or the allowable rate of twist. We begin by not-
ing that the outer diameter of the bar is d2 and the inner diameter is

Thus, the polar moment of inertia [Eq. (3-19)] is

In the case of the allowable shear stress, we use the torsion formula  
[Eq. (3-13)] as

Rearranging, we get

Solving for d2 gives

which is the required outer diameter based upon the shear stress.
In the case of the allowable rate of twist, we use Eq. (3-16) with θ

replaced by θallow and IP replaced by the previously obtained expression;
thus,

➥

θallow �
T

G10.05796d2
42

d0
4 �

32IP
π

�
32(1175 � 10�9 m4)

π
� 11.97 � 10�6 m4

d0 � 0.0588 m � 58.8 mm

d0 � 58.8 mm

d2 � 0.0637 m � 63.7 mm

d2
3 �

T
0.1159τallow

�
1200 N # m

0.1159(40 MPa)
� 258.8 � 10�6 m3

τallow �
Tr
IP

�
T(d2/2)

0.05796d2
4

�
T

0.1159d2
3

IP �
π

32
(d2

4 � d1
4) �

π
32
cd2

4 � (0.8d2)
4 d �

π
32

(0.5904d2
4) � 0.05796d2

4

d1 � d2 � 2t � d2 � 2(0.1d2) � 0.8d2

t =

(b)(a)

d2
10

d1

d2

d0

Fig. 3-12 (Repeated)
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3.3 Circular Bars of Linearly Elastic Materials 277

from which

Solving for d2 gives

which is the required diameter based upon the rate of twist.
Comparing the two values of d2, we see that the rate of twist gov-

erns the design and the required outer diameter of the hollow  
shaft is

The inner diameter d1 is equal to 0.8d2, or 53.7 mm. (As practical values,
we might select d2 � 70 mm and d1 � 0.8d2 � 56 mm.)

(c) Ratios of diameters and weights. The ratio of the outer diameter of
the hollow shaft to the diameter of the solid shaft (using the calcu-
lated values) is

Since the weights of the shafts are proportional to their cross-
 sectional areas, we can express the ratio of the weight of the hollow
shaft to the weight of the solid shaft as follows:

These results show that the hollow shaft uses only 47% as much
material as does the solid shaft, while its outer diameter is only 14%
larger.

Note: This example illustrates how to determine the required sizes
of both solid bars and circular tubes when allowable stresses and allow-
able rates of twist are known. It also illustrates the fact that circular
tubes are more efficient in the use of materials than are solid circular
bars.

➥

➥

➥

�
1200 N # m

0.05796(78 GPa)(0.75°/m)(πrad/180°)
� 20.28 � 10�6 m4

d2
4 �

T
0.05796Gθallow

d2 � 0.0671 m � 67.1 mm

d2 � 67.1 mm

d2

d0

�
67.1 mm
58.8 mm

� 1.14

�
(67.1 mm)2 � (53.7 mm)2

(58.8 mm)2
� 0.47

WH

WS

�
AH

AS

�
π1d2

2 � d1
22/4

πd0
2/4

�
d2

2 � d1
2

d0
2
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Chapter 3  Torsion278

Example 3-3• • •
A hollow shaft and a solid shaft constructed of the same material have the
same length and the same outer radius R (Fig. 3-13). The inner radius of the
hollow shaft is 0.6R.

(a) Assuming that both shafts are subjected to the same torque, compare
their shear stresses, angles of twist, and weights.

(b) Determine the strength-to-weight ratios for both shafts.

(b)

R

0.6R

(a)

RFig. 3-13
Example 3-3: Comparison 
of hollow and solid shafts

Solution
(a) Comparison or shear stresses. The maximum shear stresses, given by the

torsion formula [Eq. (3-13)], are proportional to 1/IP inasmuch as the
torques and radii are the same. For the hollow shaft, we get

and for the solid shaft,

Therefore, the ratio β1 of the maximum shear stress in the hollow shaft
to that in the solid shaft is

where the subscripts H and S refer to the hollow shaft and the solid
shaft, respectively.

Comparison of angles of twist. The angles of twist [Eq. (3-17)] are
also proportional to 1/IP, because the torques T, lengths L, and moduli of
elasticity G are the same for both shafts. Therefore, their ratio is the
same as for the shear stresses:

➥

➥

β2 �
φH

φS
�

0.5πR4

0.4352πR4
� 1.15

β1 �
τH

τS
�

0.5πR4

0.4352πR4
� 1.15

IP �
πR4

2
� 0.5πR4

IP �
πR4

2
�

π(0.6R)4

2
� 0.4352πR4
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3.3 Circular Bars of Linearly Elastic Materials 279

Comparison of weights. The weights of the shafts are proportional
to their cross-sectional areas; consequently, the weight of the solid
shaft is proportional to πR2 and the weight of the hollow shaft is pro-
portional to

Therefore, the ratio of the weight of the hollow shaft to the weight of
the solid shaft is

From the preceding ratios we again see the inherent advantage
of hollow shafts. In this example, the hollow shaft has 15% greater
stress and 15% greater angle of rotation than the solid shaft but 36%
less weight.

(b) Strength-to-weight ratios. The relative efficiency of a structure is
sometimes measured by its strength-to-weight ratio, which is defined
for a bar in torsion as the allowable torque divided by the weight. The
allowable torque for the hollow shaft of Fig. 3-13a (from the torsion
formula) is

and for the solid shaft is

The weights of the shafts are equal to the cross-sectional areas times the
length L times the weight density γ of the material:

Thus, the strength-to-weight ratios SH and SS for the hollow and solid
bars, respectively, are

In this example, the strength-to-weight ratio of the hollow shaft is
36% greater than the strength-to-weight ratio for the solid shaft,
demonstrating once again the relative efficiency of hollow shafts. For
a thinner shaft, the percentage will increase; for a thicker shaft, it will
decrease.

➥

➥

πR2 � π(0.6R)2 � 0.64πR2

WH � 0.64πR2Lγ WS � πR2Lγ

TS �
τ max IP

R
�

τ max (0.5πR4)

R
� 0.5πR3τ max

TH �
τ max IP

R
�

τ max (0.4352πR4)

R
� 0.4352πR3τ max

β3 �
WH

WS
�

0.64πR2

πR2
� 0.64

SH �
TH

WH

� 0.68
τ max R

γL
SS �

TS

WS

� 0.5
τ max R

γL
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Chapter 3  Torsion

3.4 NONUNIFORM TORSION
As explained in Section 3.2, pure torsion refers to torsion of a prismatic
bar subjected to torques acting only at the ends. Nonuniform torsion dif-
fers from pure torsion in that the bar need not be prismatic and the
applied torques may act anywhere along the axis of the bar. Bars in
nonuniform torsion can be analyzed by applying the formulas of pure tor-
sion to finite segments of the bar and then adding the results, or by apply-
ing the formulas to differential elements of the bar and then integrating.

To illustrate these procedures, we will consider three cases of nonuni-
form torsion. Other cases can be handled by techniques similar to those
described here.

Case 1. Bar consisting of prismatic segments with constant torque
throughout each segment (Fig. 3-14). The bar shown in part (a) of the
 figure has two different diameters and is loaded by torques acting at
points A, B, C, and D. Consequently, we divide the bar into segments in
such a way that each segment is prismatic and subjected to a constant
torque. In this example, there are three such segments, AB, BC, and CD.
Each segment is in pure torsion, and therefore all of the formulas derived
in the preceding section may be applied to each part separately.

The first step in the analysis is to determine the magnitude and direc-
tion of the internal torque in each segment. Usually the torques can be
determined by inspection, but if necessary they can be found by cutting
sections through the bar, drawing free-body diagrams, and solving equa-
tions of equilibrium. This process is illustrated in parts (b), (c), and (d) of
the figure. The first cut is made anywhere in segment CD, thereby expos-
ing the internal torque TCD. From the free-body diagram (Fig. 3-14b), we
see that TCD is equal to �T1 � T2 � T3. From the next diagram we see
that TBC equals �T1 � T2, and from the last we find that TAB equals �T1.
Thus,

(3-22a,b,c)

Each of these torques is constant throughout the length of its segment.
When finding the shear stresses in each segment, we need only the

magnitudes of these internal torques, since the directions of the stresses
are not of interest. However, when finding the angle of twist for the entire
bar, we need to know the direction of twist in each segment in order to
combine the angles of twist correctly. Therefore, we need to establish a
sign convention for the internal torques. A convenient rule in many cases
is the following: An internal torque is positive when its vector points away
from the cut section and negative when its vector points toward the section.
Thus, all of the internal torques shown in Figs. 3-14b, c, and d are pictured
in their positive directions. If the calculated torque [from Eq. (3-22a, b, or c)]
turns out to have a positive sign, it means that the torque acts in the
assumed direction; if the torque has a negative sign, it acts in the opposite
direction.

The maximum shear stress in each segment of the bar is readily
obtained from the torsion formula [Eq. (3-13)] using the appropriate
cross-sectional dimensions and internal torque. For instance, the

TCD � �T1 � T2 � T3 TBC � �T1 � T2 TAB � �T1

280

(a)

(b)

A B
C D

T1 T2 T3 T4

LAB LBC LCD

A B
C

T1 T2 T3

(c)

A B

T1 T2

(d)

A

T1

TCD

TBC

TAB

Fig. 3-14
Bar in nonuniform torsion 

(Case 1)
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3.4 Nonuniform Torsion 281

 maximum stress in segment BC (Fig. 3-14) is found using the diameter of
that segment and the torque TBC calculated from Eq. (3-22b). The maxi-
mum stress in the entire bar is the largest stress from among the stresses
calculated for each of the three segments.

The angle of twist for each segment is found from Eq. (3-17), again
using the appropriate dimensions and torque. The total angle of twist of
one end of the bar with respect to the other is then obtained by algebraic
summation, as follows:

(3-23)

where φ1 is the angle of twist for segment 1, φ2 is the angle for segment 2,
and so on, and n is the total number of segments. Since each angle of twist
is found from Eq. (3-17), we can write the general formula

(3-24)

in which the subscript i is a numbering index for the various segments. For
segment i of the bar, Ti is the internal torque (found from equilibrium, as
illustrated in Fig. 3-14), Li is the length, Gi is the shear modulus, and (IP)i
is the polar moment of inertia. Some of the torques (and the correspon-
ding angles of twist) may be positive and some may be negative. By sum-
ming algebraically the angles of twist for all segments, we obtain the total
angle of twist φ between the ends of the bar. The process is illustrated later
in Example 3-4.

Case 2. Bar with continuously varying cross sections and constant
torque (Fig. 3-15). When the torque is constant, the maximum shear stress
in a solid bar always occurs at the cross section having the smallest diam-
eter, as shown by Eq. (3-14). Furthermore, this observation usually holds
for tubular bars. If this is the case, we only need to investigate the small-
est cross section in order to calculate the maximum shear stress.
Otherwise, it may be necessary to evaluate the stresses at more than one
location in order to obtain the maximum.

To find the angle of twist, we consider an element of length dx at
 distance x from one end of the bar (Fig. 3-17). The differential angle of
rotation dφ for this element is

(3-25)

in which IP(x) is the polar moment of inertia of the cross section at
 distance x from the end. The angle of twist for the entire bar is the
 summation of the differential angles of rotation:

(3-26)φ �
3

L

0

dφ �
3

L

0

Tdx
GIP(x)

dφ �
Tdx

GIP(x)

φ � a

n

i � 1

φi � a

n

i � 1

TiLi

Gi(IP)i

φ � φ1 � φ2 � Á � φn

A B

T T

dxx

L

Fig. 3-15
Bar in nonuniform torsion 
(Case 2)
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Chapter 3  Torsion

If the expression for the polar moment of inertia IP(x) is not too complex,
this integral can be evaluated analytically. In other cases, it must be eval-
uated numerically.

Case 3. Bar with continuously varying cross sections and continuously
varying torque (Fig. 3-16). The bar shown in part (a) of the figure is sub-
jected to a distributed torque of intensity t per unit distance along the axis
of the bar. As a result, the internal torque T(x) varies continuously along
the axis (Fig. 3-16b). The internal torque can be evaluated with the aid of
a free-body diagram and an equation of equilibrium. As in Case 2, the
polar moment of inertia IP(x) can be evaluated from the cross-sectional
dimensions of the bar.

Knowing both the torque and polar moment of inertia as functions
of x, we can use the torsion formula to determine how the shear stress
varies along the axis of the bar. The cross section of maximum shear
stress can then be identified, and the maximum shear stress can be
determined.

The angle of twist for the bar of Fig. 3-16a can be found in the same
manner as described for Case 2. The only difference is that the torque, like
the polar moment of inertia, also varies along the axis. Consequently, the
equation for the angle of twist becomes

(3-27)

This integral can be evaluated analytically in some cases, but usually it
must be evaluated numerically.

Limitations
The analyses described in this section are valid for bars made of linearly
elastic materials with circular cross sections (either solid or hollow). Also,
the stresses determined from the torsion formula are valid in regions of the
bar away from stress concentrations, which are high localized stresses that
occur wherever the diameter changes abruptly and wherever concentrated
torques are applied (see Section 3.12). However, stress concentrations
have relatively little effect on the angle of twist, and therefore the equa-
tions for φ are generally valid.

Finally, we must keep in mind that the torsion formula and the
formulas for angles of twist were derived for prismatic bars with cir-
cular cross sections (see Section 3.10 for a brief discussion of non-
circular bars in torsion). We can safely apply them to bars with varying
cross sections only when the changes in diameter are small and grad-
ual. As a rule of thumb, the formulas given here are satisfactory as
long as the angle of taper (the angle between the sides of the bar) is less
than 10�.

φ �
3

L

0

dφ �
3

L

0

T(x)dx

GIP(x)

282

(a)

A
B

TA TB

dxx

L

(b)

A

TA T(x)

x

t

t

Fig. 3-16
Bar in nonuniform torsion 

(Case 3)
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3.4 Nonuniform Torsion 283

• • •

Continues ➥

A solid steel shaft ABCDE (Fig. 3-17) having diameter d � 30 mm turns freely
in bearings at points A and E. The shaft is driven by a gear at C, which
applies a torque T2 � 450 N�m in the direction shown in the figure. Gears at
B and D are driven by the shaft and have resisting torques T1 � 275 N�m and
T3 � 175 N�m, respectively, acting in the opposite direction to the torque T2.
Segments BC and CD have lengths LBC � 500 mm and LCD � 400 mm, respec-
tively, and the shear modulus G � 80 GPa.

Determine the maximum shear stress in each part of the shaft and the
angle of twist between gears B and D.

Example 3-4

DCB

d

A E

T1 T2 T3

LBC LCD

Fig. 3-17
Example 3-4: Steel shaft in
 torsion

Solution
Each segment of the bar is prismatic and subjected to a constant torque
(Case 1). Therefore, the first step in the analysis is to determine the torques
acting in the segments, after which we can find the shear stresses and
angles of twist. (Recall that we drew free-body diagrams and then applied
the laws of statics to find the reactive and internal torsional moments in a
geared shaft in Example 1-3 in Section 1.2.)

Torques acting in the segments. The torques in the end segments (AB and
DE) are zero since we are disregarding any friction in the bearings at the sup-
ports. Therefore, the end segments have no stresses and no angles of twist.

The torque TCD in segment CD is found by cutting a section through the
segment and constructing a free-body diagram, as in Fig. 3-18a. The torque
is assumed to be positive, and therefore its vector points away from the cut
section. From equilibrium of the free body, we obtain

TCD � T2 � T1 � 450 N # m � 275 N # m � 175 N # m

CB

d

T1 T2

LBC

TCD

(a)

(b)

B

T1

TBC

Fig. 3-18
Free-body diagrams for
Example 3-4

(© Bigjoker/Alamy)
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Chapter 3  Torsion284

Example 3-4 - Continued• • •
The positive sign in the result means that TCD acts in the assumed positive
direction.

The torque in segment BC is found in a similar manner, using the free-
body diagram of Fig. 3-18b:

Note that this torque has a negative sign, which means that its direction is
opposite to the direction shown in the figure.

Shear stresses. The maximum shear stresses in segments BC and CD are
found from the modified form of the torsion formula [Eq. (3-14)]; thus,

Since the directions of the shear stresses are not of interest in this example,
only absolute values of the torques are used in the preceding calculations.

Angles of twist. The angle of twist φBD between gears B and D is the
algebraic sum of the angles of twist for the intervening segments of the bar,
as given by Eq. (3-23); thus,

When calculating the individual angles of twist, we need the moment of
inertia of the cross section:

Now we can determine the angles of twist, as

and

Note that in this example the angles of twist have opposite directions.
Adding algebraically, we obtain the total angle of twist:

The minus sign means that gear D rotates clockwise (when viewed from the
right-hand end of the shaft) with respect to gear B. However, for most purposes
only the absolute value of the angle of twist is needed, and therefore it is suf-
ficient to say that the angle of twist between gears B and D is 0.61�. The angle
of twist between the two ends of a shaft is sometimes called the wind-up.

Notes: The procedures illustrated in this example can be used for shafts
having segments of different diameters or of different materials, as long as
the dimensions and properties remain constant within each segment.

Only the effects of torsion are considered in this example and in the
problems at the end of the chapter. Bending effects are considered later,
beginning with Chapter 4.

➥

➥

➥

τCD �
16TCD

πd3
�

16(175 N # m)

π(30 mm)3
� 33.0 MPa

τBC �
16TBC

πd3
�

16(275 N # m)

π(30 mm)3
� 51.9 MPa

TBC � �T1 � �275 N # m

φBD � φBC � φCD � �0.0216 � 0.0110 � �0.0106 rad � �0.61°

φCD �
TCDLCD

GIP
�

(175 N # m)(400 mm)

(80 GPa)(79,520 mm4)
� 0.0110 rad

φBC �
TBCLBC

GIP
�

(�275 N # m)(500 mm)

(80 GPa)(79,520 mm4)
� �0.0216 rad

IP �
πd4

32
�

π (30 mm)4

32
� 79,520 mm4

φBD � φBC � φCD
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• • •

Continues ➥

Two sections (AB, BC) of steel drill pipe, joined by bolted flange plates at B,
are being tested to assess the adequacy of both the pipe and the bolted con-
nection (see Fig. 3-19). In the test, the pipe structure is fixed at A and a con-
centrated torque 2T0 is applied at x � 2L/5 and uniformly distributed torque
intensity t0 � 3T0/L is applied on pipe BC.

(a) Find expressions for internal torques T(x) over the length of the pipe
structure.

(b) Find the maximum shear stress τmax in the pipes and its location.
Assume that load variable T0 � 226 kN m. Let G � 81 GPa, and assume
that both pipes have the same inner diameter, d � 250 mm.
Pipe AB has a thickness of tAB � 19 mm, while pipe BC has a thickness
of tBC � 16 mm.

(c) Find expressions for twist rotations φ(x) over the length of the pipe struc-
ture. If the maximum allowable twist of the pipe structure is φallow � 0.5�,
find the maximum permissible value of load variable T0 (kN m). Let 
L � 3 m.

(d) Use T0 from part (c) to find the number of db � 22-mm diameter bolts at
radius r � 380 mm required in the flange plate connection at B. Assume
that the allowable shear stress for the bolts is τa � 190 MPa.

#

#

Example 3-5

Solution
(a) Internal torques T(x). First, we must find the reactive torque at A using

statics (see Section 1.2, Example 1-3). Summing torsional moments about
the x axis of the structure, we find

(a)

Reaction RA is negative, which means that the reactive torsional moment
vector is in the (�x) direction based on a statics sign convention. We now
can draw free-body diagrams (FBD) of segments of the pipe to find inter-
nal torsional moments T(x) over the length of the pipe.

so RA � �2T0 � a3T0

L
b a2L

5
b �

�4T0

5

©Mx � 0 RA � 2T0 � t0a2L
5
b � 0

2T0 t0 = 3T0/L

3L/5 2L/5
2L/5

A

B Cx

(a) Nonprismatic pipe

(b) Section at B

Flange
plate Bolt

Fig. 3-19
Example 3-5: Two pipes in
nonuniform torsion

(Courtesy of Subsea Riser
Products)
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Chapter 3  Torsion286

Example 3-5 - Continued• • •

Fig. 3-20
Example 3-5: (a) FBD of seg-
ment 1, (b) FBD of segment 2,
and (c) FBD of segment 3

From the FBD of segment 1 (Fig. 3-20a), we see that the internal tor-
sional moment is constant and is equal to reactive torque RA. Tor -
que T1(x) is positive, because the torsional moment vector points away
from the cut section of the pipe; we refer to this as a deformation sign
 convention:

(b)

Next, a FBD of segment 2 of the pipe structure (Fig. 3-20b) gives

(c)

where T2(x) is also constant and the minus sign means that T2(x) actually
points in the negative x direction.
Finally, the FBD of segment 3 of the pipe structure (Fig. 3-20c) provides
the following expression for internal torsional moment T3(x):

(d)T3(x) �
4
5

T0 � 2T0 � t0ax �
3
5

Lb � 3T01 x
L

� 12 3
5

L … x … L

T2(x) �
4
5

T0 � 2T0 �
�6
5

T0
2
5

L … x …

3
5

L

T1(x) �
4
5

T0 0 … x …

2
5

L

(a)

x

A

T1(x), 0 ≤ x ≤ 2L/5
4T0/5

(b)

x

A

T2(x), 2L/5 ≤ x ≤ 3L/5
4T0/5

2T0 @ 2L/5

2L/5 x – 2L/5
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3.4 Nonuniform Torsion 287

Evaluating Eq. (d) at B and C, we see that at B we have

and at C, we have

We can now plot Eqs. (b), (c), and (d) to get a torsional moment diagram
(Fig. 3-21) (TMD) which displays the variation of internal torsional
moment over the length of the pipe structure (x � 0 to x � L).

T3(L) � 3T0(1 � 1) � 0

T3a3
5

Lb � 3T0a3
5

� 1b �
�6
5

T0

(c)

A

x B

T3(x), 3L/5 ≤ x ≤ L
4T0/5

2T0 @ 2L/5 2t0 = 3T0/L

2L/5

3L/5 x – 3L/5

Fig. 3-20 (Continued)

A

0

x
B C

T3(x)

T1(x)

T2(x)

0

4T0/5

4T0/5

–6T0/5

2T0 @ 2L/5 t0 = 3T0/L

3L/5 2L/5

TMD

Fig. 3-21
Example 3-5: Torsional moment
diagram (TMD)

(b) Maximum shear stress in pipe τmax. We will use the torsion formula 
[Eq. (3-13)] to compute the shear stress in the pipe. The maximum shear
stress is on the surface of the pipe. The polar moment of inertia of each
pipe is computed as

and

�
π

32
C[250 mm � 2(16 mm)]4 � (250 mm)4 D � 2.374 � 10�4 m4

IpBC �
π
32
c(d � 2tBC)4 � (d )4 d

�
π

32
C[250 mm � 2(19 mm)]4 � (250 mm)4 D � 2.919 � 10�4 m4

IpAB �
π
32
c(d � 2tAB)4 � (d )4 d

Continues ➥
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Chapter 3  Torsion288

Example 3-5 - Continued• • •
The shear modulus G is constant, so the torsional rigidity of AB is
1.23 times that of BC. From the TMD (Fig. 3-21), we see that the
 maximum torsional moments in both AB and BC (each equal to 6T0/5)
are near joint B. Applying the torsion formula to pipes AB and BC
near B gives

So the maximum shear stress in the pipe is just to the right of the flange
plate connection at joint B. “Just to the right of” means that we must
move an appropriate distance away from the connection to avoid any
stress concentration effects at the point of attachment of the two pipes
in accordance with St. Venant’s principle (see Section 3.12).

(c) Twist rotations φ(x). Next, we use the torque-displacement relation, 
Eqs. (3-24) through (3-27), to find the variation of twist rotation φ over
the length of the pipe structure. Support A is fixed, so φA � φ(0) � 0. The
internal torque from x � 0 to x � 2L/5 (segment 1) is constant, so we use
Eq. (3-24) to find twist rotation φ1(x) which varies linearly from x � 0 to
x � 2L/5:

(e)

Evaluating Eq. (e) at x � 2L/5, we find the twist rotation at the point of
application of torque 2T0 to be

(f)

➥

φ1a2L
5
b �

T1a2L
5
b a2L

5
b

GIpAB

�

a4T0

5
b a2L

5
b

GIpAB

�
8T0L

25GIpAB

�
0.32T0L

GIpAB

φ1(x) �
T1(x)(x)

GIpAB

�

a4T0

5
b (x)

GIpAB

�
4T0x

5GIpAB

0 … x …

2L
5

�

a6
5

226 kN # mb c250 mm � 2(16 mm)
2

d
2.374 � 10�4 m4

� 161.1 MPa

τ max BC �

a6
5

T0b a
d � 2tBC

2
b

IpBC

�

a6
5

226 kN # mb c250 mm � 2(19 mm)
2

d
2.919 � 10�4 m4

� 133.8 MPa

τ max AB �

a6
5

T0b a
d � 2tAB

2
b

IpAB
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3.4 Nonuniform Torsion 289289

Next, we find an expression for the variation of twist angle φ2(x) from 
x � 2L/5 to x � 3L/5 (point B). As with φ1(x), twist φ2(x) varies linearly over
segment 2, because torque T2(x) is constant (Fig. 3-21). Using Eq. (3-24),
we get

(g)

Finally, we develop an expression for twist over segment 3 (or pipe BC ).
We see that the internal torsional moment now has a linear variation
(Fig. 3-21), so an integral form of the torque-displacement relation  
[Eq. (3-27)] is required. We insert the expression for T3(x) from Eq. (d)
and add the torsional displacement at B to get a formula for the varia-
tion of twist in BC:

Torque T3(x) has a linear variation, so evaluating the integral yields a
quadratic expression for variation of twist in BC:

(h)

Substituting x � 3L/5, we obtain the twist at B:

At x � L, we get the twist at C:

If we assume that IpAB � 1.23 IpBC (based on the numerical properties
here), we can plot the variation of twist over the length of the pipe
structure (Fig. 3-22), noting that φmax occurs at x � 2L/5 [see Eq. (f)].

φ3(L) �
2LT0

25GIpAB

�
6LT0

25GIpBC

� �0.215
T0L

GIpAB

φ3a3L
5
b �

2LT0

25GIpAB

φ3(x) �
2LT0

25GIpAB

�
3T0(21L2 � 50Lx � 25x2)

50GIpBCL
3L
5

… x … L

�

2T0 c2L � 3a3L
5
b d

5GIpAB

�
L

x

3L
5

c3T0a ζ
L

� 1b d
GIpBC

dζ

φ3(x) � φ2a3L
5
b �
L

x

3L
5

c3T0 a ζ
L

� 1b d
GIpBC

dζ

�
8T0L

25GIpAB

�

a�6
5

T0b ax �
2L
5
b

GIpAB

�
2T0(2L � 3x)

5GIpAB

2L
5

… x …

3L
5

φ2(x) � φ1a2L
5
b �

T2(x)ax �
2L
5
b

GIpAB

Continues ➥
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Example 3-5 - Continued• • •

Finally, if we restrict φmax to the allowable value of 0.5�, we can solve for
the maximum permissible value of load variable T0 (kN m) using the
numerical properties given previously:

(i)

(d) Number of bolts required in flange plate. We now use T0,max from Eq. (i)
to find the required number of db � 22 mm diameter bolts at radius 
r � 380 mm in the flange plate connection at B. The allowable shear
stress in the bolts is τa � 190 MPa. We assume that each bolt carries an
equal share of the torque at B, so each of n bolts carries shear force Fb
at distance r from the centroid of the cross section (Fig. 3-23).

➥

#

� 215kN # m

T0 max �
GIpAB

0.32L
1φallow2 �

(81 GPa)(2.919 � 10�4 m4)

0.32(3m )
(0.5°)

A
0

–0.2

–0.4
0 0.2 0.4

x distance (fraction of L)

ϕc

   max =
8

25
T0L

at x = 2L/5
GIpAB

0.6
ζ

0.8 1

0.2

0.4

B C

T0L
GIpAB

⎛
⎝     

⎞
⎠

Fig 3-22
Example 3-5: Torsional
 displacement diagram (TDD)

r
d

Fb

db

T0

Fig. 3-23
Example 3-5: Flange plate  
bolts at B

The maximum shear force Fb per bolt is τa times the bolt cross-sectional area
Ab, and the total torque at B is 6T0,max/5 (see TMD in Fig. 3-21), so we find

Use ten 22-mm diameter bolts at a radius of 380 mm in the flange plate
 connection at B.

➥� 9.4

nFbr �
6
5

T0 max or n �

6
5

T0 max

τaAbr
�

6
5

(215 kN # m)

(190 MPa)cπ
4

(22 mm)2d(380 mm)

(© Can Stock Photo Inc./
Nostalgie)
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3.5 Stresses and Strains in Pure Shear 291

3.5 STRESSES AND STRAINS 
IN PURE SHEAR
When a circular bar, either solid or hollow, is subjected to torsion, shear
stresses act over the cross sections and on longitudinal planes, as illus-
trated previously in Fig. 3-7. We will now examine in more detail the
stresses and strains produced during twisting of a bar.

We begin by considering a stress element abcd cut between two cross
sections of a bar in torsion (Figs. 3-24a and b). This element is in a state
of pure shear, because the only stresses acting on it are the shear stresses τ
on the four side faces (see the discussion of shear stresses in Section 1.7.)

The directions of these shear stresses depend upon the directions of the
applied torques T. In this discussion, we assume that the torques rotate the
right-hand end of the bar clockwise when viewed from the right (Fig. 3-24a);
hence the shear stresses acting on the element have the directions shown in
the figure. This same state of stress exists for a similar element cut from the
interior of the bar, except that the magnitudes of the shear stresses are
smaller because the radial distance to the element is smaller.

The directions of the torques shown in Fig. 3-24a are intentionally
chosen so that the resulting shear stresses (Fig. 3-24b) are positive accord-
ing to the sign convention for shear stresses described previously in
Section 1.7. This sign convention is repeated here:

A shear stress acting on a positive face of an element is positive if it
acts in the positive direction of one of the coordinate axes and negative if
it acts in the negative direction of an axis. Conversely, a shear stress act-
ing on a negative face of an element is positive if it acts in the negative
direction of one of the coordinate axes and negative if it acts in the posi-
tive direction of an axis.

Applying this sign convention to the shear stresses acting on the stress
element of Fig. 3-24b, we see that all four shear stresses are positive. For
instance, the stress on the right-hand face (which is a positive face because
the x axis is directed to the right) acts in the positive direction of the y axis;
therefore, it is a positive shear stress. Also, the stress on the left-hand face
(which is a negative face) acts in the negative direction of the y axis; there-
fore, it is a positive shear stress. Analogous comments apply to the
remaining stresses.

Stresses on Inclined Planes
We are now ready to determine the stresses acting on inclined planes cut
through the stress element in pure shear. We will follow the same
approach as the one we used in Section 2.6 for investigating the stresses in
uniaxial stress.

A two-dimensional view of the stress element is shown in Fig. 3-25a.
As explained previously in Section 2.6, we usually draw a two-
 dimensional view for convenience, but we must always be aware that the
element has a third dimension (thickness) perpendicular to the plane of
the figure.

We now cut from the element a wedge-shaped (or “triangular”) stress
element having one face oriented at an angle θ to the x axis (Fig. 3-25b).
Normal stresses σθ and shear stresses τθ act on this inclined face and are
shown in their positive directions in the figure. The sign convention for

(b)

(a)

T T

O x

ya b

d c

a b
d c

τ

τ
τ

τ

Fig. 3-24
Stresses acting on a stress
 element cut from a bar in
 torsion (pure shear)
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Chapter 3  Torsion

stresses σθ and τθ was described previously in Section 2.6 and is repeated
here:

Normal stresses σθ are positive in tension and shear stresses τθ are
positive when they tend to produce counterclockwise rotation of the mate-
rial. (Note that this sign convention for the shear stress τθ acting on an
inclined plane is different from the sign convention for ordinary shear
stresses τ that act on the sides of rectangular elements oriented to a set of
xy axes.)

The horizontal and vertical faces of the triangular element (Fig. 3-25b)
have positive shear stresses τ acting on them, and the front and rear faces
of the element are free of stress. Therefore, all stresses acting on the
 element are visible in this figure.

The stresses σθ and τθ may now be determined from the equilibrium of
the triangular element. The forces acting on its three side faces can be
obtained by multiplying the stresses by the areas over which they act. For
instance, the force on the left-hand face is equal to τA0, where A0 is the area
of the vertical face. This force acts in the negative y direction and is shown
in the free-body diagram of Fig. 3-25c. Because the thickness of the element
in the z direction is constant, we see that the area of the bottom face is
A0 tan θ and the area of the inclined face is A0 sec θ. Multiplying the stresses
acting on these faces by the corresponding areas enables us to obtain the
remaining forces and thereby complete the free-body diagram (Fig. 3-25c).

292

(a) (b) (c)

O x

y

a b

d c 90�

A0 sec
A0 sec

A0 tan

A0

θ θ

θ
θ

θ

θ

τθ τθ
σθ

σθ
τ

τ

τ τ

τ

τ

τ

τ

Fig. 3-25
Analysis of stresses on inclined

planes: (a) element in pure
shear, (b) stresses acting on 
a triangular stress element, 
and (c) forces acting on the 

triangular stress element 
(free-body diagram)

We are now ready to write two equations of equilibrium for the tri-
angular element, one in the direction of σθ and the other in the direction
of τθ. When writing these equations, the forces acting on the left-hand and
bottom faces must be resolved into components in the directions of σθ and
τθ. Thus, the first equation, obtained by summing forces in the direction
of σθ, is

or

(3-28a)

The second equation is obtained by summing forces in the direction of τθ:

τθA0 sec θ � τA0 cos θ � τA0 tan θ sin θ

σθ � 2τ sin θ cos θ

σθA0 sec θ � τA0 sin θ � τA0 tan θ cos θ

77742_03_ch03_p262-363.qxd:77742_03_ch03_p262-363.qxd  3/2/12  3:03 PM  Page 292

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3.5 Stresses and Strains in Pure Shear 293

or

(3-28b)

These equations can be expressed in simpler forms by introducing the fol-
lowing trigonometric identities (see Appendix C):

Then the equations for σθ and τθ become

(3-29a,b)

Equations (3-29a and b) give the normal and shear stresses acting on any
inclined plane in terms of the shear stresses τ acting on the x and y planes
(Fig. 3-25a) and the angle θ defining the orientation of the inclined plane
(Fig. 3-25b).

The manner in which the stresses σθ and τθ vary with the orientation
of the inclined plane is shown by the graph in Fig. 3-26, which is a plot
of Eqs. (3-29a and b). We see that for θ � 0, which is the right-hand face
of the stress element in Fig. 3-25a, the graph gives σθ � 0 and τθ � τ.
This latter result is expected, because the shear stress τ acts counter-
clockwise against the element and therefore produces a positive shear
stress τθ.

For the top face of the element (θ � 90�), we obtain σθ � 0 and τθ � �τ.
The minus sign for τθ means that it acts clockwise against the element, that
is, to the right on face ab (Fig. 3-25a), which is consistent with the direction
of the shear stress τ. Note that the numerically largest shear stresses occur on
the planes for which θ � 0 and 90�, as well as on the opposite faces (θ � 180�
and 270�).

From the graph we see that the normal stress σθ reaches a maximum
value at θ � 45�. At that angle, the stress is positive (tension) and equal
numerically to the shear stress τ. Similarly, σθ has its minimum value
(which is compressive) at θ � �45�. At both of these 45� angles, the shear
stress τθ is equal to zero. These conditions are pictured in Fig. 3-27 which
shows stress elements oriented at θ � 0 and θ � 45�. The element at 45� is
acted upon by equal tensile and compressive stresses in perpendicular
directions, with no shear stresses.

Note that the normal stresses acting on the 45� element (Fig. 3-27b)
correspond to an element subjected to shear stresses τ acting in the direc-
tions shown in Fig. 3-27a. If the shear stresses acting on the element of
Fig. 3-27a are reversed in direction, the normal stresses acting on the 45�
planes also will change directions.

If a stress element is oriented at an angle other than 45�, both normal
and shear stresses will act on the inclined faces [see Eqs. (3-29a and b)
and Fig. 3-26]. Stress elements subjected to these more general conditions
are discussed in detail in Chapter 7.

The equations derived in this section are valid for a stress element in
pure shear regardless of whether the element is cut from a bar in torsion
or from some other structural element. Also, since Eqs. (3-29) were
derived from equilibrium only, they are valid for any material, whether or
not it behaves in a linearly elastic manner.

τθ � τ(cos2θ � sin2θ)

sin 2θ � 2 sin θ cos θ cos 2θ � cos2θ � sin2θ

σθ � τ sin 2θ τθ � τ cos 2θ

–90� –45� 45� 90�0

–

or

τ

τ

θ

τθ
τθ

σθ

τθσθ

σθ

Fig. 3-26
Graph of normal stresses σθ and
shear stresses τθ versus angle θ
of the inclined plane
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(a) (b)

  max =    min = – 

  max =    min = – 

O x

y

O x

y
45°

σ

σ

σ τ

σ ττ

τ
τ

τ

τ

τ

Fig. 3-27
Stress elements oriented 

at θ � 0 and θ � 45�

for pure shear

TT 45° CrackFig. 3-28
Torsion failure of a brittle 

material by tension cracking
along a 45� helical surface

The existence of maximum tensile stresses on planes at 45� to the
x axis (Fig. 3-27b) explains why bars in torsion that are made of materials
that are brittle and weak in tension fail by cracking along a 45� helical sur-
face (Fig. 3-28). As mentioned in Section 3.3, this type of failure is readily
demonstrated by twisting a piece of classroom chalk.

Strains in Pure Shear
Let us now consider the strains that exist in an element in pure shear. For
instance, consider the element in pure shear shown in Fig. 3-27a. The cor-
responding shear strains are shown in Fig. 3-29a, where the deformations
are highly exaggerated. The shear strain γ is the change in angle between
two lines that were originally perpendicular to each other, as discussed pre-
viously in Section 1.7. Thus, the decrease in the angle at the lower left-hand
corner of the element is the shear strain γ (measured in radians). This same
change in angle occurs at the upper right-hand corner, where the angle
decreases, and at the other two corners, where the angles increase. However,
the lengths of the sides of the element, including the thickness perpendicu-
lar to the plane of the paper, do not change when these shear deformations
occur. Therefore, the element changes its shape from a rectangular paral-
lelepiped (Fig. 3-27a) to an oblique parallelepiped (Fig. 3-29a). This change
in shape is called a shear distortion.

If the material is linearly elastic, the shear strain for the element ori-
ented at θ � 0 (Fig. 3-29a) is related to the shear stress by Hooke’s law in
shear:

(3-30)

where, as usual, the symbol G represents the shear modulus of elasticity.

γ �
τ
G
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3.5 Stresses and Strains in Pure Shear 295

Next, consider the strains that occur in an element oriented at θ � 45�
(Fig. 3-29b). The tensile stresses acting at 45� tend to elongate the element
in that direction. Because of the Poisson effect, they also tend to shorten
it in the perpendicular direction (the direction where θ � 135� or �45�).
Similarly, the compressive stresses acting at 135� tend to shorten the ele-
ment in that direction and elongate it in the 45� direction. These dimen-
sional changes are shown in Fig. 3-29b, where the dashed lines show the
deformed element. Since there are no shear distortions, the element
remains a rectangular parallelepiped even though its dimensions have
changed.

If the material is linearly elastic and follows Hooke’s law, we can
obtain an equation relating strain to stress for the element at θ � 45�
(Fig. 3-29b). The tensile stress σmax acting at θ � 45� produces a positive
normal strain in that direction equal to σmax/E. Since σmax � τ, we can also
express this strain as τ /E. The stress σmax also produces a negative strain
in the perpendicular direction equal to �ντ /E, where ν is Poisson’s ratio.
Similarly, the stress σmin � �τ (at θ � 135�) produces a negative strain
equal to �τ /E in that direction and a positive strain in the perpendicular
direction (the 45� direction) equal to ντ /E. Therefore, the normal strain in
the 45� direction is

(3-31)

which is positive, representing elongation. The strain in the perpendicular
direction is a negative strain of the same amount. In other words, pure
shear produces elongation in the 45� direction and shortening in the 135�
direction. These strains are consistent with the shape of the deformed ele-
ment of Fig. 3-29a, because the 45� diagonal has lengthened and the 135�
diagonal has shortened.

In the next section we will use the geometry of the deformed element to
relate the shear strain γ (Fig. 3-29a) to the normal strain in the 45�
direction (Fig. 3-29b). In so doing, we will derive the following relationship:

(3-32)

This equation, in conjunction with Eq. (3-30), can be used to calculate the
maximum shear strains and maximum normal strains in pure torsion
when the shear stress τ is known.

ε max �
γ
2

ε max

ε max �
τ
E

�
ντ
E

�
τ
E

(1 � ν)

min = –

min = – 

(a) (b)

45°

2
�

max =

max =

s

s s ττ

s ττ
τ

τ

τ

τ
p g

Fig. 3-29
Strains in pure shear: (a) shear
distortion of an element
 oriented at θ � 0, and  
(b) distortion of an element
 oriented at θ � 45�
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Chapter 3  Torsion296

Example 3-6 • • •
A circular tube with an outside diameter of 80 mm and an inside diameter
of 60 mm is subjected to a torque T � 4.0 kN�m (Fig. 3-30). The tube is made
of aluminum alloy 7075-T6.

(a) Determine the maximum shear, tensile, and compressive stresses in the tube
and show these stresses on sketches of properly oriented stress elements.

(b) Determine the corresponding maximum strains in the tube and show
these strains on sketches of the deformed elements.

(c) What is the maximum permissible torque Tmax if the allowable normal
strain is εa � 0.9 � 10�3?

(d) If T � 4.0 kN�m and εa � 0.9 � 10�3, what new outer diameter is required
so that the tube can carry the required torque T (assume that the inner
diameter of the tube remains at 60 mm)?

Solution
(a) Maximum stresses. The maximum values of all three stresses (shear, ten-

sile, and compressive) are equal numerically, although they act on dif-
ferent planes. Their magnitudes are found from the torsion formula:

The maximum shear stresses act on cross-sectional and longitudinal
planes, as shown by the stress element in Fig. 3-31a, where the x axis is
parallel to the longitudinal axis of the tube.

The maximum tensile and compressive stresses are

These stresses act on planes at 45� to the axis (Fig. 3-31b).

(b) Maximum strains. The maximum shear strain in the tube is obtained from
Eq. (3-30). The shear modulus of elasticity is obtained from Table H-2,
Appendix H, as G � 27 GPa. Therefore, the maximum shear strain is

The deformed element is shown by the dashed lines in Fig. 3-28c.
The magnitude of the maximum normal strains [from Eq. (3-33)] is

Thus, the maximum tensile and compressive strains are

➥

➥

➥

➥

εt � 0.0011 εc � �0.0011

ε max �
γ max

2
� 0.0011

σt � 58.2 MPa σc � �58.2 MPa

τ max �
Tr
IP

�
(4000 N # m)(0.040 m)

π
32
c(0.080 m)4 � (0.060 m)4 d

� 58.2 MPa

γmax �
τ max

G
�

58.2 MPa
27 GPa

� 0.0022 rad

T

T = 4.0 kN·m

60
mm
80

mm

Fig. 3-30
Example 3-6: Circular tube in
torsion
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3.5 Stresses and Strains in Pure Shear 297

The deformed element is shown by the dashed lines in Fig. 3-31d for an
element with sides of unit length.

(a) (b)

  max =
58.2 MPa

58.2 MPa

O x

y

  c = 58.2 MPa

   t = 58.2 MPa

O x

y
45°

(c) (d)

   max =
0.0022 rad

t = 0.0011
c = 0.0011

1 1
´

´

s

s

t

g

45°

Fig. 3-31
Stress and strain elements 
for the tube of Example 3-6:
(a) maximum shear stresses, 
(b) maximum tensile and 
compressive stresses, 
(c) maximum shear strains, 
and (d) maximum tensile and
compressive strains

(c) Maximum permissible torque. The tube is in pure shear, so the allowable
shear strain is twice the allowable normal strain [see Eq. (3-32)]:

From the shear formula [Eq. (3-13)], we get

where d2 is the outer diameter. Substituting numerical values gives

(d) New outer diameter of tube. We can use the previous equation but with
to find the required outer diameter d2:

Solving for the required outer diameter d2 numerically gives

➥

➥

T � 4.0 kN # m

a32
π
b4 kN # m

2(27 GPa)(1.8 � 10�6)
� 0.41917 m3

Ip

d2

�
T

2Gγa

or
d2

4 � (0.06 m)4

d2

�

� 3.34 kN # m

T max �

2(27 GPa)11.8 � 10�32c π
32
C(0.08 m)4 � (0.06 m)4D d

0.08 m

γa � 2εa � 210.9 � 10�32 � 1.8 � 10�3

d2 � 83.2 mm

τ max �

T ad2

2
b

Ip
so Tmax �

τaIp

ad2

2
b

�
21Gγa2Ip

d2
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Chapter 3  Torsion

3.6 RELATIONSHIP BETWEEN MODULI 
OF ELASTICITY E AND G
An important relationship between the moduli of elasticity E and G can
be obtained from the equations derived in the preceding section. For this
purpose, consider the stress element abcd shown in Fig. 3-32a on the next
page. The front face of the element is assumed to be square, with the
length of each side denoted as h. When this element is subjected to pure
shear by stresses τ, the front face distorts into a rhombus (Fig. 3-32b) with
sides of length h and with shear strain γ � τ /G. Because of the distortion,
diagonal bd is lengthened and diagonal ac is shortened. The length of
diagonal bd is equal to its initial length times the factor 1 � εmax,
where εmax is the normal strain in the 45� direction; thus,

(3-33)

This length can be related to the shear strain γ by considering the geome-
try of the deformed element.

To obtain the required geometric relationships, consider triangle abd
(Fig. 3-32c) which represents one-half of the rhombus pictured in Fig. 3-32b.
Side bd of this triangle has length Lbd [Eq. (3-33)], and the other sides have
length h. Angle adb of the triangle is equal to one-half of angle adc of the
rhombus, or π/4 � γ/2. The angle abd in the triangle is the same. Therefore,
angle dab of the triangle equals π/2 � γ. Now using the law of cosines
(see Appendix C) for triangle abd, we get

Lbd
2 � h2 � h2 � 2h2 cos aπ

2
� γb

Lbd � 12h(1 � ε max )

12h

298

h

h

a b
b
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b
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d
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–––– –
4 2

–––– –
4 2

t

t

t

t

p

p p

p

g
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Fig. 3-32
Geometry of deformed 
element in pure shear

Substituting for Lbd from Eq. (3-33) and simplifying, we get

By expanding the term on the left-hand side, and also observing that
cos(π /2 � γ ) � �sin γ, we obtain

1 � 2ε max � ε2
max � 1 � sin γ

(1 � ε max )2 � 1 � cos aπ
2

� γb
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3.7 Transmission of Power by Circular Shafts 299

Because εmax and γ are very small strains, we can disregard in compa-
rison with 2εmax and we can replace sin γ by γ. The resulting expression is

(3-34)

which establishes the relationship already presented in Section 3.5 as  
Eq. (3-32).

The shear strain γ appearing in Eq. (3-34) is equal to τ /G by Hooke’s law
[Eq. (3-30)] and the normal strain εmax is equal to τ(1 � v)/E by Eq. (3-31).
Making both of these substitutions in Eq. (3-34) yields

(3-35)

We see that E, G, and v are not independent properties of a linearly elas-
tic material. Instead, if any two of them are known, the third can be cal-
culated from Eq. (3-35).

Typical values of E, G, and v are listed in Table H-2, Appendix H.

3.7 TRANSMISSION OF POWER 
BY CIRCULAR SHAFTS
The most important use of circular shafts is to transmit mechanical power
from one device or machine to another, as in the drive shaft of an auto-
mobile, the propeller shaft of a ship, or the axle of a bicycle. The power is
transmitted through the rotary motion of the shaft, and the amount of
power transmitted depends upon the magnitude of the torque and the
speed of rotation. A common design problem is to determine the required
size of a shaft so that it will transmit a specified amount of power at a
specified rotational speed without exceeding the allowable stresses for the
material.

Let us suppose that a motor-driven shaft (Fig. 3-33) is rotating at an
angular speed ω, measured in radians per second (rad/s). The shaft trans-
mits a torque T to a device (not shown in the figure) that is performing
useful work. The torque applied by the shaft to the external device has the
same sense as the angular speed ω, that is, its vector points to the left.
However, the torque shown in the figure is the torque exerted on the shaft
by the device, and so its vector points in the opposite direction.

In general, the work W done by a torque of constant magnitude is
equal to the product of the torque and the angle through which it rotates;
that is,

Tψ (3-36)

where ψ is the angle of rotation in radians.
Power is the rate at which work is done, or

(3-37)P �
dW
dt

� T
dΨ
dt

W �

G �
E

2(1 � v)

εmax �
γ
2

εmax
2

T

Motor

v

Fig. 3-33
Shaft transmitting a 
constant torque T
at an angular speed ω

77742_03_ch03_p262-363.qxd:77742_03_ch03_p262-363.qxd  3/2/12  3:07 PM  Page 299

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 3  Torsion

in which P is the symbol for power and t represents time. The rate of
change dψ/dt of the angular displacement ψ is the angular speed ω, and
therefore the preceding equation becomes

(3-38)

This formula, which is familiar from elementary physics, gives the power
transmitted by a rotating shaft transmitting a constant torque T.

The units to be used in Eq. (3-38) are as follows. If the torque T is
expressed in newton meters, then the power is expressed in watts (W). One
watt is equal to one newton meter per second (or one joule per second).
If T is expressed in pound-feet, then the power is expressed in foot-pounds
per second.*

Angular speed is often expressed as the frequency f of rotation, which
is the number of revolutions per unit of time. The unit of frequency is the
hertz (Hz), equal to one revolution per second (s�1). Inasmuch as one rev-
olution equals 2π radians, we obtain

(3-39)

The expression for power [Eq. (3-38)] then becomes

(3-40)

Another commonly used unit is the number of revolutions per minute
(rpm), denoted by the letter n. Therefore, we also have the following rela-
tionships:

(3-41)

and

(3-42)

In Eqs. (3-40) and (3-42), the quantities P and T have the same units as in
Eq. (3-38); that is, P has units of watts if T has units of newton meters, and
P has units of foot-pounds per second if T has units of pound-feet.

In U.S. engineering practice, power is sometimes expressed in horse-
power (hp), a unit equal to 550 ft-lb/s. Therefore, the horsepower H being
transmitted by a rotating shaft is

(3-43)

One horsepower is approximately 746 watts.
The preceding equations relate the torque acting in a shaft to the

power transmitted by the shaft. Once the torque is known, we can deter-
mine the shear stresses, shear strains, angles of twist, and other desired
quantities by the methods described in Sections 3.2 through 3.5.

The following examples illustrate some of the procedures for analyzing
rotating shafts.

H �
2πnT

60(550)
�

2πnT
33,000

(n � rpm, T � lb-ft, H � hp)

P �
2πnT

60
(n � rpm)

n � 60 f

P � Tω (ω � rad/s)

P � 2πfT ( f � Hz � s�1)

ω � 2πf (ω � rad/s, f � Hz � s�1)

300

*See Table A-1, Appendix A, for units of work and power.
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3.7 Transmission of Power by Circular Shafts 301

• • •
A motor driving a solid circular steel shaft transmits 30 kW to a gear at B
(Fig. 3-34). The allowable shear stress in the steel is 42 MPa.

(a) What is the required diameter d of the shaft if it is operated at 500 rpm?
(b) What is the required diameter d if it is operated at 3000 rpm?

Example 3-7

Solution
(a) Motor operating at 500 rpm. Knowing the horsepower and the speed

of rotation, we can find the torque T acting on the shaft by using 
Eq. (3-43). Solving that equation for T, we get

This torque is transmitted by the shaft from the motor to the gear.
The maximum shear stress in the shaft can be obtained from the

modified torsion formula [Eq. (3-14)]:

Solving that equation for the diameter d, and also substituting τallow for
τmax, we get

from which

The diameter of the shaft must be at least this large if the allowable
shear stress is not to be exceeded.

(b) Motor operating at 4000 rpm. Following the same procedure as in part (a),
we obtain

which is less than the diameter found in part (a).
This example illustrates that the higher the speed of rotation, the

smaller the required size of the shaft (for the same power and the same
allowable stress).

➥

d � 20.6 mm

d3 �
16T

πτallow
�

16(71.6 N # m)
π (42 MPa)

� 8.68 � 10�6 m3

T �
60 P
2πn

�
60(30 kW)

2π (4000 rpm)
� 71.6 N # m

d � 41.1 mm

d3 �
16T

πτallow
�

16(573 N # m)
π (42 MPa)

� 69.5 � 10�6 m3

τ max �
16T

πd3

T �
60 P
2πn

�
60(30 kW)

2π (500 rpm)
� 573 N # m

d ω T

B

MotorFig. 3-34
Example 3-7: Steel shaft 
in torsion

➥
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Chapter 3  Torsion302

Example 3-8• • •
A solid steel shaft ABC of 50 mm diameter (Fig. 3-35a) is driven at A by a
motor that transmits 50 kW to the shaft at 10 Hz. The gears at B and C drive
machinery requiring power equal to 35 kW and 15 kW, respectively.

Compute the maximum shear stress τmax in the shaft and the angle of
twist φAC between the motor at A and the gear at C. (Use G � 80 GPa.)

TC = 239 N·m

CBA

1.0 m 1.2 m
TA = 796 N·m

A B C

TB = 557 N·mMotor

50 mm

(a) (b)

Fig. 3-35
Example 3-8. Steel shaft in
 torsion

Solution
Torques acting on the shaft. We begin the analysis by determining the
torques applied to the shaft by the motor and the two gears. Since the
motor supplies 50 kW at 10 Hz, it creates a torque TA at end A of the shaft
(Fig. 3-35b) that we can calculate from Eq. (3-40):

In a similar manner, we can calculate the torques TB and TC applied by the
gears to the shaft:

These torques are shown in the free-body diagram of the shaft (Fig. 3-35b).
Note that the torques applied by the gears are opposite in direction to the
torque applied by the motor. (If we think of TA as the “load” applied to
the shaft by the motor, then the torques TB and TC are the “reactions” of
the gears.)

TC �
P

2π f
�

15 kW
2π (10 Hz)

� 239 N # m

TB �
P

2π f
�

35 kW
2π (10 Hz)

� 557 N # m

TA �
P

2π f
�

50 kW
2π (10 Hz)

� 796 N # m
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3.7 Transmission of Power by Circular Shafts 303

The internal torques in the two segments of the shaft are now found
(by inspection) from the free-body diagram of Fig. 3-35b:

Both internal torques act in the same direction, and therefore the angles of
twist in segments AB and BC are additive when finding the total angle of
twist. (To be specific, both torques are positive according to the sign con-
vention adopted in Section 3.4.)

Shear stresses and angles of twist. The shear stress and angle of twist in
segment AB of the shaft are found in the usual manner from Eqs. (3-14) and
(3-17):

The corresponding quantities for segment BC are

Thus, the maximum shear stress in the shaft occurs in segment AB and is

Also, the total angle of twist between the motor at A and the gear at C is

As explained previously, both parts of the shaft twist in the same direction,
and therefore the angles of twist are added.

➥

➥

TAB � 796 N # m TBC � 239 N # m

τAB �
16TAB

πd3
�

16(796 N # m)

π (50 mm)3
� 32.4 MPa

φAC � φAB � φBC � 0.0162 rad � 0.0058 rad � 0.0220 rad � 1.26°

τ max � 32.4 MPa

φBC �
TBCLBC

GIP
�

(239 N # m)(1.2 m)

(80 GPa)a π
32
b (50 mm)4

� 0.0058 rad

τBC �
16TBC

πd3
�

16(239 N # m)

π (50 mm)3
� 9.7 MPa

φAB �
TABLAB

GIP
�

(796 N # m)(1.0 m)

(80 GPa)a π
32
b (50 mm)4

� 0.0162 rad
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Chapter 3  Torsion

3.8 STATICALLY INDETERMINATE
TORSIONAL MEMBERS
The bars and shafts described in the preceding sections of this chapter
are statically determinate because all internal torques and all reactions
can be obtained from free-body diagrams and equations of equilibrium.
However, if additional restraints, such as fixed supports, are added to
the bars, the equations of equilibrium will no longer be adequate for
determining the torques. The bars are then classified as statically
 indeterminate. Torsional members of this kind can be analyzed by sup-
plementing the equilibrium equations with compatibility equations per-
taining to the rotational displacements. Thus, the general method for
analyzing statically indeterminate torsional members is the same as
described in Section 2.4 for statically indeterminate bars with axial
loads.

The first step in the analysis is to write equations of equilibrium,
obtained from free-body diagrams of the given physical situation. The
unknown quantities in the equilibrium equations are torques, either inter-
nal torques or reaction torques.

The second step in the analysis is to formulate equations of compati-
bility, based upon physical conditions pertaining to the angles of twist. As
a consequence, the compatibility equations contain angles of twist as
unknowns.

The third step is to relate the angles of twist to the torques by torque-
displacement relations, such as φ � TL/GIP. After introducing these rela-
tions into the compatibility equations, they too become equations
containing torques as unknowns. Therefore, the last step is to obtain the
unknown torques by solving simultaneously the equations of equilibrium
and compatibility.

To illustrate the method of solution, we will analyze the composite bar
AB shown in Fig. 3-36a. The bar is attached to a fixed support at end A
and loaded by a torque T at end B. Furthermore, the bar consists of two
parts: a solid bar and a tube (Figs. 3-36b and c), with both the solid bar
and the tube joined to a rigid end plate at B.

For convenience, we will identify the solid bar and tube (and their
properties) by the numerals 1 and 2, respectively. For instance, the diam-
eter of the solid bar is denoted d1 and the outer diameter of the tube is
denoted d2. A small gap exists between the bar and the tube, and there-
fore the inner diameter of the tube is slightly larger than the diameter d1
of the bar.

When the torque T is applied to the composite bar, the end plate
rotates through a small angle φ (Fig. 3-36c) and torques T1 and T2 are
developed in the solid bar and the tube, respectively (Figs. 3-36d and e).
From equilibrium we know that the sum of these torques equals the
applied load, and so the equation of equilibrium is

(3-44)T1 � T2 � T

304

(a)

(c)

(b)

A

B
T

L

Bar (1)

Tube (2)

Tube (2)

Bar (1)

End
plate

A
B

T

(e)

Tube (2)

A
B

 1

T2

T1

d2

(d)

Bar (1)

A B

 2

d1

d1 d2

f

f

f

Fig. 3-36
Statically indeterminate 

bar in torsion
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3.8 Statically Indeterminate Torsional Members 305

Because this equation contains two unknowns (T1 and T2), we recognize
that the composite bar is statically indeterminate.

To obtain a second equation, we must consider the rotational dis-
placements of both the solid bar and the tube. Let us denote the angle of
twist of the solid bar (Fig. 3-36d) by φ1 and the angle of twist of the tube
by φ2 (Fig. 3-36e). These angles of twist must be equal because the bar and
tube are securely joined to the end plate and rotate with it; consequently,
the equation of compatibility is

(3-45)

The angles φ1 and φ2 are related to the torques T1 and T2 by the torque-
 displacement relations, which in the case of linearly elastic materials are
obtained from the equation φ � TL/GIP. Thus,

(3-46a,b)

in which G1 and G2 are the shear moduli of elasticity of the materials and
IP1 and IP2 are the polar moments of inertia of the cross sections.

When the preceding expressions for φ1 and φ2 are substituted into
Eq. (3-45), the equation of compatibility becomes

(3-47)

We now have two equations [Eqs. (3-44) and (3-47)] with two unknowns,
so we can solve them for the torques T1 and T2. The results are

(3-48a,b)

With these torques known, the essential part of the statically indetermi-
nate analysis is completed. All other quantities, such as stresses and angles
of twist, can now be found from the torques.

The preceding discussion illustrates the general methodology for ana-
lyzing a statically indeterminate system in torsion. In the following exam-
ple, this same approach is used to analyze a bar that is fixed against
rotation at both ends. In the example and in the problems, we assume that
the bars are made of linearly elastic materials. However, the general
methodology is also applicable to bars of nonlinear materials—the only
change is in the torque-displacement relations.

T1 � Ta G1IP1

G1IP1 � G2IP2

b T2 � Ta G2IP2

G1IP1 � G2IP2

b

T1L

G1IP1

�
T2L

G2IP2

φ1 �
T1L

G1IP1

φ2 �
T2L

G2IP2

φ1 � φ2
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Chapter 3  Torsion306

Example 3-9• • •
The bar ACB shown in Figs. 3-37a and b is fixed at both ends and loaded by
a torque T0 at point C. Segments AC and CB of the bar have diameters dA
and dB, lengths LA and LB, and polar moments of inertia IPA and IPB, respec-
tively. The material of the bar is the same throughout both segments.

Obtain formulas for (a) the reactive torques TA and TB at the ends, 
(b) the maximum shear stresses τAC and τCB in each segment of the bar, and
(c) the angle of rotation φC at the cross section where the load T0 is applied.

Solution
Equation of equilibrium. The load T0 produces reactions TA and TB at the
fixed ends of the bar, as shown in Figs. 3-37a and b. Thus, from the equilib-
rium of the bar we obtain

(f)

Because there are two unknowns in this equation (and no other useful
equations of equilibrium), the bar is statically indeterminate.

Equation of compatibility. We now separate the bar from its support at
end B and obtain a bar that is fixed at end A and free at end B (Figs. 3-37c
and d). When the load T0 acts alone (Fig. 3-37c), it produces an angle of twist
at end B that we denote as φ1. Similarly, when the reactive torque TB acts
alone, it produces an angle φ2 (Fig. 3-37d). The angle of twist at end B in the
original bar, equal to the sum of φ1 and φ2, is zero. Therefore, the equation
of compatibility is

(g)

Note that φ1 and φ2 are assumed to be positive in the direction shown in the
figure.

Torque-displacement equations. The angles of twist φ1 and φ2 can be
expressed in terms of the torques T0 and TB by referring to Figs. 3-37c and d
and using the equation φ � TL/GIP. The equations are as follows:

(h,i)

The minus signs appear in Eq. (i) because TB produces a rotation that is
opposite in direction to the positive direction of φ2 (Fig. 3-37d).

We now substitute the angles of twist [Eqs. (h) and (i)] into the com-
patibility equation [Eq. (g)] and obtain

or

(j)
TBLA

IpA

�
TBLB

IpB

�
T0LA

IpA

T0LA

GIpA

�
TBLA

GIpA

�
TBLB

GIpB

� 0

φ1 �
T0LA

GIpA

φ2 � �
TBLA

GIpA

�
TBLB

GIpB

φ1 � φ2 � 0

TA � TB � T0

(a)

(b)

(c)

(d)

A

A
B

C

C
IPA IPB

TB

TB

TA

TA dA
dB

T0

T0

A BC

T0

LA LB

L

 1

A BC
 2

B
TB

f

f

Fig. 3-37
Example 3-9: Statically
 indeterminate bar in torsion
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3.8 Statically Indeterminate Torsional Members 307

Solution of equations. The preceding equation can be solved for the
torque TB, which then can be substituted into the equation of equilibrium
[Eq. (f)] to obtain the torque TA. The results are

(3-49a,b)

Thus, the reactive torques at the ends of the bar have been found, and the
statically indeterminate part of the analysis is completed.

As a special case, note that if the bar is prismatic (IPA � IPB � IP) the pre-
ceding results simplify to

(3-50a,b)

where L is the total length of the bar. These equations are analogous to those
for the reactions of an axially loaded bar with fixed ends [see Eqs. (2-13a)  
and (2-13b)].

Maximum shear stresses. The maximum shear stresses in each part of
the bar are obtained directly from the torsion formula:

Substituting from Eqs. (3-49a) and (3-49b) gives

(3-51a,b)

By comparing the product LBdA with the product LAdB, we can immediately
determine which segment of the bar has the larger stress.

Angle of rotation. The angle of rotation φC at section C is equal to the
angle of twist of either segment of the bar, since both segments rotate
through the same angle at section C. Therefore, we obtain

(3-52)

In the special case of a prismatic bar (IPA � IPB � IP), the angle of rotation at
the section where the load is applied is

(3-53)

This example illustrates not only the analysis of a statically indetermi-
nate bar but also the techniques for finding stresses and angles of rotation.
In addition, note that the results obtained in this example are valid for a bar
consisting of either solid or tubular segments.

➥

➥

➥TA � T0a
LBIpA

LBIpA � LAIpB

b TB � T0a
LAIpB

LBIpA � LAIpB

b

TA �
T0LB

L
TB �

T0LA

L

φC �
T0LALB

GLIP

φC �
TALA

GIPA

�
TBLB

GIPB

�
T0LALB

G(LBIPA � LAIPB)

τAC �
T0LBdA

2(LBIPA � LAIPB)
τCB �

T0LAdB

2(LBIPA � LAIPB)

τAC �
TAdA

2IPA
τCB �

TBdB

2IPB
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Chapter 3  Torsion

3.9 STRAIN ENERGY IN TORSION 
AND PURE SHEAR
When a load is applied to a structure, work is performed by the load and
strain energy is developed in the structure, as described in detail in
Section 2.7 for a bar subjected to axial loads. In this section we will use
the same basic concepts to determine the strain energy of a bar in torsion.

Consider a prismatic bar AB in pure torsion under the action of a
torque T (Fig. 3-38). When the load is applied statically, the bar twists and
the free end rotates through an angle φ. If we assume that the material of
the bar is linearly elastic and follows Hooke’s law, then the relationship
between the applied torque and the angle of twist will also be linear, as
shown by the torque-rotation diagram of Fig. 3-39 and as given by the
equation φ � TL/GIP.

308

B
T

A

L

f

Fig. 3-38
Prismatic bar in pure torsion

T

A

O

T 
2

U = W =

Torque

Angle of rotation
f

f

Fig. 3-39
Torque-rotation diagram 
for a bar in pure torsion 
(linearly elastic material)

The work W done by the torque as it rotates through the angle φ is
equal to the area below the torque-rotation line OA, that is, it is equal to
the area of the shaded triangle in Fig. 3-39. Furthermore, from the princi-
ple of conservation of energy we know that the strain energy of the bar is
equal to the work done by the load, provided no energy is gained or lost
in the form of heat. Therefore, we obtain the following equation for the
strain energy U of the bar:

(3-54)

This equation is analogous to the equation U � W � Pδ /2 for a bar
subjected to an axial load [see Eq. (2-37)].

U � W �
Tφ
2

77742_03_ch03_p262-363.qxd:77742_03_ch03_p262-363.qxd  3/2/12  3:12 PM  Page 308

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3.9 Strain Energy in Torsion and Pure Shear 309

Using the equation φ � TL/GIP, we can express the strain energy in
the following forms:

(3-55a,b)

The first expression is in terms of the load and the second is in terms of
the angle of twist. Again, note the analogy with the corresponding equa-
tions for a bar with an axial load [see Eqs. (2-39a and b)].

The SI unit for both work and energy is the joule (J), which is equal
to one newton meter (1 J � 1 N � m). 

Nonuniform Torsion
If a bar is subjected to nonuniform torsion (described in Section 3.4), we
need additional formulas for the strain energy. In those cases where the
bar consists of prismatic segments with constant torque in each segment
(see Fig. 3-14a of Section 3.4), we can determine the strain energy of each
segment and then add to obtain the total energy of the bar:

(3-56)

in which Ui is the strain energy of segment i and n is the number of seg-
ments. For instance, if we use Eq. (3-55a) to obtain the individual strain
energies, the preceding equation becomes

(3-57)

in which Ti is the internal torque in segment i and Li, Gi, and (IP)i are the
torsional properties of the segment.

If either the cross section of the bar or the internal torque varies along
the axis, as illustrated in Figs. 3-15 and 3-16 of Section 3.4, we can obtain
the total strain energy by first determining the strain energy of an element
and then integrating along the axis. For an element of length dx, the strain
energy is [see Eq. (3-55a)]

in which T(x) is the internal torque acting on the element and IP(x) is the
polar moment of inertia of the cross section at the element. Therefore, the
total strain energy of the bar is

(3-58)

Once again, the similarities of the expressions for strain energy in torsion and
axial load should be noted [compare Eqs. (3-57) and (3-58) with Eqs. (2-42)
and (2-43) of Section 2.7].

U �
3

L

0

[T(x)]2dx

2GIP(x)

dU �
[T(x)]2dx

2GIP(x)

U � a

n

i � 1

Ti
2Li

2Gi(IP)i

U � a

n

i � 1

Ui

U �
T2L
2GIP

U �
GIPφ2

2L
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Chapter 3  Torsion

The use of the preceding equations for nonuniform torsion is illus-
trated in the examples that follow. In Example 3-10 the strain energy is
found for a bar in pure torsion with prismatic segments, and in Exam -
ples 3-11 and 3-12 the strain energy is found for bars with varying torques
and varying cross-sectional dimensions.

In addition, Example 3-12 shows how, under very limited conditions,
the angle of twist of a bar can be determined from its strain energy. (For
a more detailed discussion of this method, including its limitations, see the
subsection “Displacements Caused by a Single Load” in Section 2.7.)

Limitations
When evaluating strain energy we must keep in mind that the equations
derived in this section apply only to bars of linearly elastic materials with
small angles of twist. Also, we must remember the important observation
stated previously in Section 2.7, namely, the strain energy of a structure
supporting more than one load cannot be obtained by adding the strain ener-
gies obtained for the individual loads acting separately. This observation is
demonstrated in Example 3-10.

Strain-Energy Density in Pure Shear
Because the individual elements of a bar in torsion are stressed in pure shear,
it is useful to obtain expressions for the strain energy associated with the
shear stresses. We begin the analysis by considering a small element of mate-
rial subjected to shear stresses τ on its side faces (Fig. 3-40a). For conven-
ience, we will assume that the front face of the element is square, with each
side having length h. Although the figure shows only a two-dimensional view
of the element, we recognize that the element is actually three dimensional
with thickness t perpendicular to the plane of the figure.

Under the action of the shear stresses, the element is distorted so that
the front face becomes a rhombus, as shown in Fig. 3-40b. The change in
angle at each corner of the element is the shear strain γ.

310

(a) (b)

(c) (d)

h

h

V

V

V

V

V

V

V

V

–– –
2

–– –
2

t
t

t

t

g
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d

t

p g

t

t

 

FIG. 3-40
Element in pure shear
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3.9 Strain Energy in Torsion and Pure Shear 311

The shear forces V acting on the side faces of the element (Fig. 3-40c)
are found by multiplying the stresses by the areas ht over which they act:

(3-59)

These forces produce work as the element deforms from its initial shape
(Fig. 3-40a) to its distorted shape (Fig. 3-40b). To calculate this work we
need to determine the relative distances through which the shear forces
move. This task is made easier if the element in Fig. 3-40c is rotated as a
rigid body until two of its faces are horizontal, as in Fig. 3-40d. During the
rigid-body rotation, the net work done by the forces V is zero because the
forces occur in pairs that form two equal and opposite couples.

As can be seen in Fig. 3-40d, the top face of the element is displaced
horizontally through a distance δ (relative to the bottom face) as the shear
force is gradually increased from zero to its final value V. The displace-
ment δ is equal to the product of the shear strain γ (which is a small angle)
and the vertical dimension of the element:

(3-60)

If we assume that the material is linearly elastic and follows Hooke’s law,
then the work done by the forces V is equal to Vδ /2, which is also the
strain energy stored in the element:

(3-61)

Note that the forces acting on the side faces of the element (Fig. 3-40d) do
not move along their lines of action—hence they do no work.

Substituting from Eqs. (3-59) and (3-60) into Eq. (3-61), we get the
total strain energy of the element:

Because the volume of the element is h2t, the strain-energy density u (that
is, the strain energy per unit volume) is

(3-62)

Finally, we substitute Hooke’s law in shear (τ � Gγ) and obtain the fol-
lowing equations for the strain-energy density in pure shear:

(3-63a,b)

These equations are similar in form to those for uniaxial stress [see
Eqs. (2-46a and b) of Section 2.7].

The SI unit for strain-energy density is joule per cubic meter (J/m3),
Since these units are the same as those for stress, we may also express
strain-energy density in pascals (Pa).

In Section 3.11, we will use the equation for strain-energy density in
terms of the shear stress [Eq. (3-63a)] to determine the angle of twist of a
thin-walled tube of arbitrary cross-sectional shape.

u �
τ2

2G
u �

Gγ 2

2

u �
τγ
2

U �
τγh2t

2

U � W �
Vδ
2

δ � γh

V � τht
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Chapter 3  Torsion312

Example 3-10• • •
A solid circular bar AB of length L is fixed at one end and free at the other
(Fig. 3-41). Three different loading conditions are to be considered: 
(a) torque Ta acting at the free end; (b) torque Tb acting at the midpoint of
the bar; and (c) torques Ta and Tb acting simultaneously.

For each case of loading, obtain a formula for the strain energy stored in
the bar. Then evaluate the strain energy for the following data: Ta � 100 N � m,
Tb � 150 N � m, L � 1.6 m, G � 80 GPa, and IP � 79.52 � 103 mm4.

Solution
(a) Torque Ta acting at the free end (Fig. 3-41a). In this case, the strain

energy is obtained directly from Eq. (3-55a):

(a)

(b) Torque Tb acting at the midpoint (Fig. 3-41b). When the torque acts at
the midpoint, we apply Eq. (3-55a) to segment AC of the bar:

(b)

(c) Torques Ta and Tb acting simultaneously (Fig. 3-41c). When both loads act
on the bar, the torque in segment CB is Ta and the torque in segment AC
is Ta � Tb. Thus, the strain energy [from Eq. (3-57)] is

(c)

A comparison of Eqs. (a), (b), and (c) shows that the strain energy pro-
duced by the two loads acting simultaneously is not equal to the sum of
the strain energies produced by the loads acting separately. As pointed
out in Section 2.7, the reason is that strain energy is a quadratic function
of the loads, not a linear function.

(d) Numerical results. Substituting the given data into Eq. (a), we obtain

Recall that one joule is equal to one newton-meter (1 J � 1 N � m).
Proceeding in the same manner for Eqs. (b) and (c), we find

Note that the middle term, involving the product of the two loads,
 contributes significantly to the strain energy and cannot be disregarded.

➥

➥

➥

➥

➥

➥

Uc � 1.26 J � 1.89 J � 1.41 J � 4.56 J

Ub � 1.41 J

Ua �
Ta

2L

2GIP
�

(100 N # m)2(1.6 m)

2(80 GPa)(79.52 � 103 mm4)
� 1.26 J

�
Ta

2L

2GIP
�

TaTbL

2GIP
�

Tb
2L

4GIP

Uc � a

n

i�1

Ti
2Li

2G(IP)i

�
Ta

2(L/2)

2GIP
�

(Ta � Tb)2(L/2)

2GIP

Ub �
Tb

2(L/2)

2GIP
�

Tb
2L

4GIP

Ua �
Ta

2L

2GIP

(c)

Ta

Tb

Tb

A B

(b)

(a)

L

A C B

A C B Ta

L—
2

L—
2

L—
2

Fig. 3-41
Example 3-10: Strain energy
produced by two loads
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3.9 Strain Energy in Torsion and Pure Shear 313

• • •
A prismatic bar AB, fixed at one end and free at the other, is loaded by a
distributed torque of constant intensity t per unit distance along the axis
of the bar (Fig. 3-42).

(a) Derive a formula for the strain energy of the bar.
(b) Evaluate the strain energy of a hollow shaft used for drilling into the

earth if the data are as follows:

t � 2100 N # m/m, L � 3.7 m, G � 80 GPa, and IP � 7.15 � 10�6 m4

Example 3-11

Solution
(a) Strain energy of the bar. The first step in the solution is to determine

the internal torque T(x) acting at distance x from the free end of the bar
(Fig. 3-42). This internal torque is equal to the total torque acting on
the part of the bar between x � 0 and x � x. This latter torque is equal
to the intensity t of torque times the distance x over which it acts:

(a)

Substituting into Eq. (3-58), we obtain

(3-64)

This expression gives the total strain energy stored in the bar.

(b) Numerical results. To evaluate the strain energy of the hollow shaft, we
substitute the given data into Eq. (3-64):

This example illustrates the use of integration to evaluate the strain
energy of a bar subjected to a distributed torque.

➥

➥

U �
t2L3

6GIP
�

(2100 N # m/m)2(3.7 m)3

6(80 GPa)(7.15 � 10�6 m4)
� 65.1 N # m

U �
3

L

0

[T(x)]2dx
2GIP

�
1

2GIP 3

L

0
(tx)2dx �

t2L3

6GIP

T(x) � tx

x

L

dx

t
A B

Fig. 3-42
Example 3-11: Strain energy
produced by a distributed
torque

77742_03_ch03_p262-363.qxd:77742_03_ch03_p262-363.qxd  3/2/12  3:15 PM  Page 313

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 3  Torsion314

Example 3-12• • •
A tapered bar AB of solid circular cross section is supported at the right-hand
end and loaded by a torque T at the other end (Fig. 3-43). The diameter of the
bar varies linearly from dA at the left-hand end to dB at the right-hand end.

Determine the angle of rotation φA at end A of the bar by equating
the strain energy to the work done by the load.

Solution
From the principle of conservation of energy we know that the work done
by the applied torque equals the strain energy of the bar; thus, W � U. The
work is given by the equation

(a)

and the strain energy U can be found from Eq. (3-58).
To use Eq. (3-58), we need expressions for the torque T(x) and the polar

moment of inertia IP(x). The torque is constant along the axis of the bar and
equal to the load T, and the polar moment of inertia is

in which d(x) is the diameter of the bar at distance x from end A. From the
geometry of the figure, we see that

(b)

and therefore

(c)

Now we can substitute into Eq. (3-58), as follows:

The integral in this expression can be integrated with the aid of a table of
integrals (see Appendix C) with the result:

Therefore, the strain energy of the tapered bar is

(3-65)

Equating the strain energy to the work of the torque [Eq. (a)] and solv-
ing for φA, we get

(3-66)

This equation gives the angle of rotation at end A of the tapered bar. [Note: This
is the same angle of twist expression obtained in the solution of Prob. 3.4-8(a).]

Note especially that the method used in this example for finding the
angle of rotation is suitable only when the bar is subjected to a single load,
and then only when the desired angle corresponds to that load. Otherwise,
we must find angular displacements by the usual methods described in
Sections 3.3, 3.4, and 3.8.

➥φA �
32TL

3πG(dB � dA)
a 1

dA
3

�
1

dB
3
b

U �
16T2L

3πG(dB � dA)
a 1

dA
3

�
1

dB
3
b

3

L

0

dx

adA �
dB � dA

L
xb4

�
L

3(dB � dA)
a 1

dA
3

�
1

dB
3
b

U �
3

L

0

[T(x)]2dx
2GIP(x)

�
16T 2

πG 3

L

0

dx

adA �
dB � dA

L
xb4

IP(x) �
π

32
adA �

dB � dA

L
xb4

d(x) � dA �
dB � dA

L
x

IP(x) �
π

32
cd(x) d4

W �
TφA

2
L

d(x)

dA dx

AT
B

x

dB

Af

Fig. 3-43
Example 3-12: Tapered bar 
in torsion
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3.10 Torsion of Noncircular Prismatic Shafts 315

3.10 TORSION OF NONCIRCULAR
PRISMATIC SHAFTS
In Sections 3.1 through 3.9 of this chapter, we restricted our attention to
the twisting of circular shafts. Shafts with circular cross sections (either
solid or hollow) do not warp when torsional moments are applied. Plane
cross sections remain plane (as shown in Fig. 3-4), and shearing stresses
and strains vary linearly with distance ρ from the longitudinal axis of the
shaft to the outer surface (ρ � r). Now we consider prismatic shafts of
length L acted upon by torsional moments T at either end but having non-
circular cross sections. These cross sections could be solid (such as the
elliptical, triangular, and rectangular shapes shown in Fig. 3-44), or they
could be thin-walled open cross sections such as the I-beam, channel, and
Z-shaped cross sections depicted in Fig. 3-45.

These noncircular cross sections warp under the action of torsional
moments, and this warping alters the shear stress and strain distributions
in the cross section. We can no longer use the simple torsion formula of  

Rectangle

(a)

(c)

(b)

b

tBB
A

A

Ellipse Equilateral triangle

2a

2b
BB

A

A

A A

A

bt
ht = 2

√3.bt

Fig. 3-44
Solid elliptical, triangular, 
and rectangular cross-sectional
shapes

Web

W-shape (or l-beam) Channel

Flange FlangeWeb

twtf

bw

bf

(a) (b) (c)

dc

bw

bf bf

tw tf

Z-shape

bw

twtf

Fig. 3-45
Thin-walled open cross sections:
I-beam, channel, and Z-shaped
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Chapter 3  Torsion

Eq. (3-13) to compute shear stresses, and the torque-displacement relation
of Eq. (3-17) cannot be used to find the angle of twist of the shaft. For
example, warping distortions of a rectangular bar of length L acted upon
by torques T at either end are shown in Fig. 3-46a; the cross sections
remain rectangular, but a grid on the surface of the bar is distorted as
shown and plus/minus x displacements represent the out-of-plane warping
of the cross sections. The torsional shear stress distribution in the rectan-
gular cross section is shown in Fig. 3-46b. The shear stresses at the corners
are zero, and the maximum shear stress occurs at the midpoint of the
longer side (point A in Figs. 3-44 and 3-46b). A more advanced theory,
developed by Saint-Venant, is required to develop expressions for torsion
of shafts of noncircular cross section (see Refs. 1-1, 2-1, and 2-10). Simple
formulas for maximum shear stress and angle of twist for the cross-sec-
tional shapes shown in Figs. 3-44 and 3-45 will be presented next and then
used in calculations in Examples 3-13 and 3-14. However, derivation of
these formulas is beyond the scope of this text; future coursework on the
theory of elasticity and, perhaps, the finite element method will provide
more detailed analysis relating applied torque and the resulting stress dis-
tributions and angle of twist of noncircular prismatic shafts.

316

Fig. 3-46
(a) Torsion of bar of 

rectangular cross section, 
and (b) shear stress distribution

for bar of rectangular cross 
section acted upon by torsional

moment T

Shear Stress Distribution and Angle of Twist
In the following discussion, we will present only the basic relations
between applied torsional moment T and three key items of interest for a
variety of noncircular cross sections:

(1) The location and value of the maximum shear stress. τmax in the
cross section

(2) The torsional rigidity GJ

(3) The angle of twist φ of a prismatic bar of length L

y

z

x

A

A

B
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T

b

B

t

b
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z
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γ /2
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3.10 Torsion of Noncircular Prismatic Shafts 317

Constant G is the shearing modulus of elasticity of the material, and vari-
able J is the torsion constant for the cross section. Note that only for a cir-
cular cross section does torsion constant J become the polar moment of
inertia IP.

Elliptical, Triangular, and Rectangular Cross Sections
The shear stress distribution for a bar with an elliptical cross section (2a
along major axis, 2b along minor axis, area A � πab) is shown in Fig. 3-47.
The maximum shear stress is at the ends of the minor axis and may be com-
puted using the expression:

(3-67)

where a is greater than or equal to b. The angle of twist φ of a prismatic
shaft of length L with an elliptical cross section can be expressed as

where torsion constant Je is

(3-68a,b)Je �
πa3b3

a2 � b2

φ �
TL
GJe

τ max �
2T

πab2

2a

a ≥ b

2b

τmax

τmax

Fig. 3-47
Shear stress distribution in an
elliptical cross section

Note that if a � b, we have a solid circular cross section instead of an
ellipse, and the expression for Je becomes the polar moment of inertia IP
[Eq. (3-12)] and Eqs. (3-67) and (3-68a) reduce to Eqs. (3-13) and (3-17),
respectively.
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Chapter 3  Torsion

Next we consider an equilateral triangular cross section (Fig. 3-44b)
for the shaft of length L acted upon by torques T at each end. Each side
has dimension bt, and the triangle height is ht. The torsion constant Jt is

(3-69)

The maximum shear stress occurs on the surface at the midpoint of each
side (points A in Fig. 3-44b). The maximum shear stress and the angle of
twist φ of a prismatic shaft of length L with an equilateral triangular cross
section can be expressed as

(3-70)

where 

and

(3-71)

Finally, we consider a rectangular cross section (b � t, b/t 1) (see  
Figs. 3-44c and 3-46). Theory of elasticity solutions provide expressions
for maximum shear stress at point A in the cross section and the angle of
twist for a variety of aspect ratios b/t as

(3-72)

(3-73)

where

and dimensionless coefficients k1 and k2 are listed in Table 3-1.

Ú

Jr � k2bt3

φ �
TL

(k2bt3)G
�

TL
GJr

τ max �
T

k1bt2

φ �
TL
GJt

�
1513TL

Ght
4

Jt �
ht

4

1513

τ max �

Taht

2
b

Jt

�
1513T

2ht
3

Jt �
ht

4

1513

318

b/t 1.00 1.50 1.75 2.00 2.50 3.00 4 6 8 10 	

k1 0.208 0.231 0.239 0.246 0.258 0.267 0.282 0.298 0.307 0.312 0.333

k2 0.141 0.196 0.214 0.229 0.249 0.263 0.281 0.298 0.307 0.312 0.333

Table 3-1
Dimensionless Coefficients  
for Rectangular Bars
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3.10 Torsion of Noncircular Prismatic Shafts 319

It is especially important to note that, for the elliptical, triangular,
and rectangular sections considered here, maximum shear stress does not
occur at the largest distance from the axis of the shaft like it does for circu-
lar sections. Instead, maximum shear strain and stress occur at the mid-
points of the sides for each section. In fact, the shear stresses are zero in
the corners of the triangular and rectangular sections (as indicated by the
appearance of zero shear strain at the corners of the recangular section in
Fig. 3-46a, for example).

Thin-Walled Open Cross Sections: I-beam, Angle, 
Channel, and Z-shape
Metal structural shapes of open cross section (see Fig. 3-45) can be repre-
sented as assemblages of rectangles for purposes of computing their tor-
sional properties and response to applied torsional moments. Torsion
constants for typical structural steel shapes are tabulated in the AISC
manual (see Ref. 5-4) and may be up to 10% higher than properties based
on use of rectangles to represent flanges and web. Hence, maximum shear
stress values and twist angles computed using the formulas presented here
may be somewhat conservative.

The total torque is assumed to be equal to the sum of the torques car-
ried by the flanges and web. We first compute the flange bf /tf ratio (see
Fig. 3-45 for cross-sectional dimensions). Then find constant k1 from
Table 3-1 (interpolation between values may be necessary). For the web,
we use the ratio (bw � 2tf)/tw in Table 3-1 to find a new constant k1 for the
web. The separate torsion constants for both flanges and the web are
expressed as

(3-74a,b)

The total torsion constant for the thin, open cross section is obtained
(assuming two flanges) as

(3-75)

The maximum shear stress and angle of twist then can be computed as

(3-76a,b)

where the larger of tf and tw is used in the formula for τmax.
Examples 3-13 and 3-14 illustrate the application of these formulas  

to obtain maximum shear stress and angle of twist values for prismatic
bars with noncircular cross sections, such as those presented in Figs. 3-44 
and 3-45.

τ max �

2T a t
2
b

J
and φ �

TL
GJ

J � Jw � 2Jf

Jf � k1bf tf
3 Jw � k1(bw � 2tf)a tw

3 b
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Chapter 3  Torsion320

Example 3-13• • •
A shaft of length L � 1.8 m is subjected to torques T � 5 kN m at either end
(Fig. 3-48). Segment AB (L1 � 900 mm) is made of brass (Gb � 41 GPa) and
has a square cross section (a � 75 mm). Segment BC (L2 � 900 mm) is made
of steel  (Gs � 74 GPa) and has a circular cross section (d � a � 75 mm).
Ignore stress concentrations near B.

(a) Find the maximum shear stress and angle of twist for each segment of
the shaft.

(b) Find a new value for the dimension a of bar AB if the maximum shear
stress in AB and BC are to be equal.

(c) Repeat part (b) if the angles of twist of segments AB and BC are to be
equal.

(d) If dimension a is reset to a � 75 mm and bar BC is now a hollow pipe
with outer diameter d2 � a, find the inner diameter d1 so that the the
angles of twist of segments AB and BC are equal.

#

C

TT

BA

Gb, L1
Gs, L2

d
a

a
Fig. 3-48
Example 3-13: Torsion of 
shaft with noncircular cross
section

Solution
(a) Maximum shear stress and angles of twist for each segment. Both seg-

ments of the shaft have internal torque equal to applied torque T. For
square segment AB, we obtain torsion coefficients k1 and k2 from
Table 3-1, then use Eqs. (3-72) and (3-73) to compute maximum shear
stress and angle of twist as

(a)

(b)

The maximum shear stress in AB occurs at the midpoint of each side of
the square cross section.

Segment BC is a solid, circular cross section, so we use Eqs. (3-14)
and (3-17) to compute the maximum shear stress and angle of twist for
segment BC:

(c)

(d)

Comparing the shear stress and angle of twist values for square segment
AB and circular segment BC, we see that the steel pipe BC has 6%
greater maximum shear stress but 20% less twist rotation than the brass
bar AB.

➥

➥

➥

➥

� 2.46 � 10�2 radians

φ1 �
TL1

(k2bt3)Gb

�
TL1

k2a
4Gb

�
(5 kN # m)(900 mm)

0.141(75 mm)4(41 GPa)

φ2 �
TL2

GsIp
�

(5 kN # m)(900 mm)

74 GPa c π
32

(75 mm)4 d
� 1.958 � 10�2

τ max2 �
16T

πd3
�

16(5 kN # m)

π (75 mm)3
� 60.4 MPa

τ max1 �
T

k1bt2
�

T

k1a
3

�
(5 kN # m)

0.208(75 mm)3
� 57 MPa
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3.10 Torsion of Noncircular Prismatic Shafts 321

(b) New value for dimension a of bar AB so that maximum shear stress in AB
and BC are equal. We equate expressions for τmax1 and τmax2 in Eqs. (a)
and (c) and solve for the required new value of dimension a of bar AB:

(e)

The diameter of bar BC remains unchanged at d � 75 mm, so a slight
reduction in dimension a for bar AB leads to the same maximum shear
stress of 60.4 MPa [Eq.(c)] in the two bar segments.

(c) New value for dimension a of bar AB so that twist rotations in AB and
BC are equal. Now, we equate expressions for φ1 and φ2 in Eqs. (b) and
(d) and solve for the required new value of dimension a of bar AB:

(f)

The diameter of bar BC remains unchanged at d � 75 mm, so a slight
increase in dimension a for brass bar AB leads to the same twist rotation
of 0.01958 radians, as in Eq. (d) in each of the two bar segments.

(d) Change segment BC to hollow pipe; find inner diameter d1 so that twist
rotations in AB and BC are equal. Side dimension a of square segment AB
is equal to 75 mm, and outer diameter d2 � 75 mm (Fig. 3-49). Using
 Eq. (3-19) for the polar moment of inertia of segment BC, we get for twist
angle φ2:

(g)

Once again, we equate expressions for φ1 and φ2 but now using Eqs. (b)
and (g). Solving for d1, we get the expression:

(h)

So the square, solid brass pipe AB (a � a, a � 75 mm) and hollow steel pipe
BC (d2 � 75 mm, d1 � 50.4 mm) are each 900 mm in length and have the
same twist rotation (0.0246 radians) due to applied torque T. However,
additional  calculations will show that the maximum shear stress in segment
BC is now increased from 60.4 MPa [Eq.(c)] to 75.9 MPa by using a hollow
rather than solid bar for BC.

Note that by deriving the formula for inner diameter d1 in Eq. (h)
(rather than finding a numerical solution alone), we can also investigate
other solutions of possible interest using different values of the key vari-
ables. For example, if bar AB is increased in length to L1 � 1100 mm,
inner diameter d1 for BC can be increased to 57.6 mm and the angles of
twist for AB and BC will be the same.

➥

➥

� 50.4 mm

or anew � cL1

L2

a GSIP
k2Gb

bd
1
4

� 79.4 mm

so
L1

k2anew
4 Gb

�
L2

GsIp

φ1 � φ2

➥� C(75 mm)4 � 32a900 mm
900 mm

b a41 GPa
74 GPa

bc(75 mm)4(0.141)
π dS

1

4

d1 � cd2
4 � 32aL2

L1

b aGb

Gs

b aa4k2

π
b d

1

4

φ2 �
TL2

Gs c π
32
ad2

4 � d1
4b d

τ max 1 � τ max2 so
16

πd3
�

1

k1anew
3

or anew � a πd3

16k1

b
1
3

� 73.6 mm

t

d1

d2

Fig. 3-49
Hollow pipe cross section for
segment BC
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Chapter 3  Torsion322

Example 3-14• • •
A steel angle, L178 � 102 � 19, and a steel wide-flange beam, W360 � 39,
each of length L � 3.5 m, are subjected to torque T (see Fig. 3-50). The allow-
able shear stress is 45 MPa and the maximum permissible twist rotation is 5�.
Find the value of the maximum torque T than can be applied to each
 section. Assume that G � 80 GPa and ignore stress concentration effects.
(See Tables F-1(b) and F-5(b) for cross-sectional properties and dimensions).

T

T

T

T

L

L

Fig. 3-50
Example 3-14: W-shape and
angle steel sections in torsion

Solution
The angle and wide-flange steel shapes have the same cross-sectional area
[A � 4960 mm2; see Tables F-1(b) and F-5(b)] but thicknesses of flange and
web components of each section are quite different. First, we consider the
angle section.

(a) Steel angle section. We can approximate the unequal leg angle as one long
rectangle with length bL � 280 mm and constant thickness tL � 19 mm, so
bL/tL � 14.7. From Table 3-1, we estimate coefficients k1 � k2 to be approx-
imately 0.319. The maximum allowable torques can be obtained from 
Eqs. (3-72) and (3-73) based on the given allowable shear stress and allow-
able twist rotation, respectively, as

(a)

(b)

Alternatively, we can compute the torsion constant for the angle JL, 

(c)

then use Eqs. (3-74) and (3-76) to find maximum allowable torque values.
From Eq. (3-76a), we find Tmax1 and from Eq. (3-76b), we obtain Tmax2:

For the angle, the lesser value controls, so Tmax � 1222 N�m

➥� 1222 N # m

T max2 � φa(k2bLtL
3)

G
L

� a 5π
180

radb (0.319)(280 mm) C(19 mm)3D 80 GPa
3500 mm

T max1 �
τaJL

tL
� 1451 N # m and T max2 �

GJL

L
φa � 1222 N # m

JL � K1bLtL
3 � 6.128 � 105 mm4

T max1 � τak1bLtL
2 � 45 MPa(0.319)(280 mm) C(19 mm)2D �1451 N # m
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3.10 Torsion of Noncircular Prismatic Shafts 323

(b) Steel W-shape. The two flanges and the web are separate rectangles which
together resist the applied torsional moment. However, the dimensions 
(b, t) of each of these rectangles are different: for a W 360 � 39, each
flange has a width of bf � 128 mm and a thickness of tf � 10.7 mm [see 
Table F-1(b)]. The web has thickness tw � 6.48 mm [Table F-5(b)] and, con-
servatively, bw � (dw � 2tf) � (353 mm � 2(10.7 mm)) � 331.6 mm. Based
on the b/t ratios, we can find separate coefficients k1 for the flanges and
web from Table 3-1, then compute the torsion constants J for each com-
ponent using Eqs. (3-74) as:

For the flanges:

so an estimated value for k1f � 0.316. Then we have

(d)

For the web:

and k1w is estimated as k1w � 0.329, so

(e)

The torsion constant for the entire W360 � 39 section is obtained by
adding web and flange contributions [Eqs. (d) and (e)]:

(f)

Now, we use Eq. 3-76a and the allowable shear stress τa to compute the
maximum allowable torque based on both flange and web maximum
shear stresses:

(g)

(h)

Note that since the flanges have greater thickness than the web, the
maximum shear stress will be in the flanges. So, a calculation of Tmax
based on the maximum web shear stress using Eq. (h) is not necessary.

Finally, we use Eq. (3-76b) to compute Tmax based on the allowable
angle of twist:

(i)

For the W-shape, the most restrictive requirement is the allowable twist
rotation so Tmax � 257 N � m governs [Eq. (i)].

It is interesting to note that, even though both angle and W-shapes
have the same cross-sectional area, the W-shape is considerably weaker in
torsion, because its component rectangles are much thinner (tw � 6.48 mm,
tf � 10.7 mm) than the angle section (tL � 19 mm). However, we will see in
Chapter 5 that, although weak in torsion, the W-shape has a considerable
advantage in resisting bending and transverse shear stresses.

➥

Jf � k1fbftf
3 � 0.316(128 mm)[(10.7 mm)3] � 4.955 � 104 mm4

Jw � k1w(dw � 2tf)(tw
3 ) � 0.329[353 mm � 2(10.7 mm)][(6.48 mm)3]

� 257 N # m

T max φ �
GJW

L
φa �

80 GPa(1.288 � 105 mm4)
3500 mm

a 5π
180

radb

� 2.968 � 104 mm

T max w � τa

JW

tw
� 45 MPaa1.288 � 105 mm4

6.48 mm
b � 894 N # m

T max f � τa

JW

tf
� 45 MPaa1.288 � 105 mm4

10.7 mm
b � 542 N # m

JW � 2 Jf � Jw � [2(4.955) � 2.968](104) mm4 � 1.288 � 105 mm4

dw � 2tf

tw
� 51.173

bf

tf
� 11.963
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Chapter 3  Torsion

3.11 THIN-WALLED TUBES
With the exception of Section 3.10, in which we considered torsion of bars
of noncircular cross section, the torsion theory described in the preceding
sections is applicable only to solid or hollow bars of circular cross section.
Circular shapes are the most efficient shapes for resisting torsion and con-
sequently are the most commonly used. However, in lightweight struc-
tures, such as aircraft and spacecraft, thin-walled tubular members with
noncircular closed cross sections are often required to resist torsion. In
this section, we will analyze structural members of this kind.

To obtain formulas that are applicable to a variety of shapes, let us
consider a thin-walled tube of arbitrary cross section (Fig. 3-51a). The
tube is cylindrical in shape—that is, all cross sections are identical and the
longitudinal axis is a straight line. The thickness t of the wall is not neces-
sarily constant but may vary around the cross section. However, the thick-
ness must be small in comparison with the total width of the tube. The
tube is subjected to pure torsion by torques T acting at the ends.

Shear Stresses and Shear Flow
The shear stresses τ acting on a cross section of the tube are pictured in
Fig. 3-51b, which shows an element of the tube cut out between two cross
sections that are distance dx apart. The stresses act parallel to the bound-
aries of the cross section and “flow” around the cross section. Also, the
intensity of the stresses varies so slightly across the thickness of the tube
(because the tube is assumed to be thin) that we may assume τ to be con-
stant in that direction. However, if the thickness t is not constant, the
stresses will vary in intensity as we go around the cross section, and the
manner in which they vary must be determined from equilibrium.

To determine the magnitude of the shear stresses, we will consider a
rectangular element abcd obtained by making two longitudinal cuts ab and
cd (Figs. 3-51a and b). This element is isolated as a free body in Fig. 3-51c.

324

b

b
b

T
a

d c
b

dx

y

z dxx

O

L

T T

t

x

(a)

(b) (c) (d)

a
d c

b

Fb

F1

a b

d c

a b
tb

tc

d c
F1

Fc

T

ctct

ct

t
t

t

t

Fig. 3-51
Thin-walled tube of arbitrary

cross-sectional shape
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3.11 Thin-Walled Tubes 325

Acting on the cross-sectional face bc are the shear stresses τ shown in  
Fig. 3-51b. We assume that these stresses vary in intensity as we move
along the cross section from b to c; therefore, the shear stress at b is
denoted τb and the stress at c is denoted τc (see Fig. 3-51c).

As we know from equilibrium, identical shear stresses act in the oppo-
site direction on the opposite cross-sectional face ad, and shear stresses of
the same magnitude also act on the longitudinal faces ab and cd. Thus, the
constant shear stresses acting on faces ab and cd are equal to τb and τc,
respectively.

The stresses acting on the longitudinal faces ab and cd produce forces Fb
and Fc (Fig. 3-51d). These forces are obtained by multiplying the stresses by
the areas on which they act:

in which tb and tc represent the thicknesses of the tube at points b and c,
respectively (Fig. 3-51d).

In addition, forces F1 are produced by the stresses acting on faces bc
and ad. From the equilibrium of the element in the longitudinal direction
(the x direction), we see that Fb � Fc, or

Because the locations of the longitudinal cuts ab and cd were selected arbi-
trarily, it follows from the preceding equation that the product of the
shear stress τ and the thickness t of the tube is the same at every point in
the cross section. This product is known as the shear flow and is denoted
by the letter f:

(3-77)

This relationship shows that the largest shear stress occurs where the
thickness of the tube is smallest, and vice versa. In regions where the thick-
ness is constant, the shear stress is constant. Note that shear flow is the
shear force per unit distance along the cross section.

Torsion Formula for Thin-Walled Tubes
The next step in the analysis is to relate the shear flow f (and hence the
shear stress τ ) to the torque T acting on the tube. For that purpose, let us
examine the cross section of the tube, as pictured in Fig. 3-52. The median
line (also called the centerline or the midline) of the wall of the tube is shown
as a dashed line in the figure. We consider an element of area of length ds
(measured along the median line) and thickness t. The distance s defining
the location of the element is measured along the median line from some
arbitrarily chosen reference point.

The total shear force acting on the element of area is fds, and the
moment of this force about any point O within the tube is

dT � rfds

f � τt � constant

τbtb � τctc

Fb � τbtbdx Fc � τctcdx

O

r

t

s

ds

f ds

Fig. 3-52
Cross section of 
thin-walled tube
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Chapter 3  Torsion

in which r is the perpendicular distance from point O to the line of action
of the force fds. (Note that the line of action of the force fds is tangent to
the median line of the cross section at the element ds.) The total torque T
produced by the shear stresses is obtained by integrating along the median
line of the cross section:

(3-78)

in which Lm denotes the length of the median line.
The integral in Eq. (3-78) can be difficult to integrate by formal math-

ematical means, but fortunately it can be evaluated easily by giving it a
simple geometric interpretation. The quantity rds represents twice the area
of the shaded triangle shown in Fig. 3-52. (Note that the triangle has base
length ds and height equal to r.) Therefore, the integral represents twice
the area Am enclosed by the median line of the cross section:

(3-79)

It follows from Eq. (3-78) that T � 2fAm, and therefore the shear flow is

(3-80)

Now we can eliminate the shear flow f between Eqs. (3-77) and (3-80) and
obtain a torsion formula for thin-walled tubes:

(3-81)

Since t and Am are properties of the cross section, the shear stresses τ can
be calculated from Eq. (3-81) for any thin-walled tube subjected to a
known torque T. (Reminder: The area Am is the area enclosed by the
median line—it is not the cross-sectional area of the tube.)

To illustrate the use of the torsion formula, consider a thin-walled cir-
cular tube (Fig. 3-53) of thickness t and radius r to the median line. The
area enclosed by the median line is

(3-82)

and therefore the shear stress (constant around the cross section) is

(3-83)

This formula agrees with the stress obtained from the standard torsion
formula [Eq. (3-13)] when the standard formula is applied to a circular
tube with thin walls using the approximate expression IP � 2πr3t for the
polar moment of inertia [Eq. (3-21)].

As a second illustration, consider a thin-walled rectangular tube
(Fig. 3-54) having thickness t1 on the sides and thickness t2 on the top
and bottom. Also, the height and width (measured to the median line of

τ �
T

2πr2t

Am � πr2

τ �
T

2tAm

f �
T

2Am

3

Lm

0

rds � 2Am

T � f
3

Lm

0

rds

326

r

t

Fig. 3-53
Thin-walled circular tube
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3.11 Thin-Walled Tubes 327

the cross section) are h and b, respectively. The area within the median
line is

(3-84)

and thus the shear stresses in the vertical and horizontal sides, respec-
tively, are

(3-85a,b)

If t2 is larger than t1, the maximum shear stress will occur in the vertical
sides of the cross section.

Strain Energy and Torsion Constant
The strain energy of a thin-walled tube can be determined by first finding
the strain energy of an element and then integrating throughout the vol-
ume of the bar. Consider an element of the tube having area tds in the
cross section (see the element in Fig. 3-52) and length dx (see the element
in Fig. 3-51). The volume of such an element, which is similar in shape to
the element abcd shown in Fig. 3-51a, is tds dx. Because elements of the
tube are in pure shear, the strain-energy density of the element is τ2/2G, as
given by Eq. (3-63a). The total strain energy of the element is equal to the
strain-energy density times the volume:

(3-86)

in which we have replaced τ t by the shear flow f (a constant).
The total strain energy of the tube is obtained by integrating dU

throughout the volume of the tube, that is, ds is integrated from 0 to Lm
around the median line and dx is integrated along the axis of the tube
from 0 to L, where L is the length. Thus,

(3-87)

Note that the thickness t may vary around the median line and must
remain with ds under the integral sign. Since the last integral is equal to
the length L of the tube, the equation for the strain energy becomes

(3-88)

Substituting for the shear flow from Eq. (3-80), we obtain

(3-89)U �
T2L

8GAm
2
3

Lm

0

ds
t

U �
f 2L

2G 3

Lm

0

ds
t

U �
L

dU �
f 2

2G 3

Lm

0

ds
t 3

L

0

dx

dU �
τ 2

2G
tdsdx �

τ2t2

2G
ds
t

dx �
f 2

2G
ds
t

dx

τvert �
T

2t1bh
τhoriz �

T
2t2bh

Am � bh

t1

h

t1

t2

t2
b

Fig. 3-54
Thin-walled rectangular 
tube
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Chapter 3  Torsion

as the equation for the strain energy of the tube in terms of the torque T.
The preceding expression for strain energy can be written in simpler

form by introducing a new property of the cross section, called the torsion
constant. For a thin-walled tube, the torsion constant (denoted by the
 letter J) is defined as follows:

(3-90)

With this notation, the equation for strain energy [Eq. (3-89)] becomes

(3-91)

which has the same form as the equation for strain energy in a circular bar
[see Eq. (3-55a)]. The only difference is that the torsion constant J has
replaced the polar moment of inertia IP. Note that the torsion constant
has units of length to the fourth power.

In the special case of a cross section having constant thickness t, the
expression for J [Eq. (3-90)] simplifies to

(3-92)

For each shape of cross section, we can evaluate J from either Eq. (3-90)
or Eq. (3-92).

As an illustration, consider again the thin-walled circular tube of  
Fig. 3-53. Since the thickness is constant we use Eq. (3-92) and substitute
Lm � 2πr and Am � πr2; the result is

(3-93)

which is the approximate expression for the polar moment of inertia
[Eq. (3-21)]. Thus, in the case of a thin-walled circular tube, the polar
moment of inertia is the same as the torsion constant.

As a second illustration, we will use the rectangular tube of Fig. 3-54.
For this cross section we have Am � bh. Also, the integral in Eq. (3-90) is

Thus, the torsion constant [Eq. (3-90)] is

(3-94)

Torsion constants for other thin-walled cross sections can be found in a
similar manner.

J �
2b2h2t1t2

bt1 � ht2

3

Lm

0

ds
t

� 2
3

h

0

ds
t1

� 2
3

b

0

ds
t2

� 2a h
t1

�
b
t2

b

J � 2πr3t

J �
4tAm

2

Lm

U �
T2L
2GJ

J �
4Am

2

3

Lm

0

ds
t
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Fig. 3-54 (Repeated)
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t

Fig. 3-53 (Repeated)
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3.11 Thin-Walled Tubes 329

Angle of Twist
The angle of twist φ for a thin-walled tube of arbitrary cross-sectional
shape (Fig. 3-55) may be determined by equating the work W done by the
applied torque T to the strain energy U of the tube. Thus,

from which we get the equation for the angle of twist:

(3-95)φ �
TL
GJ

W � U or
Tφ
2

�
T2L
2GJ

*The torsion theory for thin-walled tubes described in this section was developed by R. Bredt, a German
engineer who presented it in 1896 (Ref. 3-2). It is often called Bredt’s theory of torsion.

T

f

Fig. 3-55
Angle of twist φ for a 
thin-walled tube

Again we observe that the equation has the same form as the correspon-
ding equation for a circular bar [Eq. (3-17)] but with the polar moment of
inertia replaced by the torsion constant. The quantity GJ is called the tor-
sional rigidity of the tube.

Limitations
The formulas developed in this section apply to prismatic members hav-
ing closed tubular shapes with thin walls. If the cross section is thin walled
but open, as in the case of I-beams and channel sections, the theory given
here does not apply. To emphasize this point, imagine that we take a thin-
walled tube and slit it lengthwise—then the cross section becomes an open
section, the shear stresses and angles of twist increase, the torsional resist-
ance decreases, and the formulas given in this section cannot be used.
Recall that the torsion of prismatic bars with noncircular cross sections
was reviewed briefly in Section 3.10. This included solid rectangular, tri-
angular, and elliptical cross sections, as well as thin-walled open sections
(such as I-beams and channels). An advanced theory is required to derive
formulas for shear stress and the angle of twist of such bars, so only key
formulas and their application were presented.

Some of the formulas given in this section on thin-walled tubes are
restricted to linearly elastic materials—for instance, any equation contain-
ing the shear modulus of elasticity G is in this category. However, the equa-
tions for shear flow and shear stress [Eqs. (3-80) and (3-81)] are based only
upon equilibrium and are valid regardless of the material properties. The
entire theory is approximate because it is based upon centerline dimensions,
and the results become less accurate as the wall thickness t increases.*

An important consideration in the design of any thin-walled member
is the possibility that the walls will buckle. The thinner the walls and the
longer the tube, the more likely it is that buckling will occur. In the case
of noncircular tubes, stiffeners and diaphragms are often used to maintain
the shape of the tube and prevent localized buckling. In all of our discus-
sions and problems, we assume that buckling is prevented.
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Chapter 3  Torsion330

Example 3-15• • •
Compare the maximum shear stress in a circular tube (Fig. 3-56) as calculated
by the approximate theory for a thin-walled tube with the stress calculated
by the exact torsion theory. (Note that the tube has constant thickness t and
radius r to the median line of the cross section.)

t

r

Fig. 3-56
Example 3-15: Comparison of
approximate and exact
 theories of torsion

Solution
Approximate theory. The shear stress obtained from the approximate
 theory for a thin-walled tube [Eq. (3-83)] is

(3-96)

in which the relation

(3-97)

is introduced.
Torsion formula. The maximum stress obtained from the more accurate

torsion formula [Eq. (3-13)] is

(a)

where

(b)

After expansion, this expression simplifies to

(3-98)

and the expression for the shear stress [Eq. (a)] becomes

(3-99)

Ratio. The ratio τ1/τ2 of the shear stresses is

(3-100)

which depends only on the ratio β.
For values of β equal to 5, 10, and 20, we obtain from Eq. (3-100) the val-

ues τ1/τ2 � 0.92, 0.95, and 0.98, respectively. Thus, we see that the approximate
formula for the shear stresses gives results that are slightly less than those
obtained from the exact formula. The accuracy of the approximate formula
increases as the wall of the tube becomes thinner. In the limit, as the thickness
approaches zero and β approaches infinity, the ratio τ1/τ2 becomes 1.

➥
τ1

τ2
�

4β2 � 1

2β(2β � 1)

τ2 �
T(2r � t)

πrt(4r2 � t2)
�

T(2β � 1)

πt3β(4β2 � 1)

IP �
πrt
2

(4r2 � r2)

IP �
π
2
c ar �

t
2
b4

� ar �
t
2
b4 d

τ2 �
T(r � t/2)

IP

β �
r
t

τ1 �
T

2π r2t
�

T

2π t3β2
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3.11 Thin-Walled Tubes 331

• • •
A circular tube and a square tube (Fig. 3-57) are constructed of the same
material and subjected to the same torque. Both tubes have the same
length, same wall thickness, and same cross-sectional area.

What are the ratios of their shear stresses and angles of twist?
(Disregard the effects of stress concentrations at the corners of the square
tube.)

Example 3-16

Solution
Circular tube. For the circular tube, the area Am1 enclosed by the median line
of the cross section is

(c)

where r is the radius to the median line. Also, the torsion constant [Eq. (3-93)]
and cross-sectional area are

(d,e)

Square tube. For the square tube, the cross-sectional area is

(f)

where b is the length of one side, measured along the median line.
Inasmuch as the areas of the tubes are the same, we obtain b � πr/2. Also,
the torsion constant [Eq. (3-94)] and area enclosed by the median line of the
cross section are

(g,h)

Ratios. The ratio τ1/τ2 of the shear stress in the circular tube to the shear
stress in the square tube [from Eq. (3-81)] is

(i)

The ratio of the angles of twist [from Eq. (3-95)] is

(j)

These results show that the circular tube not only has a 21% lower
shear stress than does the square tube but also a greater stiffness against
rotation.

➥

➥

φ1

φ2
�

J2

J1

�
π 3r 3t/8

2πr3t
�

π 2

16
� 0.62

τ1

τ2
�

Am2

Am1

�
π 2r 2/4

π r 2
�

π
4

� 0.79

J2 � b3t �
π 3r 3t

8
Am2 � b2 �

π 2r 2

4

A2 � 4bt

J1 � 2π r 3t A1 � 2π rt

Am1 � πr2

t

t
r

(a) (b)

b

Fig. 3-57
Example 3-16: Comparison of
circular and square tubes
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Chapter 3  Torsion

*3.12 STRESS CONCENTRATIONS
IN TORSION
In the previous sections of this chapter we discussed the stresses in torsional
members assuming that the stress distribution varied in a smooth and con-
tinuous manner. This assumption is valid provided that there are no abrupt
changes in the shape of the bar (no holes, grooves, abrupt steps, and the
like) and provided that the region under consideration is away from any
points of loading. If such disruptive conditions do exist, then high localized
stresses will be created in the regions surrounding the discontinuities. In
practical engineering work these stress concentrations are handled by means
of stress-concentration factors, as explained previously in Section 2.10.

The effects of a stress concentration are confined to a small region
around the discontinuity, in accord with Saint-Venant’s principle (see
Section 2.10). For instance, consider a stepped shaft consisting of two seg-
ments having different diameters (Fig. 3-58). The larger segment has
diameter D2 and the smaller segment has diameter D1. The junction
between the two segments forms a “step” or “shoulder” that is machined
with a fillet of radius R. Without the fillet, the theoretical stress concen-
tration factor would be infinitely large because of the abrupt 90� reentrant
corner. Of course, infinite stresses cannot occur. Instead, the material at
the reentrant corner would deform and partially relieve the high stress
concentration. However, such a situation is very dangerous under
dynamic loads, and in good design a fillet is always used. The larger the
radius of the fillet, the lower the stresses.

At a distance from the shoulder approximately equal to the diameter D2
(for instance, at cross section A-A in Fig. 3-58a) the torsional shear stresses
are practically unaffected by the discontinuity. Therefore, the maximum
stress τ2 at a sufficient distance to the left of the shoulder can be found from
the torsion formula using D2 as the diameter (Fig. 3-58b). The same general
comments apply at section C-C, which is distance D1 (or greater) from the
toe of the fillet. Because the diameter D1 is less than the diameter D2, the
maximum stress τ1 at section C-C (Fig. 3-58d) is larger than the stress τ2.

The stress-concentration effect is greatest at section B-B, which cuts
through the toe of the fillet. At this section the maximum stress is

(3-101)

In this equation, K is the stress-concentration factor and τnom (equal to τ1)
is the nominal shear stress, that is, the shear stress in the smaller part of
the shaft.

Values of the factor K are plotted in Fig. 3-59 as a function of the
ratio R/D1. Curves are plotted for various values of the ratio D2/D1. Note
that when the fillet radius R becomes very small and the transition from
one diameter to the other is abrupt, the value of K becomes quite large.
Conversely, when R is large, the value of K approaches 1.0 and the effect
of the stress concentration disappears. The dashed curve in Fig. 3-59
is for the special case of a full quarter-circular fillet, which means that
D2 � D1 � 2R. (Note: Probs. 3.12-1 through 3.12-5 provide practice in
obtaining values of K from Fig. 3-59.)

τ max � Kτnom � K
Tr
IP

� Ka 16T
πD1

3 b

332
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3.12 Stress Concentrations in Torsion 333

Many other cases of stress concentrations for circular shafts, such as
a shaft with a keyway and a shaft with a hole, are available in the engi-
neering literature (see, for example, Ref. 2-9).

(a)

Section A-A
(b)

Section B-B
(c)

Section C-C
(d)

B

B

A

A

T T

C

C

Fillet (R = radius)

D2 D1

 2

D2

 max

D1

 1

D1

t

t t

Fig. 3-58
Stepped shaft in torsion

K

0
1.00

1.50

2.00

0.10

1.5

1.2
1.1

0.20

D2 D1
T

R

T

 τmax = Kτnom  τnom = 16T
  D1

3——

= 2D1

D2—–

D1

R—–

= + 2RD1D2

p

Fig. 3-59
Stress-concentration factor K
for a stepped shaft in torsion
(The dashed line is for a full
quarter-circular fillet.)

As explained in Section 2.10, stress concentrations are important for
brittle materials under static loads and for most materials under dynamic
loads. As a case in point, fatigue failures are of major concern in the
design of rotating shafts and axles (see Section 2.9 for a brief discussion of
fatigue). The theoretical stress-concentration factors K given in this sec-
tion are based upon linearly elastic behavior of the material. However,
fatigue experiments show that these factors are conservative, and failures
in ductile materials usually occur at larger loads than those predicted by
the theoretical factors.
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Chapter 3  Torsion334

Example 3-17• • •
A stepped shaft consisting of solid circular segments (D1 � 44 mm and 
D2 � 53 mm, see Fig. 3-60) has a fillet of radius R � 5 mm.

(a) Find the maximum permissible torque Tmax, assuming that the allowable
shear stress at the stress concentration is 63 MPa.

(b) If the shaft is to be replaced with a shaft with allowable shear stress of
86 MPa, D2 � 53 mm with a full quarter-circular fillet, carrying a torque
of T � 960 N m, find the smallest acceptable value of diameter D1.#

Solution
(a) Maximum permissible torque. If we compute the ratio of the shaft diam-

eters (D2/D1 � 1.2) and the ratio of the fillet radius R to diameter 
D1 (R/D1 � 0.114), we can find the stress concentration factor K to be
approximately 1.3 from Fig. 3-59 (repeated here). Then, equating the maxi-
mum shear stress in the smaller shaft to the allowable shear stress τa, we get

(a)

Solving Eq. (a) for Tmax, we get

(b)

Substituting numerical values gives

➥T max � (63 MPa) cπ (44 mm)3

16(1.3)
d � 811 N # m

T max � τaa
πD1

3

16K
b

τ max � Ka16T

πD1
3
b � τa

Fig. 3-59 (Repeated)

D2 D1
T

R

T

Fig. 3-60
Example 3-17: Stepped circular
shaft in torsion

K

0
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1.3

2.00

0.10 0.114

1.5

1.2
1.1

0.20

D2 D1
T

R

T

 τmax = Kτnom  τnom = 16T
  D1

3——

= 2D1

D2—–

D1

R—–

p

= + 2RD1D2
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3.12 Stress Concentrations in Torsion 335

(b) Smallest acceptable value of diameter D1. In the shaft redesign, a full
quarter-circular fillet is being used so

(c)

Next, solve Eq. (a) for diameter D1 in terms of the unknown stress con-
centration factor K:

(d)

Solving Eqs. (c) and (d) using trial and error and using Fig. 3-59 to obtain
K, we have the following results:

Trial #1.

From Fig. 3-59: K � 1.24:

Trial #2.

From Fig. 3-59: K � 1.26:

Trial #3.

From Fig. 3-59: K � 1.265:

Use D1 � 41.6 mm. Check the maximum shear stress:

A stepped shaft with D2 � 53 mm, D1 � 41.6 mm, and a full quarter-cir-
cular fillet of radius R � 5.7 mm will carry the required torque T without
 exceeding the allowable shear stress in the fillet region.

➥

D1b � a7680K N # m

43π MPa
b

1

3
� 41.59 mm

D1b � a7680K N # m

43π MPa
b

1

3
� 41.53 mm

� a7680K N # m
43π MPa

b
1

3
D1 � cKa16T

πτa
b d

1

3
� cK c 16(960 N # m)

π (86 MPa)
d d

1

3

τ max � Ka16T

πD1
3
b � (1.265) c16(960 N # m)

π (41.6 mm)3
d � 86 MPa

D1a � 41.6 mm R � 26.5 mm �
D1a

2
� 5.7 mm

R
D1a

� 0.137

D1a � 41.3 mm R � 26.5 mm �
D1a

2
� 5.85 mm

R
D1a

� 0.142

D1b � a7680K N # m

43π MPa
b

1

3
� 41.31 mm

D1a � 38 mm R � 26.5 mm �
D1a

2
� 7.5 mm

R
D1a

� 0.197

D2 � D1 � 2R or R �
D2 � D1

2
�

53 mm � D1

2
� 26.5 mm �

D1

2
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336

CHAPTER SUMMARY & REVIEW

In Chapter 3, we investigated the behavior of bars and hollow tubes acted
on by concentrated torques or distributed torsional moments as well as pre-
strain effects. We developed torque-displacement relations for use in com-
puting angles of twist of bars under both uniform (i.e., constant torsional
moment over its entire length) and nonuniform conditions (i.e., torques,
and perhaps also polar moment of inertia, vary over the length of the bar).
Then, equilibrium and compatibility equations were developed for statically
indeterminate structures in a superposition procedure leading to solution
for all unknown torques, rotational displacements, stresses, etc. Starting
with a state of pure shear on stress elements aligned with the axis of the bar,
we then developed equations for normal and shear stresses on inclined sec-
tions. A number of advanced topics were presented in the last parts of the
chapter. The major concepts presented in this chapter are as follows:

1. For circular bars and tubes, the shearing stress (τ) and strain (γ) vary
linearly with radial distance from the center of the cross-section.

2. The torsion formula defines the relation between shear stress and tor-
sional moment. Maximum shear stress τmax occurs on the outer sur-
face of the bar or tube and depends on torsional moment T, radial
distance r, and second moment of inertia of the cross section Ip,
known as polar moment of inertia for circular cross sections. Thin-
walled tubes are seen to be more efficient in torsion, because the
available material is more uniformly stressed than solid circular bars.

3. The angle of twist φ of prismatic circular bars subjected to torsional
moment(s) is proportional to both the torque T and the length of the
bar L, and inversely proportional to the torsional rigidity (GIp) of
the bar; this relationship is called the torque-displacement relation.

4. The angle of twist per unit length of a bar is referred to as its tor-
sional flexibility ( fT), and the inverse relationship is the torsional
stiffness (kT � 1/fT) of the bar or shaft.

5. The summation of the twisting deformations of the individual seg-
ments of a nonprismatic shaft equals the twist of the entire bar (φ).
Free-body diagrams are used to find the torsional moments (Ti) in each
segment i.

φ � a

n

i � 1

φi � a

n

i � 1

TiLi

Gi(IP)i

kT �
GIP

L
fT �

L
GIP

φ �
TL
GIP

τ max �
Tr
IP

τ � (ρ/r)τ max γ � (ρ/r)γ max

77742_03_ch03_p262-363.qxd:77742_03_ch03_p262-363.qxd  3/2/12  3:31 PM  Page 336

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



337

If torsional moments and/or cross sectional properties (Ip) vary
 continuously, an integral expression is required.

6. If the bar structure is statically indeterminate, additional equations
are required to solve for unknown moments. Compatibility equations
are used to relate bar rotations to support conditions and thereby
generate additional relationships among the unknowns. It is con-
venient to use a superposition of “released” (or statically determi-
nate) structures to represent the actual statically indeterminate bar
structure.

7. Misfits and prestrains induce torsional moments only in statically
indeterminate bars or shafts.

8. A circular shaft is subjected to pure shear due to torsional
moments. Maximum normal and shear stresses can be obtained by
considering an inclined stress element. The maximum shear stress
occurs on an element aligned with the axis of the bar, but the max-
imum normal stress occurs at an inclination of 45� to the axis of the
bar, and the maximum normal stress is equal to the maximum
shear stress

We can also find a relationship between the maximum shear and
normal strains for the case of pure shear:

9. Circular shafts are commonly used to transmit mechanical power
from one device or machine to another. If the torque T is expressed
in newton meters and n is the shaft rpm, the power P is expressed in
watts as

In U.S. customary units, torque T is given in ft-lb and power may be
given in horsepower (hp), H, as

10. A number of advanced topics were also discussed in Chapter 3 but
are not reviewed in this summary. These advanced topics include:
strain energy in torsion, noncircular cross sections, thin-walled
tubes, and stress concentrations.

H �
2πnT
33,000

P �
2πnT

60

ε max � γ max /2

σ max � τ

φ �
3

L

0
dφ �

3

L

0

T(x)dx

GIP(x)
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Torsional Deformations

3.2-1 A copper rod of length L � 460 mm is to be twisted
by torques T (see figure) until the angle of rotation
between the ends of the rod is 3.0�.

(a) If the allowable shear strain in the copper is 0.0006 rad,
what is the maximum permissible diameter of the rod?

(b) If the rod diameter is 12.5 mm, what is the mini-
mum permissible length of the rod?

PROBLEMS CHAPTER 3
3.2-4 A circular steel tube of length L � 1.0 m is loaded in
torsion by torques T (see figure).

(a) If the inner radius of the tube is r1 � 45 mm and
the measured angle of twist between the ends is 0.5�, what
is the shear strain γ1 (in radians) at the inner surface?

(b) If the maximum allowable shear strain is 0.0004 rad
and the angle of twist is to be kept at 0.45� by adjusting the
torque T, what is the maximum permissible outer radius
(r2)max?

3.2-5 Solve the preceding problem if the length L �

1420 mm, the inner radius r1 � 32 mm, the angle of twist
is 0.5�, and the allowable shear strain is 0.0004 rad.

Circular Bars and Tubes

3.3-1 A prospector uses a hand-powered winch (see  figure)
to raise a bucket of ore in his mine shaft. The axle of the
winch is a steel rod of diameter d � 15 mm. Also, the dis-
tance from the center of the axle to the center of the lifting
rope is b � 100 mm.

(a) If the weight of the loaded bucket is W � 400 N,
what is the maximum shear stress in the axle due to
 torsion?

(b) If the maximum bucket load is 510 N and the
allowable shear stress in the axle is 65 MPa, what is the
minimum permissible axle diameter?

338 Chapter 3  Torsion

L

d
T T

PROBS. 3.2-1 and 3.2-2

L

T

r1

r2

T

PROBS. 3.2-3, 3.2-4, and 3.2-5

b

d

P

W

W

PROB. 3.3-1

3.2-2 A plastic bar of diameter d � 56 mm is to be twisted
by torques T (see figure) until the angle of rotation
between the ends of the bar is 4.0�.

(a) If the allowable shear strain in the plastic is 0.012 rad,
what is the minimum permissible length of the bar?

(b) If the length of the bar is 200 mm, what is the max-
imum permissible diameter of the bar?

3.2-3 A circular aluminum tube subjected to pure torsion
by torques T (see figure) has an outer radius r2 equal to
1.5 times the inner radius r1.

(a) If the maximum shear strain in the tube is meas-
ured as 400 � 10�6 rad, what is the shear strain γ1 at the
inner surface?

(b) If the maximum allowable rate of twist is 
0.125 degrees per meter and the maximum shear strain is to
be kept at 400 � 10�6 rad by adjusting the torque T, what
is the minimum required outer radius (r2)min?

3.3-2 When drilling a hole in a table leg, a furniture maker
uses a hand-operated drill (see figure) with a bit of dia-
meter d � 4.0 mm.
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(a) If the resisting torque supplied by the table leg is
equal to 0.3 N�m, what is the maximum shear stress in the
drill bit?

(b) If the allowable shear stress in the drill bit is  32 MPa,
what is the maximum resisting torque before the drill  
binds up?

(c) If the shear modulus of elasticity of the steel is 
G � 75 GPa, what is the rate of twist of the drill bit
(degrees per meter)?

3.3-4 An aluminum bar of solid circular cross section is
twisted by torques T acting at the ends (see figure). The
dimensions and shear modulus of elasticity are as follows:
L � 1.4 m, d � 32 mm, and G � 28 GPa.

(a) Determine the torsional stiffness of the bar.
(b) If the angle of twist of the bar is 5�, what is the

maximum shear stress? What is the maximum shear strain
(in radians)?

(c) If a hole of diameter d/2 is drilled longitudinally
through the bar, what is the ratio of the torsional stiff-
nesses of the hollow and solid bars? What is the ratio of
their maximum shear stresses if both are acted on by the
same torque?

(d) If the hole diameter remains at d/2, what new out-
side diameter d2 will result in equal stiffnesses of the hol-
low and solid bars?

d

PROB. 3.3-2

L

d
T T

PROB. 3.3-4

d = 12 mm
TT

L

PROB. 3.3-5

225 mm

d = 12 mm

P

A

P = 100 N

225 mm

PROB. 3.3-3

3.3-3 While removing a wheel to change a tire, a driver
applies forces P � 100 N at the ends of two of the arms of
a lug wrench (see figure). The wrench is made of steel with
shear modulus of elasticity G � 78 GPa. Each arm of the
wrench is 255 mm long and has a solid circular cross sec-
tion of diameter d � 12 mm.

(a) Determine the maximum shear stress in the arm
that is turning the lug nut (arm A).

(b) Determine the angle of twist (in degrees) of this
same arm.

3.3-5 A high-strength steel drill rod used for boring a hole
in the earth has a diameter of 12 mm (see figure).The
allowable shear stress in the steel is 300 MPa and the shear
modulus of elasticity is 80 GPa.

(a) What is the minimum required length of the rod
so that one end of the rod can be twisted 30� with
respect to the other end without exceeding the allowable
stress?

(b) If the shear strain in part (a) is limited to 
3.2 � 10�3, what is the minimum required length of the
drill rod?

339Problems Chapter 3
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Chapter 3  Torsion

(a) Assuming that the shear modulus of elasticity is 
G � 80 GPa, determine the maximum torque Tmax that
can be applied to the shaft.

(b) Repeat part (a) if the shaft is now hollow with an
inner diameter of 5d/8. Compare Tmax values to corre-
sponding values from part (a)

340

3.3-6 The steel shaft of a socket wrench has a diameter of
8.0 mm. and a length of 200 mm (see figure).

If the allowable stress in shear is 60 MPa, what is the
maximum permissible torque Tmax that may be exerted
with the wrench?

Through what angle φ (in degrees) will the shaft twist
under the action of the maximum torque? (Assume 
G � 78 GPa and disregard any bending of the shaft.)

L = 200 mm

d = 8.0 mm

T

PROB. 3.3-6

L

d
T T

PROB. 3.3-8

d1
A

P1

P1

B

D

P2

P2

P3
135°

135°

90°

d2

CP3

PROB. 3.3-9

45 mm

28 mm

0.75 m

T T

PROB. 3.3-7

3.3-7 A circular tube of aluminum is subjected to torsion by
torques T applied at the ends (see figure). The bar is 0.75 m
long, and the inside and outside diameters are 28 mm and
45 mm, respectively. It is determined by measurement that
the angle of twist is 4� when the torque is 700 N m.

(a) Calculate the maximum shear stress τmax in the
tube, the shear modulus of elasticity G, and the maximum
shear strain γmax (in radians).

(b) If the maximum shear strain in the tube is limited to
2.2 � 10�3 and the inside diameter is increased to 35 mm,
what is the maximum permissible torque?

#

3.3-8 A propeller shaft for a small yacht is made of a
solid steel bar 104 mm in diameter. The allowable stress in
shear is 48 MPa, and the allowable rate of twist is 2.0� in
3.5 meters.

3.3-9 Three identical circular disks A, B, and C are welded
to the ends of three identical solid circular bars (see
 figure). The bars lie in a common plane and the disks lie in
planes perpendicular to the axes of the bars. The bars are
welded at their intersection D to form a rigid connection.
Each bar has diameter d1 � 10 mm and each disk has dia -
meter d2 � 75 mm.

Forces P1, P2, and P3 act on disks A, B, and C,
respectively, thus subjecting the bars to torsion. If 
P1 � 100 N, what is the maximum shear stress τmax in any
of the three bars?
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Problems Chapter 3

3.3-10 The steel axle of a large winch on an ocean liner is
subjected to a torque of 1.65 kN�m (see figure).

(a) What is the minimum required diameter dmin if the
allowable shear stress is 48 MPa and the allowable rate of
twist is 0.75�/m? (Assume that the shear modulus of elas-
ticity is 80 GPa.)

(b) Repeat part (a) if the shaft is now hollow with an
inner diameter of 5d/8. Compare dmin values to correspon-
ding values from part (a).

341

3.3-12 Solve the preceding problem if the shaft has outer
diameter d2 � 150 mm and inner diameter d1 � 100 mm.
Also, the steel has shear modulus of elasticity G � 75 GPa
and the applied torque is 16 kN�m.

3.3-13 A vertical pole of solid, circular cross section is
twisted by horizontal forces P � 12 kN acting at the ends
of a rigid horizontal arm AB (see figure part a). The dis-
tance from the outside of the pole to the line of action of
each force is c � 212 mm (see figure part b) and the pole
height is L � 425 mm.

(a) If the allowable shear stress in the pole is 32 MPa,
what is the minimum required diameter dmin of the pole?

(b) Find the torsional stiffness of the pole 
(kN m/rad). Assume that G � 28 GPa.

(c) If two translational springs, each with stiffness 
k � 2700 kN/m, are added at 2c/5 from A and B (see fig-
ure part c), repeat part (a) to find dmin. (Hint: Consider the
pole and pair of springs as “springs in parallel.” )

#

T

T
d

PROB. 3.3-10

d

L = 425 mm

(a)

(b)

(c)

c
A

P

B

P
c

c cd P

P

A B

c

3c/5 3c/5

cd P

P k k

A B

PROBS. 3.3-13 and 3.3-14

d1

d2

d2

PROBS. 3.3-11 and 3.3-12

3.3-11 A hollow steel shaft used in a construction auger
has outer diameter d2 � 175 mm and inner diameter 
d1 � 125 mm (see figure). The steel has shear modulus of
elasticity G � 80 GPa.

For an applied torque of 20 kN m, determine the
following quantities:

(a) shear stress τ2 at the outer surface of the shaft,
(b) shear stress τ1 at the inner surface, and
(c) rate of twist θ (degrees per unit of length).
Also, draw a diagram showing how the shear

stresses vary in magnitude along a radial line in the cross
section.

#
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Chapter 3  Torsion

3.3-17 A circular tube of inner radius r1 and outer radius
r2 is subjected to a torque produced by forces P � 4000 N
(see figure part a). The forces have their lines of action at
a distance b � 140 mm from the outside of the tube.

(a) If the allowable shear stress in the tube is 43 MPa
and the inner radius r1 � 30 mm, what is the minimum per-
missible outer radius r2?

(b) If a torsional spring of stiffness kR � 50 kN m/rad
is added at the end of the tube (see figure part b), what is the
maximum value of forces P if the allowable shear stress is not
to be exceeded? Assume that the tube has a length of L �

450 mm, outer radius of r2 � 37 mm, and shear modulus 
G � 74 GPa. (Hint: Consider the tube and torsional spring as
“springs in parallel.”)

#

342

3.3-14 A vertical pole of solid, circular cross section is twisted
by horizontal forces P � 5 kN acting at the ends of a rigid
horizontal arm AB (see figure part a). The distance from
the outside of the pole to the line of action of each force is c �

125 mm (see figure part b) and the pole height L � 350 mm.
(a) If the allowable shear stress in the pole is 30 MPa,

what is the minimum required diameter dmin of the pole?
(b) What is the torsional stiffness of the pole 

(kN m/rad)?
(c) If two translational springs, each with stiffness 

k � 2550 kN/m, are added at 2c/5 from A and B (see  figure
part c), repeat part (a) to find dmin. (Hint: Consider the
pole and pair of springs as “springs in parallel.”)

3.3-15 A solid brass bar of diameter d � 30 mm is sub-
jected to torques T1, as shown in part a of the figure. The
allowable shear stress in the brass is 80 MPa.

(a) What is the maximum permissible value of the
torques T1?

(b) If a hole of diameter 15 mm is drilled longitudi-
nally through the bar, as shown in part b of the figure,
what is the maximum permissible value of the torques T2?

(c) What is the percent decrease in torque and the per-
cent decrease in weight due to the hole?

#

T2

d

T1
d

(a)

(b)

T2

T1

PROB. 3.3-15

P

r1

r2

2r2

P

P

P
b b

P

kR

P

(c)(a)

(b)

r1

r2

(c)

PROB. 3.3-17

d2

d1 d

PROB. 3.3-16

3.3-16 A hollow aluminum tube used in a roof structure
has an outside diameter d2 � 104 mm and an inside
diameter d1 � 82 mm (see figure). The tube is 2.75 m
long, and the aluminum has shear modulus G � 28 GPa.

(a) If the tube is twisted in pure torsion by torques
acting at the ends, what is the angle of twist (in degrees)
when the maximum shear stress is 48 MPa?

(b) What diameter d is required for a solid shaft (see
figure) to resist the same torque with the same maximum
stress?

(c) What is the ratio of the weight of the hollow tube
to the weight of the solid shaft?
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Problems Chapter 3

Nonuniform Torsion

3.4-1 A stepped shaft ABC consisting of two solid circular
segments is subjected to torques T1 and T2 acting in oppo-
site directions, as shown in the figure. The larger segment
of the shaft has a diameter of d1 � 58 mm and length 
L1 � 760 mm; the smaller segment has a diameter of 
d2 � 45 mm and length of L2 � 510 mm. The material is
steel with shear modulus G � 76 GPa, and the torques are
T1 � 2300 N m and T2 � 900 N m.

(a) Calculate the maximum shear stress τmax in the
shaft and the angle of twist φc (in degrees) at end C.

(b) If the maximum shear stress in BC must be the
same as that in AB, what is the required diameter of seg-
ment BC? What is the resulting twist at end C?

##

343

3.4-3 A stepped shaft ABCD consisting of solid circular
segments is subjected to three torques, as shown in the
 figure. The torques have magnitudes of 3000 N m,
2000 N m, and 800 N m. The length of each segment is
0.5 mm and the diameters of the segments are 80 mm,
60 mm, and 40 mm. The material is steel with shear mod-
ulus of elasticity G � 80 GPa.

(a) Calculate the maximum shear stress τmax in the
shaft and the angle of twist φD (in degrees) at end D.

(b) If each segment must have the same shear stress,
find the required diameter of each segment in part (a) so
that all three segments have shear stress τmax from part (a).
What is the resulting angle of twist at D?

##

#

L1

d1

T1
T2

L2

B C

d2

A

PROB. 3.4-1

Tube

Tube

A
T

Fixed
plate

End
plate Bar

Bar

d1

d2

d3

PROB. 3.4-2

0.5 m 0.5 m 0.5 m

A B C D

60 mm

3000 N·m 2000 N·m 800 N·m
80 mm 40 mm

PROB. 3.4-3

L1 L2

T

A B C

d1 d2
T

PROB. 3.4-4

3.4-2 A circular tube of outer diameter d3 � 70 mm and
inner diameter d2 � 60 mm is welded at the right-hand end
to a fixed plate and at the left-hand end to a rigid end plate
(see figure). A solid, circular bar with a diameter of 
d1 � 40 mm is inside of, and concentric with, the tube. The
bar passes through a hole in the fixed plate and is welded
to the rigid end plate.

The bar is 1.0 m long and the tube is half as long as
the bar. A torque T � 1000 N�m acts at end A of the bar.
Also, both the bar and tube are made of an aluminum
alloy with shear modulus of elasticity G � 27 GPa.

(a) Determine the maximum shear stresses in both the
bar and tube.

(b) Determine the angle of twist (in degrees) at end A
of the bar.

3.4-4 A solid, circular bar ABC consists of two segments,
as shown in the figure. One segment has a diameter of 
d1 � 56 mm and length of L1 � 1.45 m; the other segment
has a diameter of d2 � 48 mm and length of L2 � 1.2 m.

What is the allowable torque Tallow if the shear stress is
not to exceed 30 MPa and the angle of twist between the
ends of the bar is not to exceed 1.25�? (Assume G � 80 GPa.)

3.4-5 A hollow tube ABCDE constructed of monel metal is
subjected to five torques acting in the directions shown in the
figure. The magnitudes of the torques are T1 � 100 N m,
T2 � T4 � 50 N m, and T3 � T5 � 80 N m. The tube
has an outside diameter of d2 � 25 mm. The allowable
shear stress is 80 MPa and the allowable rate of twist 
is 6�/m.

Determine the maximum permissible inside diameter
d1 of the tube.

##

#

A B C D E

T1 =
100 N·m

T2 =
50 N·m

T3 =
80 N·m

T4 =
50 N·m

T5 =
80 N·m

d2 = 25 mm

PROB. 3.4-5

77742_03_ch03_p262-363.qxd:77742_03_ch03_p262-363.qxd  3/2/12  3:32 PM  Page 343

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 3  Torsion

3.4-8 A tapered bar AB of solid circular cross section is
twisted by torques T (see figure). The diameter of the bar
varies linearly from dA at the left-hand end to dB at the
right-hand end.

(a) Confirm that the angle of twist of the tapered bar is

(b) For what ratio dB /dA will the angle of twist of the
tapered bar be one-half the angle of twist of a prismatic
bar of diameter dA? (The prismatic bar is made of the same
material, has the same length, and is subjected to the same
torque as the tapered bar.)

φ �
32TL

3πG(dB � dA)
a 1

dA
3 �

1
dB

3 b

344

3.4-6 A shaft of solid, circular cross section consisting of
two segments is shown in the first part of the figure. The
left-hand segment has a diameter of 80 mm and length of
1.2 m; the right-hand segment has a diameter of 60 mm
and length of 0.9 m.

Shown in the second part of the figure is a hollow
shaft made of the same material and having the same
length. The thickness t of the hollow shaft is d/10, where d
is the outer diameter. Both shafts are subjected to the same
torque.

(a) If the hollow shaft is to have the same torsional
stiffness as the solid shaft, what should be its outer
diameter d?

(b) If torque T is applied at either end of both shafts,
and the hollow shaft is to have the same maximum shear
stress as the solid shaft, what should be its outer diamteter d?

t = d—
10

2.1 m

d

1.2 m 0.9 m

60 mm80 mm

PROB. 3.4-6

T T
A

B

L

dBdA

PROBS. 3.4-8, 3.4-9, and 3.4-10

C

D

A

B

900 N·m

2100 N·m

450 N·m

750 N·m

PROB. 3.4-7

3.4-7 Four gears are attached to a circular shaft and trans-
mit the torques shown in the figure. The allowable shear
stress in the shaft is 70 MPa.

(a) What is the required diameter d of the shaft if it
has a solid cross section?

(b) What is the required outside diameter d if the shaft
is hollow with an inside diameter of 40 mm?

3.4-9 A tapered bar AB of solid circular cross section is
twisted by torques T � 2035 N m (see figure). The diam-
eter of the bar varies linearly from dA at the left-hand end
to dB at the right-hand end. The bar has length 
L � 2.4 m and is made of an aluminum alloy having shear
modulus of elasticity G � 276 Pa. The allowable shear
stress in the bar is 52 MPa and the allowable angle of twist
is 3.0�.

If the diameter at end B is 1.5 times the diameter at
end A, what is the minimum required diameter dA at
end A? [Hint: Use the angle of twist expression from
Prob. 3.4-8(a)].

3.4-10 The bar shown in the figure is tapered linearly
from end A to end B and has a solid circular cross section.
The diameter at the smaller end of the bar is dA � 25 mm
and the length is L � 300 mm. The bar is made of steel
with shear modulus of elasticity G � 82 GPa.

If the torque T � 180 N�m and the allowable angle of
twist is 0.3�, what is the minimum allowable diameter dB at
the larger end of the bar? [Hint: Use the angle of twist
expression from Prob. 3.4-8(a)]

3.4-11 The nonprismatic cantilever circular bar shown
has an internal cylindrical hole from 0 to x, so the net
polar moment of inertia of the cross section for segment 1

#
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Problems Chapter 3

is (7/8)Ip. Torque T is applied at x and torque T/2 is
applied at x � L. Assume that G is constant.

(a) Find reaction moment R1.
(b) Find internal torsional moments Ti in segments 1

and 2.
(c) Find x required to obtain twist at joint 3 of 

φ3 � TL/GIp.
(d) What is the rotation at joint 2, φ2?
(e) Draw the torsional moment (TMD: T(x), 0 
 x 
 L)

and displacement (TDD: φ (x), 0 
 x 
 L) diagrams.

345

3.4-13 A uniformly tapered aluminum-alloy tube AB of
circular cross section and length L is shown in the figure.
The outside diameters at the ends are dA and dB � 2dA. 
A hollow section of length L/2 and constant thickness 
t � dA/10 is cast into the tube and extends from B halfway
toward A.

(a) Find the angle of twist φ of the tube when it is sub-
jected to torques T acting at the ends. Use numerical val-
ues as follows: dA � 65 mm, L � 1.2 m, G � 27 GPa, and
T � 4.5 kN m.

(b) Repeat part (a) if the hollow section has constant
diameter dA (see figure part b).

#

7
8
— T

2
—

x L – x

Segment 1

x

Segment 2

1 2 3

0

0

0

0

TMD

TDD

T
R1

Ip
Ip

PROB. 3.4-11

T T
A

B

L

t

dB = 2dA

dA

t

PROB. 3.4-12

3.4-12 A uniformly tapered tube AB of hollow circular
cross section is shown in the figure. The tube has constant
wall thickness t and length L. The average diameters at the
ends are dA and dB � 2dA. The polar moment of inertia
may be represented by the approximate formula 
IP � πd3t/4 [see Eq. (3-21)].

Derive a formula for the angle of twist φ of the tube
when it is subjected to torques T acting at the ends.

3.4-14 For the thin nonprismatic steel pipe of constant
thickness t and variable diameter d shown with applied
torques at joints 2 and 3, determine the following.

(a) Find reaction moment R1.
(b) Find an expression for twist rotation φ3 at joint 3.

Assume that G is constant.
(c) Draw the torsional moment diagram (TMD: T(x),

0 
 x 
 L).

T

(a)

(b)

t constant
L
2
—

T T
A B

L dB

dB – 2t

L
2
—

L dB

dA

dA

dA

T
A B

PROB. 3.4-13

x

d
t t

d

R1
T, f3

L
2
— L

2
—

0 TMD

1

2d

32

T/2

PROB. 3.4-14
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Chapter 3  Torsion

3.4-16 A prismatic bar AB of length L and solid circular
cross section (diameter d) is loaded by a distributed torque
of constant intensity t per unit distance (see figure).

(a) Determine the maximum shear stress τmax in the bar.
(b) Determine the angle of twist φ between the ends of

the bar.

346

3.4-15 A mountain-bike rider going uphill applies torque
T � Fd (F � 65 N, d � 100 mm) to the end of the handlebars
ABCD (by pulling on the handlebar extenders DE). Consider
the right half of the handlebar assembly only (assume the
bars are fixed at the fork at A). Segments AB and CD are
prismatic with lengths L1 � 50 mm and L3 � 210 mm, and
with outer diameters and thicknesses d01 � 40 mm, t01 �

3 mm, and d03 � 22 mm, t03 � 2.8 mm, respectively as
shown. Segment BC of length L2 � 38 mm, however, is
tapered, and outer diameter and thickness vary linearly
between dimensions at B and C.

Consider torsion effects only. Assume G � 28 GPa is
constant.

Derive an integral expression for the angle of twist D
of half of the handlebar tube when it is subjected to torque
T � Fd acting at the end. Evaluate D for the given
numerical values.

φ

φ

Handlebar extension

Handlebar
extension

45°

d03, t03

d01, t01

L2L1

A C

B

E

F

D

D

d

T = Fd

L3

PROB. 3.4-15

A

B

t

L

PROB. 3.4-16

A

B

t(x)

L

PROB. 3.4-17

3.4-17 A prismatic bar AB of solid circular cross section
(diameter d) is loaded by a distributed torque (see figure).
The intensity of the torque, that is, the torque per unit dis-
tance, is denoted t(x) and varies linearly from a maximum
value tA at end A to zero at end B. Also, the length of the bar
is L and the shear modulus of elasticity of the material is G.

(a) Determine the maximum shear stress τmax in the bar.
(b) Determine the angle of twist φ between the ends of

the bar.

3.4-18 A nonprismatic bar ABC of solid circular cross
section is loaded by distributed torques (see figure). The
intensity of the torques, that is, the torque per unit dis-
tance, is denoted t(x) and varies linearly from zero at A to
a maximum value T0/L at B. Segment BC has linearly dis-
tributed torque of intensity t(x) � T0/3L of opposite sign
to that applied along AB. Also, the polar moment of iner-
tia of AB is twice that of BC, and the shear modulus of
elasticity of the material is G.

(a) Find reaction torque RA.
(b) Find internal torsional moments T(x) in segments

AB and BC.

(Bontrager Race XXX Lite Flat Handlebar, used Courtesy
of Bontrager)

(© Barry Goodno)
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Problems Chapter 3

(c) Find rotation φC.
(d) Find the maximum shear stress τmax and its loca-

tion along the bar.
(e) Draw the torsional moment diagram (TMD: T(x),

0 
 x 
 L).

347

3.4-20 Two tubes (AB, BC ) of the same material are con-
nected by three pins (pin diameter � dp) just left of B as
shown in the figure. Properties and dimensions for each
tube are given in the figure. Torque 2T is applied at 
x � 2L/5 and uniformly distributed torque intensity 
t0 � 3T/L is applied on tube BC.

(Hint: See Example 3-5 for torsional moment and dis-
placement diagrams.)

(a) Find the maximum value of load variable T (N � m)
based on allowable shear (τa) and bearing (σba) stresses in
the three pins which connect the two tubes at B. Use the
following numerical properties: L � 1.5 m, E � 74 GPa, 
υ � 0.33, dp � 18 mm, τa � 45 MPa, σba � 90 MPa, 
d1 �  85 mm, d2 � 73 mm, and d3 � 60 mm.

(b) What is the maximum shear stress in the tubes for
the applied torque in part (a)?

0 TMD

RA
Fc

A
B C

L
2
—

T0
L
—

T0
3L
—

L
2
—

2Ip
IP

PROB. 3.4-18

Diameter d1

CB

A

x

t0 = 3T/L

d2

2T

2L/5
2L/5
3L/5

d2
d3

dp

PROB. 3.4-20

L

d2d1

d2
T T

PROBS. 3.5-1, 3.5-2, and 3.5-3
t

dA

B

T

T0 = torque
Flexible tube

PROB. 3.4-19

3.4-19 A magnesium-alloy wire of diameter d � 4 mm and
length L rotates inside a flexible tube in order to open or
close a switch from a remote location (see figure).  
A torque T is applied manually (either clockwise or coun-
terclockwise) at end B, thus twisting the wire inside the
tube. At the other end A, the rotation of the wire operates
a handle that opens or closes the switch.

A torque T0 � 0.2 N�m is required to operate the
switch. The torsional stiffness of the tube, combined with
friction between the tube and the wire, induces a
distributed torque of constant intensity t � 0.04 N�m/m
(torque per unit distance) acting along the entire length of
the wire.

(a) If the allowable shear stress in the wire is 
τallow � 30 MPa, what is the longest permissible length Lmax
of the wire?

(b) If the wire has length L � 4.0 m and the shear mod-
ulus of elasticity for the wire is G � 15 GPa, what is the
angle of twist φ (in degrees) between the ends of the wire?

Pure Shear

3.5-1 A hollow aluminum shaft (see figure) has outside
diameter d2 � 100 mm and inside diameter d1 � 50 mm.
When twisted by torques T, the shaft has an angle of twist
per unit distance equal to 2�/m. The shear modulus of elas-
ticity of the aluminum is G � 27.5 GPa.

(a) Determine the maximum tensile stress σmax in the
shaft.

(b) Determine the magnitude of the applied torques T.
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Chapter 3  Torsion

3.5-7 The normal strain in the 45� direction on the surface
of a circular tube (see figure) is 880 � 10�6 when the
torque T � 85 N m. The tube is made of copper alloy
with G � 42 GPa and � 0.35.

(a) If the outside diameter d2 of the tube is 20 mm,
what is the inside diameter d1?

(b) If the allowable normal stress in the tube is 96 MPa,
what is the maximum permissible inside diameter d1?

#

ν
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3.5-2 A hollow steel bar (G � 80 GPa) is twisted by
torques T (see figure). The twisting of the bar produces a
maximum shear strain γmax � 640 � 10�6 rad. The bar has
outside and inside diameters of 150 mm and 120 mm,
respectively.

(a) Determine the maximum tensile strain in the bar.
(b) Determine the maximum tensile stress in the bar.
(c) What is the magnitude of the applied torques T?

3.5-3 A tubular bar with outside diameter d2 � 100 mm is
twisted by torques T � 8.0 kN m (see figure). Under the
action of these torques, the maximum tensile stress in the
bar is found to be 46.8 MPa.

(a) Determine the inside diameter d1 of the bar.
(b) If the bar has length L � 1.2 m and is made of alu-

minum with shear modulus G � 28 GPa, what is the angle
of twist φ (in degrees) between the ends of the bar?

(c) Determine the maximum shear strain γmax (in
radians)?

3.5-4 A solid circular bar of diameter d � 50 mm (see
figure) is twisted in a testing machine until the applied
torque reaches the value T � 500 N�m. At this value of
torque, a strain gage oriented at 45� to the axis of the bar
gives a reading � 339 � 10�6.

What is the shear modulus G of the material?

#

ε

T

T = 500 N·md = 50 mm
Strain gage

45°

PROB. 3.5-4

T
Td2

Strain gage

45°

PROB. 3.5-7

T
T = 0.9 kN·md = 50 mm

PROB. 3.5-9

3.5-5 A steel tube (G � 80 GPa) has an outer diameter
d2 � 40 mm and an inner diameter d1 � 30 mm. When
twisted by a torque T, the tube develops a maximum nor-
mal strain of 170 � 10�6.

What is the magnitude of the applied torque T ?

3.5-6 A solid circular bar of steel (G � 78 GPa) trans-
mits a torque T � 360 N�m. The allowable stresses in ten-
sion, compression, and shear are 90 MPa, 70 MPa, and
40 MPa, respectively. Also, the allowable tensile strain is 
220 � 10�6.

(a) Determine the minimum required diameter d of
the bar.

(b) If the bar diameter d � 40 mm, what is Tmax?

3.5-8 An aluminum tube has inside diameter d1 � 50 mm,
shear modulus of elasticity G � 27 GPa, � 0.33, and
torque T � 4.0 kN�m. The allowable shear stress in the
aluminum is 50 MPa and the allowable normal strain is
900 � 10�6.

(a) Determine the required outside diameter d2.
(b) Re-compute the required outside diameter d2 if

allowable normal stress is 62 MPa and allowable shear
strain is 1.7 � 10�3.

3.5-9 A solid steel bar (G � 81 GPa) of diameter 
d � 50 mm is subjected to torques T � 0.9 kN m acting in
the directions shown in the figure.

(a) Determine the maximum shear, tensile, and com-
pressive stresses in the bar and show these stresses on
sketches of properly oriented stress elements.

(b) Determine the corresponding maximum strains
(shear, tensile, and compressive) in the bar and show these
strains on sketches of the deformed elements.

#

ν

3.5-10 A solid aluminum bar (G � 27 GPa) of diameter 
d � 40 mm is subjected to torques T � 300 N�m acting in the
directions shown in the figure.

(a) Determine the maximum shear, tensile, and com-
pressive stresses in the bar and show these stresses on
sketches of properly oriented stress elements.

(b) Determine the corresponding maximum strains
(shear, tensile, and compressive) in the bar and show these
strains on sketches of the deformed elements.
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Problems Chapter 3

3.5-11 Two circular aluminum pipes of equal length 
L � 610 mm are loaded by torsional moments T (see figure).
Pipe 1 has outside and inside diameters d2 � 76 mm and 
d1 � 64 mm, respectively. Pipe 2 has a constant outer diam-
eter of d2 along its entire length L and an inner diameter of
d1 but has an increased inner diameter of d3 � 67 mm over
the middle third.

Assume that E � 72 GPa, υ � 0.33, and allowable
shear stress τa � 45 MPa.

(a) Find the maximum acceptable torques that can be
applied to Pipe 1; repeat for Pipe 2.

(b) If the maximum twist φ of Pipe 2 cannot exceed
5/4 of that of Pipe 1, what is the maximum acceptable
length of the middle segment? Assume both pipes have
total length L and the same applied torque T.

(c) Find the new value of inner diameter d3 of Pipe 2
if the maximum torque carried by Pipe 2 is to be 7/8 of that
for Pipe 1.

(d) If the maximum normal strain in each pipe is
known to be , what is the applied
torque on each pipe? Also, what is the maximum twist of
each pipe? Use original properties and dimensions.

ε max � 811 � 10�6

349

3.7-2 A motor drives a shaft at 12 Hz and delivers 20 kW
of power (see figure).

(a) If the shaft has a diameter of 30 mm, what is the
maximum shear stress τmax in the shaft?

(b) If the maximum allowable shear stress is 40 MPa,
what is the minimum permissible diameter dmin of the shaft?

d1d2
T T

L

d1d2d3
T T

L/3 L/3

(a)

Pipe 1

Pipe 2

(b)

L/3

PROB. 3.5-11

T
T = 300 N·md = 40 mm

PROB. 3.5-10

d
120 rpm

38 kW

PROB. 3.7-1

d
12 Hz

20 kW

PROB. 3.7-2

350 mm
250 mm

350 mm 500 rpm

Prob. 3.7-3

60 mm
2500 rpm

60 mm

40 mm

PROB. 3.7-4

Transmission of Power

3.7-1 A generator shaft in a small hydroelectric plant
turns at 120 rpm and delivers 38 kW (see figure).

(a) If the diameter of the shaft is d � 75 mm, what is
the maximum shear stress τmax in the shaft?

(b) If the shear stress is limited to 28 MPa, what is the
minimum permissible diameter dmin of the shaft?

3.7-3 The propeller shaft of a large ship has outside diameter
350 mm and inside diameter 250 mm, as shown in the figure.
The shaft is rated for a maximum shear stress of 62 MPa.

(a) If the shaft is turning at 500 rpm, what is the max-
imum horsepower that can be transmitted without exceed-
ing the allowable stress?

(b) If the rotational speed of the shaft is doubled but
the power requirements remain unchanged, what happens
to the shear stress in the shaft?

3.7-4 The drive shaft for a truck (outer diameter 60 mm
and inner diameter 40 mm) is running at 2500 rpm (see
figure).

(a) If the shaft transmits 150 kW, what is the maxi-
mum shear stress in the shaft?

(b) If the allowable shear stress is 30 MPa, what is the
maximum power that can be transmitted?
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Chapter 3  Torsion

3.7-10 The shaft ABC shown in the figure is driven by a
motor that delivers 300 kW at a rotational speed of 32 Hz.
The gears at B and C take out 120 and 180 kW, respec-
tively. The lengths of the two parts of the shaft are 
L1 � 1.5 m and L2 � 0.9 m.

Determine the required diameter d of the shaft if the
allowable shear stress is 50 MPa, the allowable angle of
twist between points A and C is 4.0�, and G � 75 GPa.

Statically Indeterminate Torsional
Members

3.8-1 A solid circular bar ABCD with fixed supports is
acted upon by torques T0 and 2T0 at the locations shown
in the figure.

(a) Obtain a formula for the maximum angle of
twist φmax of the bar. [Hint: Use Eqs. (3-50a and b) of
Example 3-9 to obtain the reactive torques.]

(b) What is φmax if the applied torque T0 at B is
reversed in direction?

350

3.7-5 A hollow circular shaft for use in a pumping station
is being designed with an inside diameter equal to 0.8 times
the outside diameter. The shaft must transmit 300 kW at
800 rpm without exceeding the allowable shear stress of
42 MPa.

Determine the minimum required outside diameter d.

3.7-6 A tubular shaft being designed for use on a con-
struction site must transmit 120 kW at 1.75 Hz. The
inside diameter of the shaft is to be one-half of the out-
side diameter.

If the allowable shear stress in the shaft is 45 MPa,
what is the minimum required outside diameter d?

3.7-7 A propeller shaft of solid circular cross section and
diameter d is spliced by a collar of the same material (see
figure). The collar is securely bonded to both parts of the
shaft.

What should be the minimum outer diameter d1 of the
collar in order that the splice can transmit the same power
as the solid shaft?

dd1

PROB. 3.7-7

A B C D

2T0T0

3L—
10

3L—
10

4L—
10

L

PROB. 3.8-1

A B C D

T0 T0

L

x x

PROB. 3.8-2

C
BA d

L1

Motor

L2

PROBS. 3.7-9 and 3.7-10

3.7-8 What is the maximum power that can be delivered
by a hollow propeller shaft (outside diameter 50 mm,
inside diameter 40 mm, and shear modulus of elasticity 
80 GPa) turning at 600 rpm if the allowable shear stress is
100 MPa and the allowable rate of twist is 3.0�/m?

3.7-9 A motor delivers 200 kW at 1000 rpm to the end of
a shaft (see figure). The gears at B and C take out 90 and
110 kW, respectively.

Determine the required diameter d of the shaft if the
allowable shear stress is 50 MPa and the angle of twist
between the motor and gear C is limited to 1.5�. (Assume
G � 80 GPa, L1 � 1.8 m, and L2 � 1.2 m.)

3.8-2 A solid circular bar ABCD with fixed supports at
ends A and D is acted upon by two equal and oppositely
directed torques T0, as shown in the figure. The torques
are applied at points B and C, each of which is located at
distance x from one end of the bar. (The distance x may
vary from zero to L/2.)

(a) For what distance x will the angle of twist at
points B and C be a maximum?

(b) What is the corresponding angle of twist φmax?
[Hint: Use Eqs. (3-50a and b) of Example 3-9 to obtain the
reactive torques.]
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Problems Chapter 3

3.8-3 A solid circular shaft AB of diameter d is fixed
against rotation at both ends (see figure). A circular disk is
attached to the shaft at the location shown.

What is the largest permissible angle of rotation φmax
of the disk if the allowable shear stress in the shaft is τallow?
[Assume that a � b. Also, use Eqs. (3-50a and b) of
Example 3-9 to obtain the reactive torques.]

351

3.8-6 A stepped shaft ACB having solid circular cross sec-
tions with two different diameters is held against rotation
at the ends (see figure).

(a) If the allowable shear stress in the shaft is 43 MPa,
what is the maximum torque (T0)max that may be applied at
section C? [Hint: Use Eqs. (3-49a and b) of Example 3-9 to
obtain the reactive torques.]

(b) Find (T0)max if the maximum angle of twist is
 limited to 1.85�. Let G � 28 GPa.

dA B

Disk

ba

PROB. 3.8-3

A

19 mm

150 mm 380 mm

38 mm

BC

T0

PROB. 3.8-5

B

T0

A

450 mm

C

225 mm

20 mm 25 mm

PROB. 3.8-6

B

T0

A C
IPA

dA dB
IPB

a

L

PROB. 3.8-7

A

B

C

P

P

200 mm

200 mm

600 mm

400 mm

PROB. 3.8-4

3.8-4 A hollow steel shaft ACB of outside diameter 50 mm
and inside diameter 40 mm is held against rotation at ends
A and B (see figure). Horizontal forces P are applied at
the ends of a vertical arm that is welded to the shaft at
point C.

Determine the allowable value of the forces P if the
maximum permissible shear stress in the shaft is 45 MPa.
[Hint: Use Eqs. (3-50a and b) of Example 3-9 to obtain the
reactive torques.]

3.8-5 A stepped shaft ACB having solid circular cross sec-
tions with two different diameters is held against rotation
at the ends (see figure).

(a) If the allowable shear stress in the shaft is 42 MPa,
what is the maximum torque (T0)max that may be applied at
section C? [Hint: Use Eqs. (3-49a and b) of Example 3-9 to
obtain the reactive torques.]

(b) Find (T0)max if the maximum angle of twist is
 limited to 0.55�. Let G � 73 GPa.

3.8-7 A stepped shaft ACB is held against rotation at ends
A and B and subjected to a torque T0 acting at section C
(see figure). The two segments of the shaft (AC and CB)
have diameters dA and dB , respectively, and polar
moments of inertia IPA and IPB, respectively. The shaft has
length L and segment AC has length a.

(a) For what ratio a/L will the maximum shear
stresses be the same in both segments of the shaft?

(b) For what ratio a/L will the internal torques be the
same in both segments of the shaft? [Hint: Use Eqs. (3-49a
and b) of Example 3-9 to obtain the reactive torques.]
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Chapter 3  Torsion

securely to a rigid plate at end B. The composite bar,
which has a length L � 550 mm, is twisted by a torque 
T � 400 N�m acting on the end plate.

(a) Determine the maximum shear stresses τ1 and τ2 in
the bar and tube, respectively.

(b) Determine the angle of rotation φ (in degrees) of
the end plate, assuming that the shear modulus of the steel
is G � 80 GPa.

(c) Determine the torsional stiffness kT of the com-
posite bar. [Hint: Use Eqs. (3-48a and b) to find the
torques in the bar and tube.]

352

3.8-8 A circular bar AB of length L is fixed against rota-
tion at the ends and loaded by a distributed torque t(x)
that varies linearly in intensity from zero at end A to t0 at
end B (see figure).

(a) Obtain formulas for the fixed-end torques TA
and TB.

(b) Find an expression for the angle of twist φ (x).
What is φ max, and where does it occur along the bar?

A

t(x)
t0

B

L

x

PROB. 3.8-8

A
Tube

T

End
plate

B

Bar

L

d3

d2

d1

PROBS. 3.8-10 and 3.8-11

BA

x

76 mm T0

61 mm 76 mm

635 mm 635 mm

PROB. 3.8-9

3.8-9 A circular bar AB with ends fixed against rotation
has a hole extending for half of its length (see figure). The
outer diameter of the bar is d2 � 76 mm and the diameter
of the hole is d1 � 61 mm. The total length of the bar is 
L � 1270 mm.

(a) At what distance x from the left-hand end of the
bar should a torque T0 be applied so that the reactive
torques at the supports will be equal?

(b) Based on the solution for x in part (a), what is φmax,
and where does it occur? Assume that T0 � 10.0 kN m and
G � 73 GPa.

#

3.8-11 A solid steel bar of diameter d1 � 50 mm is
enclosed by a steel tube of outer diameter d3 � 75 mm and
inner diameter d2 � 65 mm (see figure). Both bar and tube
are held rigidly by a support at end A and joined securely
to a rigid plate at end B. The composite bar, which has
length L � 660 mm, is twisted by a torque T � 2 kN m
acting on the end plate.

(a) Determine the maximum shear stresses τ1 and τ2 in
the bar and tube, respectively.

(b) Determine the angle of rotation φ (in degrees) of
the end plate, assuming that the shear modulus of the steel
is G � 80 GPa.

(c) Determine the torsional stiffness kT of the com-
posite bar. [Hint: Use Eqs. (3-48a and b) to find the
torques in the bar and tube.]

3.8-12 The composite shaft shown in the figure is manu-
factured by shrink-fitting a steel sleeve over a brass core so
that the two parts act as a single solid bar in torsion. The
outer diameters of the two parts are d1 � 40 mm for the
brass core and d2 � 50 mm for the steel sleeve. The shear
moduli of elasticity are Gb � 36 GPa for the brass and 
Gs � 80 GPa for the steel.

(a) Assuming that the allowable shear stresses in  
the brass and steel are τb � 48 MPa and τs � 80 MPa,

#

3.8-10 A solid steel bar of diameter d1 � 25.0 mm is
enclosed by a steel tube of outer diameter d3 � 37.5 mm
and inner diameter d2 � 30.0 mm (see figure). Both bar
and tube are held rigidly by a support at end A and joined
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Problems Chapter 3

respectively, determine the maximum permissible torque
Tmax that may be applied to the shaft. [Hint: Use Eqs. (3-48a
and b) to find the torques.]

(b) If the applied torque T � 2500 kN m, find the
required diameter d2 so that allowable shear stress τs is
reached in the steel.

#

353

(see figure). The outer diameters of the shaft and sleeve
are d1 � 70 mm and d2 � 90 mm, respectively.

(a) Determine the allowable torque T1 that may be
applied to the ends of the shaft if the angle of twist
between the ends is limited to 8.0�.

(b) Determine the allowable torque T2 if the shear
stress in the brass is limited to τb � 70 MPa.

(c) Determine the allowable torque T3 if the shear
stress in the steel is limited to τs � 110 MPa.

(d) What is the maximum allowable torque Tmax if all
three of the preceding conditions must be satisfied?

Steel sleeve
T 

T 
Brass core

d1 d2

PROBS. 3.8-12 and 3.8-13

d2

d1

T

A B C

T

 = 2.0 m

Steel
shaft

Steel
shaft

Brass
sleeve

Brass
sleeve

1.0 m

 = 2.0 m

d2 = 90 mm d1 = 70 mm

L
2

L
2

d2

d1 d1

PROB. 3.8-14

TA

TA

Fixed against
rotation

Fixed against
rotation

(a)

t constant

L
2
—

A

L

Fixed against
rotation

Fixed against
rotation

dB

d(x)

dB

dA

(b)

L
2
—

L

dA

TB

TB
A

dA

T0

B

B

T0

PROB. 3.8-15

3.8-13 The composite shaft shown in the figure is manufac-
tured by shrink-fitting a steel sleeve over a brass core so that
the two parts act as a single solid bar in torsion. The outer
diameters of the two parts are d1 � 41 mm for the brass core
and d2 � 51 mm for the steel sleeve. The shear moduli of
elasticity are Gb � 37 GPa for the brass and Gs � 83 GPa for
the steel.

(a) Assuming that the allowable shear stresses in the
brass and steel are τb � 31 MPa and τs � 52 MPa, respec-
tively, determine the maximum permissible torque Tmax
that may be applied to the shaft. [Hint: Use Eqs. (3-48a
and b) to find the torques.]

(b) If the applied torque T � 1250 N m, find the
required diameter d2 so that allowable shear stress τs is
reached in the steel.

3.8-14 A steel shaft (Gs � 80 GPa) of total length 
L � 3.0 m is encased for one-third of its length by a brass
sleeve (Gb � 40 GPa) that is securely bonded to the steel

#

3.8-15 A uniformly tapered aluminum-alloy tube AB of
circular cross section and length L is fixed against rotation
at A and B, as shown in the figure. The outside diameters
at the ends are dA and dB � 2dA. A hollow section of length
L/2 and constant thickness t � dA/10 is cast into the tube
and extends from B halfway toward A. Torque T0 is
applied at L/2.

(a) Find the reactive torques at the supports, TA and
TB. Use numerical values as follows: dA � 64 mm, 
L � 1.2 m, G � 27 GPa, T0 � 4.5 kN m.

(b) Repeat part (a) if the hollow section has constant
diameter dA.

#
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Chapter 3  Torsion

Strain Energy in Torsion

3.9-1 A solid circular bar of steel (G � 80 GPa) with
length L � 1.5 m and diameter d � 75 mm is subjected
to pure torsion by torques T acting at the ends (see
 figure).

(a) Calculate the amount of strain energy U stored in
the bar when the maximum shear stress is 45 MPa.

(b) From the strain energy, calculate the angle of twist
φ (in degrees).

354

3.8-16 Two pipes (L1 � 2.5 m and L2 � 1.5 m) are joined
at B by flange plates (thickness tf � 14 mm) with five bolts
(dbf � 13 mm) arranged in a circular pattern (see figure).
Also, each pipe segment is attached to a wall (at A and C,
see figure) using a base plate (tb � 15 mm) and four bolts
(dbb � 16 mm). All bolts are tightened until just snug.
Assume E1 � 110 GPa, E2 � 73 GPa, 1 � 0.33, and 

2 � 0.25. Neglect the self-weight of the pipes, and assume
the pipes are in a stress-free state initially. The cross-sectional
areas of the pipes are A1 � 1500 mm2 and A2 � (3/5)A1. The
outer diameter of Pipe 1 is 60 mm. The outer diameter of
Pipe 2 is equal to the inner diameter of Pipe 1. The bolt
radius r � 64 mm for both base and flange plates.

(a) If torque T is applied at x � L1, find an expression
for reactive torques R1 and R2 in terms of T.

(b) Find the maximum load variable T (i.e., Tmax) if
allowable torsional stress in the two pipes is τallow � 65 MPa.

(c) Draw torsional moment (TMD) and torsional
displacement (TDD) diagrams. Label all key ordinates
What is φmax?

(d) Find Tmax if allowable shear and bearing stresses
in the base plate and flange bolts cannot be exceeded.
Assume allowable stresses in shear and bearing for all
bolts are τallow � 45 MPa and σallow � 90 MPa.

(e) Remove torque T at x � L1. Now assume the
flange-plate bolt holes are misaligned by some angle β (see
figure). Find the expressions for reactive torques R1 and
R2 if the pipes are twisted to align the flange-plate bolt
holes, bolts are then inserted, and the pipes released.

(f) What is the maximum permissible misalignment
angle βmax if allowable stresses in shear and bearing for all
bolts (from part (d) above) are not to be exceeded?

ν
ν

Base plate
(4 bolts)

Bolt group radius
for both base
plates and
flange plates

Bolt hole in flange
plate 2

Bolt hole in flange
plate 1

Cross section at
flange plate

Flange plate 2A

B C
E1

x

E2

L2L1

dbb
dbf

T

r β

PROB. 3.8-16

L

d
T T

PROBS. 3.9-1 and 3.9-2

d2 d1

TT

L—
2

L—
2

PROBS. 3.9-3 and 3.9-4

3.9-2 A solid circular bar of copper (G � 45 GPa) with
length L � 0.75 m and diameter d � 40 mm is subjected to
pure torsion by torques T acting at the ends (see figure).

(a) Calculate the amount of strain energy U stored in
the bar when the maximum shear stress is 32 MPa.

(b) From the strain energy, calculate the angle of twist
φ (in degrees).

3.9-3 A stepped shaft of solid circular cross sections
(see figure) has length L � 2.6 m, diameter d2 � 50 mm,
and diameter d1 � 40 mm. The material is brass with 
G � 81 GPa.

Determine the strain energy U of the shaft if the angle
of twist is 3.0�.

3.9-4 A stepped shaft of solid circular cross sections
(see figure) has length L � 0.80 m, diameter d2 � 40 mm,
and diameter d1 � 30 mm. The material is steel with 
G � 80 GPa.

Determine the strain energy U of the shaft if the angle
of twist is 1.0�.

3.9-5 A cantilever bar of circular cross section and length L
is fixed at one end and free at the other (see figure). The bar
is loaded by a torque T at the free end and by a distributed
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Problems Chapter 3

torque of constant intensity t per unit distance along the
length of the bar.

(a) What is the strain energy U1 of the bar when the
load T acts alone?

(b) What is the strain energy U2 when the load t acts
alone?

(c) What is the strain energy U3 when both loads act
simultaneously?

355

3.9-8 Derive a formula for the strain energy U of the can-
tilever bar shown in the figure.

The bar has circular cross sections and length L. It is
subjected to a distributed torque of intensity t per unit
distance. The intensity varies linearly from t � 0 at the free
end to a maximum value t � t0 at the support.L T

t

PROB. 3.9-5

T0

LA

LB

A

C

IpA

IpB
B

PROB. 3.9-7

L

t

t0

PROB. 3.9-8

L

t
t

TT
A

dA dB

B

PROB. 3.9-9

2T0 T0

A B

DC

L—
4

L—
4

L—
2

PROB. 3.9-6

3.9-6 Obtain a formula for the strain energy U of the stat-
ically indeterminate circular bar shown in the figure. The
bar has fixed supports at ends A and B and is loaded by
torques 2T0 and T0 at points C and D, respectively.

[Hint: Use Eqs. (3-50a and b) of Example 3-9,
Section 3.8 to obtain the reactive torques.]

3.9-7 A statically indeterminate stepped shaft ACB is
fixed at ends A and B and loaded by a torque T0 at point
C (see figure). The two segments of the bar are made of the
same material, have lengths LA and LB, and have polar
moments of inertia IPA and IPB.

Determine the angle of rotation φ of the cross section
at C by using strain energy.

[Hint: Use Eq. (3-55b) to determine the strain energy
U in terms of the angle φ. Then equate the strain energy to
the work done by the torque T0. Compare your result with
Eq. (3-52) of Example 3-9, Section 3.8.]

3.9-9 A thin-walled hollow tube AB of conical shape has
constant thickness t and average diameters dA and dB at
the ends (see figure).

(a) Determine the strain energy U of the tube when it
is subjected to pure torsion by torques T.

(b) Determine the angle of twist φ of the tube.
(Note: Use the approximate formula IP � πd3t/4 for a

thin circular ring; see Case 22 of Appendix D.)
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Chapter 3  Torsion

Thin-Walled Tubes

3.11-1 A hollow circular tube having an inside diameter
of 230 mm and a wall thickness of 30 mm (see figure) is
subjected to a torque T � 136 kN m.

Determine the maximum shear stress in the tube
using (a) the approximate theory of thin-walled tubes, and
(b) the exact torsion theory. Does the approximate theory
give conservative or nonconservative results?

#

356

3.9-10 A hollow circular tube A fits over the end of a solid
circular bar B, as shown in the figure. The far ends of both
bars are fixed. Initially, a hole through bar B makes an
angle β with a line through two holes in tube A. Then bar
B is twisted until the holes are aligned, and a pin is placed
through the holes.

When bar B is released and the system returns to
equilibrium, what is the total strain energy U of the two
bars? (Let IPA and IPB represent the polar moments of
inertia of bars A and B, respectively. The length L and
shear modulus of elasticity G are the same for both bars.)

L

Bar B

Bar B

Tube A

Tube A

L

IPA IPB

b

PROB. 3.9-10

n (rpm)

C

B
d

A

PROB. 3.9-11

230 mm

30 mm

PROB. 3.11-1

t

2d

t

dd

PROB. 3.11-2

t

b

h

PROBS. 3.11-3 and 3.11-4

3.9-11 A heavy flywheel rotating at n revolutions per minute
is rigidly attached to the end of a shaft of diameter d (see
 figure). If the bearing at A suddenly freezes, what will be the
maximum angle of twist φ of the shaft? What is the corre-
sponding maximum shear stress in the shaft?

(Let L � length of the shaft, G � shear modulus of
elasticity, and Im � mass moment of inertia of the flywheel
about the axis of the shaft. Also, disregard friction in the
bearings at B and C and disregard the mass of the shaft.)

(Hint: Equate the kinetic energy of the rotating
flywheel to the strain energy of the shaft.)

3.11-2 A solid circular bar having diameter d is to be
replaced by a rectangular tube having cross-sectional
dimensions d � 2d to the median line of the cross section
(see figure).

Determine the required thickness tmin of the tube so
that the maximum shear stress in the tube will not exceed
the maximum shear stress in the solid bar.

3.11-3 A thin-walled aluminum tube of rectangular cross
section (see figure) has a centerline dimensions b � 50 mm
and h � 20 mm. The wall thickness t is constant and equal
to 3 mm.

(a) Determine the shear stress in the tube due to a
torque T � 90 N m.

(b) Determine the angle of twist (in degrees) if the
length L of the tube is 0.25 m and the shear modulus G is
26 GPa.

#
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Problems Chapter 3

3.11-4 A thin-walled steel tube of rectangular cross sec-
tion (see figure) has centerline dimensions b � 150 mm and
h � 100 mm. The wall thickness t is constant and equal to
6.0 mm.

(a) Determine the shear stress in the tube due to a
torque T � 1650 N�m.

(b) Determine the angle of twist (in degrees) if the
length L of the tube is 1.2 m and the shear modulus G is
75 GPa.

3.11-5 A thin-walled circular tube and a solid circular bar
of the same material (see figure) are subjected to torsion.
The tube and bar have the same cross-sectional area and
the same length.

What is the ratio of the strain energy U1 in the tube to
the strain energy U2 in the solid bar if the maximum shear
stresses are the same in both cases? (For the tube, use the
approximate theory for thin-walled bars.)

357

3.11-8 A torque T is applied to a thin-walled tube hav-
ing a cross section in the shape of a regular hexagon with
constant wall thickness t and side length b (see figure).
Obtain formulas for the shear stress τ and the rate of
twist θ.

Tube (1)
Bar (2)

PROB. 3.11-5

t

2a

2b

PROB. 3.11-7

b = 100 mm

t = 8 mm
r = 50 mm r = 50 mm

PROB. 3.11-6

3.11-6 Calculate the shear stress τ and the angle of twist φ
(in degrees) for a steel tube (G � 76 GPa) having the cross
section shown in the figure. The tube has length L � 1.5 m
and is subjected to a torque T � 10 kN�m.

3.11-7 A thin-walled steel tube having an elliptical cross
section with constant thickness t (see figure) is subjected to
a torque T � 5.5 kN m.

Determine the shear stress τ and the rate of twist θ (in
degrees per meter) if G � 83 GPa, t � 5 mm, a � 75 mm,
and b � 50 mm. (Note: See Appendix D, Case 16, for the
properties of an ellipse.)

#

t

b

PROB. 3.11-8

r

C

t

PROB. 3.11-9

3.11-9 Compare the angle of twist φ1 for a thin-walled
circular tube (see figure) calculated from the approxi-
mate theory for thin-walled bars with the angle of twist
φ2 calculated from the exact theory of torsion for circular
bars.

(a) Express the ratio φ1/φ2 in terms of the nondimen-
sional ratio β � r/t.

(b) Calculate the ratio of angles of twist for β � 5, 10,
and 20. What conclusion about the accuracy of the
approximate theory do you draw from these results?
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Chapter 3  Torsion

3.11-13 A long, thin-walled tapered tube AB of circular
cross section (see figure) is subjected to a torque T. The
tube has length L and constant wall thickness t. The dia-
meter to the median lines of the cross sections at the ends
A and B are dA and dB, respectively.

Derive the following formula for the angle of twist of
the tube:

(Hint: If the angle of taper is small, we may obtain
approximate results by applying the formulas for a thin-
walled prismatic tube to a differential element of the
tapered tube and then integrating along the axis of the
tube.)

φ �
2TL
πGt

adA � dB

dA
2dB

2 b
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3.11-10 A thin-walled rectangular tube has uniform
thickness t and dimensions a � b to the median line of the
cross section (see figure).

How does the shear stress in the tube vary with the
ratio β � a/b if the total length Lm of the median line of the
cross section and the torque T remain constant?

From your results, show that the shear stress is
smallest when the tube is square (β � 1).

t

a

b

PROB. 3.11-10

t

100 mm

PROB. 3.11-12

tt

L

T T
A B

dA dB

PROB. 3.11-13

t

50 mm

50 mm

PROB. 3.11-11

3.11-11 A tubular aluminum bar (G � 28 GPa) of
square cross section (see figure) with outer dimensions 
50 mm � 50 mm must resist a torque T � 300 N m.

Calculate the minimum required wall thickness tmin if
the allowable shear stress is 20 MPa and the allowable rate
of twist is 0.025 rad/m.

#

3.11-12 A thin tubular shaft of circular cross section (see
figure) with inside diameter 100 mm is subjected to a
torque of 5000 N�m.

If the allowable shear stress is 42 MPa, determine the
required wall thickness t by using (a) the approximate
theory for a thin-walled tube, and (b) the exact torsion
theory for a circular bar.

Stress Concentrations in Torsion
The problems for Section 3.12 are to be solved by
considering the stress-concentration factors.

3.12-1 A stepped shaft consisting of solid circular seg-
ments having diameters D1 � 50 mm and D2 � 60 mm (see
figure) is subjected to torques T. The radius of the fillet is
R � 2.5 mm.
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Some Additional Review Problems: Chapter 3

If the allowable shear stress at the stress
concentration is 110 MPa, what is the maximum
permissible torque Tmax?

359

3.12-3 A full quarter-circular fillet is used at the shoulder
of a stepped shaft having diameter D2 � 25 mm (see
 figure). A torque T � 115 N m acts on the shaft.

Determine the shear stress τmax at the stress
concentration for values as follows: D1 � 18, 20, and 22 mm.
Plot a graph showing τmax versus D1.

3.12-4 The stepped shaft shown in the figure is required
to transmit 600 kW of power at 400 rpm. The shaft has a
full quarter-circular fillet, and the smaller diameter 
D1 � 100 mm.

If the allowable shear stress at the stress
concentration is 100 MPa, at what diameter D2 will this
stress be reached? Is this diameter an upper or a lower
limit on the value of D2?

3.12-5 A stepped shaft (see figure) has diameter D2 �

40 mm and a full quarter-circular fillet. The allowable shear
stress is 100 MPa and the load T � 540 N m.

What is the smallest permissible diameter D1?

#

#

T T

RD2
D1

PROBS. 3.12-1 through 3.12-5

3.12-2 A stepped shaft with diameters D1 � 40 mm 
and D2 � 60 mm is loaded by torques T � 1100 N�m (see
figure).

If the allowable shear stress at the stress
concentration is 120 MPa, what is the smallest radius Rmin
that may be used for the fillet?

R-3.2 The angle of rotation between the ends of a nylon
bar is 3.5�. The bar diameter is 70 mm and the allowable
shear strain is 0.014 rad. The minimum permissible length
of the bar is approximately:

(A) 0.15 m
(B) 0.27 m
(C) 0.40 m
(D) 0.55 m

R-3.1 A brass rod of length is twisted by
torques T until the angle of rotation between the ends of
the rod is 3.5�. The allowable shear strain in the copper is
0.0005 rad. The maximum permissible diameter of the rod
is approximately:

(A) 6.5 mm
(B) 8.6 mm
(C) 9.7 mm
(D) 12.3 mm

L � 0.75 m

SOME ADDITIONAL REVIEW PROBLEMS: CHAPTER 3

R-3.3 A brass bar twisted by torques T acting at the ends
has the following properties: , ,
and . The torsional stiffness of the bar is
approximately:

(A) 1200 N m
(B) 2600 N m
(C) 4000 N m
(D) 4800 N m#

#

#

#

G � 41 GPa
d � 38 mmL � 2.1 m

L

d
T T

L

d
T T

L

d
T T
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d2

d1

L

T T

T1
d

T1

L1 L2

T

A B C

d1 d2
T

L1

d1

T1
T2

L2

B C

d2

A

d2

d1 d

Chapter 3  Torsion

R-3.7 A stepped steel shaft with diameters
and is twisted by torques
and acting in opposite directions. The
maximum shear stress is approximately:

(A) 54 MPa
(B) 58 MPa
(C) 62 MPa
(D) 79 MPa

d1 � 56 mm

T2 � 1.5 kN # m
T1 � 3.5 kN # md2 � 52 mm

360

R-3.5 An aluminum bar of diameter is
twisted by torques T1 at the ends. The allowable shear
stress is 65 MPa. The maximum permissible torque T1 is
approximately:

(A) 1450 N m
(B) 1675 N m
(C) 1710 N m
(D) 1800 N m#

#

#

#

d � 52 mm

R-3.8 A stepped steel shaft with diameters
and is twisted by torques T at

each end. Segment lengths are and
. If the allowable shear stress is 28 MPa and

maximum allowable twist is 1.8�, the maximum permissi-
ble torque is approximately:

(A) 142 N m
(B) 180 N m
(C) 185 N m
(D) 257 N m#

#

#

#

L2 � 0.75 m
L1 � 0.9 m

d1 � 36 mm d2 � 32 mm
(G � 75 GPa)

R-3.6 A steel tube with diameters and
is twisted by torques at the ends. The diame-

ter of a solid steel shaft that resists the same torque at the
same maximum shear stress is approximately:

(A) 56 mm
(B) 62 mm
(C) 75 mm
(D) 82 mm

d1 � 52 mm
d2 � 86 mm

R-3.4 A brass pipe is twisted by torques
acting at the ends causing an angle of twist of 3.5�. The
pipe has the following properties: ,

, and . The shear modulus of
elasticity G of the pipe is approximately:

(A) 36.1 GPa
(B) 37.3 GPa
(C) 38.7 GPa
(D) 40.6 GPa

d1 � 38 mm d2 � 56 mm
L � 2.1 m

T � 800 N # m
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C

D

A

B

TA

TB

TC

TD

L

d2d1

d2
T T

d2d1

d
f

P

d n

d2

d1

d
f

P

Some Additional Review Problems: Chapter 3

R-3.9 A gear shaft transmits torques ,
, , and .

If the allowable shear stress is 50 MPa, the required shaft
diameter is approximately:

(A) 38 mm
(B) 44 mm
(C) 46 mm
(D) 48 mm

TD � 825 N # mTC � 650 N # mTB � 1500 N # m
TA � 975 N # m

361

R-3.12 A motor drives a shaft with diameter
at and delivers of power. The
maximum shear stress in the shaft is approximately:

(A) 32 MPa
(B) 40 MPa
(C) 83 MPa
(D) 91 MPa

f � 5.25 Hz P � 25 kW
d � 46 mm

R-3.10 A hollow aluminum shaft
has an angle of twist per

unit length of 1.8�/m due to torques T. The resulting
maximum tensile stress in the shaft is approximately:

(A) 38 MPa
(B) 41 MPa
(C) 49 MPa
(D) 58 MPa

d2 � 96 mm,
(G � 27 GPa,

and d1 � 52 mm)

R-3.14 A drive shaft running at 2500 rpm has outer diame-
ter 60 mm and inner diameter 40 mm. The allowable shear
stress in the shaft is 35 MPa. The maximum power that can
be transmitted is approximately:

(A) 220 kW
(B) 240 kW
(C) 288 kW
(D) 312 kW

R-3.13 A motor drives a shaft at and delivers
of power. The allowable shear stress in the

shaft is 45 MPa. The minimum diameter of the shaft is
approximately:

(A) 35 mm
(B) 40 mm
(C) 47 mm
(D) 61 mm

P � 35 kW
f � 10 Hz

R-3.11 Torques are applied to a hollow
aluminum shaft . The
allowable shear stress is 45 MPa and the allowable normal
strain is . The required outside diameter d2 of
the shaft is approximately:

(A) 38 mm
(B) 56 mm
(C) 87 mm
(D) 91 mm

8.0 � 10�4

(G � 27 GPa and d1 � 52 mm)
T � 5.7 kN # m
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Chapter 3  Torsion

FIG. 3-59 Stress-concentration factor K for a
stepped shaft in torsion. (The dashed line is for a
full quarter-circular fillet.)

362

R-3.15 A prismatic shaft (diameter ) is
loaded by torque T1. A stepped shaft (diameters

and with radius of fillets
) is loaded by torque T2. The allowable shear

stress in the material is 42 MPa. The ratio of the
maximum permissible torques that can be applied to
the shafts, considering stress concentration effects in the
stepped shaft is:

(A) 0.9
(B) 1.2
(C) 1.4
(D) 2.1

T1/T2

R � 2 mm
d1 � 20 mm d2 � 25 mm

d0 � 19 mm T1

T1

d0

R

T2 T2

D2
D1

K

0
1.00

1.50

2.00

0.10

1.5

1.2
1.1

0.20

D2 D1
T

R

T

 τmax = Kτnom  τnom = 16T
  D1

3——

= 2D1

D2—–

D1

R—–

= + 2RD1D2

π
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C H A P T E R4
Shear Forces and Bending
Moments

Shear forces and bending moments govern the design of beams in a variety of structures such as this support
structure for seating in a new stadium. (Photo provided by Brasfield & Gorrie. University of Alabama Bryant-

Denny Stadium Expansion)
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I CHAPTER OVERVIEW
Chapter 4 begins with a review of two-dimensional
beam and frame analysis which you learned in your
first course in mechanics, Statics. First, various
types of beams, loadings, and support conditions are
defined for typical structures, such as cantilever and
simple beams. Applied loads may be concentrated
(either a force or moment) or distributed. Support
conditions include clamped, roller, pinned, and slid-
ing supports. The number and arrangement of sup-
ports must produce a stable structure model that is
either statically determinate or statically indetermi-
nate. We will study statically determinate beam
structures in this chapter, and later we will consider
statically indeterminate beams in Chapter 10.

4.1 Introduction 366
4.2 Types of Beams, Loads, and Reactions 366
4.3 Shear Forces and Bending Moments 373
4.4 Relationships Between Loads, Shear Forces,

and Bending Moments 383

4.5 Shear-Force and Bending-Moment 
Diagrams 387
Chapter Summary & Review 400
Problems 402

Chapter 4 is organized as follows:

The focus in this chapter are the internal stress
resultants (axial N, shear V, and moment M) at any
point in the structure. In some structures, internal
“releases” are introduced into the structure at speci-
fied points to control the magnitude of N, V, or M in
certain members, and must be included in the ana-
lytical model. At these release points, N, V, or M
may be considered to have a value of zero. Graphical
displays or diagrams showing the variation of N, V,
and M over the entire structure are very useful in
beam and frame design (as we will see in Chapter 5),
because these diagrams quickly identify locations
and values of maximum axial force, shear, and
moment needed for design.
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Chapter 4  Shear Forces and Bending Moments

4.1 INTRODUCTION
Structural members are usually classified according to the types of loads
that they support. For instance, an axially loaded bar supports forces hav-
ing their vectors directed along the axis of the bar, and a bar in torsion sup-
ports torques (or couples) having their moment vectors directed along the
axis. In this chapter, we begin our study of beams (Fig. 4-1), which are
structural members subjected to lateral loads, that is, forces or moments
having their vectors perpendicular to the axis of the bar.

The beams shown in Fig. 4-1 are classified as planar structures
because they lie in a single plane. If all loads act in that same plane, and if
all deflections (shown by the dashed lines) occur in that plane, then we
refer to that plane as the plane of bending.

In this chapter we discuss shear forces and bending moments in
beams, and we will show how these quantities are related to each other
and to the loads. Finding the shear forces and bending moments is an
essential step in the design of any beam. We usually need to know not only
the maximum values of these quantities, but also the manner in which they
vary along the axis. Once the shear forces and bending moments are
known, we can find the stresses, strains, and deflections, as discussed later
in Chapters 5, 6, and 9.

4.2 TYPES OF BEAMS, LOADS, 
AND REACTIONS
Beams are usually described by the manner in which they are supported.
For instance, a beam with a pin support at one end and a roller support
at the other (Fig. 4-2a) is called a simply supported beam or a simple beam.
The essential feature of a pin support is that it prevents translation at the
end of a beam but does not prevent rotation. Thus, end A of the beam of
Fig. 4-2a cannot move horizontally or vertically but the axis of the beam
can rotate in the plane of the figure. Consequently, a pin support is capa-
ble of developing a force reaction with both horizontal and vertical com-
ponents (HA and RA), but it cannot develop a moment reaction.

At end B of the beam (Fig. 4-2a) the roller support prevents transla-
tion in the vertical direction but not in the horizontal direction; hence this
support can resist a vertical force (RB) but not a horizontal force. Of
course, the axis of the beam is free to rotate at B just as it is at A. The ver-
tical reactions at roller supports and pin supports may act either upward
or downward, and the horizontal reaction at a pin support may act either
to the left or to the right. In the figures, reactions are indicated by slashes
across the arrows in order to distinguish them from loads, as explained
previously in Section 1.9.

The beam shown in Fig. 4-2b, which is fixed at one end and free at the
other, is called a cantilever beam. At the fixed support (or clamped support)
the beam can neither translate nor rotate, whereas at the free end it may
do both. Consequently, both force and moment reactions may exist at the
fixed support.

The third example in the figure is a beam with an overhang (Fig. 4-2c).
This beam is simply supported at points A and B (that is, it has a pin support
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Fig. 4-1
Examples of beams subjected 

to lateral loads
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4.2 Types of Beams, Loads, and Reactions 367

at A and a roller support at B) but it also projects beyond the support at B.
The overhanging segment BC is similar to a cantilever beam except that the
beam axis may rotate at point B.

When drawing sketches of beams, we identify the supports by con-
ventional symbols, such as those shown in Fig. 4-2. These symbols indicate
the manner in which the beam is restrained, and therefore they also indi-
cate the nature of the reactive forces and moments. However, the symbols
do not represent the actual physical construction. For instance, consider the
examples shown in Fig. 4-3. Part (a) of the figure shows a wide-flange
beam supported on a concrete wall and held down by anchor bolts that
pass through slotted holes in the lower flange of the beam. This connec-
tion restrains the beam against vertical movement (either upward or
downward) but does not prevent horizontal movement. Also, any
restraint against rotation of the longitudinal axis of the beam is small and
ordinarily may be disregarded. Consequently, this type of support is usu-
ally represented by a roller, as shown in part (b) of the figure.

The second example (Fig. 4-3c) is a beam-to-column connection in
which the beam is attached to the column flange by bolted angles. (See the
photo on the next page.) This type of support is usually assumed to
restrain the beam against horizontal and vertical movement but not
against rotation (restraint against rotation is slight because both the
angles and the column can bend). Thus, this connection is usually repre-
sented as a pin support for the beam (Fig. 4-3d).

The last example [(Figs. 4-3e and f ) on the next page] is a metal pole
welded to a base plate that is anchored to a concrete pier embedded deep
in the ground. Since the base of the pole is fully restrained against both
translation and rotation, it is represented as a fixed support (Fig. 4-3f).
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Chapter 4  Shear Forces and Bending Moments

The task of representing a real structure by an idealized model, as
illustrated by the beams shown in Fig. 4-2, is an important aspect of engi-
neering work. The model should be simple enough to facilitate mathe-
matical analysis and yet complex enough to represent the actual behavior
of the structure with reasonable accuracy. Of course, every model is an
approximation to nature. For instance, the actual supports of a beam are
never perfectly rigid, and so there will always be a small amount of trans-
lation at a pin support and a small amount of rotation at a fixed support.
Also, supports are never entirely free of friction, and so there will always
be a small amount of restraint against translation at a roller support. In
most circumstances, especially for statically determinate beams, these
deviations from the idealized conditions have little effect on the action of
the beam and can safely be disregarded.

Types of Loads
Several types of loads that act on beams are illustrated in Fig. 4-2 (see
page 367). When a load is applied over a very small area it may be ideal-
ized as a concentrated load, which is a single force. Examples are the loads
P1, P2, P3, and P4 in the figure. When a load is spread along the axis of a
beam, it is represented as a distributed load, such as the load q in part (a)
of the figure. Distributed loads are measured by their intensity, which is
expressed in units of force per unit distance (for example, newtons per
meter or pounds per foot). A uniformly distributed load, or uniform load,
has constant intensity q per unit distance (Fig. 4-2a). A varying load has
an intensity that changes with distance along the axis; for instance, the lin-
early varying load of Fig. 4-2b has an intensity that varies linearly from q1
to q2. Another kind of load is a couple, illustrated by the couple of
moment M1 acting on the overhanging beam (Fig. 4-2c).

As mentioned in Section 4.1, we assume in this discussion that the
loads act in the plane of the figure, which means that all forces must have
their vectors in the plane of the figure and all couples must have their
moment vectors perpendicular to the plane of the figure. Furthermore, the
beam itself must be symmetric about that plane, which means that every
cross section of the beam must have a vertical axis of symmetry. Under
these conditions, the beam will deflect only in the plane of bending (the
plane of the figure).

Reactions
Finding the reactions is usually the first step in the analysis of a beam.
Once the reactions are known, the shear forces and bending moments can
be found, as described later in this chapter. If a beam is supported in a
statically determinate manner, all reactions can be found from free-body
diagrams and equations of equilibrium.

In some instances, it may be necessary to add internal releases into the
beam or frame model to better represent actual conditions of construction
that may have an important effect on overall structure behavior. For
example, the interior span of the bridge girder shown in Fig. 4-4 is sup-
ported on roller supports at either end, which in turn rest on reinforced
concrete bents (or frames), but construction details have been inserted into
the girder at either end to ensure that the axial force and moment at these
two locations are zero. This detail also allows the bridge deck to expand or
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4.2 Types of Beams, Loads, and Reactions 369

contract under temperature changes to avoid inducing large thermal
stresses into the structure. To represent these releases in the beam model, a
hinge (or internal moment release, shown as a solid circle at each end) and
an axial force release (shown as a C-shaped bracket) have been included in
the beam model to show that both axial force (N) and bending moment
(M), but not shear (V), are zero at these two points along the beam.
(Representations of the possible types of releases for two-dimensional
beam and torsion members are shown below the photo). As examples
below show, if axial, shear, or moment releases are present in the structure
model, the structure should be broken into separate free-body diagrams
(FBD) by cutting through the release; an additional equation of equilib-
rium is then available for use in solving for the unknown support reactions
included in that FBD.

As an example, let us determine the reactions of the simple beam AB
of Fig. 4-2a. This beam is loaded by an inclined force P1, a vertical
force P2, and a uniformly distributed load of intensity q. We begin by not-
ing that the beam has three unknown reactions: a horizontal force HA at
the pin support, a vertical force RA at the pin support, and a vertical force
RB at the roller support. For a planar structure, such as this beam, we
know from statics that we can write three independent equations of
 equilibrium. Thus, since there are three unknown reactions and three
equations, the beam is statically determinate.

The equation of horizontal equilibrium is

from which we get

HA � P1 cos α

©Fhoriz � 0 HA � P1 cos α � 0

Reinforced concrete bridge bent

Pin or
roller

Moment &
axial releases

Beam
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moment
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Internal releases and end supports in model of bridge beam

Fig. 4-4 
Types of internal member
releases for two-dimensional
beam and frame members
(Courtesy of the National
Information Service for
Earthquake Engineering EERC,
University of California,
Berkeley)
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Chapter 4  Shear Forces and Bending Moments

This result is so obvious from an inspection of the beam that ordinarily we
would not bother to write the equation of equilibrium.

To find the vertical reactions RA and RB we write equations of
moment equilibrium about points B and A, respectively, with counter-
clockwise moments being positive:

Solving for RA and RB, we get

As a check on these results we can write an equation of equilibrium in the
vertical direction and verify that it reduces to an identity.

If the beam structure in Fig. 4-2a is modified to replace the roller sup-
port at B with a pin support, it is now one degree statically indeterminate.
However, if an axial force release is inserted into the model, as shown in
Fig. 4-5 just to the left of the point of application of load P1, the beam still
can be analyzed using the laws of statics alone because the release provides
one additional equilibrium equation. The beam must be cut at the release
to expose the internal stress resultants N, V, and M; but now at the
release, so reactions and .

As a second example, consider the cantilever beam of Fig. 4-2b. The
loads consist of an inclined force P3 and a linearly varying distributed
load. The latter is represented by a trapezoidal diagram of load intensity
that varies from q1 to q2. The reactions at the fixed support are a horizon-
tal force HA, a vertical force RA, and a couple MA. Equilibrium of forces
in the horizontal direction gives

and equilibrium in the vertical direction gives

In finding this reaction we used the fact that the resultant of the distrib-
uted load is equal to the area of the trapezoidal loading diagram.

The moment reaction MA at the fixed support is found from an
equation of equilibrium of moments. In this example we will sum
moments about point A in order to eliminate both HA and RA from the
moment equation. Also, for the purpose of finding the moment of the
distributed load, we will divide the trapezoid into two triangles, as
shown by the dashed line in Fig. 4-2b. Each load triangle can be replaced
by its resultant, which is a force having its magnitude equal to the area
of the triangle and having its line of action through the centroid of the

RA �
12P3

13
� aq1 � q2

2
bb

HA �
5P3

13

HB � P1 cos αHA � 0
N � 0

RA �
(P1 sin α)(L � a)

L
�

P2(L � b)

L
�

qc2

2L

RB �
(P1 sin α)(a)

L
�

P2b

L
�

qc(L � c/2)

L

©MA � 0 RBL � (P1 sin α)(a) � P2b � qc(L � c/2) � 0

©MB � 0 �RAL � (P1 sin α)(L � a) � P2(L � b) � qc2/2 � 0
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4.2 Types of Beams, Loads, and Reactions 371

triangle. Thus, the moment about point A of the lower triangular part of
the load is

in which is the resultant force (equal to the area of the triangular
load diagram) and is the moment arm (about point A) of the
resultant.

The moment of the upper triangular portion of the load is obtained
by a similar procedure, and the final equation of moment equilibrium
(counterclockwise is positive) is

from which

Since this equation gives a positive result, the reactive moment MA acts in
the assumed direction, that is, counterclockwise. (The expressions for RA
and MA can be checked by taking moments about end B of the beam and
verifying that the resulting equation of equilibrium reduces to an identity.)

If the cantilever beam structure in Fig. 4-2b is modified to add a roller
support at B, it is now referred to as a one degree statically indeterminate
“propped” cantilever beam. However, if a moment release is inserted into the
model as shown in Fig. 4-6, just to the right of the point of application of
load P3, the beam can still be analyzed using the laws of statics alone because
the release provides one additional equilibrium equation. The beam must be
cut at the release to expose the internal stress resultants N, V, and M; now

at the release so reaction RB can be computed by summing moments
in the right-hand free-body diagram. Once RB is known, reaction RA can
once again be computed by summing vertical forces, and reaction moment
MA can be obtained by summing moments about point A. Results are sum-
marized in Fig. 4-6. Note that reaction HA is unchanged from that reported
above for the original cantilever beam structure in Fig. 4-2b.

RB �

1
2 q1baL � a � 2

3 bb � 1
2 q2baL � a � b

3b
L � a

RA �
12
13

P3 � aq1 � q2

2
b (b) � RB
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1

78

�72P3 L � 72P3a � 26 q1b
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Chapter 4  Shear Forces and Bending Moments

The beam with an overhang (Fig. 4-2c) supports a vertical force P4 and
a couple of moment M1. Since there are no horizontal forces acting on the
beam, the horizontal reaction at the pin support is nonexistent and we do
not need to show it on the free-body diagram. In arriving at this conclu-
sion, we made use of the equation of equilibrium for forces in the hori-
zontal direction. Consequently, only two independent equations of
equilibrium remain—either two moment equations or one moment equa-
tion plus the equation for vertical equilibrium.

Let us arbitrarily decide to write two moment equations, the first for
moments about point B and the second for moments about point A, as
follows (counterclockwise moments are positive):

Therefore, the reactions are

Again, summation of forces in the vertical direction provides a check on
these results.

If the beam structure with an overhang in Fig. 4-2c is modified to
add a roller support at C, it is now a one-degree statically indeterminate
two-span beam. However, if a shear release is inserted into the model as
shown in Fig. 4-7, just to the left of support B, the beam can be analyzed
using the laws of statics alone because the release provides one addi-
tional equilibrium equation. The beam must be cut at the release to
expose the internal stress resultants N, V, and M; now at the
release so reaction RA can be computed by summing forces in the left-
hand free-body diagram. RA is readily seen to be equal to P4. Once RA is
known, reaction RC can be computed by summing moments about joint
B, and reaction RB can be obtained by summing all vertical forces.
Results are summarized below.

The preceding discussion illustrates how the reactions of statically
determinate beams are calculated from equilibrium equations. We have
intentionally used symbolic examples rather than numerical examples in
order to show how the individual steps are carried out.

RB �
M1 � P4a

b

RB � P4 � RA � RC

RC �
P4a � M1

b

RA � P4

V � 0

RA �
P4(L � a)

L
�

M1

L
RB �

P4a

L
�

M1

L

©MA � 0 �P4a � RBL � M1 � 0

©MB � 0 �RAL � P4(L � a) � M1 � 0
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4.3 Shear Forces and Bending Moments 373

4.3 SHEAR FORCES AND BENDING
MOMENTS
When a beam is loaded by forces or couples, stresses and strains are cre-
ated throughout the interior of the beam. To determine these stresses and
strains, we first must find the internal forces and internal couples that act
on cross sections of the beam.

As an illustration of how these internal quantities are found, consider
a cantilever beam AB loaded by a force P at its free end (Fig. 4-8a). We cut
through the beam at a cross section mn located at distance x from the free
end and isolate the left-hand part of the beam as a free body (Fig. 4-8b).
The free body is held in equilibrium by the force P and by the stresses that
act over the cut cross section. These stresses represent the action of the
right-hand part of the beam on the left-hand part. At this stage of our dis-
cussion we do not know the distribution of the stresses acting over the
cross section; all we know is that the resultant of these stresses must be such
as to maintain equilibrium of the free body.

From statics, we know that the resultant of the stresses acting on the
cross section can be reduced to a shear force V and a bending moment M
(Fig. 4-8b). Because the load P is transverse to the axis of the beam, no
axial force exists at the cross section. Both the shear force and the bend-
ing moment act in the plane of the beam, that is, the vector for the shear
force lies in the plane of the figure and the vector for the moment is per-
pendicular to the plane of the figure.

Shear forces and bending moments, like axial forces in bars and internal
torques in shafts, are the resultants of stresses distributed over the cross sec-
tion. Therefore, these quantities are known collectively as stress resultants.

The stress resultants in statically determinate beams can be calcu-
lated from equations of equilibrium. In the case of the cantilever beam
of Fig. 4-8a, we use the free-body diagram of Fig. 4-8b. Summing forces
in the vertical direction and also taking moments about the cut section,
we get

where x is the distance from the free end of the beam to the cross section
where V and M are being determined. Thus, through the use of a free-
body diagram and two equations of equilibrium, we can calculate the
shear force and bending moment without difficulty.

Sign Conventions
Let us now consider the sign conventions for shear forces and bending
moments. It is customary to assume that shear forces and bending
moments are positive when they act in the directions shown in Fig. 4-8b.
Note that the shear force tends to rotate the material clockwise and the
bending moment tends to compress the upper part of the beam and elon-
gate the lower part. Also, in this instance, the shear force acts downward
and the bending moment acts counterclockwise.

©M � 0 M � Px � 0 or M � Px

©Fvert � 0 P � V � 0 or V � P

Fig. 4-8
Shear force V and bending
moment M in a beam
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Chapter 4  Shear Forces and Bending Moments

The action of these same stress resultants against the right-hand part
of the beam is shown in Fig. 4-8c. The directions of both quantities are
now reversed—the shear force acts upward and the bending moment acts
clockwise. However, the shear force still tends to rotate the material clock-
wise and the bending moment still tends to compress the upper part of the
beam and elongate the lower part.

Therefore, we must recognize that the algebraic sign of a stress result-
ant is determined by how it deforms the material on which it acts, rather
than by its direction in space. In the case of a beam, a positive shear force
acts clockwise against the material (Figs. 4-8b and c) and a negative shear
force acts counterclockwise against the material. Also, a positive bending
moment compresses the upper part of the beam (Figs. 4-8b and c) and a neg-
ative bending moment compresses the lower part.

To make these conventions clear, both positive and negative shear
forces and bending moments are shown in Fig. 4-9. The forces and
moments are shown acting on an element of a beam cut out between two
cross sections that are a small distance apart.

The deformations of an element caused by both positive and negative
shear forces and bending moments are sketched in Fig. 4-10. We see that
a positive shear force tends to deform the element by causing the right-
hand face to move downward with respect to the left-hand face, and, as
already mentioned, a positive bending moment compresses the upper part
of a beam and elongates the lower part.

Sign conventions for stress resultants are called deformation sign
conventions because they are based upon how the material is deformed.
For instance, we previously used a deformation sign convention in deal-
ing with axial forces in a bar. We stated that an axial force producing
elongation (or tension) in a bar is positive and an axial force producing
shortening (or compression) is negative. Thus, the sign of an axial force
depends upon how it deforms the material, not upon its direction in
space.

By contrast, when writing equations of equilibrium we use static sign
conventions, in which forces are positive or negative according to their
directions along the coordinate axes. For instance, if we are summing
forces in the y direction, forces acting in the positive direction of the y axis
are taken as positive and forces acting in the negative direction are taken
as negative.

As an example, consider Fig. 4-8b, which is a free-body diagram of
part of the cantilever beam. Suppose that we are summing forces in the
vertical direction and that the y axis is positive upward. Then the load P
is given a positive sign in the equation of equilibrium because it acts
upward. However, the shear force V (which is a positive shear force) is
given a negative sign because it acts downward (that is, in the negative
direction of the y axis). This example shows the distinction between the
deformation sign convention used for the shear force and the static sign
convention used in the equation of equilibrium.

The following examples illustrate the techniques for handling sign
conventions and determining shear forces and bending moments in
beams. The general procedure consists of constructing free-body diagrams
and solving equations of equilibrium.
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4.3 Shear Forces and Bending Moments 375

A simple beam AB supports two loads, a force P and a couple M0, acting as
shown in Fig. 4-11a.

Find the shear force V and bending moment M in the beam at cross
sections located as follows: (a) a small distance to the left of the midpoint
of the beam, and (b) a small distance to the right of the midpoint of the
beam.

Example 4-1• • •

Continues ➥

A

RA RB

(a)

P

B

L—
4

V

M0

M

RA

(b)

P

L—
4

L—
2

Fig. 4-11
Example 4-1: Shear forces and
bending moment in a simple
beam

Solution
Reactions. The first step in the analysis of this beam is to find the reactions
RA and RB at the supports. Taking moments about ends B and A gives two
equations of equilibrium, from which we find, respectively,

(a)

(a) Shear force and bending moment to the left of the midpoint. We cut the
beam at a cross section just to the left of the midpoint and draw a free-
body diagram of either half of the beam. In this example, we choose the
left-hand half of the beam as the free body (Fig. 4-11b). This free body
is held in equilibrium by the load P, the reaction RA, and the two
unknown stress resultants—the shear force V and the bending
moment M, both of which are shown in their positive directions (see
Fig. 4-9). The couple M0 does not act on the free body because the beam
is cut to the left of its point of application.

Summing forces in the vertical direction (upward is positive) gives

©Fvert � 0 RA � P � V � 0

RA �
3P
4

�
M0

L
RB �

P
4

�
M0

L
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Chapter 4  Shear Forces and Bending Moments376

from which we get the shear force:

(b) 

This result shows that when P and M0 act in the directions shown in 
Fig. 4-11a, the shear force (at the selected location) is negative and acts in
the opposite direction to the positive direction assumed in Fig. 4-11b.

Taking moments about an axis through the cross section where the
beam is cut (see Fig. 4-11b) gives

in which counterclockwise moments are taken as positive. Solving for
the bending moment M, we get

(c) 

The bending moment M may be either positive or negative, depend-
ing upon the magnitudes of the loads P and M0. If it is positive, it acts
in the direction shown in the figure; if it is negative, it acts in the
opposite direction.

(b) Shear force and bending moment to the right of the midpoint. In this
case we cut the beam at a cross section just to the right of the mid-
point and again draw a free-body diagram of the part of the beam
to the left of the cut section (Fig. 4-11c). The difference between this
diagram and the former one is that the couple M0 now acts on the
free body.

From two equations of equilibrium, the first for forces in the verti-
cal direction and the second for moments about an axis through the cut
section, we obtain

(d,e) 

These results show that when the cut section is shifted from the left
to the right of the couple M0, the shear force does not change
(because the vertical forces acting on the free body do not change)
but the bending moment increases algebraically by an amount equal
to M0 [compare Eqs. (c) and (e)].

➥

➥

➥

©M � 0 �RAa L
2
b � Pa L

4
b � M � 0

V � RA � P � �
P
4

�
M0

L

M � RAa L
2
b � Pa L

4
b �

PL
8

�
M0

2

V � �
P
4

�
M0

L
M �

PL
8

�
M0

2

Example 4-1 - Continued• • •

Fig. 4-11 (Continued)
Example 4-1: Shear forces and
bending moment in a simple
beam [part (b) repeated]

V

M

RA

(b)

P

V

M

RA

(c)

P
M0
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4.3 Shear Forces and Bending Moments 377

A beam of length L is subjected to a distributed load of linearly varying
intensity . Three different support conditions are to be
considered (see Fig. 4-12): (a) cantilever beam, (b) simply supported
beam, and (c) beam with roller support at A and sliding support at B. For
each beam, find expressions for shear force V(x) and bending moment
M(x) at a distance x from point A on the beam.

q(x) � (x/L)q0

Example 4-2• • •

Continues ➥

Fig. 4-12
Example 4-2: Shear force and
bending moment in three
beams acted on by linearly
varying distributed load

Fig. 4-13
Example 4-2: Beam support
reactions: (a) cantilever, 
(b) simply supported, and 
(c) roller and sliding supports

Solution
Statics. We begin by finding reactions at supports by applying equations of
statical equilibrium (see Section 1.2) to free-body diagrams (FBD) of each of
the three beams (Fig. 4-13). Note that we are using a statics sign convention
for support reactions.

(b) Simply supported

B

L
x

q
q0

A

(a) Cantilever

L

A
Bx

q
q0

(c) Roller and sliding supports

B

L
x

q
q0

A

(a)

B

L

MB

RB

q
q0

A

(b)

B

L RB

q
q0

A

RA

MB

(c)

B

L

q
q0

A

RA
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Chapter 4  Shear Forces and Bending Moments378

Cantilever beam.

(a)

(b)

Use of a statics sign convention reveals that reaction moment MB is in
fact clockwise, not counterclockwise, as shown in the FBD.

Simply supported beam.

(c)

Substituting RB in the 1st equation gives

(d)

The reaction at A carries 1/3 of the applied load and at B carries 2/3 of
the load. Note that the x-direction reaction at pin A is zero by inspection,
because no horizontal load or load component is applied.

Beam with roller at A and sliding support at B.

(e)

(f)

The reaction at A carries all of the distributed load, because there is no reac-
tion force available at joint B, and the moment at B has twice the magni-
tude and an opposite sign compared to that of the cantilever beam.

Shear force V(x) and bending moment M(x). Now that all of the support
reactions are known, we can cut the beams at some distance x from joint A
to find expressions for the  internal shear force V and the bending moment
M at that section (Fig. 4-14). We will now apply the laws of statics to the
FBDs for that portion of the beam structure to the left of the cut section,
although identical results would be obtained if the FBD to the right of the
cut section were used instead. It is common (although not required) to now
shift to a deformation sign convention in which V is positive if acting down-
ward on a left-hand face of the FBD and bending moment M is positive if it
produces compression on top of the beam.

MB �
�q0L

2

6

©MB � 0 MB �
1
2

(q0L)a L
3
b � 0

©Fy � 0 RB �
1
2

(q0)L

RB �
1
3

q0L

©MA � 0 RBL �
1
2

(q0L)a2
3

Lb � 0

©Fy � 0 RA � RB �
1
2

q0L � 0

MB �
q0L

2

3

©MA � 0 MB �
1
2

(q0L)a2
3

Lb

©Fy � 0 RA �
1
2

q0L

RA � �RB �
1
2

q0 L �
1
6

q0L

Example 4-2 - Continued• • •
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4.3 Shear Forces and Bending Moments 379

Continues ➥

Fig. 4-14
Example 4-2: Beam sections: 
(a) cantilever, (b) simply 
supported, and (c) roller and
sliding supports

Simply supported beam (Fig. 4-14b).

(k)

(l)� aq0L

6
bx �

1
2
cx
L

q0(x) d a x
3
b �

q0x(L2 � x2)

6L

©M � 0 M(x) � RAx �
1
2
cx
L

q0(x) d a x
3
b

V(x) �
q0(L

2 � 3x2)

6L

V(x) � �
q0L

6
�

1
2
ax

L
q0b (x)

©Fy � 0 V(x) � RA �
1
2
ax

L
q0b (x)

Cantilever beam (Fig. 4-14a).

(g)

(h)

We summed moments about the cut section to get M(x) and now see that
both V and M are zero when (at joint A), while both V and M are
numerically largest at (joint B). The minus signs show that both V
and M act in opposite directions from that shown in Fig. 4-14a:

(i,j)Vmax �
�q0L

2
Mmax �

�q0L
2

6

x � L

M(x) �
�q0x

3

6L

©M � 0 M(x) �
1
2
c x

L
q0(x) d a x

3
b � 0

©Fy � 0 V(x) �
�1
2
ax

L
q0b (x) �

�q0x
2

2L

x � 0

(a)

B
x V

q
(x/L))q0

A

M

(b)

B

RA

x V

q
(x/L))q0

A

M

(c)

B

RA

x V

q
(x/L))q0

A

M
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Chapter 4  Shear Forces and Bending Moments380

Now, when , and at joint A. When ,
and once again , because no moment is applied at the

roller support at B. The numerically largest shear is at B, where RB is twice
the value of RA:

(m)

It is not readily apparent where along the beam the maximum moment
occurs. However, if we differentiate the expression for M(x), equate it to
zero, and solve for x, we will find the point (xm) at which a local maxima or
minima occurs in the function M(x). Solving for xm and then substituting xm
into the moment expression gives

This results in

and so

(n)

We note that the expression that results from is the same as that
for V(x) in Eq. (k). We will explore relationships between V(x) and M(x) in
Section 4.4.

Beam with roller at A and sliding support at B (Fig. 4-14c).

(o)

(p)

Now, when , and at joint A. When ,
at the sliding support, and once again, at B. The

numerically largest shear is at A and is equal to the value of RA:

(q)

The maximum moment occurs at , so

(r)

V(L) � �RB M(L) � 0
x � 0 V(0) � RA M(0) � 0 x � L

V max �
�q0L

3

M max � M(xm) �
13
27

q0L
2

xm �
L
13

d
dx

(M(x)) �
d
dx
cq0x(L2 � x2)

6L
d �

q0(L
2 � 3x2)

6L
� 0

d/dx(M(x))

V(x) �
q0(L

2 � x2)

2L

V(x) �
q0L

2
�

1
2
ax

L
q0b (x)

©Fy � 0 V(x) � RA �
1
2
ax

L
q0b (x)

M(L) � MBV(L) � 0
x � 0 V(0) � RA M(0) � 0 x � L

� aq0L

2
bx �

1
2
cx
L

q0(x) d a x
3
b �

�q0x(x2 � 3L2)

6L

©M � 0 M(x) � RAx �
1
2
cx
L

q0(x) d a x
3
b

x � L

M max � MB �
q0L

2

3

V max �
q0L

2

Example 4-2 - Continued• • •
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4.3 Shear Forces and Bending Moments 381

A simple beam with an overhang is supported at points A and B (Fig. 4-15a).
A uniform load of intensity acts throughout the length of 
the beam and a concentrated load acts at a point 3 m from the
left-hand support. The span length is 8 m and the length of the overhang is
2 m.

Calculate the shear force V and bending moment M at cross section D
located 5 m from the left-hand support.

P � 28 kN
q � 6 kN/m

Example 4-3• • •

Continues ➥

A

RA
RB

(a)

P = 28 kN

q = 6 kN/m

B

3 m

5 m

8 m 2 m

V

M

D
C

(c)

6 kN/m

BD

M

C

A

(b)

28 kN

6 kN/m

D

40 kN

48 kN

V

Fig. 4-15
Example 4-3: Shear force and
bending moment in a beam
with an overhang

Solution
Reactions. We begin by calculating the reactions RA and RB from equations of
equilibrium for the entire beam considered as a free body. Thus, taking moments
about the supports at B and A, respectively, we find

RA � 40 kN RB � 48 kN
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Chapter 4  Shear Forces and Bending Moments382

Shear force and bending moment at section D. Now we make a cut at
section D and construct a free-body diagram of the left-hand part of the
beam (Fig. 4-15b). When drawing this diagram, we assume that the
unknown stress resultants V and M are positive.

The equations of equilibrium for the free body are as follows:

in which upward forces are taken as positive in the first equation and coun-
terclockwise moments are taken as positive in the second equation. Solving
these equations, we get

The minus sign for V means that the shear force is negative, that is, its
direction is opposite to the direction shown in Fig. 4-15b. The positive sign
for M means that the bending moment acts in the direction shown in the
figure.

Alternative free-body diagram. Another method of solution is to
obtain V and M from a free-body diagram of the right-hand part of the
beam (Fig. 4-15c). When drawing this free-body diagram, we again assume
that the unknown shear force and bending moment are positive. The two
equations of equilibrium are

from which

as before. As often happens, the choice between free-body diagrams is a
matter of convenience and personal preference.

➥

V � �18 kN M � 69 kN # m

©MD � 0 �M � (48 kN)(3 m) � (6 kN/m)(5 m)(2.5 m) � 0

©Fvert � 0 V � 48 kN � (6 kN/m)(5 m) � 0

V � �18 kN M � 69 kN # m

©MD � 0 � (40 kN)(5 m) � (28 kN)(2 m) � (6 kN/m)(5 m)(2.5 m) � M � 0

©Fvert � 0 40 kN � 28 kN � (6 kN/m)(5 m) � V � 0

Example 4-3 - Continued• • •

V

M

A

(b)

28 kN

6 kN/m

D

40 kN

(c)

6 kN/m

BD

M

C

48 kN

V

Fig. 4-15 (Repeated)
Example 4-3: Shear force and
bending moment in a beam
with an overhang [part (b) and 
(c) repeated]
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4.4 Relationships Between Loads, Shear Forces, and Bending Moments 383

4.4 RELATIONSHIPS BETWEEN LOADS,
SHEAR FORCES, AND BENDING
MOMENTS
We will now obtain some important relationships between loads, shear
forces, and bending moments in beams. These relationships are quite use-
ful when investigating the shear forces and bending moments throughout
the entire length of a beam, and they are especially helpful when con-
structing shear-force and bending-moment diagrams (Section 4.5).

As a means of obtaining the relationships, let us consider an element
of a beam cut out between two cross sections that are distance dx apart
(Fig. 4-16). The load acting on the top surface of the element may be a dis-
tributed load, a concentrated load, or a couple, as shown in Figs. 4-16a, b,
and c, respectively. The sign conventions for these loads are as follows:
Distributed loads and concentrated loads are positive when they act down-
ward on the beam and negative when they act upward. A couple acting as a
load on a beam is positive when it is counterclockwise and negative when it is
clockwise. If other sign conventions are used, changes may occur in the
signs of the terms appearing in the equations derived in this section.

The shear forces and bending moments acting on the sides of the
element are shown in their positive directions in Fig. 4-10. In general,
the shear forces and bending moments vary along the axis of the beam.
Therefore, their values on the right-hand face of the element may be dif-
ferent from their values on the left-hand face.

In the case of a distributed load (Fig. 4-16a) the increments in V
and M are infinitesimal, and so we denote them by dV and dM, respec-
tively. The corresponding stress resultants on the right-hand face are

and .
In the case of a concentrated load (Fig. 4-16b) or a couple (Fig. 4-16c)

the increments may be finite, and so they are denoted V1 and M1. The cor-
responding stress resultants on the right-hand face are and

.
For each type of loading we can write two equations of equilibrium for

the element—one equation for equilibrium of forces in the vertical direction
and one for equilibrium of moments. The first of these equations gives the
relationship between the load and the shear force, and the second gives the
relationship between the shear force and the bending moment.

Distributed Loads (Fig. 4-16a)
The first type of loading is a distributed load of intensity q, as shown in
Fig. 4-16a. We will consider first its relationship to the shear force and sec-
ond its relationship to the bending moment.

Shear Force. Equilibrium of forces in the vertical direction (upward
forces are positive) gives

or

(4-1)dV
dx

� �q

©Fvert � 0 V � q dx � (V � dV ) � 0

M � M1

V � V1

M � dMV � dV

Fig. 4-16
Element of a beam used in
deriving the relationships
between loads, shear forces, and
bending moments (All loads
and stress resultants are shown
in their positive directions.)

V + dV

V

q

M M + dM

(a)

dx

V + V1

V

P

M M + M1

(b)

dx

V + V1

VM M + M1

M0

(c)

dx
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Chapter 4  Shear Forces and Bending Moments

From this equation we see that the rate of change of the shear force at any
point on the axis of the beam is equal to the negative of the intensity of the
distributed load at that same point. (Note: If the sign convention for the
distributed load is reversed, so that q is positive upward instead of down-
ward, then the minus sign is omitted in the preceding equation.)

Some useful relations are immediately obvious from Eq. (4-1). For
instance, if there is no distributed load on a segment of the beam (that is,
if ), then and the shear force is constant in that part of
the beam. Also, if the distributed load is uniform along part of the beam

, then is also constant and the shear force varies lin-
early in that part of the beam.

As a demonstration of Eq. (4-1), consider the cantilever beam with a
linearly varying load that we discussed in Example 4-2 of the preceding
section (see Fig. 4-12). The load on the beam [from Eq. (4-1)] is

which is positive because it acts downward. Also, the shear force is

Taking the derivative dV/dx gives

which agrees with Eq. (4-1).
A useful relationship pertaining to the shear forces at two different

cross sections of a beam can be obtained by integrating Eq. (4-1) along
the axis of the beam. To obtain this relationship, we multiply both sides
of Eq. (4-1) by dx and then integrate between any two points A and B on
the axis of the beam; thus,

(4-2)

where we are assuming that x increases as we move from point A to
point B. The left-hand side of this equation equals the difference

of the shear forces at B and A. The integral on the right-hand
side represents the area of the loading diagram between A and B, which in
turn is equal to the magnitude of the resultant of the distributed load act-
ing between points A and B. Thus, from Eq. (4-2), we get

(4-3)

VB � VA � �
L

B

A
q dx

L

B

A
dV � �

L

B

A
q dx

� �(area of the loading diagram between A and B)

(VB � VA)

dV
dx

�
d

dx
a�

q0x
2

2L
b � �

q0x

L
� �q

V � �
q0x

2

2L

q �
q0x

L

dV/dx(q � constant)

dV/dx � 0q � 0

384
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4.4 Relationships Between Loads, Shear Forces, and Bending Moments 385

In other words, the change in shear force between two points along the
axis of the beam is equal to the negative of the total downward load
between those points. The area of the loading diagram may be positive
(if q acts downward) or negative (if q acts upward).

Because Eq. (4-1) was derived for an element of the beam subjected
only to a distributed load (or to no load), we cannot use Eq. (4-1) at a
point where a concentrated load is applied (because the intensity of load
is not defined for a concentrated load). For the same reason, we cannot
use Eq. (4-3) if a concentrated load P acts on the beam between points A
and B.

Bending Moment. Let us now consider the moment equilibrium of
the beam element shown in Fig. 4-16a. Summing moments about an axis
at the left-hand side of the element (the axis is perpendicular to the plane
of the figure), and taking counterclockwise moments as positive, we
obtain

Discarding products of differentials (because they are negligible compared
to the other terms), we obtain the following relationship:

(4-4)

This equation shows that the rate of change of the bending moment at any
point on the axis of a beam is equal to the shear force at that same point.
For instance, if the shear force is zero in a region of the beam, then the
bending moment is constant in that same region.

Equation (4-4) applies only in regions where distributed loads (or no
loads) act on the beam. At a point where a concentrated load acts, a sud-
den change (or discontinuity) in the shear force occurs and the derivative
dM/dx is undefined at that point.

Again using the cantilever beam of Example 4-2, we recall that the
bending moment is

Therefore, the derivative dM/dx is

which is equal to the shear force in the beam.
Integrating Eq. (4-4) between two points A and B on the beam axis

gives

(4-5)
L

B

A
dM �

L

B

A
V dx

dM
dx

�
d

dx
a�

q0x
3

6L
b � �

q0x
2

2L

M � �
q0x

3

6L

dM
dx

� V

©M � 0 �M � q dxadx
2
b � (V � dV)dx � M � dM � 0

Fig. 4-16a (Repeated)

V + dV

V

q

M M + dM

(a)

dx
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Chapter 4  Shear Forces and Bending Moments

The integral on the left-hand side of this equation is equal to the difference
of the bending moments at points B and A. To interpret the

integral on the right-hand side, we need to consider V as a function of x
and visualize a shear-force diagram showing the variation of V with x.
Then we see that the integral on the right-hand side represents the area
below the shear-force diagram between A and B. Therefore, we can
express Eq. (4-5) in the following manner:

(4-6)

This equation is valid even when concentrated loads act on the beam
between points A and B. However, it is not valid if a couple acts between A
and B. A couple produces a sudden change in the bending moment, and the
left-hand side of Eq. (4-5) cannot be integrated across such a discontinuity.

Concentrated Loads (Fig. 4-16b)
Now let us consider a concentrated load P acting on the beam element
(Fig. 4-16b). From equilibrium of forces in the vertical direction, we get

(4-7)

This result means that an abrupt change in the shear force occurs at any
point where a concentrated load acts. As we pass from left to right
through the point of load application, the shear force decreases by an
amount equal to the magnitude of the downward load P.

From equilibrium of moments about the left-hand face of the element
(Fig. 4-16b), we get

or

(4-8)

Since the length dx of the element is infinitesimally small, we see from this
equation that the increment M1 in the bending moment is also infinitesi-
mally small. Thus, the bending moment does not change as we pass through
the point of application of a concentrated load.

Even though the bending moment M does not change at a concen-
trated load, its rate of change dM/dx undergoes an abrupt change. At the
left-hand side of the element (Fig. 4-16b), the rate of change of the bend-
ing moment [see Eq. (4-4)] is . At the right-hand side, the rate
of change is . Therefore, at the point of
application of a concentrated load P, the rate of change dM/dx of the bend-
ing moment decreases abruptly by an amount equal to P.

� (area of the shear-force diagram between A and B)

MB � MA �
L

B

A
V dx

dM/dx � V � V1 � V � P
dM/dx � V

M1 � Padx
2
b � V dx � V1 dx

�M � Padx
2
b � (V � V1)dx � M � M1 � 0

V � P � (V � V1) � 0 or V1 � �P

(MB � MA)
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Fig. 4-16b (Repeated)
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4.5 Shear-Force and Bending-Moment Diagrams 387

Loads in the Form of Couples (Fig. 4-16c)
The last case to be considered is a load in the form of a couple M0 (Fig. 4-16c).
From equilibrium of the element in the vertical direction we obtain ,
which shows that the shear force does not change at the point of application of
a couple.

Equilibrium of moments about the left-hand side of the element gives

Disregarding terms that contain differentials (because they are negligible
compared to the finite terms), we obtain

(4-9)

This equation shows that the bending moment decreases by M0 as we
move from left to right through the point of load application. Thus, the
bending moment changes abruptly at the point of application of a couple.

Equations (4-1) through (4-9) are useful when making a complete
investigation of the shear forces and bending moments in a beam, as dis-
cussed in the next section.

4.5 SHEAR-FORCE AND BENDING-
MOMENT DIAGRAMS
When designing a beam, we usually need to know how the shear forces
and bending moments vary throughout the length of the beam. Of special
importance are the maximum and minimum values of these quantities.
Information of this kind is usually provided by graphs in which the shear
force and bending moment are plotted as ordinates and the distance x
along the axis of the beam is plotted as the abscissa. Such graphs are called
shear-force and bending-moment diagrams.

To provide a clear understanding of these diagrams, we will explain
in detail how they are constructed and interpreted for three basic load-
ing conditions—a single concentrated load, a uniform load, and several
concentrated loads. In addition, Examples 4-4 to 4-7 at the end of the
section provide detailed illustration of the techniques for handling var-
ious kinds of loads, including the case of a couple acting as a load on a
beam.

Concentrated Load
Let us begin with a simple beam AB supporting a concentrated load P
(Fig. 4-17a). The load P acts at distance a from the left-hand support and
distance b from the right-hand support. Considering the entire beam as a
free body, we can readily determine the reactions of the beam from equi-
librium; the results are

(4-10a,b)RA �
Pb
L

RB �
Pa
L

M1 � �M0

�M � M0 � (V � V1)dx � M � M1 � 0

V1 � 0

Fig. 4-16c (Repeated)

V + V1

VM M + M1

M0

(c)

dx

Fig. 4-17
Shear-force and bending-moment
diagrams for a simple beam with
a concentrated load
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RA RB
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P

B
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x
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Chapter 4  Shear Forces and Bending Moments

We now cut through the beam at a cross section to the left of the load P
and at distance x from the support at A. Then we draw a free-body dia-
gram of the left-hand part of the beam (Fig. 4-17b). From the equations
of equilibrium for this free body, we obtain the shear force V and bending
moment M at distance x from the support:

(4-11a,b)

These expressions are valid only for the part of the beam to the left of the
load P.

Next, we cut through the beam to the right of the load P (that is, in
the region ) and again draw a free-body diagram of the left-
hand part of the beam (Fig. 4-17c). From the equations of equilibrium for
this free body, we obtain the following expressions for the shear force and
bending moment:

(4-12a)

and

(4-12b)

Note that these equations are valid only for the right-hand part of the
beam.

The equations for the shear forces and bending moments [Eqs. (4-11)
and (4-12)] are plotted below the sketches of the beam. Figure 4-17d is the
shear-force diagram and Fig. 4-17e is the bending-moment diagram.

From the first diagram we see that the shear force at end A of the
beam is equal to the reaction RA. Then it remains constant to the
point of application of the load P. At that point, the shear force decreases
abruptly by an amount equal to the load P. In the right-hand part of the
beam, the shear force is again constant but equal numerically to the reac-
tion at B.

As shown in the second diagram, the bending moment in the left-hand
part of the beam increases linearly from zero at the support to Pab/L at
the concentrated load . In the right-hand part, the bending
moment is again a linear function of x, varying from Pab/L at to
zero at the support . Thus, the maximum bending moment is

(4-13)

and occurs under the concentrated load.

Mmax �
Pab
L

(x � L)
x � a

(x � a)

(x � 0)

�
Pa
L

(L � x) (a 6 x 6 L)

M � RAx � P(x � a) �
Pbx

L
� P(x � a)

V � RA � P �
Pb
L

� P � �
Pa
L

(a 6 x 6 L)

a 6 x 6 L

V � RA �
Pb
L

M � RAx �
Pbx

L
(0 6 x 6 a)
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Fig. 4-17 (Continued)
Shear-force and bending-moment
diagrams for a simple beam with

a concentrated load [part (a)
repeated]
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4.5 Shear-Force and Bending-Moment Diagrams 389

When deriving the expressions for the shear force and bending
moment to the right of the load P [Eqs. (4-12a and b)], we considered the
equilibrium of the left-hand part of the beam (Fig. 4-17c). This free body
is acted upon by the forces RA and P in addition to V and M. It is slightly
simpler in this particular example to consider the right-hand portion of
the beam as a free body, because then only one force (RB) appears in the
equilibrium equations (in addition to V and M). Of course, the final
results are unchanged.

Certain characteristics of the shear-force and bending moment dia-
grams (Figs. 4-17d and e) may now be seen. We note first that the slope
dV/dx of the shear-force diagram is zero in the regions and

, which is in accord with the equation [Eq. (4-1)].
Also, in these same regions the slope dM/dx of the bending moment dia-
gram is equal to V [Eq. (4-4)]. To the left of the load P, the slope of the
moment diagram is positive and equal to Pb/L; to the right, it is negative
and equal to . Thus, at the point of application of the load P there
is an abrupt change in the shear-force diagram (equal to the magnitude of
the load P) and a corresponding change in the slope of the bending-
moment diagram.

Now consider the area of the shear-force diagram. As we move from
to , the area of the shear-force diagram is (Pb/L)a, or Pab/L.

This quantity represents the increase in bending moment between these
same two points [see Eq. (4-6)]. From to , the area of the
shear-force diagram is , which means that in this region the bend-
ing moment decreases by that amount. Consequently, the bending
moment is zero at end B of the beam, as expected.

If the bending moments at both ends of a beam are zero, as is usually
the case with a simple beam, then the area of the shear-force diagram
between the ends of the beam must be zero provided no couples act on the
beam [see the discussion in Section 4.4 following Eq. (4-6)].

As mentioned previously, the maximum and minimum values of the
shear forces and bending moments are needed when designing beams. For
a simple beam with a single concentrated load, the maximum shear force
occurs at the end of the beam nearest to the concentrated load and the
maximum bending moment occurs under the load itself.

Uniform Load
A simple beam with a uniformly distributed load of constant intensity q is
shown in Fig. 4-18a. Because the beam and its loading are symmetric, we
see immediately that each of the reactions (RA and RB) is equal to qL/2.
Therefore, the shear force and bending moment at distance x from the
left-hand end are

(4-14a)

and

(4-14b)M � RAx � qxax
2
b �

qLx

2
�

qx2

2

V � RA � qx �
qL
2

� qx

�Pab /L
x � Lx � a

x � ax � 0

�Pa /L

dV/dx � �qa 6 x 6 L
0 6 x 6 a

Fig. 4-18
Shear-force and bending-moment
diagrams for a simple beam with
a uniform load
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Chapter 4  Shear Forces and Bending Moments

These equations, which are valid throughout the length of the beam, are
plotted as shear-force and bending-moment diagrams in Figs. 4-18b and c,
respectively.

The shear-force diagram consists of an inclined straight line having
ordinates at and equal numerically to the reactions. The
slope of the line is , as expected from Eq. (4-1). The bending-moment
diagram is a parabolic curve that is symmetric about the midpoint of the
beam. At each cross section the slope of the bending-moment diagram is
equal to the shear force [see Eq. (4-4)]:

The maximum value of the bending moment occurs at the midpoint of the
beam where both dM/dx and the shear force V are equal to zero.
Therefore, we substitute into the expression for M and obtain

(4-15)

as shown on the bending-moment diagram.
The diagram of load intensity (Fig. 4-18a) has area qL, and according

to Eq. (4-3) the shear force V must decrease by this amount as we move
along the beam from A to B. We can see that this is indeed the case,
because the shear force decreases from qL/2 to .

The area of the shear-force diagram between and is
qL2/8, and we see that this area represents the increase in the bending
moment between those same two points [Eq. (4-6)]. In a similar manner,
the bending moment decreases by qL2/8 in the region from to

.

Several Concentrated Loads
If several concentrated loads act on a simple beam (Fig. 4-19a), expres-
sions for the shear forces and bending moments may be determined for
each segment of the beam between the points of load application. Again
using free-body diagrams of the left-hand part of the beam and measuring
the distance x from end A, we obtain the following equations for the first
segment of the beam:

(4-16a,b)

For the second segment, we get

(4-17a,b)

x � 0 x � L

V � RA � P1 M � RAx � P1(x � a1) (a1 6 x 6 a2)

V � RA M � RAx (0 6 x 6 a1)

x � L/2
x � L

x � L/2x � 0
�qL/2

Mmax �
qL2

8

x � L/2

dM
dx

�
d

dx
aqLx

2
�

qx2

2
b �

qL

2
� qx � V

�q
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Fig. 4-19
Shear-force and bending-moment
diagrams for a simple beam with
several concentrated loads
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4.5 Shear-Force and Bending-Moment Diagrams 391

For the third segment of the beam, it is advantageous to consider the
right-hand part of the beam rather than the left, because fewer loads act
on the corresponding free body. Hence, we obtain

(4-18a)

(4-18b)

Finally, for the fourth segment of the beam, we obtain

(4-19a,b)

Equations (4-16) through (4-19) can be used to construct the shear-force
and bending-moment diagrams (Figs. 4-19b and c).

From the shear-force diagram we note that the shear force is constant
in each segment of the beam and changes abruptly at every load point,
with the amount of each change being equal to the load. Also, the bend-
ing moment in each segment is a linear function of x, and therefore the
corresponding part of the bending-moment diagram is an inclined straight
line. To assist in drawing these lines, we obtain the bending moments
under the concentrated loads by substituting , , and
into Eqs. (4-16b), (4-17b), and (4-18b), respectively. In this manner we
obtain the following bending moments:

(4-20a,b,c)

Knowing these values, we can readily construct the bending-moment dia-
gram by connecting the points with straight lines.

At each discontinuity in the shear force, there is a corresponding
change in the slope dM/dx of the bending-moment diagram. Also, the
change in bending moment between two load points equals the area of the
shear-force diagram between those same two points [see Eq. (4-6)]. For
example, the change in bending moment between loads P1 and P2 is

. Substituting from Eqs. (4-20a and b), we get

which is the area of the rectangular shear-force diagram between
and .

The maximum bending moment in a beam having only concentrated
loads must occur under one of the loads or at a reaction. To show this,
recall that the slope of the bending-moment diagram is equal to the shear
force. Therefore, whenever the bending moment has a maximum or mini-
mum value, the derivative dM/dx (and hence the shear force) must change
sign. However, in a beam with only concentrated loads, the shear force
can change sign only under a load.

V � �RB � P3

M � RB(L � x) � P3(L � b3 � x) (a2 6 x 6 a3)

V � �RB M � RB(L � x) (a3 6 x 6 L)

x � a2

x � a1

M2 � M1 � (RA � P1)(a2 � a1)

M2 � M1

M1 � RAa1 M2 � RAa2 � P1(a2 � a1) M3 � RBb3

x � a3x � a2x � a1

A

RA RB
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Fig. 4-19 (Continued)
Shear-force and bending-moment
diagrams for a simple beam with
several concentrated loads [part
(a) repeated]
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Chapter 4  Shear Forces and Bending Moments

If, as we proceed along the x axis, the shear force changes from posi-
tive to negative (as in Fig. 4-19b), then the slope in the bending moment
diagram also changes from positive to negative. Therefore, we must have
a maximum bending moment at this cross section. Conversely, a change
in shear force from a negative to a positive value indicates a minimum
bending moment. Theoretically, the shear-force diagram can intersect the
horizontal axis at several points, although this is quite unlikely.
Corresponding to each such intersection point, there is a local maximum
or minimum in the bending-moment diagram. The values of all local max-
imums and minimums must be determined in order to find the maximum
positive and negative bending moments in a beam.

General Comments
In our discussions we frequently use the terms “maximum” and “mini-
mum” with their common meanings of “largest” and “smallest.”
Consequently, we refer to “the maximum bending moment in a beam”
regardless of whether the bending-moment diagram is described by a
smooth, continuous function (as in Fig. 4-18c) or by a series of lines (as in
Fig. 4-19c).

Furthermore, we often need to distinguish between positive and neg-
ative quantities. Therefore, we use expressions such as “maximum positive
moment” and “maximum negative moment.” In both of these cases, the
expression refers to the numerically largest quantity; that is, the term
“maximum negative moment” really means “numerically largest negative
moment.” Analogous comments apply to other beam quantities, such as
shear forces and deflections.

The maximum positive and negative bending moments in a beam may
occur at the following places: (1) a cross section where a concentrated load
is applied and the shear force changes sign (see Figs. 4-17 and 4-19),  
(2) a cross section where the shear force equals zero (see Fig. 4-18), (3) a
point of support where a vertical reaction is present, and (4) a cross
 section where a couple is applied. The preceding discussions and the fol-
lowing examples illustrate all of these possibilities.

When several loads act on a beam, the shear-force and bending-
moment diagrams can be obtained by superposition (or summation) of
the diagrams obtained for each of the loads acting separately. For
instance, the shear-force diagram of Fig. 4-19b is actually the sum of three
separate diagrams, each of the type shown in Fig. 4-17d for a single con-
centrated load. We can make an analogous comment for the bending-
moment diagram of Fig. 4-19c. Superposition of shear-force and
bending-moment diagrams is permissible because shear forces and bend-
ing moments in statically determinate beams are linear functions of the
applied loads.

Computer programs are readily available for drawing shear-force
and bending-moment diagrams. After you have developed an under-
standing of the nature of the diagrams by constructing them manually,
you should feel secure in using computer programs to plot the diagrams
and obtain numerical results. For convenient reference, the differential
relationships used in drawing shear-force and bending-moment dia-
grams are summarized in the Chapter 4 Summary & Review following
Example 4-7.

392
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4.5 Shear-Force and Bending-Moment Diagrams 393

Draw the shear-force and bending-moment diagrams for a simple 
beam with a uniform load of intensity q acting over part of the span 
(Fig. 4-20a).

Solution
Reactions. We begin the analysis by determining the reactions of the
beam from a free-body diagram of the entire beam (Fig. 4-18a). The
results are

(4-21a,b)

Shear forces and bending moments. To obtain the shear forces and
bending moments for the entire beam, we must consider the three seg-
ments of the beam individually. For each segment we cut through the beam
to expose the shear force V and bending moment M. Then we draw a free-
body diagram containing V and M as unknown quantities. Lastly, we sum
forces in the vertical direction to obtain the shear force and take moments
about the cut section to obtain the bending moment. The results for all
three segments are

(4-22a,b)

(4-23a,b)

(4-24a,b)

These equations give the shear force and bending moment at every cross
section of the beam and are expressed in terms of a deformation sign con-
vention. As a partial check on these results, we can apply Eq. (4-1) to the
shear forces and Eq. (4-4) to the bending moments and verify that the equa-
tions are satisfied.

We now construct the shear-force and bending-moment diagrams
(Figs. 4-20b and c) from Eqs. (4-22) through (4-24). The shear-force diagram
consists of horizontal straight lines in the unloaded regions of the beam
and an inclined straight line with negative slope in the loaded region, as
expected from the equation .

The bending-moment diagram consists of two inclined straight lines in
the unloaded portions of the beam and a parabolic curve in the loaded por-
tion. The inclined lines have slopes equal to RA and �RB, respectively, as
expected from the equation . Also, each of these inclined lines is
tangent to the parabolic curve at the point where it meets the curve. This

dM/dx � V

dV/dx � �q

V � �RB M � RB(L � x) (a � b 6 x 6 L)

V � RA � q(x � a) M � RAx �
q(x � a)2

2
(a 6 x 6 a � b)

V � RA M � RAx (0 6 x 6 a)

RA �
qb(b � 2c)

2L
RB �

qb(b � 2a)

2L

Example 4-4• • •

Continues ➥
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Fig. 4-20
Example 4-4: Simple beam with
a uniform load over part of the
span
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Chapter 4  Shear Forces and Bending Moments394

conclusion follows from the fact that there are no abrupt changes in the
magnitude of the shear force at these points. Hence, from the equation

, we see that the slope of the bending-moment diagram does
not change abruptly at these points. Note that, with a deformation sign
convention, the bending-moment diagram is plotted on the compression
side of the beam. So, the entire top surface of beam AB is in compression as
expected.

Maximum bending moment. The maximum moment occurs where the
shear force equals zero. This point can be found by setting the shear force V
[from Eq. (4-23a)] equal to zero and solving for the value of x, which we will
denote by x1. The result is

(4-25)

Now we substitute x1 into the expression for the bending moment 
[Eq. (4-23b)] and solve for the maximum moment. The result is

(4-26)

The maximum bending moment always occurs within the region of the uni-
form load, as shown by Eq. (4-25).

Special cases. If the uniform load is symmetrically placed on the beam
, then we obtain the following simplified results from Eqs. (4-25) and

(4-26):

(4-27a,b)

If the uniform load extends over the entire span, then and
, which agrees with Fig. 4-18 and Eq. (4-15).

dM/dx � V

x1 � a �
b
2L

(b � 2c)

Mmax � qL2/8
b � L

x1 �
L
2

Mmax �
qb(2L � b)

8

(a � c)

Mmax �
qb

8L2
(b � 2c)(4aL � 2bc � b2)

Example 4-4 - Continued• • •

A

RA RB
(a)

(b)

(c)

B

L
a

x1

b c
x

q

0
V

0

M

Mmax

x1

RA

–RB

Fig. 4-20 (Repeated)
Example 4-4: Simple beam with
a uniform load over part of the
span
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4.5 Shear-Force and Bending-Moment Diagrams 395

Draw the shear-force and bending-moment diagrams for a cantilever beam
with two concentrated loads (Fig. 4-21a).

Example 4-5• • •

(b)

0
V

–P1

–P1 – P2

(c)

0

M

–P1L – P2b

–P1a

A

RB
(a)

B

L
a b

x

P1 P2

MB

Fig. 4-21
Example 4-5: Cantilever beam
with two concentrated loads

Solution
Reactions. From the free-body diagram of the entire beam we find the ver-
tical reaction RB (positive when upward) and the moment reaction MB (pos-
itive when counterclockwise in a statics sign convention):

(4-28a,b)

Shear forces and bending moments. We obtain the shear forces and
bending moments by cutting through the beam in each of the two segments,
drawing the corresponding free-body diagrams, and solving the equations of
equilibrium. Again measuring the distance x from the left-hand end of the
beam, we get (using a deformation sign convention, see Fig. 4-9)

(4-29a,b)

(4-30a,b)

The corresponding shear-force and bending-moment diagrams are shown in
Figs. 4-21b and c. The shear force is constant between the loads and reaches
its maximum numerical value at the support, where it is equal numerically
to the vertical reaction RB [Eq. (4-28a)].

The bending-moment diagram consists of two inclined straight lines,
each having a slope equal to the shear force in the corresponding segment
of the beam. The maximum bending moment occurs at the support and is
equal numerically to the moment reaction MB [Eq. (4-28b)]. It is also equal
to the area of the entire shear-force diagram, as expected from Eq. (4-6).

V � �P1 � P2 M � �P1x � P2(x � a) (a 6 x 6 L)

V � �P1 M � �P1x (0 6 x 6 a)

RB � P1 � P2 MB � �(P1L � P2b)
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Chapter 4  Shear Forces and Bending Moments396

In Example 4-2, we considered a beam of length L with a distributed load of
linearly varying intensity . We found expressions for support
reactions and equations for shear force V(x) and bending moment M(x) as
functions of distance x along the beam for three different support cases: 
(a) cantilever beam, (b) simply supported beam, and (c) beam with a roller
support at A and a sliding support at B.

In this example, we will plot the shear and bending-moment diagrams
for these three beams (Fig. 4-22) using the expressions developed in
Example 4-2.

q(x) � (x/L)q0

Example 4-6• • •

Fig. 4-22
Example 4-6: Shear and
moment diagrams for three
beams from Example 4-2: 
(a) cantilever, (b) simply
 supported, and (c) roller and
sliding supports

BL

q

q0

A

Aq

AV

Aq –q0

V
0

1
2

q0 L

q0 L2

6

–q0 L
2

–q0 L2

6

0

(a)

–q0 L
2

M

0

1

0

Av
1

Solution
Cantilever Beam. A free-body diagram of the cantilever beam of Example 4-2
is shown in Fig. 4-22a. The expressions for reactions RB and MB come from
Eqs. (a, b) of Example 4-2. The shear-force and bending-moment diagrams
are obtained by plotting the expressions for V(x) [Eq. (g)] and M(x) [Eq. (h)].
Note that the slope of the shear-force diagram at any point x along the
beam is equal to [see Eq. (4-1)] and the slope of the bending-moment
diagram at any point x is equal to V [see Eq. (4-4)]. The maximum values of
the shear force and bending moment occur at the fixed support where

[see Eqs. (i) and (j) in Example 4-2]. These values are consistent with
the values for reactions RB and MB.

Alternative solution. Instead of using free-body diagrams and equa-
tions of equilibrium, we can determine the shear forces and bending
moments by integrating the differential relationships between load, shear
force, and bending moment. The shear force V at distance x from the free
end at A is obtained from the load by integrating Eq. (4-3) as

(a)

If we integrate over the entire length of the beam, the change in shear from
A to B is equal to the negative value of the area under the distributed load
diagram (�Aq), as shown in Fig. 4-22a. In addition, the slope of a tangent to
the shear diagram at any point x is equal to the negative of the corresponding

V � VA � V � 0 � V � �
L

x

0
q(x)dx

x � L

�q(x)

√⎯3

L

√⎯3
27

AV

AV

Aq
–AV

V

M

0

0

0

0

–q0 L
3

–q0 L
3

1 1
Slope = 0

(b)

–q0
1

BL

q

q0

A

Aq

1
3

q0 L1
6

q0 L

1
6

q0 L

1
6

q0 L

q0 L2

BL

q

q0

A

Aq

1

1

2
q0 L

1
2

q0 L

1
2

q0 L

0 0

Slope = 0

Slope = 0

0 0

(c)

1

V

M

q0 L2

3

q0 L2

3

AV

AV

Aq

–q0
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4.5 Shear-Force and Bending-Moment Diagrams 397

ordinate on the distributed load curve at that same point. Since the load curve
is linear, the shear diagram is quadratic.

The bending moment M at distance x from point A is obtained from the
shear force by integrating Eq. (4-6):

(b)

If we integrate over the entire length of the beam, the change in moment
from A to B is equal to the value of the area under the shear diagram (AV),
as shown in Fig. 4-22a. Also, the slope of a tangent to the moment diagram
at any point x is equal to the value of the corresponding ordinate on the
shear-force diagram at that same point. Since the shear-force diagram is
quadratic, the bending-moment diagram is cubic. For convenience, these
differential relationships are summarized in the Chapter 4 Summary &
Review.

We should note that integrating the differential relationships is quite
simple in this example because the loading pattern is linear and continuous
and there are no concentrated loads or couples in the regions of integra-
tion. If concentrated loads or couples were present, discontinuities in the V
and M diagrams would exist, and we cannot integrate Eq. (4-3) through a
concentrated load nor can we integrate Eq. (4-6) through a couple (see
Section 4.4).

Simply supported beam. A free-body diagram of the simply supported
beam of Example 4-2 is shown in Fig. 4-22b; the expressions for reactions
RA and RB come from Eqs. (c, d) of Example 4-2. The shear-force and
 bending-moment diagrams are obtained by plotting the expressions from
Example 4-2 for V(x) [Eq. (k)] and M(x) [Eq. (l)]. As with the cantilever
beam discussed previously, the slope of the shear-force diagram at any
point x along the beam is equal to [see Eq. (4-1)] and the slope of
the bending-moment diagram at any point x is equal to V [see Eq. (4-4)].
The maximum value of the shear force occurs at support B where
[see Eq. (m) of Example 4-2], and the maximum value of the moment
occurs at the point at which The point of maximum moment can
be located by setting the expression for V(x) [Eq. (k) in Example 4-2] equal
to zero, then solving for . Solving for [Eq. (l) in Example 4-2]
provides the expression for shown in Fig. 4-22b.

Once again, we can use the alternative solution approach described
above for the cantilever beam: the change in shear from A to B is equal to
the negative value of the area under the distributed-load diagram (�Aq), as
shown in Fig. 4-22b, and the change in moment from A to B is equal to the
value of the area under the shear-force diagram (AV).

Beam with roller and sliding supports. A free-body diagram of this beam
from Example 4-2 is shown in Fig. 4-22c; the expressions for reactions 
RA and MB come from Eqs. (e, f) of Example 4-2. The shear-force and
 bending-moment diagrams are obtained by plotting the expressions from
Example  4-2 for V(x) [Eq. (o)] and M(x) [Eq. (p)]. As with the cantilever and
simply supported beams discussed previously, the slope of the shear-force
diagram at any point x along the beam is equal to [see Eq. (4-1)]
and the slope of the bending-moment diagram at any point x is equal to
V [see Eq. (4-4)]. The maximum value of the shear force occurs at support
A where [see Eq. (q) from Example 4-2], and the maximum value of
the bending moment occurs at support B where .

Once again, we can use the alternative solution approach described
above for the cantilever and simply supported beams; the change in
shear-force from A to B is equal to the negative value of the area under
the distributed load diagram (�Aq) as shown in Fig. 4-22c, and the change
in bending moment from A to B is equal to the value of the area under
the shear-force  diagram (Av).

M � MA � M � 0 � M �
L

x

0
V dx �

L

x

0
�q(x)dx

V � 0
x � 0

�q(x)

M max

M(xm)xm � L/23

V � 0.

x � L

�q(x)
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Chapter 4  Shear Forces and Bending Moments398

A beam ABC with an overhang at the left-hand end is shown in Fig. 4-23a.
The beam is subjected to a uniform load of intensity on the
overhang AB and a counterclockwise couple acting mid-
way between the supports at B and C.

Draw the shear-force and bending-moment diagrams for this beam.

M0 � 12.0 kN # m
q � 1.0 kN/m

Example 4-7• • •

(c)

0
M(kN·m) +2.0

–10.0
–8.0

(b)

0

V(kN) +1.25

–4.0

A
B

RB RC

(a)

C

= 8 mL—
2

q = 1.0 kN/m M0 = 12.0 kN·m

b =
4 m

= 8 mL—
2

Fig. 4-23 
Example 4-7: Beam with an
overhang

Solution
Reactions. We can readily calculate the reactions RB and RC from a free-body
diagram of the entire beam (Fig. 4-23a). In so doing, we find that RB is upward
and RC is downward, as shown in the figure. Their numerical values are

Shear forces. The shear force equals zero at the free end of the beam and
equals (or N) just to the left of support B. Since the load is uni-
formly distributed (that is, q is constant), the slope of the shear diagram is con-
stant and equal to [from Eq. (4-1)]. Therefore, the shear diagram is an
inclined straight line with negative slope in the region from A to B (Fig. 4-23b).

Because there are no concentrated or distributed loads between the
supports, the shear-force diagram is horizontal in this region. The shear force
is equal to the reaction RC, or 1.25 kN, as shown in the figure. (Note that the
shear force does not change at the point of application of the couple M0.)

The numerically largest shear force occurs just to the left of support B
and equals N.

Bending moments. The bending moment is zero at the free end and
decreases algebraically (but increases numerically) as we move to the right
until support B is reached. The slope of the moment diagram, equal to the
value of the shear force [from Eq. (4-4)], is zero at the free end and N
just to the left of support B. The diagram is parabolic (second degree) in this
region, with the vertex at the end of the beam. The moment at point B is

which is also equal to the area of the shear-force diagram between A and B
[see Eq. (4-6)].

The slope of the bending-moment diagram from B to C is equal to the
shear force, or 1.25 kN. Therefore, the bending moment just to the left of
the couple M0 is

�8.0 kN # m � (1.25 kN)(8.0 m) � 2.0 kN # m

MB � �
qb2

2
� �

1
2

(1.0 kN/m)(4.0 m)2 � �8.0 kN # m

�4.0 k

�4.0 k

�q

�4.0 k�qb

RB � 5.25 kN RC � 1.25 kN
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4.5 Shear-Force and Bending-Moment Diagrams 399

as shown on the diagram. Of course, we can get this same result by cutting
through the beam just to the left of the couple, drawing a free-body dia-
gram, and solving the equation of moment equilibrium.

The bending moment changes abruptly at the point of application of
the couple M0, as explained earlier in connection with Eq. (4-9). Because the
couple acts counterclockwise, the moment decreases by an amount equal
to M0. Thus, the moment just to the right of the couple M0 is

From that point to support C the diagram is again a straight line with slope
equal to 1.25 kN. Therefore, the bending moment at the support is

as expected.
Maximum and minimum values of the bending moment occur where

the shear force changes sign and where the couple is applied. Comparing
the various high and low points on the moment diagram, we see that the
numerically largest bending moment equals and occurs just to
the right of the couple M0. Recall that the bending-moment diagram is
 plotted on the compression side of the beam, so except for a small segment
 just to the left of midspan on BC, the entire top surface of the beam is in
 tension. 

If a roller support is now added at joint A and a shear release is inserted
just to the left of joint B (Fig. 4-23d), the support reactions must be recom-
puted. The beam is broken into two free-body diagrams, AB and BC, by
 cutting through the shear release (where ), and reaction RA is found
to be 4 kN by summing vertical forces in the left free-body diagram.  
Then by summing moments and forces in the entire structure,

. Finally, shear and moment diagrams can be plotted
for the modified structure. Adding the roller support at A and shear release
near B results in a substantial change to both the shear-force and bending-
moment diagrams compared to the original beam. For example, now the
first 12 m of the beam has compressive rather than tensile stress on the top
surface.

RB � �RC � 0.25 kN

V � 0

�10.0 kN # m

�10.0 kN # m � (1.25 kN)(8.0 m) � 0

2.0 kN # m � 12.0 kN # m � �10.0 kN # m

Fig. 4-23 (Continued)
Example 4-7: (d) Modified
beam with overhang—add
shear release

(d)

M0 = 12 kN·m

RB = 0.25 kNRA = 4 kN RC = �0.25 kN

q = 1 kN/m

V (kN)

M (kN·m)

Shear release at x = 4 m

8 m4 m 8 m

0.25

4

0

8 10

�2
0

A

B

C
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CHAPTER SUMMARY & REVIEW

In Chapter 4, we reviewed the analysis of statically determinate beams and
simple frames to find support reactions and internal stress resultants
(N, V, and M), then plotted axial force, shear, and bending-moment dia-
grams to show the variation of these quantities throughout the structure.
We considered clamped, sliding, pinned and roller supports, and both
concentrated and distributed loadings in assembling models of a variety of
structures with different support conditions. In some cases, internal
releases were included in the model to represent known locations of zero
values of N, V, or M. Some of the major concepts presented in this chap-
ter are as follows:

1. If the structure is statically determinate and stable, the laws of stat-
ics alone are sufficient to solve for all values of support reaction
forces and moments, as well as the magnitude of the internal axial
force (N), shear force (V), and bending moment (M) at any location
in the structure.

2. If axial, shear, or moment releases are present in the structure
model, the structure should be broken into separate free-body dia-
grams (FBD) by cutting through the release; an additional equation
of equilibrium is then available for use in solving for the unknown
support reactions shown in that FBD.

3. Graphical displays or diagrams showing the variation of N, V,
and M over a structure are useful in design because they readily
show the location of maximum values of N, V, and M needed in
design (to be considered for beams in Chapter 5). Note that, with a
deformation sign convention, the moment diagram is plotted on the
compression side of a structural member or portion of a member.

4. The rules for drawing shear and bending-moment diagrams may be
summarized as follows:

a. The ordinate on the distributed load curve (q) is equal to the neg-
ative of the slope on the shear diagram.

dV
dx

� �q
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401

b. The difference in shear values between any two points on the
shear diagram is equal to the (�) area under the distributed load
curve between those same two points.

c. The ordinate on the shear diagram (V) is equal to the slope on the
bending-moment diagram.

d. The difference in values between any two points on the moment
diagram is equal to the area under the shear diagram between
those same two points;

e. At those points at which the shear curve crosses the reference axis
(i.e., ), the value of the moment on the moment diagram is
a local maximum or minimum.

f. The ordinate on the axial force diagram (N) is equal to zero at an
axial force release; the ordinate on the shear diagram (V) is zero
at a shear release; and the ordinate on the moment diagram (M)
is zero at a moment release.

V � 0

� (area of the shear -force diagram between A and B)

MB � MA �
L

B

A
V dx

L

B

A
dM �

L

B

A
V dx

dM
dx

� V

VB � VA � �
L

B

A
q dx

� �(area of the loading diagram between A and B)

L

B

A
dV � �

L

B

A
q dx
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Shear Forces and Bending
Moments

4.3-1 Calculate the shear force V and bending moment M
at a cross section just to the left of the 7.0 kN load acting
on the simple beam AB shown in the figure.

PROBLEMS CHAPTER 4

4.3-4 Calculate the shear force V and bending moment M
at a cross section located 0.5 m from the fixed support of
the cantilever beam AB shown in the figure.

4.3-5 Consider the beam with an overhang shown in the
figure.

(a) Determine the shear force V and bending
moment M at a cross section located 5.5 m from the left-
hand end A.

(b) Find the required magnitude of load intensity q
acting on the right half of member BC that will result in a
zero shear force on the cross section 5.5 m from A.

402

A B

7.0 kN3.5 kN

3.0 m
0.8 m 1.2 m 1.0 m

PROB. 4.3-1

A
B

1.5 kN/m4.0 kN

1.0 m1.0 m 2.0 m

PROB. 4.3-4

B
A C

3 m

5.8 kN/m
q = 4.4 kN/m

3 m

5.5 m

1.8 m 1.8 m

PROB. 4.3-5

A
C

B

2.0 kN/m6.0 kN

1.0 m 1.0 m
0.5 m

4.0 m
2.0 m

PROB. 4.3-2

PP

bb L

Pb Pb

PROB. 4.3-3

4.3-2 Determine the shear force V and bending moment M
at the midpoint C of the simple beam AB shown in the
 figure.

4.3-3 Determine the shear force V and bending moment M
at the midpoint of the beam with overhangs (see figure).
Note that one load acts downward and the other upward,
and clockwise moments Pb are applied at each support.

4.3-6 The beam ABC shown in the figure is simply sup-
ported at A and B and has an overhang from B to C. The
loads consist of a horizontal force acting at
the end of a vertical arm and a vertical force 
acting at the end of the overhang.

(a) Determine the shear force V and bending
moment M at a cross section located 3.0 m from the left-
hand support. (Note: Disregard the widths of the beam
and vertical arm and use centerline dimensions when
making calculations.)

(b) Find the value of load P2 that results in at
a cross section located 2.0 m from the left-hand support.

(c) If , find the value of load P1 that
results in at a cross section located 2.0 m from the
left-hand support.

M � 0
P2 � 8 kN

V � 0

P2 � 8.0 kN
P1 � 4.0 kN

Chapter 4  Shear Forces and Bending Moments
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4.3-9 A curved bar ABC is subjected to loads in the form
of two equal and opposite forces P, as shown in the figure.
The axis of the bar forms a semicircle of radius r.

Determine the axial force N, shear force V, and bend-
ing moment M acting at a cross section defined by the
angle θ.

403

4.0 m 1.0 m

BA C

P2 = 8.0 kN
P1 = 4.0 kN

1.0 m

PROB. 4.3-6

DA
B C

bb L

q

PROB. 4.3-7

PP P

C

B

A O

r

A

V

NM

uu

PROB. 4.3-9

1.0 m

1600 N/m 900 N/m

2.6 m2.6 m

PROB. 4.3-10PROB. 4.3-8

4.3-7 The beam ABCD shown in the figure has overhangs
at each end and carries a uniform load of intensity q.

For what ratio b/L will the bending moment at the
midpoint of the beam be zero?

4.3-8 At full draw, an archer applies a pull of 130 N to the
bowstring of the bow shown in the figure. Determine the
bending moment at the midpoint of the bow.

4.3-10 Under cruising conditions the distributed load act-
ing on the wing of a small airplane has the idealized varia-
tion shown in the figure.

Calculate the shear force V and bending moment M
at the inboard end of the wing.

Wings of a small airplane have distributed uplift loads.
(Thomasz Gulla/Shutterstock)

350 mm

1400 mm

70°

Problems Chapter 4
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Chapter 4  Shear Forces and Bending Moments

4.3-13 Beam ABCD represents a reinforced-concrete
foundation beam that supports a uniform load of intensity

m (see figure). Assume that the soil pressure
on the underside of the beam is uniformly distributed with
intensity q2.

(a) Find the shear force VB and bending moment MB
at point B.

(b) Find the shear force Vm and bending moment Mm
at the midpoint of the beam.

#q1 � 40 kN

404

4.3-11 A beam ABCD with a vertical arm CE is supported
as a simple beam at A and D (see figure part a). A cable
passes over a small pulley that is attached to the arm at E.
One end of the cable is attached to the beam at point B.

(a) What is the force P in the cable if the bending
moment in the beam just to the left of point C is equal
numerically to 7.5 kN m? (Note: Disregard the widths of
the beam and vertical arm and use centerline dimensions
when making calculations.)

(b) Repeat part (a) if a roller support is added at C and
a shear release is inserted just left of C (see figure part b).

#

A

E P

C DB

Cable

(a)

3.0 m

2.25 m 2.25 m 2.25 m

PROB. 4.3-11

4.3-12 A simply supported beam AB supports a trape-
zoidally distributed load (see figure). The intensity of the
load varies linearly from 50 kN/m at support A to 25 kN/m
at support B.

Calculate the shear force V and bending moment M
at the midpoint of the beam.

BA

50 kN/m
25 kN/m

4 m

PROB. 4.3-12

A

B C

D

1 m 1 m

q2

q1 = 40 kN/m

3 m

PROB. 4.3-13

PROB. 4.3-14

4.3-14 The simply supported beam ABCD is loaded by a
weight through the arrangement shown in the
figure part a. The cable passes over a small frictionless pul-
ley at B and is attached at E to the end of the vertical arm.

(a) Calculate the axial force N, shear force V, and
bending moment M at section C, which is just to the left of
the vertical arm. (Note: Disregard the widths of the beam
and vertical arm and use centerline dimensions when mak-
ing calculations.)

(b) Repeat part (a) if a roller support is added at C and
a moment release is inserted just left of C (see figure part b).

W � 27 kN

A

E

DCB

W = 27 kN

2.0 m 2.0 m

(a)

2.0 m

Cable
1.5 m

(b)

A

E

DCB

W = 27 kN

2.0 m 2.0 m 2.0 m

CableMoment release
1.5 m

(b)

A

E P

C DB

Cable

Shear release

3.0 m

2.25 m 2.25 m 2.25 m
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Problems Chapter 4

4.3-15 The centrifuge shown in the figure rotates in a hor-
izontal plane (the xy plane) on a smooth surface about the
z axis (which is vertical) with an angular acceleration α.
Each of the two arms has weight w per unit length and
supports a weight at its end.

Derive formulas for the maximum shear force and
maximum bending moment in the arms, assuming

and .c � L/10b � L/9

W � 2.0wL

405

Draw the shear-force and bending-moment diagrams
for this beam.

b

c

L

W

x

W

y

PROB. 4.3-15

A B

L

P Pa a

PROB. 4.5-1

A B

L

a

M0

PROB. 4.5-2

A
B

q

L—
2

L—
2

PROB. 4.5-3

A B

P

L—
2

L—
2

M1 =
PL—–
4

PROB. 4.5-4

A B

P

L—
3

L—
3

L—
3

M1 =
PL—–
3

PROB. 4.5-5

Shear-Force and Bending-Moment
Diagrams

When solving the problems for Section 4.5, draw the shear-
force and bending-moment diagrams approximately to scale
and label all critical ordinates, including the maximum and
minimum values.

Probs 4.5-1 through 4.5-10 are symbolic problems and
Probs. 4.5-11 through 4.5-24 are numerical problems. The
remaining problems (4.5-25 through 4.5-40) involve special-
ized topics, such as optimization, beams with hinges, and
moving loads.

4.5-1 Draw the shear-force and bending-moment dia-
grams for a simple beam AB supporting two equal con-
centrated loads P (see figure).

4.5-3 Draw the shear-force and bending-moment dia-
grams for a cantilever beam AB carrying a uniform load of
intensity q over one-half of its length (see figure).

4.5-4 The cantilever beam AB shown in the figure is sub-
jected to a concentrated load P at the midpoint and a
counterclockwise couple of moment at the
free end.

Draw the shear-force and bending-moment diagrams
for this beam.

M1 � PL/4

4.5-5 The simple beam AB shown in the figure is subjected
to a concentrated load P and a clockwise couple

acting at the third points.
Draw the shear-force and bending-moment diagrams

for this beam.

M1 � PL/3

4.5-2 A simple beam AB is subjected to a counterclock-
wise couple of moment M0 acting at distance a from the
left-hand support (see figure).
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Chapter 4  Shear Forces and Bending Moments

4.5-9 Beam ABCD is simply supported at B and C and has
overhangs at each end (see figure). The span length is L
and each overhang has length L/3. A uniform load of
intensity q acts along the entire length of the beam.

Draw the shear-force and bending-moment diagrams
for this beam.

406

4.5-6 A simple beam AB subjected to couples M1 and 3M1
acting at the third points is shown in the figure.

Draw the shear-force and bending-moment diagrams
for this beam.

A B

M1 3M1

L—
3

L—
3

L—
3

PROB. 4.5-6

A C

L

D
E

P

B

L—
4

L—
4

L—
2

PROB. 4.5-7

A C
D

B

a a a a

P P Pa

PROB. 4.5-8

q

LL
3

DA
B C

L
3

PROB. 4.5-9

A

X B
L

q0
q0q(x) = 

(a)

x
L

X

(b)

A
B

L

q0

q0q(x) = x
L√

⎯

PROB. 4.5-10

4.5-7 A simply supported beam ABC is loaded by a verti-
cal load P acting at the end of a bracket BDE (see figure).

(a) Draw the shear-force and bending-moment dia-
grams for beam ABC.

(b) Now assume that load P at E is directed to the
right. The vertical dimension BD is L/5. Draw axial-force,
shear-force, and bending-moment diagrams for ABC.

4.5-8 A beam ABC is simply supported at A and B and
has an overhang BC (see figure). The beam is loaded by
two forces P and a clockwise couple of moment Pa at D
that act through the arrangement shown.

(a) Draw the shear-force and bending-moment dia-
grams for beam ABC.

(b) If moment Pa at D is replaced by moment M, find
an expression for M in terms of variables P and a so that
the reaction at B goes to zero. Plot the associated shear-
force and bending-moment diagrams for beam ABC.

4.5-10 Draw the shear-force and bending-moment dia-
grams for a cantilever beam AB acted upon by two differ-
ent load cases.

(a) A distributed load with linear variation and max-
imum intensity q0 (see figure part a)

(b) A distributed load with parabolic variation and
maximum intensity q0 (see figure part b).

4.5-11 The simple beam AB supports a triangular load of
maximum intensity acting over one-half
of the span and a concentrated load acting at
midspan (see figure). Draw the shear-force and bending-
moment diagrams for this beam.

P � 350 N
q0 � 1750 N/m
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Problems Chapter 4

4.5-12 The beam AB shown in the figure supports a uni-
form load of intensity 3000 N/m acting over half the length
of the beam. The beam rests on a foundation that pro-
duces a uniformly distributed load over the entire length.
Draw the shear-force and bending-moment diagrams for
this beam.

407

4.5-15 The uniformly loaded beam ABC has simple sup-
ports at A and B and an overhang BC (see figure).

Draw the shear-force and bending-moment diagrams
for this beam.A B

q0 = 1750 N/m
P = 350 N

= 1.0 mL—
2

= 1.0 mL—
2

PROB. 4.5-11

0.8 m

3000 N/m

A B

0.8 m1.6 m

PROB. 4.5-12

A
B

2 m 2 m

4 kN

3 kN·m

PROB. 4.5-13

A
B

2 m 2 m

2.5 kN

2.0 kN/m

PROB. 4.5-14

A C
B

2 m

5 kN/m

1.5 m

PROB. 4.5-15

A C
B

1.6 m 1.6 m 1.6 m

3 kN • m12 kN/m

PROB. 4.5-16

PROB. 4.5-17

4.5-13 A cantilever beam AB supports a couple and a
concentrated load, as shown in the figure. Draw the
shear-force and bending-moment diagrams for this beam.

4.5-14 The cantilever beam AB shown in the figure is sub-
jected to a triangular load acting throughout one-half of
its length and a concentrated load acting at the free end.

Draw the shear-force and bending-moment diagrams
for this beam.

4.5-16 A beam ABC with an overhang at one end sup-
ports a uniform load of intensity 12 kN/m and a concen-
trated moment of magnitude at C (see figure).

Draw the shear-force and bending-moment diagrams
for this beam.

3 kN # m

4.5-17 Consider two beams, which are loaded the same
but have different support conditions. Which beam has
the larger maximum moment?

First, find support reactions, then plot axial force (N),
shear (V), and moment (M) diagrams for all three beams.
Label all critical N, V, and M values and also the distance
to points where N, V, and/or M is zero.

(a)

L
2
— L

2
— L

4
— L

4
—

B

PL

PL

A C

D

D

P 4

3

(b)

L
2
— L

2
— L

4
— L

4
—

B

PL

PL

A C

P 4

3
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Chapter 4  Shear Forces and Bending Moments

4.5-20 A simple beam AB is loaded by two segments of
uniform load and two horizontal forces acting at the ends
of a vertical arm (see figure).

Draw the shear-force and bending-moment diagrams
for this beam.

408

4.5-18 The three beams below are loaded the same and
have the same support conditions. However, one has a
moment release just to the left of C, the second has a shear
release just to the right of C and the third has an axial
release just to the left of C. Which beam has the largest
maximum moment?

First, find support reactions, then plot axial force (N),
shear (V), and moment (M) diagrams for all three beams.
Label all critical N, V, and M values and also the distance
to points where N, V, and/or M is zero.

1.2 m 0.3 m

BA C

P2 = 4000 N
P1 = 1800 N

0.3 m

PROB. 4.5-19

A B

4 kN/m8 kN4 kN/m

2 m2 m2 m 2 m

1 m

1 m

8 kN

PROB. 4.5-20
PROB. 4.5-18

4.5-19 The beam ABC shown in the figure is simply sup-
ported at A and B and has an overhang from B to C. The
loads consist of a horizontal force acting at
the end of the vertical arm and a vertical force

acting at the end of the overhang.P2 � 4000 N

P1 � 1800 N

4.5-21 The two beams below are loaded the same and
have the same support conditions. However, the location
of internal axial, shear, and moment releases is different for
each beam (see figures). Which beam has the larger maxi-
mum moment?

First, find support reactions, then plot axial force (N),
shear (V), and moment (M) diagrams for both beams.
Label all critical N, V, and M values and also the distance
to points where N, V, and/or M is zero.

Draw the shear-force and bending-moment diagrams
for this beam. (Note: Disregard the widths of the beam
and vertical arm and use centerline dimensions when mak-
ing calculations.)

(a)

L
2
— L

2
— L

4
— L

4
—

B

PL at B
Moment
release

PL at C

A C D

P 4

3

(b)

L
2
— L

2
— L

4
— L

4
—

B

PL at B

PL at C

A C D

P 4

3

Shear
release

Axial force
release

(c)

L
2
— L

2
— L

4
— L

4
—

B

PL at B

PL at C

A C

P 4
3
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Problems Chapter 4 409

A D

1.2 m
4.2 m 4.2 m

5.1 kN/m5.1 kN/m

10.6 kN/m

B C

PROB. 4.5-22

PROB. 4.5-23

4.5-23 A beam ABCD with a vertical arm CE is supported
as a simple beam at A and D (see figure). A cable passes
over a small pulley that is attached to the arm at E. One
end of the cable is attached to the beam at point B. The
tensile force in the cable is 8.0 kN.

(a) Draw the shear-force and bending-moment dia-
grams for beam ABCD. (Note: Disregard the widths of the
beam and vertical arm and use centerline dimensions when
making calculations.)

4.5-22 The beam ABCD shown in the figure has overhangs
that extend in both directions for a distance of 4.2 m from
the supports at B and C, which are 1.2 m apart.

Draw the shear-force and bending-moment diagrams
for this overhanging beam.

(b) Repeat part (a) if a roller support is added at C and
a shear release is inserted just left of C (see figure part b).

(a)

L
2
— L

2
— L

4
— L

4
—

B

PL
Moment
release

PL
A

C D

P 4

3

Shear
release

Axial force
release

(b)

L
2
— L

2
— L

4
— L

4
—

B

PL
Moment
release

PL
A

C

P 4

3

Shear
release

Axial force
release

D

PROB. 4.5-21

A

E

C DB

Cable
2.5 m

8.0 kN

1.8 m 1.8 m 1.8 m

(a)

P

A

E

C DB

Cable
2.5 m

1.8 m 1.8 m 1.8 m

Shear release

(b)
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Chapter 4  Shear Forces and Bending Moments

4.5-27 The simple beam ACB shown in the figure is sub-
jected to a triangular load of maximum intensity

at , and a concentrated
moment at A.

(a) Draw the shear-force and bending-moment dia-
grams for this beam.

M � 400 N # m
q0 � 2.6 kN/m a � 1.8 m

410

4.5-24 Beams ABC and CD are supported at A, C, and D
and are joined by a hinge (or moment release) just to the
left of C. The support at A is a sliding support (hence reac-
tion for the loading shown below). Find all sup-
port reactions, then plot shear (V) and moment (M)
diagrams. Label all critical V and M values and also the
distance to points where either V and/or M is zero.

Ay � 0

A
B

1.0 kN/m3 kN

1.6 m0.8 m 0.8 m

PROB. 4.5-26

B
C

A

2.6 kN/m

400 N·m

2.1 m

1.8 m

PROB. 4.5-27

BA

3.0 kN/m
1.0 kN/m

2.4 m

PROB. 4.5-28

A B

L

a

q

PROB. 4.5-29

PROB. 4.5-24

4.5-25 The simple beam AB shown in the figure supports
a concentrated load and a segment of uniform load.

(a) Draw the shear-force and bending-moment dia-
grams for this beam.

(b) Find the value of P that will result in zero shear at
. Draw the shear-force and bending-moment

diagrams for this case.
x � 4.2 m

A
C

x

x = 4.2 m

B

30.0 kN/m

P = 22.0 kN

6.0 m
3.0 m1.5 m

PROB. 4.5-25

4.5-26 The cantilever beam shown in the figure supports
a concentrated load and a segment of uniform load.

Draw the shear-force and bending-moment diagrams
for this cantilever beam.

4.5-28 A beam with simple supports is subjected to a
trapezoidally distributed load (see figure). The intensity of
the load varies from 1.0 kN/m at support A to 3.0 kN/m at
support B.

Draw the shear-force and bending-moment diagrams
for this beam.

4.5-29 A beam of length L is being designed to support a
uniform load of intensity q (see figure). If the supports of
the beam are placed at the ends, creating a simple beam,
the maximum bending moment in the beam is qL2/8.
However, if the supports of the beam are moved symmet-
rically toward the middle of the beam (as pictured), the
maximum bending moment is reduced.

Determine the distance a between the supports so that
the maximum bending moment in the beam has the small-
est possible numerical value. Draw the shear-force and
bending-moment diagrams for this condition.

(b) Find the value of distance a that results in the
maximum moment occurring at L/2. Draw the shear-force
and bending-moment diagrams for this case.

(c) Find the value of distance a for which Mmax is the
largest possible value.

L
2
— L

2
—

L
2
—

B

PL

A

C

Sliding
support

Moment
release

q0 = P/L
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Problems Chapter 4

4.5-30 The compound beam ABCDE shown in the figure
consists of two beams (AD and DE) joined by a hinged
connection at D. The hinge can transmit a shear force but
not a bending moment. The loads on the beam consist of
a 4-kN force at the end of a bracket attached at point B
and a 2-kN force at the midpoint of beam DE. Draw the
shear-force and bending-moment diagrams for this com-
pound beam.

411

4.5-32 The shear-force diagram for a simple beam is
shown in the figure.

Determine the loading on the beam and draw the
bending-moment diagram, assuming that no couples act
as loads on the beam.

A E
B C D

4 kN

2 m2 m2 m2 m

1 m

2 kN
1 m

PROB. 4.5-30

L

(a)

A

y

B

k

x

Linear q(x)
q0

(b)

L

B

k

x

q0

q0q(x) = x
L√

⎯

PROB. 4.5-31

1 m 1 m 1 m 1 m
–10 kN –10 kN

00
V

5 kN5 kN

PROB. 4.5-32

4.8 m

800 N 667 N 667 N

–1334 N

134 N

667 N

V

1.2 m

00

1.2 m

PROB. 4.5-33

4.5-31 Draw the shear-force and bending-moment dia-
grams for beam AB, with a sliding support at A and an
elastic support with spring constant k at B acted upon by
two different load cases.

(a) A distributed load with linear variation and max-
imum intensity q0 (see figure part a).

(b) A distributed load with parabolic variation with
maximum intensity q0 (see figure part b).

4.5-33 The shear-force diagram for a beam is shown in the
figure. Assuming that no couples act as loads on the beam,
determine the forces acting on the beam and draw the
bending-moment diagram.

4.5-34 The compound beam below has an internal
moment release just to the left of B and a shear release just
to the right of C. Reactions have been computed at A, C,
and D and are shown in the figure.

First, confirm the reaction expressions using statics,
then plot shear (V) and moment (M) diagrams. Label all
critical V and M values and also the distance to points
where either V and/or M is zero.

L
2
— L

2
— L

2
—

BA C D

Ax = 0

w0
w0

Shear
release

Moment
release

MA =
w0L2

12
––––

Ay =
w0L

6
–––– Cy =

w0L
3

––––

Dy =
–w0L

4
––––

PROB. 4.5-34
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Chapter 4  Shear Forces and Bending Moments

4.5-36 A simple beam AB supports two connected wheel
loads P and 2P that are distance d apart (see figure). The
wheels may be placed at any distance x from the left-hand
support of the beam.

(a) Determine the distance x that will produce the
maximum shear force in the beam, and also determine the
maximum shear force Vmax.

(b) Determine the distance x that will produce the
maximum bending moment in the beam, and also draw the
corresponding bending-moment diagram. (Assume

, , and .)P � 10 kN d � 2.4 m L � 12 m

412

Linear q(x)
q0 at B

(a)

L
2
—

L
4
—

L
4
—

D

L

B

Moment
releases

A

y

x

PL
C

P = q0L

4.5-35 The compound beam below has an shear release
just to the left of C and a moment release just to the right
of C. A plot of the moment diagram is provided below for
applied load P at B and triangular distributed loads w(x)
on segments BC and CD.

First, solve for reactions using statics, then plot axial
force (N) and shear (V) diagrams. Confirm that the
moment diagram is that shown below. Label all critical N,
V, and M values and also the distance to points where N,
V, and/or M is zero.

L
2
— L

2
— L

2
—

BA C D

M

w0w0

Shear
release

Moment
release

4

3

w0L2

30
––––

–w0L2

24
–––––

2w0L2

125
–––––

P =
w0L

2
––––

PROB. 4.5-35

L

BA

x d

P 2P

PROB. 4.5-36

4.5-37 The inclined beam represents a ladder with the fol-
lowing applied loads: the weight (W) of the house painter
and the distributed weight (w) of the ladder itself.

(a) Find support reactions at A and B, then plot axial
force (N), shear (V), and moment (M) diagrams. Label all
critical N, V, and M values and also the distance to points
where any critical ordinates are zero. Plot N, V, and M
diagrams normal to the inclined ladder.

(b) Repeat part (a) for the case of the ladder sus-
pended from a pin at B and traveling on a roller support
perpendicular to the floor at A.

PROB. 4.5-37

4.5-38 Beam ABC is supported by a tie rod CD as shown.
Two configurations are possible: pin support at A and
downward triangular load on AB or pin at B and upward
load on AB. Which has the larger maximum moment?

First, find all support reactions, then plot axial force
(N), shear (V), and moment (M) diagrams for ABC only
and label all critical N, V, and M values. Label the distance
to points where any critical ordinates are zero.

2.5 m
1.

8 
m

5.
5 

m

w
 =

 3
6.

5 
N

/m

B

A

u
u

u

u

u

u

W = 670 N
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Problems Chapter 4 413

4.5-39 The plane frame below consists of column AB and
beam BC which carries a triangular distributed load (see
figure part a). Support A is fixed, and there is a roller sup-
port at C. Column AB has a moment release just below
joint B.

(a) Find support reactions at A and C, then plot axial
force (N), shear-force (V), and bending-moment (M) dia-
grams for both members. Label all critical N, V, and M
values and also the distance to points where any critical
ordinates are zero.

(b) Repeat part (a) if a parabolic lateral load acting to
the right is now added on column AB (figure part b).

4.5-40 The plane frame shown below is part of an elevated
freeway system. Supports at A and D are fixed but there

Linear q(x)

q0 at B

(b)

L
2
—

L
4
—

L
4
—

D

L

B

Moment
releases

A

y

x

PL
C

P = q0L

PROB. 4.5-38

PROB. 4.5-39

750 N/m

45 kN

18 kN

Moment
release

C

A

F

E

D

19 m

1500 N/m

B

7 m

7 m

PROB. 4.5-40

are moment releases at the base of both columns (AB and
DE), as well as in column BC and at the end of beam BE.

Find all support reactions, then plot axial force (N),
shear (V), and moment (M) diagrams for all beam and col-
umn members. Label all critical N, V, and M values and also
the distance to points where any critical ordinates are zero.

q0

q0

2L

L
B C

Moment
release

(a) (b)

A

q0

2L

L

y

x

B C

Moment
release

A
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q0q(y) = y
2L
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⎯
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Chapter 4  Shear Forces and Bending Moments

R-4.4 An L-shaped beam is loaded as shown in the figure.
The bending moment at the midpoint of span AB is
approximately:

(A) 6.8 kN m
(B) 10.1 kN m
(C) 12.3 kN m
(D) 15.5 kN m#

#

#

#

414

R-4.1 A simply supported beam with proportional loading
has span length . Load P is 1.2 m

from support A and load 2P is 1.5 m from support B. The
bending moment just left of load 2P is approximately:

(A) 5.7 kN m
(B) 6.2 kN m
(C) 9.1 kN m
(D) 10.1 kN m#

#

#

#

L � 5 m(P � 4.1 kN)

SOME ADDITIONAL REVIEW PROBLEMS: CHAPTER 4

A B

2PP

L
a b c

A
C

B

1.8 kN/m7.5 kN

1.0 m 1.0 m
0.5 m

5.0 m
3.0 m

A
B

1.8 kN/m4.5 kN

1.0 m1.0 m 3.0 m

5.0 m 1.0 m

BA C

9 kN
4.5 kN

1.0 m

A

E P

C DB

Cable
4 m

2 m 3 m 2 m

R-4.5 A T-shaped simple beam has a cable with force P
anchored at B and passing over a pulley at E, as shown
in the figure. The bending moment just left of C is
1.25 kN m. The cable force P is approximately:

(A) 2.7 kN
(B) 3.9 kN
(C) 4.5 kN
(D) 6.2 kN

#

R-4.3 A cantilever beam is loaded as shown in the figure.
The bending moment at 0.5 m from the support is approx-
imately:

(A) 12.7 kN m
(B) 14.2 kN m
(C) 16.1 kN m
(D) 18.5 kN m#

#

#

#

R-4.2 A simply supported beam is loaded as shown in the
figure. The bending moment at point C is approximately:

(A) 5.7 kN m
(B) 6.1 kN m
(C) 6.8 kN m
(D) 9.7 kN m#

#

#

#
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Some Additional Review Problems: Chapter 4

R-4.6 A simple beam with attached bracket
BDE has force applied downward at E. The
bending moment just right of B is approximately:

(A) 6 kN m
(B) 10 kN m
(C) 19 kN m
(D) 22 kN m#

#

#

#

P � 5 kN
(L � 9 m)

415

R-4.7 A simple beam AB with an overhang BC is loaded as
shown in the figure. The bending moment at the midspan
of AB is approximately:

(A) 8 kN m
(B) 12 kN m
(C) 17 kN m
(D) 21 kN m#

#

#

#

A C

L

D
E

P

B

L—
6

L—
3

L—
2

A C
B

1.6 m 1.6 m 1.6 m

4.5 kN   m15 kN/m
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Beams are essential load carrying components in modern building and bridge construction. 
(© Can Stock Photo Inc./ronyzmbow)

Chapter 5 is concerned with stresses and strains in
beams which have loads applied in the xy plane, a
plane of symmetry of the cross section, resulting in
beam deflection in that same plane, known as the
plane of bending. Both pure bending (beam flexure
under constant bending moment) and nonuniform
bending (flexure in the presence of shear forces) are
discussed (Section 5.2). We will see that strains and
stresses in the beam are directly related to the
curvature κ of the deflection curve (Section 5.3). A
strain-curvature relation will be developed from

 consideration of longitudinal strains developed in the
beam during bending; these strains vary linearly with
distance from the neutral surface of the beam  
(Section 5.4). When Hooke’s law (which applies for
linearly elastic materials) is combined with the strain-
curvature relation, we find that the neutral axis passes
through the centroid of the cross section. As a result,
x and y axes are seen to be principal centroidal axes.
By consideration of the moment resultant of the nor-
mal stresses acting over the cross section, we next
derive the moment-curvature relation which relates

C H A P T E R5
Stresses in Beams 
(Basic Topics)

I CHAPTER OVERVIEW
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curvature (κ) to moment (M) and flexural rigidity
(EI). This will lead to the differential equation of the
beam elastic curve, a topic for consideration in
Chapter 9 when we will discuss beam deflections in
detail. Of immediate interest here, however, are beam
stresses, and the moment- curvature relation is next
used to develop the flexure formula (Section 5.5). The
flexure formula shows that normal stresses (σx) vary
linearly with distance (y) from the neutral surface and
depend on bending moment (M) and moment of iner-
tia (I) of the cross section. Next, the section modulus
(S) of the beam cross section is defined and then used
in design of beams in Section 5.6. In beam design, we
use the maximum bending moment (obtained
from the bending moment diagram (Section 4.5)) and
the allowable normal stress for the material to
compute the required section modulus, then select an
appropriate beam of steel or wood from the tables in
Appendices E and F. If the beam is nonprismatic
(Section 5.7), the flexure formula still applies pro-
vided that changes in cross-sectional dimensions are
gradual. However, we cannot assume that the maxi-
mum stresses occur at the cross section with the
largest bending moment.

For beams in nonuniform bending, both normal
and shear stresses are developed and must be

 considered in beam analysis and design. Normal
stresses are computed using the flexure formula, as
noted above, and the shear formula must be used to
calculate shear stresses (τ) which vary over the height
of the beam (Sections 5.8 and 5.9). Maximum normal
and shear stresses do not occur at the same location
along a beam, but in most cases, maximum normal
stresses control the design of the beam. Special consid-
eration is given to shear stresses in beams with flanges
(e.g., W and C shapes) (Section 5.10). Built-up beams
fabricated of two or more pieces of material must be
designed as though they were made up of one piece,
and then the connections between the parts (e.g., nails,
bolts, welds, and glue) are designed to ensure that the
connections are strong enough to transmit the hori-
zontal shear forces acting between the parts of the
beam (Section 5.11). If structural members are sub-
jected to the simultaneous action of both bending and
axial loads and are not too slender so as to avoid buck-
ling, the combined stresses can be obtained by super-
position of the bending stresses and the axial stresses
(Section 5.12). Finally, for beams with high localized
stresses due to holes, notches, or other abrupt changes
in dimensions, stress concentrations must be consid-
ered, especially for beams made of brittle materials or
subjected to dynamic loads (Section 5.13).

(σallow)

(Mmax )

Chapter 5 is organized as follows:
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5.2 Pure Bending and Nonuniform Bending 418
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Chapter 5  Stresses in Beams (Basic Topics)

5.1 INTRODUCTION
In the preceding chapter we saw how the loads acting on a beam create
internal actions (or stress resultants) in the form of shear forces and bend-
ing moments. In this chapter we go one step further and investigate the
stresses and strains associated with those shear forces and bending
moments. Knowing the stresses and strains, we will be able to analyze and
design beams subjected to a variety of loading conditions.

The loads acting on a beam cause the beam to bend (or flex), thereby
deforming its axis into a curve. As an example, consider a cantilever beam
AB subjected to a load P at the free end (Fig. 5-1a). The initially straight
axis is bent into a curve (Fig. 5-1b), called the deflection curve of the beam.

For reference purposes, we construct a system of coordinate axes
(Fig. 5-1b) with the origin located at a suitable point on the longitudinal
axis of the beam. In this illustration, we place the origin at the fixed sup-
port. The positive x axis is directed to the right, and the positive y axis is
directed upward. The z axis, not shown in the figure, is directed outward
(that is, toward the viewer), so that the three axes form a right-handed
coordinate system.

The beams considered in this chapter (like those discussed in Chapter 4)
are assumed to be symmetric about the xy plane, which means that the
y axis is an axis of symmetry of the cross section. In addition, all loads
must act in the xy plane. As a consequence, the bending deflections occur
in this same plane, known as the plane of bending. Thus, the deflection
curve shown in Fig. 5-1b is a plane curve lying in the plane of bending.

The deflection of the beam at any point along its axis is the dis-
placement of that point from its original position, measured in the 
y direction. We denote the deflection by the letter v to distinguish it from
the coordinate y itself (see Fig. 5-1b).*

5.2 PURE BENDING AND NONUNIFORM
BENDING
When analyzing beams, it is often necessary to distinguish between pure
bending and nonuniform bending. Pure bending refers to flexure of a
beam under a constant bending moment. Therefore, pure bending occurs
only in regions of a beam where the shear force is zero [because

; see Eq. (4-6)]. In contrast, nonuniform bending refers to flex-
ure in the presence of shear forces, which means that the bending moment
changes as we move along the axis of the beam.

As an example of pure bending, consider a simple beam AB loaded by
two couples M1 having the same magnitude but acting in opposite directions
(Fig. 5-2a). These loads produce a constant bending moment
throughout the length of the beam, as shown by the bending moment
 diagram in part (b) of the figure. Note that the shear force V is zero at all
cross sections of the beam.

M � M1

V � dM/dx

418

(a)

(b)

B

B

A

A

P

x

y v

Fig. 5-1
Bending of a cantilever beam:

(a) beam with load, 
and (b) deflection curve

*In applied mechanics, the traditional symbols for displacements in the x, y, and z directions are u, v, and w,
respectively.

A B

0

M
M1

M1 M1

(a)

(b)

Fig. 5-2
Simple beam in pure bending

(M � M1)
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5.3 Curvature of a Beam 419

Another illustration of pure bending is given in Fig. 5-3a, where the
cantilever beam AB is subjected to a clockwise couple M2 at the free end.
There are no shear forces in this beam, and the bending moment M is con-
stant throughout its length. The bending moment is negative
as shown by the bending moment diagram in part (b) of Fig. 5-3.

The symmetrically loaded simple beam of Fig. 5-4a is an example of
a beam that is partly in pure bending and partly in nonuniform bending,
as seen from the shear-force and bending-moment diagrams (Figs. 5-4b
and c). The central region of the beam is in pure bending because the shear
force is zero and the bending moment is constant. The parts of the beam
near the ends are in nonuniform bending because shear forces are present
and the bending moments vary.

In the following two sections we will investigate the strains and
stresses in beams subjected only to pure bending. Fortunately, we can
often use the results obtained for pure bending even when shear forces are
present, as explained later (see the last paragraph in Section 5.8).

(M � �M2),

A B

P P

−P

a a

0

0

V

M

P

Pa(a)

(b)

(c)

Fig. 5-4
Simple beam with central region
in pure bending and end regions
in nonuniform bending

5.3 CURVATURE OF A BEAM
When loads are applied to a beam, its longitudinal axis is deformed into a
curve, as illustrated previously in Fig. 5-1. The resulting strains and stresses
in the beam are directly related to the curvature of the deflection curve.

To illustrate the concept of curvature, consider again a cantilever
beam subjected to a load P acting at the free end (see Fig. 5-5a on the next
page). The deflection curve of this beam is shown in Fig. 5-5b. For pur-
poses of analysis, we identify two points m1 and m2 on the deflection
curve. Point m1 is selected at an arbitrary distance x from the y axis and
point m2 is located a small distance ds further along the curve. At each of
these points we draw a line normal to the tangent to the deflection curve,
that is, normal to the curve itself. These normals intersect at point O�,
which is the center of curvature of the deflection curve. Because most
beams have very small deflections and nearly flat deflection curves, 
point O� is usually located much farther from the beam than is indicated
in the figure.

The distance m1O� from the curve to the center of curvature is called
the radius of curvature ρ (Greek letter rho), and the curvature κ (Greek
 letter kappa) is defined as the reciprocal of the radius of curvature. Thus,

(5-1)κ �
1
ρ

M

M2

M2

�M2

A B

0

(a)

(b)

Fig. 5-3
Cantilever beam in pure
 bending (M � �M2)
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Chapter 5  Stresses in Beams (Basic Topics)

curvature is a measure of how sharply a beam is bent. If the load on a
beam is small, the beam will be nearly straight, the radius of curvature will
be very large, and the curvature will be very small. If the load is increased,
the amount of bending will increase—the radius of curvature will become
smaller, and the curvature will become larger.

From the geometry of triangle (Fig. 5-5b) we obtain

(5-2)

in which dθ (measured in radians) is the infinitesimal angle between the
normals and ds is the infinitesimal distance along the curve between points
m1 and m2. Combining Eq. (5-2) with Eq. (5-1), we get

(5-3)

This equation for curvature is derived in textbooks on calculus and holds
for any curve, regardless of the amount of curvature. If the curvature is
constant throughout the length of a curve, the radius of curvature will also
be constant and the curve will be an arc of a circle.

The deflections of a beam are usually very small compared to its
length (consider, for instance, the deflections of the structural frame of an
automobile or a beam in a building). Small deflections mean that the
deflection curve is nearly flat. Consequently, the distance ds along the
curve may be set equal to its horizontal projection dx (see Fig. 5-5b).
Under these special conditions of small deflections, the equation for the
curvature becomes

(5-4)

Both the curvature and the radius of curvature are functions of the dis-
tance x measured along the x axis. It follows that the position O� of the
center of curvature also depends upon the distance x.

κ �
1
ρ

�
dθ
dx

κ �
1
ρ

�
dθ
ds

O¿m1m2

ρ dθ � ds

420

BA

P

(a)

A

y

x dx

ds

(b)

B

x
m1

m 2

du

O′

r

Fig. 5-5
Curvature of a bent beam: 

(a) beam with load, 
and (b) deflection curve
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5.4 Longitudinal Strains in Beams 421

In Section 5.5, we will see that the curvature at a particular point on
the axis of a beam depends upon the bending moment at that point and
upon the properties of the beam itself (shape of cross section and type of
material). Therefore, if the beam is prismatic and the material is homoge-
neous, the curvature will vary only with the bending moment.
Consequently, a beam in pure bending will have constant curvature and a
beam in nonuniform bending will have varying curvature.

The sign convention for curvature depends upon the orientation of the
coordinate axes. If the x axis is positive to the right and the y axis is pos-
itive upward, as shown in Fig. 5-6, then the curvature is positive when the
beam is bent concave upward and the center of curvature is above the
beam. Conversely, the curvature is negative when the beam is bent con-
cave downward and the center of curvature is below the beam.

In the next section, we will see how the longitudinal strains in a bent
beam are determined from its curvature, and in Chapter 9 we will see how
curvature is related to the deflections of beams.

y

x

Positive
curvature

O

(a)

y

x

Negative
curvature

O

(b)

Fig. 5-6
Sign convention for curvature

5.4 LONGITUDINAL STRAINS IN BEAMS
The longitudinal strains in a beam can be found by analyzing the curva-
ture of the beam and the associated deformations. For this purpose, let us
consider a portion AB of a beam in pure bending subjected to positive
bending moments M (Fig. 5-7a). We assume that the beam initially has a
straight longitudinal axis (the x axis in the figure) and that its cross sec-
tion is symmetric about the y axis, as shown in Fig. 5-7b.

Under the action of the bending moments, the beam deflects in the xy
plane (the plane of bending) and its longitudinal axis is bent into a circu-
lar curve (curve s–s in Fig. 5-7c). The beam is bent concave upward, which
is positive curvature (Fig. 5-6a).
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Chapter 5  Stresses in Beams (Basic Topics)

Cross sections of the beam, such as sections mn and pq in Fig. 5-7a,
remain plane and normal to the longitudinal axis (Fig. 5-7c). The fact that
cross sections of a beam in pure bending remain plane is so fundamental
to beam theory that it is often called an assumption. However, we could
also call it a theorem, because it can be proved rigorously using only
rational arguments based upon symmetry (Ref. 5-1). The basic point is
that the symmetry of the beam and its loading (Figs. 5-7a and b) means
that all elements of the beam (such as element mpqn) must deform in an
identical manner, which is possible only if cross sections remain plane dur-
ing bending (Fig. 5-7c). This conclusion is valid for beams of any material,
whether the material is elastic or inelastic, linear or nonlinear. Of course,
the material properties, like the dimensions, must be symmetric about the
plane of bending. (Note: Even though a plane cross section in pure bend-
ing remains plane, there still may be deformations in the plane itself. Such
deformations are due to the effects of Poisson’s ratio, as explained at the
end of this discussion.)

Because of the bending deformations shown in Fig. 5-7c, cross sec-
tions mn and pq rotate with respect to each other about axes perpendicu-
lar to the xy plane. Longitudinal lines on the lower part of the beam are
elongated, whereas those on the upper part are shortened. Thus, the lower
part of the beam is in tension and the upper part is in compression.
Somewhere between the top and bottom of the beam is a surface in which
longitudinal lines do not change in length. This surface, indicated by the
dashed line s–s in Figs. 5-7a and c, is called the neutral surface of the beam.
Its intersection with any cross-sectional plane is called the neutral axis of
the cross section; for instance, the z axis is the neutral axis for the cross
section of Fig. 5-7b.

The planes containing cross sections mn and pq in the deformed beam
(Fig. 5-7c) intersect in a line through the center of curvature O�. The angle

422

O O
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y
x z
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m p B
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M Me

A

s s
f

m p B

qn

M Me

(a)

(c)

(b)

O’

du

dx

dx
y

r

Fig. 5-7
Deformations of a beam in pure
bending: (a) side view of beam,

(b) cross section of beam, 
and (c) deformed beam
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5.4 Longitudinal Strains in Beams 423

between these planes is denoted dθ, and the distance from O� to the neu-
tral surface s–s is the radius of curvature ρ. The initial distance dx between
the two planes (Fig. 5-7a) is unchanged at the neutral surface (Fig. 5-7c),
hence . However, all other longitudinal lines between the two
planes either lengthen or shorten, thereby creating normal strains x.

To evaluate these normal strains, consider a typical longitudinal line ef
located within the beam between planes mn and pq (Fig. 5-7a). We identify
line ef by its distance y from the neutral surface in the initially straight
beam. Thus, we are now assuming that the x axis lies along the neutral sur-
face of the undeformed beam. Of course, when the beam deflects, the neu-
tral surface moves with the beam, but the x axis remains fixed in position.
Nevertheless, the longitudinal line ef in the deflected beam (Fig. 5-7c) is
still located at the same distance y from the neutral surface. Thus, the
length L1 of line ef after bending takes place is

in which we have substituted .
Since the original length of line ef is dx, it follows that its elongation

is , or . The corresponding longitudinal strain is equal  
to the elongation divided by the initial length dx; therefore, the strain- 
curvature relation is

(5-5)

where κ is the curvature [see Eq. (5-1)].
The preceding equation shows that the longitudinal strains in the beam

are proportional to the curvature and vary linearly with the distance y from
the neutral surface. When the point under consideration is above the neu-
tral surface, the distance y is positive. If the curvature is also positive (as in
Fig. 5-7c), then εx will be a negative strain, representing a shortening. By
contrast, if the point under consideration is below the neutral surface, the
distance y will be negative and, if the curvature is positive, the strain εx will
also be positive, representing an elongation. Note that the sign convention
for εx is the same as that used for normal strains in earlier chapters,
namely, elongation is positive and shortening is negative.

Equation (5-5) for the normal strains in a beam was derived solely
from the geometry of the deformed beam—the properties of the material
did not enter into the discussion. Therefore, the strains in a beam in pure
bending vary linearly with distance from the neutral surface regardless of the
shape of the stress-strain curve of the material.

The next step in our analysis, namely, finding the stresses from the
strains, requires the use of the stress-strain curve. This step is described in
the next section for linearly elastic materials and in Section 6.10 for elasto-
plastic materials.

The longitudinal strains in a beam are accompanied by transverse strains
(that is, normal strains in the y and z directions) because of the effects of
Poisson’s ratio. However, there are no accompanying transverse stresses
because beams are free to deform laterally. This stress condition is analogous
to that of a prismatic bar in tension or compression, and therefore longitudi-
nal elements in a beam in pure bending are in a state of uniaxial stress.

ε

εx � �
y

ρ
� �κy

�ydx/ρL1 � dx

dθ � dx/ρ

L1 � (ρ � y)dθ � dx �
y

ρ
dx

pdθ � dx
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Chapter 5  Stresses in Beams (Basic Topics)424

Example 5-1• • •
A simply supported steel beam AB (Fig. 5-8a) of length and
height is bent by couples M0 into a circular arc with a down-
ward deflection δ at the midpoint (Fig. 5-8b). The longitudinal normal strain
(elongation) on the bottom surface of the beam is 0.00125, and the distance
from the neutral surface to the bottom surface of the beam is 150 mm.

Determine the radius of curvature ρ, the curvature κ, and the deflection δ
of the beam.

Note: This beam has a relatively large deflection because its length is
large compared to its height and the strain of 0.00125 is also
large. (It is about the same as the yield strain for ordinary structural steel.)

(L/h � 16.33)

h � 300 mm
L � 4.9 m

A B

y

BA

M0M0

L

h

L

(a)

(b)

C

C′

x

O′

2
— L

2
—

d

r r
u u

Fig. 5-8
Example 5-1: Beam in pure
bending: (a) beam with loads,
and (b) deflection curve

Solution
Curvature. Since we know the longitudinal strain at the bottom surface of
the beam , and since we also know the distance from the
neutral surface to the bottom surface , we can use Eq. (5-5)
to calculate both the radius of curvature and the curvature. Rearranging 
Eq. (5-5) and substituting numerical values, we get

These results show that the radius of curvature is extremely large compared
to the length of the beam even when the strain in the material is large. If,
as usual, the strain is less, the radius of curvature is even larger.

➥ρ � �
y

εx
� �

�150 mm
0.00125

� 120 m κ �
1
ρ � 8.33 � 10�3 m�1

(y � �150 mm)
(εx � 0.00125)
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5.4 Longitudinal Strains in Beams 425

Deflection. As pointed out in Section 5.3, a constant bending
moment (pure bending) produces constant curvature throughout the
length of a beam. Therefore, the deflection curve is a circular arc. From
Fig. 5-8b we see that the distance from the center of curvature O� to the
midpoint C� of the deflected beam is the radius of curvature ρ, and the
distance from O� to point C on the x axis is ρ cos θ, where θ is angle BO�C.
This leads to the following expression for the deflection at the midpoint
of the beam:

(5-6)

For a nearly flat curve, we can assume that the distance between supports
is the same as the length of the beam itself. Therefore, from triangle BO�C
we get

(5-7)

Substituting numerical values, we obtain

and

Note that for practical purposes we may consider sin θ and θ (radians) to be
equal numerically because θ is a very small angle.

Now we substitute into Eq. (5-6) for the deflection and obtain

This deflection is very small compared to the length of the beam, as shown
by the ratio of the span length to the deflection:

Thus, we have confirmed that the deflection curve is nearly flat in spite of
the large strains. Of course, in Fig. 5-8b the deflection of the beam is highly
exaggerated for clarity.

Note: The purpose of this example is to show the relative magnitudes
of the radius of curvature, length of the beam, and deflection of the beam.
However, the method used for finding the deflection has little practical
value because it is limited to pure bending, which produces a circular
deflected shape. More useful methods for finding beam deflections are pre-
sented later in Chapter 9.

➥

L
δ

�
4.9 m
24 mm

� 204

δ � ρ(1 � cos θ) � (120 m)(1 � 0.999800) � 24 mm

θ � 0.0200 rad � 1.146°

sin θ �
4.9 m

2(120 m)
� 0.0200

sin θ �
L/2
ρ

δ � ρ(1 � cos θ)
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Chapter 5  Stresses in Beams (Basic Topics)

5.5 NORMAL STRESSES IN BEAMS
(LINEARLY ELASTIC MATERIALS)
In the preceding section we investigated the longitudinal strains εx in a
beam in pure bending [see Eq. (5-5) and Fig. 5-7]. Since longitudinal ele-
ments of a beam are subjected only to tension or compression, we can use
the stress-strain curve for the material to determine the stresses from the
strains. The stresses act over the entire cross section of the beam and vary
in intensity depending upon the shape of the stress-strain diagram and
the dimensions of the cross section. Since the x direction is longitudinal
(Fig. 5-7a), we use the symbol σx to denote these stresses.

The most common stress-strain relationship encountered in engineering
is the equation for a linearly elastic material. For such materials we substi-
tute Hooke’s law for uniaxial stress into Eq. (5-5) and obtain

(5-8)

This equation shows that the normal stresses acting on the cross section
vary linearly with the distance y from the neutral surface. This stress
distribution is pictured in Fig. 5-9a for the case in which the bending
moment M is positive and the beam bends with positive curvature.

When the curvature is positive, the stresses σx are negative (compres-
sion) above the neutral surface and positive (tension) below it. In the fig-
ure, compressive stresses are indicated by arrows pointing toward the
cross section and tensile stresses are indicated by arrows pointing away
from the cross section.

In order for Eq. (5-8) to be of practical value, we must locate the ori-
gin of coordinates so that we can determine the distance y. In other
words, we must locate the neutral axis of the cross section. We also need
to obtain a relationship between the curvature and the bending
moment—so that we can substitute into Eq. (5-8) and obtain an equation
relating the stresses to the bending moment. These two objectives can be
accomplished by determining the resultant of the stresses σx acting on the
cross section.

In general, the resultant of the normal stresses consists of two stress
resultants: (1) a force acting in the x direction, and (2) a bending couple
acting about the z axis. However, the axial force is zero when a beam is in
pure bending. Therefore, we can write the following equations of statics:
(1) The resultant force in the x direction is equal to zero, and (2) the result-
ant moment is equal to the bending moment M. The first equation gives
the location of the neutral axis and the second gives the moment-curvature
relationship.

Location of Neutral Axis
To obtain the first equation of statics, we consider an element of area dA
in the cross section (Fig. 5-9b). The element is located at distance y from
the neutral axis, and therefore the stress σx acting on the element is given
by Eq. (5-8). The force acting on the element is equal to σxdA and is

σx � Eεx � �
Ey

ρ
� �Eκy

(σ � Eε)

426

  sx

O

M

O

x

y

z

y

y

c2

c1 

dA

(a)

(b)

Fig. 5-9
Normal stresses in a beam of

 linearly elastic material: (a) side
view of beam showing

 distribution of normal stresses,
and (b) cross section of beam

 showing the z axis as the neutral
axis of the cross section
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5.5 Normal Stresses in Beams (Linearly Elastic Materials) 427

 compressive when y is positive. Because there is no resultant force acting
on the cross section, the integral of σxdA over the area A of the entire cross
section must vanish; thus, the first equation of statics is

(5-9a)

Because the curvature κ and modulus of elasticity E are nonzero constants
at any given cross section of a bent beam, they are not involved in the inte-
gration over the cross-sectional area. Therefore, we can drop them from
the equation and obtain

(5-9b)

This equation states that the first moment of the area of the cross section,
evaluated with respect to the z axis, is zero. In other words, the z axis must
pass through the centroid of the cross section.*

Since the z axis is also the neutral axis, we have arrived at the follow-
ing important conclusion: The neutral axis passes through the centroid of
the cross-sectional area when the material follows Hooke’s law and there is
no axial force acting on the cross section. This ob servation makes it rela-
tively simple to determine the position of the neutral axis.

As explained in Section 5.1, our discussion is limited to beams for
which the y axis is an axis of symmetry. Consequently, the y axis also
passes through the centroid. Therefore, we have the following additional
conclusion: The origin O of coordinates (Fig. 5-9b) is located at the centroid
of the cross-sectional area.

Because the y axis is an axis of symmetry of the cross section, it fol-
lows that the y axis is a principal axis (see Chapter 12, Section 12.9, for a
discussion of principal axes). Since the z axis is perpendicular to the y axis,
it too is a principal axis. Thus, when a beam of linearly elastic material is
subjected to pure bending, the y and z axes are principal centroidal axes.

Moment-Curvature Relationship
The second equation of statics expresses the fact that the moment resultant
of the normal stresses σx acting over the cross section is equal to the bend-
ing moment M (Fig. 5-9a). The element of force σxdA acting on the ele-
ment of area dA (Fig. 5-9b) is in the positive direction of the x axis when
σx is positive and in the negative direction when σx is negative. Since the
element dA is located above the neutral axis, a positive stress σx acting on
that element produces an element of moment equal to σxydA. This ele-
ment of moment acts opposite in direction to the positive bending
moment M shown in Fig. 5-9a. Therefore, the elemental moment is

dM � �σxy dA

LA
y dA � 0

LA
σxdA � �

LA
EκydA � 0

*Centroids and first moments of areas are discussed in Chapter 12, Sections 12.2 and 12.3.
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Chapter 5  Stresses in Beams (Basic Topics)

The integral of all such elemental moments over the entire cross-sectional
area A must equal the bending moment:

(5-10a)

or, upon substituting for σx from Eq. (5-9),

(5-10b)

This equation relates the curvature of the beam to the bending moment M.
Since the integral in the preceding equation is a property of the cross-

sectional area, it is convenient to rewrite the equation as follows:

(5-11)

in which

(5-12)

This integral is the moment of inertia of the cross-sectional area with
respect to the z axis (that is, with respect to the neutral axis). Moments of
inertia are always positive and have dimensions of length to the fourth
power; for instance, typical SI units are mm4 when performing beam
 calculations.*

Equation (5-11) can now be rearranged to express the curvature in
terms of the bending moment in the beam:

(5-13)

Known as the moment-curvature equation, Eq. (5-13) shows that the cur-
vature is directly proportional to the bending moment M and inversely
proportional to the quantity EI, which is called the flexural rigidity of the
beam. Flexural rigidity is a measure of the resistance of a beam to bend-
ing, that is, the larger the flexural rigidity, the smaller the curvature for a
given bending moment.

Comparing the sign convention for bending moments (Fig. 4-5) with
that for curvature (Fig. 5-6), we see that a positive bending moment pro-
duces positive curvature and a negative bending moment produces negative
curvature (see Fig. 5-10).

Flexure Formula
Now that we have located the neutral axis and derived the moment-
curvature relationship, we can determine the stresses in terms of the bend-
ing moment. Substituting the expression for curvature [Eq. (5-13)] into the
expression for the stress σx [Eq. (5-8)], we get

(5-14)σx � �
My

I

κ �
1
ρ

�
M
EI

I �
LA

y2 dA

M � κEI

M �
LA

κEy2 dA � κE
LA

y2 dA

M � �
LA

σxy dA

428

*Moments of inertia of areas are discussed in Chapter 12, Section 12.4.

y

x
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bending
moment

Negative
bending
moment

O
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x

Negative
curvature

Positive
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O

+M +M

−M −M

Fig. 5-10
Relationships between signs of
bending moments and signs of

curvatures
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5.5 Normal Stresses in Beams (Linearly Elastic Materials) 429

This equation, called the flexure formula, shows that the stresses are
directly proportional to the bending moment M and inversely propor-
tional to the moment of inertia I of the cross section. Also, the stresses
vary linearly with the distance y from the neutral axis, as previously
observed. Stresses calculated from the flexure formula are called bending
stresses or flexural stresses.

If the bending moment in the beam is positive, the bending stresses
will be positive (tension) over the part of the cross section where y is neg-
ative, that is, over the lower part of the beam. The stresses in the upper
part of the beam will be negative (compression). If the bending moment
is negative, the stresses will be reversed. These relationships are shown
in Fig. 5-11.

s1

Compressive stresses

Tensile stresses

Positive bending
moment

�M

s2

O
x

y

c2

c1 

(a)

Compressive stresses

Tensile stresses

Negative bending
moment

�M

s2

O
x

y

c2

c1 

(b)

s1

Fig. 5-11
Relationships between signs of
bending moments and directions
of normal stresses: (a) positive
bending moment, and  
(b) negative bending moment

Maximum Stresses at a Cross Section
The maximum tensile and compressive bending stresses acting at any
given cross section occur at points located farthest from the neutral axis.
Let us denote by c1 and c2 the distances from the neutral axis to the
extreme elements in the positive and negative y directions, respectively
(see Fig. 5-9b and Fig. 5-11). Then the corresponding maximum normal
stresses σ1 and σ2 (from the flexure formula) are

(5-15a,b)

in which

(5-16a,b)

The quantities S1 and S2 are known as the section moduli of the cross-
 sectional area. From Eqs. (5-16a and b) we see that each section modulus
has dimensions of length to the third power (for example, mm3). Note that
the distances c1 and c2 to the top and bottom of the beam are always taken
as positive quantities.

The advantage of expressing the maximum stresses in terms of section
moduli arises from the fact that each section modulus combines the

S1 �
I
c1

S2 �
I
c2

σ1 � �
Mc1

I
� �

M
S1

σ2 �
Mc2

I
�

M
S2
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Chapter 5  Stresses in Beams (Basic Topics)

beam’s relevant cross-sectional properties into a single quantity. Then this
quantity can be listed in tables and handbooks as a property of the beam,
which is a convenience to designers. (Design of beams using section
 moduli is explained in the next section.)

Doubly Symmetric Shapes
If the cross section of a beam is symmetric with respect to the z axis as well
as the y axis (doubly symmetric cross section), then and the
maximum tensile and compressive stresses are equal numerically:

(5-17a,b)

in which

(5-18)

is the only section modulus for the cross section.
For a beam of rectangular cross section with width b and height h

(Fig. 5-12a), the moment of inertia and section modulus are

(5-19a,b)I �
bh3

12
S �

bh3

6

S �
I
c

σ1 � �σ2 � �
Mc

I
� �

M
S

or σ max �
M
S

c1 � c2 � c

430
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Fig. 5-12
Doubly symmetric 

cross-sectional shapes
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5.5 Normal Stresses in Beams (Linearly Elastic Materials) 431

For a circular cross section of diameter d (Fig. 5-12b), these proper-
ties are

(5-20a,b)

Properties of other doubly symmetric shapes, such as hollow tubes (either
rectangular or circular) and wide-flange shapes, can be readily obtained
from the preceding formulas.

Properties of Beam Cross Sections
Moments of inertia of many plane figures are listed in Appendix D for
convenient reference. Also, the dimensions and properties of standard
sizes of steel and wood beams are listed in Appendixes E and F and in
many engineering handbooks, as explained in more detail in the next
section.

For other cross-sectional shapes, we can determine the location of the
neutral axis, the moment of inertia, and the section moduli by direct cal-
culation, using the techniques described in Chapter 12. This procedure is
illustrated later in Example 5-4.

Limitations
The analysis presented in this section is for pure bending of prismatic
beams composed of homogeneous, linearly elastic materials. If a beam
is subjected to nonuniform bending, the shear forces will produce warp-
ing (or out-of-plane distortion) of the cross sections. Thus, a cross sec-
tion that was plane before bending is no longer plane after bending.
Warping due to shear deformations greatly complicates the behavior of
the beam. However, detailed investigations show that the normal
stresses calculated from the flexure formula are not significantly altered
by the presence of shear stresses and the associated warping (Ref. 2-1,
pp. 42 and 48). Thus, we may justifiably use the theory of pure bending
for calculating normal stresses in beams subjected to nonuniform
 bending.*

The flexure formula gives results that are accurate only in regions of
the beam where the stress distribution is not disrupted by changes in the
shape of the beam or by discontinuities in loading. For instance, the flex-
ure formula is not applicable near the supports of a beam or close to a
concentrated load. Such irregularities produce localized stresses, or stress
concentrations, that are much greater than the stresses obtained from the
flexure formula (see Section 5.13).

I �
πd4

64
S �

πd3

32

*Beam theory began with Galileo Galilei (1564–1642), who investigated the behavior of various types of
beams. His work in mechanics of materials is described in his famous book Two New Sciences, first published
in 1638 (Ref. 5-2). Although Galileo made many important discoveries regarding beams, he did not obtain the
stress distribution that we use today. Further progress in beam theory was made by Mariotte, Jacob
Bernoulli, Euler, Parent, Saint-Venant, and others (Ref. 5-3).
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Chapter 5  Stresses in Beams (Basic Topics)432

Example 5-2• • •
A high-strength steel wire of diameter d is bent around a cylindrical drum
of radius R0 (Fig. 5-13).

Determine the bending moment M and maximum bending stress 
σmax in the wire, assuming and . (The steel wire
has modulus of elasticity and proportional limit

.)1200 MPa
σp1 �E � 200 GPa

d � 4 mm R0 � 0.5 m

d

R0

C

Fig. 5-13
Example 5-2: Wire bent around
a drum

Solution
The first step in this example is to determine the radius of curvature ρ of the
bent wire. Then, knowing ρ, we can find the bending moment and maxi-
mum stresses.

Radius of curvature. The radius of curvature of the bent wire is the dis-
tance from the center of the drum to the neutral axis of the cross section of
the wire:

(5-21)

Bending moment. The bending moment in the wire may be found from the
moment-curvature relationship [Eq. (5-13)]:

(5-22)

in which I is the moment of inertia of the cross-sectional area of the 
wire. Substituting for I in terms of the diameter d of the wire [Eq. (5-20a)], 
we get

(5-23)M �
πEd4

32(2R0 � d)

M �
EI
ρ

�
2EI

2R0 � d

ρ � R0 �
d
2
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5.5 Normal Stresses in Beams (Linearly Elastic Materials) 433

This result was obtained without regard to the sign of the bending moment,
since the direction of bending is obvious from the figure.

Maximum bending stresses. The maximum tensile and compressive
stresses, which are equal numerically, are obtained from the flexure formula
as given by Eq. (5-17b):

in which S is the section modulus for a circular cross section. Substituting 
for M from Eq. (5-23) and for S from Eq. (5-20b), we get

(5-24)

This same result can be obtained directly from Eq. (5-8) by replacing y with
d/2 and substituting for ρ from Eq. (5-21).

We see by inspection of Fig. 5-13 that the stress is compressive on the
lower (or inner) part of the wire and tensile on the upper (or outer) part.

Numerical results. We now substitute the given numerical data into 
Eqs. (5-23) and (5-24) and obtain the following results:

Note that σmax is less than the proportional limit of the steel wire, and there-
fore the calculations are valid.

Note: Because the radius of the drum is large compared to the diame-
ter of the wire, we can safely disregard d in comparison with 2R0 in the
denominators of the expressions for M and . Then Eqs. (5-23) and 
(5-24) yield the following results:

These results are on the conservative side and differ by less than 1% from
the more precise values.

➥

➥

σmax �
M
S

σmax �
Ed

2R0 � d

M � 5.03 N # m σmax � 800 MPa

σmax

σmax �
Ed

2R0 � d
�

(200 GPa)(4 mm)
2(0.5 m) � 4 mm

� 797 MPa

M �
πEd4

32(2R0 � d)
�

π(200 GPa)(4 mm)4

32[2(0.5 m) � 4 mm]
� 5.01 N # m
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Chapter 5  Stresses in Beams (Basic Topics)434

Example 5-3• • •
A simple beam AB of span length (Fig. 5-14a) supports a uniform
load of intensity and a concentrated load . The uni-
form load includes an allowance for the weight of the beam. The concen-
trated load acts at a point 2.5 m from the left-hand end of the beam. The
beam is constructed of glued laminated wood and has a cross section of
width and a height (Fig. 5-14b).

(a) Determine the maximum tensile and compressive stresses in the beam
due to bending.

(b) If load q is unchanged, find the maximum permissible value of load P
if the allowable normal stress in tension and compression is 

13 MPa.σa �

h � 700 mmb � 220 mm

P � 50 kNq � 22 kN/m
L � 6.7 m

Solution
(a) Reactions, shear forces, and bending moments. We begin the analysis

by calculating the reactions at  supports A and B, using the techniques
described in Chapter 4. The results are

Knowing the reactions, we can construct the shear-force diagram,
shown in Fig. 5-14c. Note that the shear force changes from positive to

RA � 105 kN RB � 92.4 kN

A

V

B

L = 6.7 m

2.5 m

h = 700 mm

P = 50 kN

q = 22 kN/m

b = 220 mm

(kN)
50.043

–0.043

–92.357

193.857

105.043

(d)

(c)(a)

(b)

0

0

M
(kN·m)

Fig. 5-14
Example 5-3: Stresses in a
 simple beam
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5.5 Normal Stresses in Beams (Linearly Elastic Materials) 435435

negative under the concentrated load P, which is at a distance of 2.5 m
from the left-hand support.

Next, we draw the bending-moment diagram (Fig. 5-14d) and
determine the maximum bending moment, which occurs under the con-
centrated load where the shear force changes sign. The maximum
moment is

The maximum bending stresses in the beam occur at the cross section of
maximum moment.

Section modulus. The section modulus of the cross-sectional area is
calculated from Eq. (5-19b), as follows:

(a)

Maximum stresses. The maximum tensile and compressive stresses σt
and σc, respectively, are obtained from Eq. (5-17a):

(b)

Because the bending moment is positive, the maximum tensile stress
occurs at the bottom of the beam and the maximum compressive stress
occurs at the top.

(b) Maximum permissible load P. Stresses σ1 and σ2 are only slightly below
the allowable normal stress at , so we do not expect Pmax to
be much greater than the applied load in part (a). Hence, the
maximum moment Mmax will occur at the location of applied load Pmax
(just 2.5 m to the right of support A at the point at which the shear force
is zero). If we let variable , we can find the following expres-
sion for Mmax in terms of load and dimension variables:

(c)

where and . We then equate Mmax to [see 
Eq. (b)], where [from Eq. (a)], and then solve for Pmax:

(d)➥

➥

➥

Mmax � 193.9 kN # m

S �
bh2

6
�

1
6

(0.22 m)(0.7 m)2 � 0.01797 m3

σt � σ2 �
Mmax

S
�

193.9 kN # m

0.01797 m3
� 10.8 MPa

σc � σ1 � �
Mmax

S
� �10.8 MPa

P � 50 kN
σa � 13 MPa

� 75.4 kN

� (13 MPa)(0.01797 m3) c 6.7 m
2.5 m(6.7 m � 2.5 m)

d � 22
kN
m
a6.7 m

2
b

Pmax � σaS c L
a(L � a)

d �
qL
2

S � 0.01797 m3
σa � Sq � 22 kN/mL � 6.7 m

Mmax �
a(L � a)(2P � Lq)

2L

a � 2.5 m
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Chapter 5  Stresses in Beams (Basic Topics)436

Example 5-4• • •
The beam ABC shown in Fig 5-15a has simple supports at A and B and an
overhang from B to C. The length of the span is , and the length
of the overhang is . A uniform load of intensity
acts throughout the entire length of the beam (4.5 m).

The beam has a cross section of channel shape with a width of
and height of (Fig. 5-16a). The web thickness is

, and the average thickness of the sloping flanges is the same.
For the purpose of calculating the properties of the cross section, assume
that the cross section consists of three rectangles, as shown in Fig. 5-16b.

(a) Determine the maximum tensile and compressive stresses in the beam
due to the uniform load.

(b) Find the maximum permissible value of uniform load q (in kN/m) if
allowable stresses in tension and compression are and

, respectively.σaC � 92 MPa
σaT � 110 MPa

t � 12 mm
h � 80 mmb � 300 mm

q � 3.2 kN/mL/2 � 1.5 m
L � 3.0 m

Solution
(a) Maximum tensile and compressive stresses. Reactions, shear forces, and

bending moments are computed in the analysis of this beam. First, we
find the reactions at supports A and B using the techniques described in
Chapter 4. The results are

From these values, we construct the shear-force diagram (Fig. 5-15b).
Note that the shear force changes sign and is equal to zero at two loca-
tions: (1) at a distance of 1.125 m from the left-hand support, and (2) at
the right-hand reaction.

RA �
3
8

qL � 3.6 kN RB �
9
8

qL � 10.8 kN

A
B

C

L = 3.0 m L/2

q = 3.2 kN/m

M

0

(a)

(b)

(c)

V
qL = 3.6 kN3

8

−5qL/8 = –6.0 kN

0

Mpos = qL2 = 2.025 kN·m9
128

L = 1.125 m3
8

L = 1.125 m3
8

= 4.8 kNqL
2

Mneg = = –3.6 kN·m
–qL2

8

Fig. 5-15
Example 5-4: Stresses in a
beam with an overhang

77742_05_ch05_p416-523.qxd:77742_05_ch05_p416-523.qxd  3/2/12  6:22 PM  Page 436

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.5 Normal Stresses in Beams (Linearly Elastic Materials) 437437437

Next, we draw the bending-moment diagram shown in Fig. 5-15c.
Both the maximum positive and maximum negative bending moments
occur at the cross sections where the shear force changes sign. These
maximum moments are

respectively.
Neutral axis of the cross section (Fig. 5-16b). The origin O of the 

yz coordinates is placed at the centroid of the cross-sectional area, and
therefore, the z axis becomes the neutral axis of the cross section. The
centroid is located by using the techniques described in Chapter 12,
Section 12.3, as follows.

Mpos �
9

128
qL2 � 2.025 kN # m Mneg �

�qL2

8
� �3.6 kN # m

h = 
80 mm

(b)

t = 12 mm

t = 12 mm t = 
 12 mm

y2

y1

d1

c1

c2

A2

A1

A3

y

ZZ

Oz

b = 300 mm

Fig. 5-16
Cross section of beam 
discussed in Example 5-4: 
(a) actual shape, and 
(b) idealized shape for use in
analysis (The thickness of the
beam is exaggerated for
 clarity.)

First, we divide the area into three rectangles (A1, A2, and A3). Second,
we establish a reference axis Z–Z across the upper edge of the cross sec-
tion, and we let y1 and y2 be the distances from the Z–Z axis to the
 centroids of areas A1 and A2, respectively. Then the calculations for locat-
ing the centroid of the entire channel section (distances c1 and c2) are

Area 1:

Area 2:

Area 3: y3 � y2 A3 � A2

A2 � ht � (80 mm)(12 mm) � 960 mm2

y2 � h/2 � 40 mm

A1 � (b � 2t)(t) � (276 mm)(12 mm) � 3312 mm2

y1 � t/2 � 6 mm

Continues ➥

h = 
80 mm

(a)

y

O

b = 300 mm

t = 12 mm

t = 12 mm
z
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Chapter 5  Stresses in Beams (Basic Topics)438

Example 5-4 - Continued• • •

Thus, the position of the neutral axis (the z axis) is determined.
Moment of inertia. In order to calculate the stresses from the  flexure

formula, we must determine the moment of inertia of the cross- sectional
area with respect to the neutral axis. These calculations require the use of
the parallel axis theorem (see Chapter 12, Section 12.5).

Beginning with area A1, we obtain its moment of inertia about

the z axis from the equation

(a)

In this equation, is the moment of inertia of area A1 about its own
centroidal axis:

and d1 is the distance from the centroidal axis of area A1 to the z axis:

Therefore, the moment of inertia of area A1 about the z axis [from 
Eq. (a)] is

Proceeding in the same manner for areas A2 and A3, we get

Thus, the centroidal moment of inertia Iz of the entire cross-sectional area is

Section moduli. The section moduli for the top and bottom of the beam,
respectively, are

[see Eqs. (5-16a and b)]. With the cross-sectional properties determined,
we can now proceed to calculate the maximum stresses from Eqs. (5-15a
and b).

Maximum stresses. At the cross section of maximum positive bend-
ing moment, the largest tensile stress occurs at the bottom of the beam

and the largest compressive stress occurs at the top . Thus, from
Eqs. (5-15b) and (5-15a), respectively, we get

c1 �
gyi Ai

gAi

�
y1A1 � 2y2A2

A1 � 2A2

Iz � (Iz)1 � (Iz)2 � (Iz)3 � 2.469 � 106 mm4

σc � σ1 � �
Mpos

S1

� �
2.025 kN # m

133,600 mm3
� �15.2 MPa

σt � σ2 �
Mpos

S2

�
2.025 kN # m

40,100 mm3
� 50.5 MPa

(σ2) (σ1)

S1 �
Iz
c1

� 133,600 mm3 S2 �
Iz
c2

� 40,100 mm3

c2 � h � c1 � 80 mm � 18.48 mm � 61.52 mm

�
(6 mm)(3312 mm2) � 2(40 mm)(960 mm2)

3312 mm2 � 2(960 mm2)
� 18.48 mm

(Ic)1 �
1

12
(b � 2t)(t)3 �

1
12

(276 mm)(12 mm)3 � 39,744 mm4

(Ic)1

(Iz)1

(Iz)1 � (Ic)1 � A1d1
2

d1 � c1 � t /2 � 18.48 mm � 6 mm � 12.48 mm

(Iz)2 � (Iz)3 � 956,600 mm4

(Iz)1 � 39,744 mm4 � (3312 mm2)(12.48 mm)2 � 555,600 mm4
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5.5 Normal Stresses in Beams (Linearly Elastic Materials) 439

Similarly, the largest stresses at the section of maximum negative
moment are

A comparison of these four stresses shows that the largest tensile stress
in the beam is 50.5 MPa and occurs at the bottom of the beam at the
cross section of maximum positive bending moment; thus,

The largest compressive stress is and occurs at the bottom of
the beam at the section of maximum negative moment:

Thus, we have determined the maximum bending stresses due to the
uniform load acting on the beam.

(b) Maximum permissible value of uniform load q. Next, we want to find
qmax based on the given allowable normal stresses, which are different
for tension and compression. The allowable compression stress is
lower than that for tension, , to account for the possibility of local
buckling of the flanges of the C shape (if they are in compression).

We will use the flexure formula to compute potential values of qmax
at four locations: at the top and bottom of the beam at the location of
the maximum positive moment , and at the top and bottom of the

➥

➥

(Mpos)

σc � σ2 �
Mneg

S2

�
�3.6 kN # m

40,100 mm3
� �89.8 MPa

σt � σ1 � �
Mneg

S1

� �
�3.6 kN # m

133,600 mm3
� 26.9 MPa

σaT

σaC

(σc)max � �89.8 MPa

�89.8 MPa

(σt)max � 50.5 MPa

beam at the location of the maximum negative moment . In each(Mneg)
case, we must be sure to use the proper value of allowable stress. We
assume that the C shape is used in the orientation shown in Fig. 5-16
(i.e., flanges downward), so at the location of Mpos, we note the top of
the beam is in compression and the bottom is in tension, while the oppo-
site is true at point B. Using the expressions for Mpos and Mneg and equat-
ing each to the appropriate product of allowable stress and section
modulus, we can solve for possible values of qmax as given here.

In beam segment AB at the top of beam,

In beam segment AB at the bottom of beam,

At joint B at the top of beam,

At joint B at bottom of the beam,

From these calculations, we see that the bottom of the beam near joint B
(where the flange tips are in compression) does indeed control the maxi-
mum permissible value of uniform load q. Hence,

➥qmax � 3.28 kN/m

Mpos �
1
8

q4L
2 � σaCS2 so q4 �

8

L2
(σaCS2) � 3.28 kN/m

Mpos �
1
8

q3L
2 � σaTS1 so q3 �

8

L2
(σaTS1) � 13.06 kN/m

Mpos �
9

128
q2L

2 � σaTS2 so q2 �
128

9L2
(σaTS2) � 6.97 kN/m

Mpos �
9

128
q1L

2 � σaCS1 so q1 �
128

9L2
(σaCS1) � 19.42 kN/m
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Chapter 5  Stresses in Beams (Basic Topics)

5.6 DESIGN OF BEAMS FOR BENDING
STRESSES
The process of designing a beam requires that many factors be consid-
ered, including the type of structure (airplane, automobile, bridge, build-
ing, or whatever), the materials to be used, the loads to be supported, the
environmental conditions to be encountered, and the costs to be paid.
However, from the standpoint of strength, the task eventually reduces to
selecting a shape and size of beam such that the actual stresses in the
beam do not exceed the allowable stresses for the material. In this sec-
tion, we will consider only the bending stresses [that is, the stresses
obtained from the flexure formula, Eq. (5-14)]. Later, we will consider the
effects of shear stresses (Sections 5.8, 5.9, and 5.10) and stress concentra-
tions (Section 5.13).

When designing a beam to resist bending stresses, we usually begin by
calculating the required section modulus. For instance, if the beam has a
doubly symmetric cross section and the allowable stresses are the same for
both tension and compression, we can calculate the required modulus by
dividing the maximum bending moment by the allowable bending stress
for the material [see Eq. (5-17)]:

(5-25)

The allowable stress is based upon the properties of the material and the
desired factor of safety. To ensure that this stress is not exceeded, we must
choose a beam that provides a section modulus at least as large as that
obtained from Eq. (5-25).

If the cross section is not doubly symmetric, or if the allowable
stresses are different for tension and compression, we usually need to
determine two required section moduli—one based upon tension and the
other based upon compression. Then we must provide a beam that satis-
fies both criteria.

To minimize weight and save material, we usually select a beam that
has the least cross-sectional area while still providing the required section
moduli (and also meeting any other design requirements that may be
imposed).

Beams are constructed in a great variety of shapes and sizes to suit a
myriad of purposes. For instance, very large steel beams are fabricated by
welding (Fig. 5-17), aluminum beams are extruded as round or rectangu-
lar tubes, wood beams are cut and glued to fit special requirements, and
reinforced concrete beams are cast in any desired shape by proper con-
struction of the forms.

In addition, beams of steel, aluminum, plastic, and wood can be
ordered in standard shapes and sizes from catalogs supplied by dealers and
manufacturers. Readily available shapes include wide-flange beams, 
I-beams, angles, channels, rectangular beams, and tubes.

S �
Mmax

σallow

440

Fig. 5-17
Welder fabricating a large 

wide-flange steel beam
(Courtesy of AISC)
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5.6 Design of Beams for Bending Stresses 441

Beams of Standardized Shapes and Sizes
The dimensions and properties of many kinds of beams are listed in engi-
neering handbooks and manuals. For instance, in the UK, the British
Constructional Steelwork Association publishes the National Structural
Steelwork Specification, and in the United States the shapes and sizes of
structural-steel beams are standardized by the American Institute of Steel
Construction (AISC). AISC publishes the Steel Construction Manual
which lists their properties in both USCS and SI units. The tables in these
manuals give cross-sectional dimensions and properties such as mass,
cross-sectional area, moment of inertia, and section modulus. Properties
of structural steel shapes used in many parts of the world are readily avail-
able online as well. In Europe, design of steel structures is governed by
Eurocode 3 (Ref. 5-4). 

Properties of aluminum beams are tabulated in a similar manner and
are available in publications of the Aluminum Association (Ref. 5-5) (see
the Aluminum Design Manual, Part 6, for dimensions and section proper-
ties). In Europe, design of aluminum structures is governed by Eurocode 9
and properties of available shapes may be found online at manufacturers’
web sites (Ref. 5-5). Finally, design of timber beams in Europe is covered
in Eurocode 5; in the United States, the National Design Specification for
Wood Construction (ASD/LRFD) is used (Ref. 5-6). Abridged tables of
steel beams and wood beams are given later in this book for use in solving
problems (see Appendices E and F).

Structural-steel sections are given a designation such as HE 600A,
which means that the section is a wide-flange shape with a nominal depth
of 600 mm; as Table E-1 (Appendix E) shows, its width is 300 mm, its
cross-sectional area is 226.5 cm2, and its mass is 178 kilograms per meter
of length. Table E-2 lists similar properties for European Standard Beams
(IPN shapes); Table E-3 provides properties of European Standard
Channels (UPN shapes); and Tables E-4 and E-5 give properties of
European equal and unequal angles, respectively. All of the standardized
steel sections described above are manufactured by rolling, a process in
which a billet of hot steel is passed back and forth between rolls until it is
formed into the desired shape.

Aluminum structural sections are usually made by the process of
extrusion, in which a hot billet is pushed, or extruded, through a shaped
die. Since dies are relatively easy to make and the material is workable,
aluminum beams can be extruded in almost any desired shape. Standard
shapes of wide-flange beams, I-beams, channels, angles, tubes, and other
sections are listed in Part 6 of the Aluminum Design Manual and structural
aluminum shapes available in Europe may be found online (Ref. 5-5). In
addition, custom-made shapes can be ordered.

Most wood beams have rectangular cross sections and are designated
by nominal dimensions, such as . These dimensions represent
the rough-cut size of the lumber. The net dimensions (or actual dimen-
sions) of a wood beam are smaller than the nominal dimensions if the sides
of the rough lumber have been planed, or surfaced, to make them smooth.
Thus, a wood beam has actual dimensions
after it has been surfaced. Of course, the net dimensions of surfaced lum-
ber should be used in all engineering computations. Therefore, net dimen-
sions and the corresponding properties are given in Appendix F.

47 � 72 mm50 � 10 mm

50 � 10 mm

77742_05_ch05_p416-523.qxd:77742_05_ch05_p416-523.qxd  3/2/12  6:22 PM  Page 441

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 5  Stresses in Beams (Basic Topics)

Relative Efficiency of Various Beam Shapes
One of the objectives in designing a beam is to use the material as effi-
ciently as possible within the constraints imposed by function, appear-
ance, manufacturing costs, and the like. From the standpoint of strength
alone, efficiency in bending depends primarily upon the shape of the cross
section. In particular, the most efficient beam is one in which the material
is located as far as practical from the neutral axis. The farther a given
amount of material is from the neutral axis, the larger the section modu-
lus becomes—and the larger the section modulus, the larger the bending
moment that can be resisted (for a given allowable stress).

As an illustration, consider a cross section in the form of a rectangle of
width b and height h (Fig. 5-18a). The section modulus [from Eq. (5-19b)] is

(5-26)

where A denotes the cross-sectional area. This equation shows that a rec-
tangular cross section of given area becomes more efficient as the height
h is increased (and the width b is decreased to keep the area constant). Of
course, there is a practical limit to the increase in height, because the
beam becomes laterally unstable when the ratio of height to width
becomes too large. Thus, a beam of very narrow rectangular section will
fail due to lateral (sideways) buckling rather than to insufficient strength
of the material.

Next, let us compare a solid circular cross section of diameter d
(Fig. 5-18b) with a square cross section of the same area. The side h of
a square having the same area as the circle is . The corre-
sponding section moduli [from Eqs. (5-19b) and (5-20b)] are

(5-27a)

(5-27b)Scircle �
πd3

32
� 0.0982d3

Ssquare �
h3

6
�

π1πd3

48
� 0.1160d3

h � (d/2)1π

S �
bh2

6
�

Ah
6

� 0.167Ah

442

h h

b d

Web

A
2
—

A
2
—

y

O Oz

y

z

y

Oz O

y

z

Flange

Flange

(b)(a) (d)(c)

Fig. 5-18
Cross-sectional shapes 

of beams
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5.6 Design of Beams for Bending Stresses 443

from which we get

(5-28)

This result shows that a beam of square cross section is more efficient
in resisting bending than is a circular beam of the same area. The rea-
son, of course, is that a circle has a relatively larger amount of mate-
rial located near the neutral axis. This material is less highly stressed,
and therefore it does not contribute as much to the strength of the
beam.

The ideal cross-sectional shape for a beam of given cross-sectional
area A and height h would be obtained by placing one-half of the area at
a distance h/2 above the neutral axis and the other half at distance h/2
below the neutral axis, as shown in Fig. 5-18c. For this ideal shape, we
obtain

(5-29a,b)

These theoretical limits are approached in practice by wide-flange sec-
tions and I-sections, which have most of their material in the flanges
(Fig. 5-18d). For standard wide-flange beams, the section modulus is
approximately

(5-30)

which is less than the ideal but much larger than the section modu-
lus for a rectangular cross section of the same area and height [see 
Eq. (5-26)].

Another desirable feature of a wide-flange beam is its greater width,
and hence greater stability with respect to sideways buckling, when com-
pared to a rectangular beam of the same height and section modulus. On
the other hand, there are practical limits to how thin we can make the web
of a wide-flange beam. If the web is too thin, it will be susceptible to local-
ized buckling or it may be overstressed in shear, a topic that is discussed
in Section 5.10.

The following four examples illustrate the process of selecting a
beam on the basis of the allowable stresses. In these examples, only the
effects of bending stresses (obtained from the flexure formula) are
 considered.

Note: When solving examples and problems that require the selection
of a steel or wood beam from the tables in the appendix, we use the fol-
lowing rule: If several choices are available in a table, select the lightest
beam that will provide the required section modulus.

Ssquare

Scircle

� 1.18

S L 0.35Ah

I � 2aA
2
b ah

2
b2

�
Ah2

4
S �

1
h/2

� 0.5Ah
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Chapter 5  Stresses in Beams (Basic Topics)444

Example 5-5• • •
A simply supported wood beam having a span length carries a uni-
form load (Fig. 5-19). The allowable bending stress is 12 MPa,
the wood weighs 5.4 kN/m3, and the beam is supported laterally against
sideways buckling and tipping.

Select a suitable size for the beam from the table in Appendix F.

q � 4 kN/m
L � 3 m

q = 4 kN/m

L = 3 m

Fig. 5-19
Example 5-5: Design of a
 simply supported wood beam

Solution
Since we do not know in advance how much the beam weighs, we will
proceed by trial-and-error as follows: (1) Calculate the required section
modulus based upon the given uniform load. (2) Select a trial size for the
beam. (3) Add the weight of the beam to the uniform load and calculate
a new required section modulus. (4) Check to see that the selected beam
is still satisfactory. If it is not, select a larger beam and repeat the process.

(1) The maximum bending moment in the beam occurs at the midpoint [see
Eq. (4-15)]:

The required section modulus [Eq. (5-25)] is

(2) From the table in Appendix F we see that the lightest beam that supplies
a section modulus of at least about axis 1-1 is a

beam (nominal dimensions). This beam has a section mod-
ulus equal to and weighs 77.11 N/m. (Note that
Appendix F gives weights of beams based upon a density of 5.4 kN/m3.)

(3) The uniform load on the beam now becomes 4.077 kN/m, and the corre-
sponding required section modulus is

(4) The previously selected beam has a section modulus of 0.456 � 106 mm3,

0.456 � 106 mm3

0.375 � 106 mm3

S � (0.375 � 106 mm3)a4.077
4.0
b � 0.382 � 106 mm3

75 � 200 mm

S �
Mmax

σallow
�

4.5 kN # m
12 MPa

� 0.375 � 106 mm3

Mmax �
qL2

8
�

(4 kN/m)(3 m)2

8
� 4.5 kN # m

which is larger than the required modulus of 

Therefore, a beam is satisfactory.

Note: If the weight density of the wood is other than 5.4 kN/m3, we
can obtain the weight of the beam per linear meter by multiplying the
value in the last column in Appendix F by the ratio of the actual weight
density to 5.4 kN/m3.

0.382 � 106 mm3.

➥75 � 200 mm
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5.6 Design of Beams for Bending Stresses 445

• • •
A vertical post 2.5 meters high must support a lateral load at its
upper end (Fig. 5-20). Two plans are proposed—a solid wood post and a hol-
low aluminum tube.

(a) What is the minimum required diameter d1 of the wood post if the
allowable bending stress in the wood is 15 MPa?

(b) What is the minimum required outer diameter d2 of the aluminum tube
if its wall thickness is to be one-eighth of the outer diameter and the
allowable bending stress in the aluminum is 50 MPa?

P � 12 kN

Example 5-6

P = 12 kN P = 12 kN

h = 2.5 m h = 2.5 m

(b)(a)

d1 d2

Fig. 5-20
Example 5-6: (a) Solid wood
post, and (b) aluminum tube

Solution
Maximum bending moment. The maximum moment occurs at the base of
the post and is equal to the load P times the height h; thus,

(a) Wood post. The required section modulus S1 for the wood post [see Eqs.
(5-20b) and (5-25)] is

Solving for the diameter, we get

The diameter selected for the wood post must be equal to or larger than
273 mm if the allowable stress is not to be exceeded.

(b) Aluminum tube. To determine the section modulus S2 for the tube, we
first must find the moment of inertia I2 of the cross section. The wall
thickness of the tube is d2/8, and therefore the inner diameter is

, or 0.75d2. Thus, the moment of inertia [see Eq. (5-20a)] is

The section modulus of the tube is now obtained from Eq. (5-18) as

The required section modulus is obtained from Eq. (5-25):

By equating the two preceding expressions for the section modulus, we
can solve for the required outer diameter:

The corresponding inner diameter is 0.75(208 mm), or 156 mm.

➥

➥d2 � a600 � 103 mm3

0.06712
b1/3

� 208 mm

S2 �
Mmax

σallow
�

30 kN # m
50 MPa

� 0.0006 m3 � 600 � 103 mm3

S2 �
I2
c

�
0.03356d 4

2

d2 /d
� 0.06712d2

3

I2 �
π

64
[d2

4 � (0.75d2)
4] � 0.03356d2

4

d2 � d2/4

d1 � 273 mm

S1 �
πd1

3

32
�

Mmax

σallow
�

30 kN # m
15 MPa

� 0.0020 m3 � 2 � 106 mm3

Mmax � Ph � (12 kN)(2.5 m) � 30 kN # m
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Chapter 5  Stresses in Beams (Basic Topics)446

Example 5-7• • •
A simple beam AB of span length 7 m must support a uniform load

distributed along the beam in the manner shown in 
Fig. 5-21a.

Considering both the uniform load and the weight of the beam, and
also using an allowable bending stress of 110 MPa, select a structural steel
beam of wide-flange shape to support the loads.

q � 60 kN/m

(a)

A B

4 m 2 m1 m

q = 60 kN/m q = 60 kN/m

RA RB

(b)

x1

V
(kN)

0

188.6

−51.4

−171.4

Fig. 5-21
Example 5-7: Design of a
 simple beam with partial
 uniform loads

Solution
In this example, we will proceed as follows: (1) Find the maximum bending
moment in the beam due to the uniform load. (2) Knowing the maximum
moment, find the required section modulus. (3) Select a trial wide-flange
beam from Table E-1 in Appendix E and obtain the weight of the beam. 
(4) With the weight known, calculate a new value of the bending moment
and a new value of the section modulus. (5) Determine whether the selected
beam is still satisfactory. If it is not, select a new beam size and repeat the
process until a satisfactory size of beam has been found.

Maximum bending moment. To assist in locating the cross section of max-
imum bending moment, we construct the shear-force diagram (Fig. 5-21b)
using the methods described in Chapter 4. As part of that process, we deter-
mine the reactions at the supports:

The distance x1 from the left-hand support to the cross section of zero shear
force is obtained from the equation

V � RA � qx1 � 0

RA � 188.6 kN RB � 171.4 kN
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5.6 Design of Beams for Bending Stresses 447

which is valid in the range . Solving for x1, we get

which is less than 4 m, and therefore the calculation is valid.
The maximum bending moment occurs at the cross section where the

shear force is zero; therefore,

Required section modulus. The required section modulus (based only
upon the load q) is obtained from Eq. (5-25):

Trial beam. We now turn to Table E-1 and select the lightest wide-
flange beam having a section modulus greater than 2694 cm3. The lightest
beam that provides this section modulus is HE 450A with . This
beam weighs 140 kg/m. (Recall that the tables in Appendix E are abridged,
and therefore a lighter beam may actually be available.)

We now recalculate the reactions, maximum bending moment, and
required section modulus with the beam loaded by both the uniform load
q and its own weight. Under these combined loads the reactions are

and the distance to the cross section of zero shear becomes

The maximum bending moment increases to , and the new
required section modulus is

Thus, we see that the HE 450A beam with section modulus 
is still satisfactory.

Note: If the new required section modulus exceeded that of the
HE 450A beam, a new beam with a larger section modulus would be
selected and the process repeated.

304.7 kN # m

➥
S � 2896 cm3

S �
Mmax

σallow
�

304.7 � 106 N # mm
110 MPa

� 2770 cm3

x1 � 3.151 m

RA � 193.4 kN RB � 176.2 kN

S � 2896 cm3

S �
Mmax

σallow
�

296.3 � 106 N # mm
110 MPa

� 2.694 � 106 mm3

Mmax � RAx1 �
qx1

2

2
� 296.3 kN # m

x1 �
RA

q
�

188.6 kN
60 kN/m

� 3.14 m

0 … x … 4 m
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Chapter 5  Stresses in Beams (Basic Topics)448

Example 5-8• • •
A temporary wood dam is constructed of horizontal planks A supported by
vertical wood posts B that are sunk into the ground so that they act as can-
tilever beams (Fig. 5-22). The posts are of square cross section (dimensions

) and spaced at distance , center to center. Assume that the
water level behind the dam is at its full height .

Determine the minimum required dimension b of the posts if the allow-
able bending stress in the wood is .

Solution
Loading diagram. Each post is subjected to a triangularly distributed load
produced by the water pressure acting against the planks. Consequently,
the loading diagram for each post is triangular (Fig. 5-22c). The maximum
intensity q0 of the load on the posts is equal to the water pressure at depth
h times the spacing s of the posts:

(a)

in which γ is the specific weight of water. Note that q0 has units of force per
unit distance, γ has units of force per unit volume, and both h and s have
units of length.

Section modulus. Since each post is a cantilever beam, the maximum
bending moment occurs at the base and is given by the following expression:

(b)

Therefore, the required section modulus [Eq. (5-25)] is

(c)

For a beam of square cross section, the section modulus is [see

Eq. (5-19b)]. Substituting this expression for S into Eq. (c), we get a formula

for the cube of the minimum dimension b of the posts:

(d)

Numerical values. We now substitute numerical values into Eq. (d) and
obtain

from which

Thus, the minimum required dimension b of the posts is 199 mm. Any larger
dimension, such as 200 mm, will ensure that the actual bending stress is less
than the allowable stress.

➥

➥b � 199 mm

b3 �
(9.81 kN/m3)(2.0 m)3(0.8 m)

8.0 MPa
� 0.007848 m3 � 7.848 � 106 mm3

b3 �
γ h3s
σallow

S � b3/6

S �
Mmax

σallow
�

γ h3s
6σallow

Mmax �
q0h

2
ah

3
b �

γ h3s
6

q0 � γ hs

σallow � 8.0 MPa

h � 2.0 m
s � 0.8 mb � b

Fig. 5-22
Example 5-8: Wood dam with
horizontal planks A supported
by vertical posts B

h

b

b

b

B

B

B

B

A

A

s

h

(a) Top view

(c) Loading diagram

(b) Side view

q0
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5.7 Nonprismatic Beams 449

5.7 NONPRISMATIC BEAMS
The beam theories described in this chapter were derived for prismatic
beams, that is, straight beams having the same cross sections throughout
their lengths. However, nonprismatic beams are commonly used to reduce
weight and improve appearance. Such beams are found in automobiles,
airplanes, machinery, bridges, buildings, tools, and many other applica-
tions (Fig. 5-23). Fortunately, the flexure formula [Eq. (5-13)] gives rea-
sonably accurate values for the bending stresses in nonprismatic beams
whenever the changes in cross-sectional dimensions are gradual, as in the
examples shown in Fig. 5-23.

(c)

(a)

(b) (d)

Fig. 5-23
Examples of nonprismatic
beams: (a) street lamp, 
(b) bridge with tapered girders
and piers, (c) wheel strut of a
small airplane, and (d) wrench
handle

The manner in which the bending stresses vary along the axis of a
nonprismatic beam is not the same as for a prismatic beam. In a prismatic
beam the section modulus S is constant, and therefore the stresses vary in
direct proportion to the bending moment (because ). However,
in a nonprismatic beam the section modulus also varies along the axis.
Consequently, we cannot assume that the maximum stresses occur at the
cross section with the largest bending moment—sometimes the maximum
stresses occur elsewhere, as illustrated in Example 5-9.

Fully Stressed Beams
To minimize the amount of material and thereby have the lightest possi-
ble beam, we can vary the dimensions of the cross sections so as to have
the maximum allowable bending stress at every section. A beam in this
condition is called a fully stressed beam, or a beam of constant strength.

Of course, these ideal conditions are seldom attained because of prac-
tical problems in constructing the beam and the possibility of the loads
being different from those assumed in design. Nevertheless, knowing the
properties of a fully stressed beam can be an important aid to the engineer
when designing structures for minimum weight. Familiar examples of
structures designed to maintain nearly constant maximum stress are leaf
springs in automobiles, bridge girders that are tapered, and some of the
structures shown in Fig. 5-23.

The determination of the shape of a fully stressed beam is illustrated
in Example 5-10.
Example 5-9

σ � M/S
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Chapter 5  Stresses in Beams (Basic Topics)450

Example 5-9• • •
A tapered cantilever beam AB of solid circular cross section supports a load
P at the free end (Fig. 5-24). The diameter dB at the large end is twice the
diameter dA at the small end:

Determine the bending stress σB at the fixed support and the maximum
bending stress σmax.

dB

dA

� 2

dA

dB

P

x

A

B

L

Fig. 5-24
Example 5-9: Tapered
 cantilever beam of circular
cross section

Solution
If the angle of taper of the beam is small, the bending stresses obtained
from the flexure formula will differ only slightly from the exact values. As a
guideline concerning accuracy, we note that if the angle between line AB
(Fig. 5-24) and the longitudinal axis of the beam is about 20�, the error in
calculating the normal stresses from the flexure formula is about 10%. Of
course, as the angle of taper decreases, the error becomes smaller.

Section modulus. The section modulus at any cross section of the beam
can be expressed as a function of the distance x measured along the axis of
the beam. Since the section modulus depends upon the diameter, we first
must express the diameter in terms of x, as

(5-31)

in which dx is the diameter at distance x from the free end. Therefore, the
section modulus at distance x from the end [Eq. (5-20b)] is

(5-32)Sx �
πdx

3

32
�

π
32
cdA � (dB � dA)

x
L
d3

dx � dA � (dB � dA)
x
L
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5.7 Nonprismatic Beams 451

Bending stresses. Since the bending moment equals Px, the maximum
normal stress at any cross section is given by the equation

(5-33)

We can see by inspection of the beam that the stress σ1 is tensile at the top
of the beam and compressive at the bottom.

Note that Eqs. (5-31), (5-32), and (5-33) are valid for any values of dA
and dB, provided the angle of taper is small. In the following discussion, we
consider only the case where .

Maximum stress at the fixed support. The maximum stress at the section
of largest bending moment (end B of the beam) can be found from 
Eq. (5-33) by substituting and ; the result is

(a)

Maximum stress in the beam. The maximum stress at a cross section at
distance x from the end [Eq. (5-33)] for the case where is

(b)

To determine the location of the cross section having the largest bending
stress in the beam, we need to find the value of x that makes σ1 a maximum.
Taking the derivative and equating it to zero, we can solve for the

➥

σ1 �
Mx

Sx

�
32Px

π[dA � (dB � dA)(x/L)]3

dσ1/dx

σ1 �
32Px

πdA
3(1 � x/L)3

dB � 2dA

σB �
4PL

πdA
3

dB � 2dAx � L

dB � 2dA

value of x that makes σ1 a maximum; the result is

(c)

The corresponding maximum stress, obtained by substituting into
Eq. (b), is

(d)

In this particular example, the maximum stress occurs at the midpoint of the
beam and is 19% greater than the stress σB at the built-in end.

Note: If the taper of the beam is reduced, the cross section of maximum
normal stress moves from the midpoint toward the fixed support. For small
angles of taper, the maximum stress occurs at end B.

➥σmax �
128PL

27πdA
3

�
4.741PL

πdA
3

x � L/2

x �
L
2
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Chapter 5  Stresses in Beams (Basic Topics)452

Example 5-10• • •
A cantilever beam AB of length L is being designed to support a concen-
trated load P at the free end (Fig. 5-25). The cross sections of the beam are
rectangular with constant width b and varying height h. To assist them in
designing this beam, the designers would like to know how the height of
an idealized beam should vary in order that the maximum normal stress at
every cross section will be equal to the allowable stress σallow.

Considering only the bending stresses obtained from the flexure
 formula, determine the height of the fully stressed beam.

hBhx

x

A

P B

b
L

Fig. 5-25
Example 5-10: Fully stressed
beam having constant
 maximum normal stress
 (theoretical shape with shear
stresses disregarded)

Solution
The bending moment and section modulus at distance x from the free end
of the beam are

where hx is the height of the beam at distance x. Substituting in the flexure
formula, we obtain

(a)

Solving for the height of the beam, we get

(b)

At the fixed end of the beam , the height hB is

(c)

and therefore we can express the height hx in the following form:

(d)

This last equation shows that the height of the fully stressed beam varies
with the square root of x. Consequently, the idealized beam has the para-
bolic shape shown in Fig. 5-25.

Note: At the loaded end of the beam the theoretical height is
zero, because there is no bending moment at that point. Of course, a beam
of this shape is not practical because it is incapable of supporting the shear
forces near the end of the beam. Nevertheless, the idealized shape can pro-
vide a useful starting point for a realistic design in which shear stresses and
other effects are considered.

➥

➥

(x � 0)

hx � hBC
x
L

hBC
6PL

bσallow

(x � L)

hx �
C

6Px
bσallow

σallow �
M
S

�
Px

bhx
2 /6

�
6Px

bhx
2

M � Px S �
bhx

2

6
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5.8 Shear Stresses in Beams of Rectangular Cross Section 453

5.8 SHEAR STRESSES IN BEAMS 
OF RECTANGULAR CROSS SECTION
When a beam is in pure bending, the only stress resultants are the bending
moments and the only stresses are the normal stresses acting on the cross
sections. However, most beams are subjected to loads that produce both
bending moments and shear forces (nonuniform bending). In these cases,
both normal and shear stresses are developed in the beam. The normal
stresses are calculated from the flexure formula (see Section 5.5), provided
the beam is constructed of a linearly elastic material. The shear stresses are
discussed in this and the following two sections.

Vertical and Horizontal Shear Stresses
Consider a beam of rectangular cross section (width b and height h) sub-
jected to a positive shear force V (Fig. 5-26a). It is reasonable to assume
that the shear stresses τ acting on the cross section are parallel to the shear
force, that is, parallel to the vertical sides of the cross section. It is also rea-
sonable to assume that the shear stresses are uniformly distributed across
the width of the beam, although they may vary over the height. Using
these two assumptions, we can determine the intensity of the shear stress
at any point on the cross section.

For purposes of analysis, we isolate a small element mn of the beam
(Fig. 5-26a) by cutting between two adjacent cross sections and between
two horizontal planes. According to our assumptions, the shear stresses τ
acting on the front face of this element are vertical and uniformly distrib-
uted from one side of the beam to the other. Also, from the discussion of
shear stresses in Section 1.7, we know that shear stresses acting on one side
of an element are accompanied by shear stresses of equal magnitude act-
ing on perpendicular faces of the element (see Figs. 5-26b and c). Thus,
there are horizontal shear stresses acting between horizontal layers of 
the beam as well as vertical shear stresses acting on the cross sections. At
any point in the beam, these complementary shear stresses are equal in
 magnitude.

The equality of the horizontal and vertical shear stresses acting on
an element leads to an important conclusion regarding the shear stresses
at the top and bottom of the beam. If we imagine that the element mn
 (Fig. 5-26a) is located at either the top or the bottom, we see that the
horizontal shear stresses must vanish, because there are no stresses on
the outer surfaces of the beam. It follows that the vertical shear stresses
must also vanish at those locations; in other words, where

.
The existence of horizontal shear stresses in a beam can be demon-

strated by a simple experiment. Place two identical rectangular beams on
simple supports and load them by a force P, as shown in Fig. 5-27a. If
friction between the beams is small, the beams will bend independently
 (Fig. 5-27b). Each beam will be in compression above its own neutral axis
and in tension below its neutral axis, and therefore the bottom surface of
the upper beam will slide with respect to the top surface of the lower
beam.

Now suppose that the two beams are glued along the contact surface, so
that they become a single solid beam. When this beam is loaded, horizontal

y � �h/2
τ � 0

y

xz

(a)

(b) (c)

O

V

h

b

m

m

n

n

τ

τ

ττ
τ τ

Fig. 5-26
Shear stresses in a beam of
 rectangular cross section

P

P

(a)

(b)

Fig. 5-27
Bending of two separate 
 beams
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Chapter 5  Stresses in Beams (Basic Topics)

shear stresses must develop along the glued surface in order to prevent the
sliding shown in Fig. 5-27b. Because of the presence of these shear stresses,
the single solid beam is much stiffer and stronger than the two separate
beams.

Derivation of Shear Formula
We are now ready to derive a formula for the shear stresses τ in a rectan-
gular beam. However, instead of evaluating the vertical shear stresses
 acting on a cross section, it is easier to evaluate the horizontal shear
stresses acting between layers of the beam. Of course, the vertical shear
stresses have the same magnitudes as the horizontal shear stresses.

With this procedure in mind, let us consider a beam in nonuniform
bending (Fig. 5-28a). We take two adjacent cross sections mn and m1n1,
distance dx apart, and consider the element mm1n1n. The bending moment
and shear force acting on the left-hand face of this element are denoted M
and V, respectively. Since both the bending moment and shear force may
change as we move along the axis of the beam, the corresponding quanti-
ties on the right-hand face (Fig. 5-28a) are denoted and

.
Because of the presence of the bending moments and shear forces, the

element shown in Fig. 5-28a is subjected to normal and shear stresses on
both cross-sectional faces. However, only the normal stresses are needed
in the following derivation, and therefore only the normal stresses are
shown in Fig. 5-28b. On cross sections mn and m1n1 the normal stresses
are, respectively,

(5-34a,b)

as given by the flexure formula [Eq. (5-14)]. In these expressions, y is the
distance from the neutral axis and I is the moment of inertia of the cross-
sectional area about the neutral axis.

Next, we isolate a subelement mm1p1p by passing a horizontal plane
pp1 through element mm1n1n (Fig. 5-28b). The plane pp1 is at distance y1
from the neutral surface of the beam. The subelement is shown separately
in Fig. 5-28c. We note that its top face is part of the upper surface of the
beam and thus is free from stress. Its bottom face (which is parallel to the
neutral surface and distance y1 from it) is acted upon by the horizontal
shear stresses τ existing at this level in the beam. Its cross-sectional faces
mp and m1p1 are acted upon by the bending stresses σ1 and σ2, respec-
tively, produced by the bending moments. Vertical shear stresses also act
on the cross-sectional faces; however, these stresses do not affect the equi-
librium of the subelement in the horizontal direction (the x direction), so
they are not shown in Fig. 5-28c.

If the bending moments at cross sections mn and m1n1 (Fig. 5-28b) are
equal (that is, if the beam is in pure bending), the normal stresses σ1 and
σ2 acting over the sides mp and m1p1 of the subelement (Fig. 5-28c) also
will be equal. Under these conditions, the subelement will be in equilib-
rium under the action of the normal stresses alone, and therefore the shear
stresses τ acting on the bottom face pp1 will vanish. This conclusion is
obvious inasmuch as a beam in pure bending has no shear force and hence
no shear stresses.

M � dM

σ1 � �
My

I
and σ2 � �

(M � dM)y

I

V � dV
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5.8 Shear Stresses in Beams of Rectangular Cross Section 455

If the bending moments vary along the x axis (nonuniform bending),
we can determine the shear stress τ acting on the bottom face of the
subelement (Fig. 5-28c) by considering the equilibrium of the subelement
in the x direction.

We begin by identifying an element of area dA in the cross section at
distance y from the neutral axis (Fig. 5-28d). The force acting on this ele-
ment is σdA, in which σ is the normal stress obtained from the flexure for-
mula. If the element of area is located on the left-hand face mp of the
subelement (where the bending moment is M), the normal stress is given
by Eq. (5-34a), and therefore the element of force is

Note that we are using only absolute values in this equation because the
directions of the stresses are obvious from Fig. 5-28. Summing these ele-
ments of force over the area of face mp of the subelement (Fig. 5-28c) gives
the total horizontal force F1 acting on that face:

(5-35a)

Note that this integration is performed over the area of the shaded part of
the cross section shown in Fig. 5-28d, that is, over the area of the cross sec-
tion from to .

The force F1 is shown in Fig. 5-29 on a partial free-body diagram of
the subelement. (Vertical forces have been omitted).

y � y1 y � h/2

F1 �
L

σ1 dA �
L

My

I
dA

σ1dA �
My

I
dA

Side view of beam Side view of element

Side view of subelement Cross section of beam at subelement

(a) (b)

(c) (d)

dx

dx

p1 y1
p

s2

y1

y1

y

x
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m m1

m m1

n n1

m m1

n n1

V MM � dM M � dM

V � dV
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x

z

y

O

p p1
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2
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2
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2
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Fig. 5-28
Shear stresses in a beam of
 rectangular cross section
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2
—

Fig. 5-29
Partial free-body diagram 
of subelement showing all 
horizontal forces (Compare 
with Fig. 5-28c.)
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Chapter 5  Stresses in Beams (Basic Topics)

In a similar manner, we find that the total force F2 acting on the right-
hand face m1p1 of the subelement (Fig. 5-29 and Fig. 5-28c) is

(5-35b)

Knowing the forces F1 and F2, we can now determine the horizontal force
F3 acting on the bottom face of the subelement.

Since the subelement is in equilibrium, we can sum forces in the 
x direction and obtain

(5-35c)

or

The quantities dM and I in the last term can be moved outside the integral
sign because they are constants at any given cross section and are not
involved in the integration. Thus, the expression for the force F3 becomes

(5-36)

If the shear stresses τ are uniformly distributed across the width b of the
beam, the force F3 is also equal to the following:

(5-37)

in which bdx is the area of the bottom face of the subelement.
Combining Eqs. (5-36) and (5-37) and solving for the shear stress τ,

we get

(5-38)

The quantity dM/dx is equal to the shear force V [see Eq. (4-6)], and there-
fore the preceding expression becomes

(5-39)

The integral in this equation is evaluated over the shaded part of the cross
section (Fig. 5-28d), as already explained. Thus, the integral is the first
moment of the shaded area with respect to the neutral axis (the z axis). In
other words, the integral is the first moment of the cross-sectional area
above the level at which the shear stress τ is being evaluated. This first
moment is usually denoted by the symbol Q:

(5-40)Q �
L

y dA

τ �
V
lb L

y dA

τ �
dM
dx
a 1

Ib
b
L

ydA

F3 � τbdx

F3 �
dM

I L
y dA

F3 �
L

(M � dM )y

I
dA �

L

My

I
dA �

L

(dM )y

I
dA

F3 � F2 � F1

F2 �
L

σ2dA �
L

(M � dM)y

I
dA
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Fig. 5-28d (Repeated)
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5.8 Shear Stresses in Beams of Rectangular Cross Section 457

With this notation, the equation for the shear stress becomes

(5-41)

This equation, known as the shear formula, can be used to determine the
shear stress τ at any point in the cross section of a rectangular beam. Note
that for a specific cross section, the shear force V, moment of inertia I, and
width b are constants. However, the first moment Q (and hence the shear
stress τ) varies with the distance y1 from the neutral axis.

Calculation of the First Moment Q
If the level at which the shear stress is to be determined is above the neu-
tral axis, as shown in Fig. 5-28d, it is natural to obtain Q by calculating
the first moment of the cross-sectional area above that level (the shaded
area in the figure). However, as an alternative, we could calculate the first
moment of the remaining cross-sectional area, that is, the area below the
shaded area. Its first moment is equal to the negative of Q.

The explanation lies in the fact that the first moment of the entire
cross-sectional area with respect to the neutral axis is equal to zero
(because the neutral axis passes through the centroid). Therefore, the
value of Q for the area below the level y1 is the negative of Q for the area
above that level. As a matter of convenience, we usually use the area
above the level y1 when the point where we are finding the shear stress is
in the upper part of the beam, and we use the area below the level y1 when
the point is in the lower part of the beam.

Furthermore, we usually don’t bother with sign conventions for V
and Q. Instead, we treat all terms in the shear formula as positive quanti-
ties and determine the direction of the shear stresses by inspection, since
the stresses act in the same direction as the shear force V itself. This pro-
cedure for determining shear stresses is illustrated later in Example 5-11.

Distribution of Shear Stresses 
in a Rectangular Beam
We are now ready to determine the distribution of the shear stresses in a
beam of rectangular cross section (Fig. 5-30a). The first moment Q of the
shaded part of the cross-sectional area is obtained by multiplying the area
by the distance from its own centroid to the neutral axis:

(5-42a)

Of course, this same result can be obtained by integration using Eq. (5-40):

(5-42b)

Substituting the expression for Q into the shear formula [Eq. (5-41)], we get

(5-43)τ �
V
2I
ah2

4
� y1

2b

Q �
L

y dA �
3

h/2

y1

yb dy �
b
2
ah2

4
� y1

2b

Q � bah
2

� y1b ay1 �
h/2 � y1

2
b �

b
2
ah2

4
� y1

2b

τ �
VQ

Ib
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Chapter 5  Stresses in Beams (Basic Topics)

This equation shows that the shear stresses in a rectangular beam vary
quadratically with the distance y1 from the neutral axis. Thus, when plot-
ted along the height of the beam, τ varies as shown in Fig. 5-30b. Note
that the shear stress is zero when .

The maximum value of the shear stress occurs at the neutral axis
where the first moment Q has its maximum value. Substituting

into Eq. (5-43), we get

(5-44)

in which is the cross-sectional area. Thus, the maximum shear
stress in a beam of rectangular cross section is 50% larger than the aver-
age shear stress V/A.

Note again that the preceding equations for the shear stresses can be
used to calculate either the vertical shear stresses acting on the cross sec-
tions or the horizontal shear stresses acting between horizontal layers of
the beam.*

Limitations
The formulas for shear stresses presented in this section are subject to the
same restrictions as the flexure formula from which they are derived.
Thus, they are valid only for beams of linearly elastic materials with small
deflections.

A � bh

τmax �
Vh2

8I
�

3V
2A

y1 � 0
(y1 � 0)

y1 � �h/2

458

*The shear-stress analysis presented in this section was developed by the Russian engineer D. J. Jourawski;
see Refs. 5-7 and 5-8.

y
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2
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2
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2
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2
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τ

Fig. 5-30
Distribution of shear stresses in

a beam of rectangular cross
 section: (a) cross section of

beam, and (b) diagram showing
the parabolic distribution of

shear stresses over the height of
the beam
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5.8 Shear Stresses in Beams of Rectangular Cross Section 459

In the case of rectangular beams, the accuracy of the shear formula
depends upon the height-to-width ratio of the cross section. The formula
may be considered as exact for very narrow beams (height h much larger
than the width b). However, it becomes less accurate as b increases rela-
tive to h. For instance, when the beam is square , the true maxi-
mum shear stress is about 13% larger than the value given by Eq. (5-44).
(For a more complete discussion of the limitations of the shear formula,
see Ref. 5-9.)

A common error is to apply the shear formula [Eq. (5-41)] to cross-
sectional shapes for which it is not applicable. For instance, it is not appli-
cable to sections of triangular or semicircular shape. To avoid misusing
the formula, we must keep in mind the following assumptions that under-
lie the derivation: (1) The edges of the cross section must be parallel to the
y axis (so that the shear stresses act parallel to the y axis), and (2) the shear
stresses must be uniform across the width of the cross section. These
assumptions are fulfilled only in certain cases, such as those discussed in
this and the next two sections.

Finally, the shear formula applies only to prismatic beams. If a beam is
nonprismatic (for instance, if the beam is tapered), the shear stresses are quite
different from those predicted by the formulas given here (see Refs. 5-9  
and 5-10).

Effects of Shear Strains
Because the shear stress τ varies parabolically over the height of a rectan-
gular beam, it follows that the shear strain also varies paraboli-
cally. As a result of these shear strains, cross sections of the beam that
were originally plane surfaces become warped. This warping is shown in
Fig. 5-31, where cross sections mn and pq, originally plane, have become
curved surfaces m1n1 and p1q1, with the maximum shear strain occurring
at the neutral surface. At points m1, p1, n1, and q1, the shear strain is zero,
and therefore the curves m1n1 and p1q1 are perpendicular to the upper and
lower surfaces of the beam.

γ � τ /G

(b � h)

P

p1

m1

p
m

q1

n1
q

n

Fig. 5-31
Warping of the cross sections of
a beam due to shear strains

If the shear force V is constant along the axis of the beam, warping is
the same at every cross section. Therefore, stretching and shortening of
longitudinal elements due to the bending moments is unaffected by the
shear strains, and the distribution of the normal stresses is the same as in
pure bending. Moreover, detailed investigations using advanced methods
of analysis show that warping of cross sections due to shear strains does
not substantially affect the longitudinal strains even when the shear force
varies continuously along the length. Thus, under most conditions it is jus-
tifiable to use the flexure formula [Eq. (5-14)] for nonuniform bending,
even though the formula was derived for pure bending.
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Chapter 5  Stresses in Beams (Basic Topics)460

Example 5-11• • •
A metal beam with span is simply supported at points A and B
(Fig. 5-32a). The uniform load on the beam (including its own weight) is

. The cross section of the beam is rectangular (Fig. 5-32b)
with width and height The beam is adequately
supported against sideways buckling.

Determine the normal stress σC and shear stress τC at point C, which is
located 25 mm below the top of the beam and 200 mm from the right-hand
support. Show these stresses on a sketch of a stress element at point C.

Solution
Shear force and bending moment. The shear force VC and bending moment
MC at the cross section through point C are found by the methods described
in Chapter 4. The results are

The signs of these quantities are based upon the standard sign conventions
for bending moments and shear forces (see Fig. 4-5).

Moment of inertia. The moment of inertia of the cross-sectional area
about the neutral axis (the z axis in Fig. 5-32b) is

Normal stress at point C. The normal stress at point C is found from the
flexure formula [Eq. (5-14)] with the distance y from the neutral axis equal
to 25 mm; thus,

The minus sign indicates that the stress is compressive, as expected.
Shear stress at point C. To obtain the shear stress at point C, we need

to evaluate the first moment QC of the cross-sectional area above point C
(Fig. 5-32b). This first moment is equal to the product of the area and its cen-
troidal distance (denoted yC) from the z axis; thus,

Now we substitute numerical values into the shear formula [Eq. (5-41)] and
obtain the magnitude of the shear stress:

The direction of this stress can be established by inspection, because it acts in
the same direction as the shear force. In this example, the shear force acts
upward on the part of the beam to the left of point C and downward on the
part of the beam to the right of point C. The best way to show the directions
of both the normal and shear stresses is to draw a stress element, as follows.

Stress element at point C. The stress element, shown in Fig. 5-32c, is cut
from the side of the beam at point C (Fig. 5-32a). Compressive stresses

act on the cross-sectional faces of the element and shear
stresses act on the top and bottom faces as well as the  cross-
sectional faces.

➥

➥

τC � 3.8 MPa
σC � 26.9 MPa

τC �
VCQC

lb
�

(8400 N)(23,440 mm3)

(2083 � 103 mm4)(25 mm)
� 3.8 MPa

AC � (25 mm)(25 mm) � 625 mm2 yC � 37.5 mm QC � AC yC � 23,440 mm3

σC � �
My

I
� �

(2.24 � 106 N # mm)(25 mm)

2083 � 103 mm4
� �26.9 MPa

I �
bh3

12
�

1
12

(25 mm)(100 mm)3 � 2083 � 103 mm4

MC � 2.22 kN # m VC � �8.4 kN

h � 100 mmb � 25 mm
q � 28 kN/m

L � 1 m

Fig. 5-32
Example 5-11: (a) Simple beam
with uniform load, (b) cross
section of beam, and (c) stress
element showing the normal
and shear stresses at point C
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5.8 Shear Stresses in Beams of Rectangular Cross Section 461

• • •
A wood beam AB supporting two concentrated loads P (Fig. 5-33a) has a
 rectangular cross section of width and height
(Fig. 5-33b). The distance from each end of the beam to the nearest load is

Determine the maximum permissible value Pmax of the loads if the
allowable stress in bending is (for both tension and com-
pression) and the allowable stress in horizontal shear is .
(Disregard the weight of the beam itself.)

Note: Wood beams are much weaker in horizontal shear (shear parallel
to the longitudinal fibers in the wood) than in cross-grain shear (shear on
the cross sections). Consequently, the allowable stress in horizontal shear is
usually considered in design.

Solution
The maximum shear force occurs at the supports and the maximum bending
moment occurs throughout the region between the loads. Their values are

Also, the section modulus S and cross-sectional area A are

The maximum normal and shear stresses in the beam are obtained from the
flexure and shear formulas [Eqs. (5-17) and (5-44)]:

Therefore, the maximum permissible values of the load P in bending and
shear, respectively, are

Substituting numerical values into these formulas, we get

Thus, the bending stress governs the design, and the maximum permissible
load is

A more complete analysis of this beam would require that the weight of the
beam be taken into account, thus reducing the permissible load.

Notes:
(1) In this example, the maximum normal stresses and maximum shear

stresses do not occur at the same locations in the beam—the normal stress
is maximum in the middle region of the beam at the top and bottom of the
cross section, and the shear stress is maximum near the supports at the neu-
tral axis of the cross section.

(2) For most beams, the bending stresses (not the shear stresses) control
the allowable load, as in this example.

(3) Although wood is not a homogeneous material and often departs
from linearly elastic behavior, we can still obtain approximate results from
the flexure and shear formulas. These approximate results are usually ade-
quate for designing wood beams.

➥Pmax � 8.25 kN

Pshear �
2(1.2 MPa)(100 mm)(150 mm)

3
� 12.0 kN

Pbending �
(11 MPa)(100 mm)(150 mm)2

6(0.5 m)
� 8.25 kN

Pbending �
σallowbh2

6a
Pshear �

2τallowbh

3

σmax �
Mmax

S
�

6Pa

bh2
τ max �

3Vmax

2A
�

3P
2bh

S �
bh2

6
A � bh

Vmax � P Mmax � Pa

τallow � 1.2 MPa
σallow � 11 MPa

a � 0.5 m.

h � 150 mmb � 100 mm

Example 5-12

Fig. 5-33
Example 5-12: Wood beam
with concentrated loads

a

b

a

BA

P P

(a)

h

y

z

(b)

O

77742_05_ch05_p416-523.qxd:77742_05_ch05_p416-523.qxd  3/2/12  6:25 PM  Page 461

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 5  Stresses in Beams (Basic Topics)

5.9 SHEAR STRESSES IN BEAMS 
OF CIRCULAR CROSS SECTION
When a beam has a circular cross section (Fig. 5-34), we can no longer
assume that the shear stresses act parallel to the y axis. For instance, we
can easily prove that at point m (on the boundary of the cross section) the
shear stress τ must act tangent to the boundary. This observation follows
from the fact that the outer surface of the beam is free of stress, and there-
fore the shear stress acting on the cross section can have no component in
the radial direction.

462

q
O

z
p

y

 τmax

r
m

τ

Fig. 5-34
Shear stresses acting on the

cross section of a circular beam

Although there is no simple way to find the shear stresses acting
throughout the entire cross section, we can readily determine the shear
stresses at the neutral axis (where the stresses are the largest) by making
some reasonable assumptions about the stress distribution. We assume
that the stresses act parallel to the y axis and have constant intensity
across the width of the beam (from point p to point q in Fig. 5-34). Since
these assumptions are the same as those used in deriving the shear formula

[Eq. (5-41)], we can use the shear formula to calculate the
stresses at the neutral axis.

For use in the shear formula, we need the following properties per-
taining to a circular cross section having radius r:

(5-45a,b)

The expression for the moment of inertia I is taken from Case 9 of
Appendix D, and the expression for the first moment Q is based upon the
formulas for a semicircle (Case 10, Appendix D). Substituting these
expressions into the shear formula, we obtain

(5-46)τmax �
VQ

Ib
�

V(2r3/3)

(πr4/4)(2r)
�

4V
3πr2 �

4V
3A

I �
π r4

4
Q � Ayq � aπr2

2
b a 4r

3π
b �

2r3

3
b � 2r

τ � VQ /Ib
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5.9 Shear Stresses in Beams of Circular Cross Section 463

in which is the area of the cross section. This equation shows
that the maximum shear stress in a circular beam is equal to 4/3 times the
average vertical shear stress V/A.

If a beam has a hollow circular cross section (Fig. 5-35), we may
again assume with reasonable accuracy that the shear stresses at the
neutral axis are parallel to the y axis and uniformly distributed across
the section. Consequently, we may again use the shear formula to find
the maximum stresses. The required properties for a hollow circular
section are

(5-47a,b,c)

in which r1 and r2 are the inner and outer radii of the cross section.
Therefore, the maximum stress is

(5-48)

in which

is the area of the cross section. Note that if , Eq. (5-48) reduces to
Eq. (5-46) for a solid circular beam.

Although the preceding theory for shear stresses in beams of cir-
cular cross section is approximate, it gives results differing by only a
few percent from those obtained using the exact theory of elasticity
(Ref. 5-9). Consequently, Eqs. (5-46) and (5-48) can be used to deter-
mine the maximum shear stresses in circular beams under ordinary
 circumstances.
Example 5-13

r1 � 0

A � π(r2
2 � r1

2)

τmax �
VQ

Ib
�

4V
3A
a r2

2 � r2r1 � r1
2

r2
2 � r1

2 b

I �
π
4

(r2
4 � r1

4) Q �
2
3

(r2
3 � r1

3) b � 2(r2 � r1)

A � πr2

O
z

y

r1
r2

Fig. 5-35
Hollow circular cross section
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Chapter 5  Stresses in Beams (Basic Topics)464

Example 5-13• • •
A vertical pole consisting of a circular tube of outer diameter
and inner diameter is loaded by a horizontal force
(Fig. 5-36a).

(a) Determine the maximum shear stress in the pole.
(b) For the same load P and the same maximum shear stress, what is the

diameter d0 of a solid circular pole (Fig. 5-36b)?

Solution
(a) Maximum shear stress. For the pole having a hollow circular cross section

(Fig. 5-36a), we use Eq. (5-48) with the shear force V replaced by the load P
and the cross-sectional area A replaced by the expression ; thus,

(a)

Next, we substitute numerical values, namely,

and obtain

which is the maximum shear stress in the pole.

(b) Diameter of solid circular pole. For the pole having a solid circular cross
section (Fig. 5-36b), we use Eq. (5-46) with V replaced by P and r replaced
by :

(b)

Solving for d0, we obtain

from which we get

In this particular example, the solid circular pole has a diameter approx-
imately one-half that of the tubular pole.

Note: Shear stresses rarely govern the design of either circular or rec-
tangular beams made of metals such as steel and aluminum. In these kinds
of materials, the allowable shear stress is usually in the range 25 to 50% of
the allowable tensile stress. In the case of the tubular pole in this example,
the maximum shear stress is only 4.68 MPa. In contrast, the maximum bend-
ing stress obtained from the flexure formula is 69 MPa for a relatively short
pole of length 600 mm. Thus, as the load increases, the allowable tensile
stress will be reached long before the allowable shear stress is reached.

The situation is quite different for materials that are weak in shear,
such as wood. For a typical wood beam, the allowable stress in horizon-
tal shear is in the range of 4 to 10% of the allowable bending stress.
Consequently, even though the maximum shear stress is relatively low in
value, it sometimes governs the design.

➥

➥

d0 � 49.21 mm

d0
2 �

16P
3πτmax

�
16(6675 N)

3π (4.68 MPa)
� 2.42 � 10�3 m2

τmax �
4P

3π (d0/2)2

d0 /2

τmax � 4.68 MPa

P � 6675 N r2 � d2/2 � 50 mm r1 � d1/2 � 40 mm

τmax �
4P
3π
a r2

2 � r2r1 � r1
2

r2
4 � r1

4
b

π (r2
2 � r1

2)

P � 6675 Nd1 � 80 mm
d2 � 100 mm

Fig. 5-36
Example 5-13: Shear stresses in
beams of circular cross section

(a) (b)

d1

d2 d0

P P
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5.10 Shear Stresses in the Webs of Beams with Flanges 465

5.10 SHEAR STRESSES IN THE WEBS 
OF BEAMS WITH FLANGES
When a beam of wide-flange shape (Fig. 5-37a) is subjected to shear forces
as well as bending moments (nonuniform bending), both normal and
shear stresses are developed on the cross sections. The distribution of the
shear stresses in a wide-flange beam is more complicated than in a rectan-
gular beam. For instance, the shear stresses in the flanges of the beam act
in both vertical and horizontal directions (the y and z directions), as
shown by the small arrows in Fig. 5-37b. The horizontal shear stresses,
which are much larger than the vertical shear stresses in the flanges, are
discussed later in Section 6.7.

(b)

y

(a)

z
x

Fig. 5-37
(a) Beam of wide-flange shape,
and (b) directions of the shear
stresses acting on a cross section

The shear stresses in the web of a wide-flange beam act only in the
vertical direction and are larger than the stresses in the flanges. These
stresses can be found by the same techniques we used for finding shear
stresses in rectangular beams.

Shear Stresses in the Web
Let us begin the analysis by determining the shear stresses at line ef in
the web of a wide-flange beam (Fig. 5-38a). We will make the same
assumptions as those we made for a rectangular beam; that is, we
assume that the shear stresses act parallel to the y axis and are uniformly
distributed across the thickness of the web. Then the shear formula

will still apply. However, the width b is now the thickness t
of the web, and the area used in calculating the first moment Q is the
area between line ef and the top edge of the cross section (indicated by
the shaded area of Fig. 5-38a).

τ � VQ /Ib

77742_05_ch05_p416-523.qxd:77742_05_ch05_p416-523.qxd  3/2/12  6:26 PM  Page 465

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 5  Stresses in Beams (Basic Topics)

When finding the first moment Q of the shaded area, we will disregard
the effects of the small fillets at the juncture of the web and flange
(points b and c in Fig. 5-38a). The error in ignoring the areas of these fil-
lets is very small. Then we will divide the shaded area into two rectangles.
The first rectangle is the upper flange itself, which has area

(5-49a)

in which b is the width of the flange, h is the overall height of the beam,
and h1 is the distance between the insides of the flanges. The second rec-
tangle is the part of the web between ef and the flange, that is, rectangle
efcb, which has area

(5-49b)

in which t is the thickness of the web and y1 is the distance from the neu-
tral axis to line ef.

The first moments of areas A1 and A2, evaluated about the neutral
axis, are obtained by multiplying these areas by the distances from their
respective centroids to the z-axis. Adding these first moments gives the
first moment Q of the combined area:

Upon substituting for A1 and A2 from Eqs. (5-49a) and (5-49b) and then
simplifying, we get

(5-50)

Therefore, the shear stress τ in the web of the beam at distance y1 from the
neutral axis is

(5-51)τ �
VQ

It
�

V
8It
cb(h2 � h1

2) � t(h1
2 � 4y1

2) d

Q �
b
8

(h2 � h1
2) �

t
8

(h1
2 � 4y1

2)

Q � A1a
h1

2
�

h/2 � h1/2

2
b � A2ay1 �

h1/2 � y1

2
b

A2 � tah1

2
� y1b

A1 � bah
2

�
h1

2
b

466

y

f

O

t

(b)

(a)

a

y1
h

z

e
d

h1
2

h1
2

h1

τmin

τmax

τmin

h1
2

h1
2

cb

b

τ
h
2
—

h
2
—

Fig. 5-38
Shear stresses in the 

web of a wide-flange beam: 
(a) cross section of beam, 

and (b) distribution of vertical
shear stresses in the web
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5.10 Shear Stresses in the Webs of Beams with Flanges 467

in which the moment of inertia of the cross section is

(5-52)

Since all quantities in Eq. (5-51) are constants except y1, we see immedi-
ately that τ varies quadratically throughout the height of the web, as shown
by the graph in Fig. 5-38b. Note that the graph is drawn only for the web
and does not include the flanges. The reason is simple enough—Eq. (5-51)
cannot be used to determine the vertical shear stresses in the flanges of the
beam (see the discussion titled “Limitations” later in this section).

Maximum and Minimum Shear Stresses
The maximum shear stress in the web of a wide-flange beam occurs at the
neutral axis, where . The minimum shear stress occurs where the web
meets the flanges . These stresses, found from Eq. (5-51), are

(5-53a,b)

Both τmax and τmin are labeled on the graph of Fig. 5-38b. For typical
wide-flange beams, the maximum stress in the web is from 10 to 60%
greater than the minimum stress.

Although it may not be apparent from the preceding discussion, the
stress τmax given by Eq. (5-53a) not only is the largest shear stress in the
web but also is the largest shear stress anywhere in the cross section.

τmax �
V
8It

(bh2 � bh1
2 � th1

2) τmin �
Vb
8It

(h2 � h1
2)

(y1 � �h1/2)
y1 � 0

I �
bh3

12
�

(b � t)h1
3

12
�

1
12

(bh3 � bh1
3 � th1

3)

y

f

O

t

(b)

(a)

a

y1
h

z

e
d

h1
2

h1
2

h1

τmin

τmax

τmin

h1
2

h1
2

cb

b

τ
h
2
—

h
2
—

Fig. 5-38 (Repeated)
Shear stresses in the web of a
wide-flange beam: (a) cross
 section of beam, and 
(b) distribution of vertical shear
stresses in the web

Shear Force in the Web
The vertical shear force carried by the web alone may be determined by
multiplying the area of the shear-stress diagram (Fig. 5-38b) by the thick-
ness t of the web. The shear-stress diagram consists of two parts, a rect-
angle of area and a parabolic segment of area

By adding these two areas, multiplying by the thickness t of the web, and
then combining terms, we get the total shear force in the web:

(5-54)Vweb �
th1

3
(2τmax � τmin )

2
3

(h1)(τmax � τmin )

h1τmin
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Chapter 5  Stresses in Beams (Basic Topics)

For beams of typical proportions, the shear force in the web is 90 to 98%
of the total shear force V acting on the cross section; the remainder is car-
ried by shear in the flanges.

Since the web resists most of the shear force, designers often calculate
an approximate value of the maximum shear stress by dividing the total
shear force by the area of the web. The result is the average shear stress in
the web, assuming that the web carries all of the shear force:

(5-55)

For typical wide-flange beams, the average stress calculated in this man-
ner is within 10% (plus or minus) of the maximum shear stress calculated
from Eq. (5-53a). Thus, Eq. (5-55) provides a simple way to estimate the
maximum shear stress.

Limitations
The elementary shear theory presented in this section is suitable for deter-
mining the vertical shear stresses in the web of a wide-flange beam.
However, when investigating vertical shear stresses in the flanges, we can
no longer assume that the shear stresses are constant across the width of
the section, that is, across the width b of the flanges (Fig. 5-38a). Hence,
we cannot use the shear formula to determine these stresses.

To emphasize this point, consider the junction of the web and upper
flange , where the width of the section changes abruptly from
t to b. The shear stresses on the free surfaces ab and cd (Fig. 5-38a) must
be zero, whereas the shear stress across the web at line bc is τmin. These
observations indicate that the distribution of shear stresses at the junction
of the web and the flange is quite complex and cannot be investigated by
elementary methods. The stress analysis is further complicated by the use
of fillets at the re-entrant corners (corners b and c). The fillets are neces-
sary to prevent the stresses from becoming dangerously large, but they
also alter the stress distribution across the web.

Thus, we conclude that the shear formula cannot be used to determine
the vertical shear stresses in the flanges. However, the shear formula does
give good results for the shear stresses acting horizontally in the flanges
(Fig. 5-37b), as discussed later in Section 6.8.

The method described above for determining shear stresses in the
webs of wide-flange beams can also be used for other sections having thin
webs. For instance, Example 5-15 illustrates the procedure for a T-beam.

(y1 � h1/2)

τaver �
V
th1
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Fig. 5-38 (Repeated)
Shear stresses in the 

web of a wide-flange beam: 
(a) cross section of beam, 

and (b) distribution of vertical
shear stresses in the web
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5.10 Shear Stresses in the Webs of Beams with Flanges 469

• • •
A beam of wide-flange shape (Fig. 5-39a) is subjected to a vertical shear
force . The cross-sectional dimensions of the beam are

, , , and .
Determine the maximum shear stress, minimum shear stress, and total

shear force in the web. (Disregard the areas of the fillets when making
 calculations.)

h1 � 290 mmh � 320 mmt � 7.5 mmb � 165 mm
V � 45 kN

Example 5-14

y

O

(b)

(a)

h =
320 mm
z h1 

= 
290 mm

τmin

τmax

τmin

b =
165 mm

t = 7.5 mm

= 
17.4 MPa

= 
21.0 MPa

Fig. 5-39
Example 5-14: Shear stresses 
in the web of a wide-flange
beam

Solution
Maximum and minimum shear stresses. The maximum and minimum shear
stresses in the web of the beam are given by Eqs. (5-53a) and (5-53b). Before
substituting into those equations, we calculate the moment of inertia of the
cross-sectional area from Eq. (5-52):

Now we substitute this value for I, as well as the numerical values for the shear
force V and the cross-sectional dimensions, into Eqs. (5-53a) and (5-53b):

In this case, the ratio of τmax to τmin is 1.21, that is, the maximum stress in the
web is 21% larger than the minimum stress. The variation of the shear
stresses over the height h1 of the web is shown in Fig. 5-39b.

Total shear force. The shear force in the web is calculated from Eq. (5-49)
as follows:

From this result we see that the web of this particular beam resists 96% of
the total shear force.

Note: The average shear stress in the web of the beam [from Eq. (5-55)] is

which is only 1% less than the maximum stress.

➥

➥

➥

τaver �
V

th1

� 20.7 MPa

Vweb �
th1

3
(2τmax � τmin ) � 43.0 kN

τmin �
Vb
8It

(h2 � h1
2) � 17.4 MPa

τmax �
V
8It

(bh2 � bh1
2 � th1

2) � 21.0 MPa

I �
1

12
(bh3 � bh1

3 � th1
3) � 130.45 � 106 mm4
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Chapter 5  Stresses in Beams (Basic Topics)470

Example 5-15• • •
A beam having a T-shaped cross section (Fig. 5-40a) is subjected to a vertical
shear force . The cross-sectional dimensions are ,

, , and 
Determine the shear stress τ1 at the top of the web (level nn) and the

maximum shear stress τmax. (Disregard the areas of the fillets.)

Solution
Location of neutral axis. The neutral axis of the T-beam is located by calcu-
lating the distances c1 and c2 from the top and bottom of the beam to the
centroid of the cross section (Fig. 5-40a). First, we divide the cross section into
two rectangles, the flange and the web (see the dashed line in Fig. 5-40a).
Then we calculate the first moment Qaa of these two rectangles with respect
to line aa at the bottom of the beam. The distance c2 is equal to Qaa divided
by the area A of the entire cross section (see Chapter 12, Section 12.3, for
methods for locating centroids of composite areas). The calculations are as
follows:

A � ©Ai � b(h � h1) � th1 � 6624 mm2

h1 � 176 mm.h � 200 mmt � 24 mm
b � 100 mmV � 45 kN

O

(b)(a)

n n

a a

y

t = 24 mm

z τmax

τ1c1

c2 c2
h1

h1  
= 176 mm

h = 200 mm

b = 100 mm

Fig. 5-40
Example 5-15: Shear stresses 
in web of T-shaped beam

Moment of inertia. The moment of inertia I of the entire cross-sectional area
(with respect to the neutral axis) can be found by determining the moment

c2 �
Qaa

A
�

822,912 mm3

6624 mm2
� 124.23 mm c1 � h � c2 � 75.77 mm

Qaa � ©yiAi � ah � h1

2
b (b)(h � h1) �

h1

2
(th1) � 822,912 mm3
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5.10 Shear Stresses in the Webs of Beams with Flanges 471

of inertia Iaa about line aa at the bottom of the beam and then using the
parallel-axis theorem (see Section 12.5):

The calculations are as follows:

Shear stress at top of web. To find the shear stress τ1 at the top of the
web (along line nn) we need to calculate the first moment Q1 of the area
above level nn. This first moment is equal to the area of the flange times the
distance from the neutral axis to the centroid of the flange:

Of course, we get the same result if we calculate the first moment of the
area below level nn:

Substituting into the shear formula, we find

This stress exists both as a vertical shear stress acting on the cross section and
as a horizontal shear stress acting on the horizontal plane between the
flange and the web.

Maximum shear stress. The maximum shear stress occurs in the web at
the neutral axis. Therefore, we calculate the first moment Qmax of the cross-
sectional area below the neutral axis:

As previously indicated, we would get the same result if we calculated the
first moment of the area above the neutral axis, but those calculations
would be slightly longer.

Substituting into the shear formula, we obtain

which is the maximum shear stress in the beam.
The parabolic distribution of shear stresses in the web is shown in Fig. 5-40b.

� 153 � 103 mm3

I � 26.33 � 106 mm4

➥

➥

I � Iaa � Ac2
2

Q1 � b(h � h1)ac1 �
h � h1

2
b

Iaa �
bh3

3
�

(b � t)h1
3

3
� 128.56 � 106 mm4 Ac2

2 � 102.23 � 106 mm4

τmax �
VQmax

It
�

(45 kN)(185 � 103 mm3)

(26.33 � 106 mm4)(24 mm)
� 13.2 MPa

Qmax � tc2a
c2

2
b � (24 mm)(124.23 mm)a124.23

2
b � 185 � 103 mm3

τ1 �
VQ1

It
�

(45 kN)(153 � 103 mm3)

(26.33 � 106 mm4)(24 mm)
� 10.9 MPa

Q1 � th1ac2 �
h1

2
b � (24 mm)(176 mm)(124.33 mm � 88 mm)

� (100 mm)(24 mm)(75.77 mm � 12 mm) � 153.0 � 103 mm3
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Chapter 5  Stresses in Beams (Basic Topics)

*5.11 BUILT-UP BEAMS AND SHEAR FLOW
Built-up beams are fabricated from two or more pieces of material joined
together to form a single beam. Such beams can be constructed in a great
variety of shapes to meet special architectural or structural needs and to
provide larger cross sections than are ordinarily available.

Figure 5-41 shows some typical cross sections of built-up beams. Part (a)
of the figure shows a wood box beam constructed of two planks, which serve
as flanges, and two plywood webs. The pieces are joined together with nails,
screws, or glue in such a manner that the entire beam acts as a single unit.
Box beams are also constructed of other materials, including steel, plastics,
and composites.

472

(a)

(b) (c)

Fig. 5-41
Cross sections of typical 

built-up beams: (a) wood box
beam, (b) glulam beam, 

and (c) plate girder

The second example is a glued laminated beam (called a glulam beam)
made of boards glued together to form a much larger beam than could be
cut from a tree as a single member. Glulam beams are widely used in the
construction of small buildings.

The third example is a steel plate girder of the type commonly used in
bridges and large buildings. These girders, consisting of three steel plates
joined by welding, can be fabricated in much larger sizes than are avail-
able with ordinary wide-flange or I-beams.

Built-up beams must be designed so that the beam behaves as a single
member. Consequently, the design calculations involve two phases. In the
first phase, the beam is designed as though it were made of one piece, tak-
ing into account both bending and shear stresses. In the second phase, the
connections between the parts (such as nails, bolts, welds, and glue) are
designed to ensure that the beam does indeed behave as a single entity. In
particular, the connections must be strong enough to transmit the hori-
zontal shear forces acting between the parts of the beam. To obtain these
forces, we make use of the concept of shear flow.

Shear Flow
To obtain a formula for the horizontal shear forces acting between parts of
a beam, let us return to the derivation of the shear formula (see Figs. 5-28
and 5-29 of Section 5.8). In that derivation, we cut an element mm1n1n from
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5.11 Built-Up Beams and Shear Flow 473

a beam (Fig. 5-42a) and investigated the horizontal equilibrium of a subele-
ment mm1p1p (Fig. 5-42b). From the horizontal equilibrium of the subele-
ment, we determined the force F3 (Fig. 5-42c) acting on its lower surface:

(5-56)

This equation is repeated from Eq. (5-36) of Section 5.8.
Let us now define a new quantity called the shear flow f. Shear flow is

the horizontal shear force per unit distance along the longitudinal axis of the

F3 �
dM

I L
y dA

F1

F3

F2

y1

m1m

x

dx

p1p

Side view of subelement
(b)

dx

p1 y1
p

σ2

x

m m1

σ1

τ

Side view of element
(a)

y1

m m1

n n1

M
M + dM

dx

p p1

σ1 σ2

x

Side view of subelement
(c)

h
2
—

h
2
—

h
2
—

h
2
—

Fig. 5-42
Horizontal shear stresses and
shear forces in a beam (Note:
These figures are repeated from
Figs. 5-28 and 5-29.)

beam. Since the force F3 acts along the distance dx, the shear force per unit
distance is equal to F3 divided by dx; thus,

Replacing dM/dx by the shear force V and denoting the integral by Q, we
obtain the following shear-flow formula:

(5-57)

This equation gives the shear flow acting on the horizontal plane pp1
shown in Fig. 5-42a. The terms V, Q, and I have the same meanings as in
the shear formula [Eq. (5-41)].

If the shear stresses on plane pp1 are uniformly distributed, as we
assumed for rectangular beams and wide-flange beams, the shear flow f
equals τb. In that case, the shear-flow formula reduces to the shear for-
mula. However, the derivation of Eq. (5-56) for the force F3 does not

f �
VQ

I

f �
F3

dx
�

dM
dx
a1

I
b
L

y dA
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Chapter 5  Stresses in Beams (Basic Topics)

involve any assumption about the distribution of shear stresses in the
beam. Instead, the force F3 is found solely from the horizontal equilib-
rium of the subelement (Fig. 5-42c). Therefore, we can now interpret
the subelement and the force F3 in more general terms than before.

The subelement may be any prismatic block of material between
cross sections mn and m1n1 (Fig. 5-42a). It does not have to be obtained
by making a single horizontal cut (such as pp1) through the beam. Also,
since the force F3 is the total horizontal shear force acting between the
subelement and the rest of the beam, it may be distributed anywhere over
the sides of the subelement, not just on its lower surface. These same
comments apply to the shear flow f, since it is merely the force F3 per unit
distance.

Let us now return to the shear-flow formula [Eq. (5-57)].
The terms V and I have their usual meanings and are not affected by the
choice of subelement. However, the first moment Q is a property of  
the cross-sectional face of the subelement. To illustrate how Q is deter-
mined, we will consider three specific examples of built-up beams 
(Fig. 5-43).

Areas Used When Calculating the First 
Moment Q
The first example of a built-up beam is a welded steel plate girder
(Fig. 5-43a). The welds must transmit the horizontal shear forces that act
between the flanges and the web. At the upper flange, the horizontal shear
force (per unit distance along the axis of the beam) is the shear flow along
the contact surface aa. This shear flow may be calculated by taking Q as
the first moment of the cross-sectional area above the contact surface aa.
In other words, Q is the first moment of the flange area (shown shaded in
Fig. 5-43a), calculated with respect to the neutral axis. After calculating
the shear flow, we can readily determine the amount of welding needed to
resist the shear force, because the strength of a weld is usually specified in
terms of force per unit distance along the weld.

The second example is a wide-flange beam that is strengthened by riv-
eting a channel section to each flange (Fig. 5-43b). The horizontal shear
force acting between each channel and the main beam must be transmitted
by the rivets. This force is calculated from the shear-flow formula using Q
as the first moment of the area of the entire channel (shown shaded in the
figure). The resulting shear flow is the longitudinal force per unit distance
acting along the contact surface bb, and the rivets must be of adequate size
and longitudinal spacing to resist this force.

The last example is a wood box beam with two flanges and two webs
that are connected by nails or screws (Fig. 5-43c). The total horizontal
shear force between the upper flange and the webs is the shear flow acting
along both contact surfaces cc and dd, and therefore the first moment Q is
calculated for the upper flange (the shaded area). In other words, the
shear flow calculated from the formula is the total shear flow
along all contact surfaces that surround the area for which Q is computed.
In this case, the shear flow f is resisted by the combined action of the nails
on both sides of the beam, that is, at both cc and dd, as illustrated in the
following example.

f � VQ /I

f � VQ /I
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Fig. 5-43
Areas used when calculating 

the first moment Q
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5.11 Built-Up Beams and Shear Flow 475

• • •
A wood box beam (Fig. 5-44) is constructed of two boards, each

in cross section, that serve as flanges and two plywood webs,
each 15 mm thick. The total height of the beam is 280 mm. The plywood is
fastened to the flanges by wood screws having an allowable load in shear
of each.

If the shear force V acting on the cross section is 10.5 kN, determine the
maximum permissible longitudinal spacing s of the screws (Fig. 5-44b).

Solution
Shear flow. The horizontal shear force transmitted between the upper
flange and the two webs can be found from the shear-flow formula

, in which Q is the first moment of the cross-sectional area of the
flange. To find this first moment, we multiply the area Af of the flange by
the distance df from its centroid to the neutral axis:

The moment of inertia of the entire cross-sectional area about the neutral
axis is equal to the moment of inertia of the outer rectangle minus the
moment of inertia of the “hole” (the inner rectangle):

Substituting V, Q, and I into the shear-flow formula [Eq. (5-52)], we obtain

which is the horizontal shear force per millimeter of length that must be
transmitted between the flange and the two webs.

Spacing of screws. Since the longitudinal spacing of the screws is s,
and since there are two lines of screws (one on each side of the flange), it
follows that the load capacity of the screws is 2F per distance s along the
beam. Therefore, the capacity of the screws per unit distance along the
beam is 2F/s. Equating 2F/s to the shear flow f and solving for the spacing
s, we get

This value of s is the maximum permissible spacing of the screws, based
upon the allowable load per screw. Any spacing greater than 46.6 mm
would overload the screws. For convenience in fabrication, and to be on the
safe side, a spacing such as would be selected.

➥

s � 45 mm

s �
2F
f

�
2(800 N)

34.3 N/mm
� 46.6 mm

f �
VQ

I
�

(10,500 N)(864 � 103 mm3)

264.2 � 106 mm4
� 34.3 N/mm

� 264.2 � 106 mm4

I �
1

12
(210 mm)(280 mm)3 �

1
12

(180 mm)(200 mm)3

Q � Afdf � (7200 mm2)(120 mm) � 864 � 103 mm3

Af � 40 mm � 180 mm � 7200 mm2 df � 120 mm

f � VQ /I

F � 800 N

40 � 180 mm

Example 5-16

Fig. 5-44
Example 5-16: Wood box beam
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180 mm

280 mm

120 mm

15 mm

20 mm

15 mm

40 mm

40 mm

z

y

O

(b) Side view

s s s

x

77742_05_ch05_p416-523.qxd:77742_05_ch05_p416-523.qxd  3/2/12  6:28 PM  Page 475

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 5  Stresses in Beams (Basic Topics)

*5.12 BEAMS WITH AXIAL LOADS
Structural members are often subjected to the simultaneous action of
bending loads and axial loads. This happens, for instance, in aircraft
frames, columns in buildings, machinery, parts of ships, and spacecraft. If
the members are not too slender, the combined stresses can be obtained by
superposition of the bending stresses and the axial stresses.

To see how this is accomplished, consider the cantilever beam shown
in Fig. 5-45a. The only load on the beam is an inclined force P acting
through the centroid of the end cross section. This load can be resolved
into two components, a lateral load Q and an axial load S. These loads
produce stress resultants in the form of bending moments M, shear 
forces V, and axial forces N throughout the beam (Fig. 5-45b). On a typ-
ical cross section, distance x from the support, these stress resultants are

in which L is the length of the beam. The stresses associated with each of
these stress resultants can be determined at any point in the cross section
by means of the appropriate formula ( , , and

).
Since both the axial force N and bending moment M produce normal

stresses, we need to combine those stresses to obtain the final stress distri-
bution. The axial force (when acting alone) produces a uniform stress dis-
tribution over the entire cross section, as shown by the stress
diagram in Fig. 5-45c. In this particular example, the stress σ is tensile, as
indicated by the plus signs attached to the diagram.

The bending moment produces a linearly varying stress
(Fig. 5-45d) with compression on the upper part of the beam and tension
on the lower part. The distance y is measured from the z axis, which passes
through the centroid of the cross section.

The final distribution of normal stresses is obtained by superposing
the stresses produced by the axial force and the bending moment. Thus,
the equation for the combined stresses is

(5-58)

Note that N is positive when it produces tension and M is positive
according to the bending-moment sign convention (positive bending
moment produces compression in the upper part of the beam and tension
in the lower part). Also, the y axis is positive upward. As long as we use
these sign conventions in Eq. (5-58), the normal stress σ will be positive
for tension and negative for compression.

The final stress distribution depends upon the relative algebraic values
of the terms in Eq. (5-58). For our particular example, the three possibili-
ties are shown in Figs. 5-45e, f, and g. If the bending stress at the top of the
beam (Fig. 5-45d) is numerically less than the axial stress (Fig. 5-45c), the
entire cross section will be in tension, as shown in Fig. 5-45e. If the bend-
ing stress at the top equals the axial stress, the distribution will be triangu-
lar (Fig. 5-45f), and if the bending stress is numerically larger than the axial
stress, the cross section will be partially in compression and partially in ten-
sion (Fig. 5-45g). Of course, if the axial force is a compressive force, or if

σ �
N
A

�
My

I

σ � �My/I

σ � N/A

σ � N/A
σ � �My/I τ � VQ /Ib

M � Q(L � x) V � �Q N � S
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(c) (d) (e) (f) (g)
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Fig. 5-45
Normal stresses in a cantilever

beam subjected to both bending
and axial loads: (a) beam with
load P acting at the free end, 

(b) stress resultants N, V, and M
acting on a cross section at

 distance x from the support, 
(c) tensile stresses due to the

axial force N acting alone, 
(d) tensile and compressive
stresses due to the bending

moment M acting alone, 
and (e), (f), (g) possible final

stress  distributions due to the
 combined effects of N and M
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5.12 Beams with Axial Loads 477

the bending moment is reversed in direction, the stress distributions will
change accordingly.

Whenever bending and axial loads act simultaneously, the neutral
axis (that is, the line in the cross section where the normal stress is zero)
no longer passes through the centroid of the cross section. As shown in
Figs. 5-45e, f, and g, respectively, the neutral axis may be outside the cross
section, at the edge of the section, or within the section.

The use of Eq. (5-58) to determine the stresses in a beam with axial
loads is illustrated later in Example 5-17.

Eccentric Axial Loads
An eccentric axial load is an axial force that does not act through the cen-
troid of the cross section. An example is shown in Fig. 5-46a, where the
cantilever beam AB is subjected to a tensile load P acting at distance e
from the x axis (the x axis passes through the centroids of the cross sec-
tions). The distance e, called the eccentricity of the load, is positive in the
positive direction of the y axis.

The eccentric load P is statically equivalent to an axial force P act-
ing along the x axis and a bending moment Pe acting about the z axis
(Fig. 5-46b). Note that the moment Pe is a negative bending moment.

A cross-sectional view of the beam (Fig. 5-46c) shows the y and z axes
passing through the centroid C of the cross section. The eccentric load P
intersects the y axis, which is an axis of symmetry.

Since the axial force N at any cross section is equal to P, and since the
bending moment M is equal to , the normal stress at any point in the
cross section [from Eq. (5-58)] is

(5-59)

in which A is the area of the cross section and I is the moment of inertia
about the z axis. The stress distribution obtained from Eq. (5-59), for the
case where both P and e are positive, is shown in Fig. 5-46d.

σ �
P
A

�
Pey

I

�Pe

Bending due to self-weight of
beam and axial compression due
to horizontal component of
cable lifting force (Lester
Lefkowitz/Getty Images)

e

Pe

(a)

(b)

(d)(c)

�y0

+

A B P

A B
P

C

x

y

y

x

z

y

n n n

e
P× s

�

Fig. 5-46
(a) Cantilever beam with an
eccentric axial load P, 
(b) equivalent loads p and pe, 
(c) cross section of beam, and 
(d) distribution of normal
stresses over the cross section
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Chapter 5  Stresses in Beams (Basic Topics)

The position of the neutral axis nn (Fig. 5-46c) can be obtained from
Eq. (5-59) by setting the stress σ equal to zero and solving for the coordi-
nate y, which we now denote as y0. The result is

(5-60)

The coordinate y0 is measured from the z axis (which is the neutral axis
under pure bending) to the line nn of zero stress (the neutral axis under
combined bending and axial load). Because y0 is positive in the direction
of the y axis (upward in Fig. 5-46c), it is labeled when it is shown
downward in the figure.

From Eq. (5-60) we see that the neutral axis lies below the z axis when
e is positive and above the z axis when e is negative. If the eccentricity is
reduced, the distance y0 increases and the neutral axis moves away from the
centroid. In the limit, as e approaches zero, the load acts at the centroid,
the neutral axis is at an infinite distance, and the stress distribution is uni-
form. If the eccentricity is increased, the distance y0 decreases and the neu-
tral axis moves toward the centroid. In the limit, as e becomes extremely
large, the load acts at an infinite distance, the neutral axis passes through
the centroid, and the stress distribution is the same as in pure bending.

Eccentric axial loads are analyzed in some of the problems at the end
of this chapter, beginning with Prob. 5.12-12.

Limitations
The preceding analysis of beams with axial loads is based upon the assump-
tion that the bending moments can be calculated without considering the
deflections of the beams. In other words, when determining the bending
moment M for use in Eq. (5-58), we must be able to use the original dimen-
sions of the beam––that is, the dimensions before any deformations or
deflections occur. The use of the original dimensions is valid provided the
beams are relatively stiff in bending, so that the deflections are very small.

Thus, when analyzing a beam with axial loads, it is important to dis-
tinguish between a stocky beam, which is relatively short and therefore
highly resistant to bending, and a slender beam, which is relatively long
and therefore very flexible. In the case of a stocky beam, the lateral deflec-
tions are so small as to have no significant effect on the line of action of
the axial forces. As a consequence, the bending moments will not depend
upon the deflections and the stresses can be found from Eq. (5-58).

In the case of a slender beam, the lateral deflections (even though
small in magnitude) are large enough to alter significantly the line of
action of the axial forces. When that happens, an additional bending
moment, equal to the product of the axial force and the lateral deflection,
is created at every cross section. In other words, there is an interaction, or
coupling, between the axial effects and the bending effects. This type of
behavior is discussed in Chapter 11 on columns.

The distinction between a stocky beam and a slender beam is obvi-
ously not a precise one. In general, the only way to know whether inter-
action effects are important is to analyze the beam with and without the
interaction and notice whether the results differ significantly. However,
this procedure may require considerable calculating effort. Therefore, as a
guideline for practical use, we usually consider a beam with a length-to-
height ratio of 10 or less to be a stocky beam. Only stocky beams are
 considered in the problems pertaining to this section.

�y0

y0 � �
I

Ae
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5.12 Beams with Axial Loads 479

• • •
A tubular beam ACB with a length of is pin supported at its ends,
A and B. A powered winch at E lifts load W below C using a cable which passes
over a frictionless pulley at midlength (point D, Fig. 5-47a). The distance from
the center of the pulley to the longitudinal axis of the tube is .
The cross section of the tube is square (Fig. 5-47b) with an outer dimension of

, area of , and moment of inertia of 

(a) Determine the maximum tensile and compressive stresses in the beam
due to a load .

(b) If the allowable normal stress in the tube is 24 MPa, find the maximum
permissible load W. Assume that the cable, pulley, and bracket CD are
adequate to carry load Wmax.

W � 13.5 kN

I � 3385 cm4.A � 125 cm2b � 150 mm

d � 140 mm

L � 1.5 m

Example 5-17

Pulley

Powered winch

A BC

D

E(a)
(b)

d = 140 mm

W

x

y

θ = 30º

z

y

b = 150 mm

b = 150 mm

= 0.75 m
L
2
— = 0.75 m

L
2
—

Fig. 5-47
Example 5-17: Tubular beam
subjected to combined  bending
and axial load

Solution
(a) Maximum tensile and compressive stresses in the beam: Beam and

loading. We begin by representing the beam and its load in idealized
form for the purposes of analysis (Fig. 5-48a). Since the support at end
A resists both horizontal and vertical displacement, it is represented as
a pin support. The support at B prevents vertical displacement but
offers no resistance to horizontal displacement, so it is shown as a
roller support.

We can replace the cable forces at D with statically equivalent 
forces FH and FV and moment MO, all of which are applied on the axis of
the beam at C (see Fig. 5-48a):

.

Reactions and stress resultants. The reactions of the beam (RH, RA, and RB)
are labeled in Fig. 5-48a. Also, the diagrams of axial force N, shear force
V, and bending moment M are shown in Figs. 5-48b, c, and d, respec-
tively. All of these quantities are found from free-body diagrams and
equations of equilibrium using the techniques described in Chapter 4. For
example, using equations of statics, we find that

: (a)©FH � 0 RH � �FH � �W cos (θ) � �13.5 kN cos (30°) � �11.691 kN

M0W cos (θ)d � 1636.8 N # m

FH � W cos (θ) � 11.691 kN FV � W[1 � sin (θ)] � 20.25 kN

Continues ➥
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Chapter 5  Stresses in Beams (Basic Topics)480

Example 5-17 - Continued• • •

: (b)

: (c)©FV � 0 RA � FV � RB � (13.5 kN)(1 � sin (30°)) � 9.034 kN � 11.216 kN

RB � 13.5 kN c1 � sin (30°)
2

� a140 mm
1.5 m

bcos (30°)d � 9.034 kN

RB �
1
L
aFV

L
2

� M0b �
W
2

[1 � sin (θ)] � W
d
L

[ cos (θ )]©MA � 0

Fig. 5-48 (Continued)

Next, we use the axial-force (N), shear-force (V) and bending-moment
(M) diagrams (Figs. 5-48b, c and d, respectively) to find the combined
stresses in beam ACB using Eq. (5-58).

Stresses in the beam. The maximum tensile stress in the beam occurs at
the bottom of the beam just to the left of the midpoint C.
We arrive at this conclusion by noting that at this point in the beam the
 tensile stress due to the axial force adds to the tensile stress produced by
the largest bending moment. Thus, from Eq. (5-58), we get

➥� 0.935 MPa � 18.638 MPa � 19.57 MPa

(σt) max �
N
A

�
My

I
�

11.691 kN

125 cm2
�

(8.412 kN # m)(�75 mm)

3385 cm4

(y � �75 mm)

(a)

A
C

Bx

y M0 = Wcos (θ) d

FH = Wcos (θ)

RB
RA

RH

= 0.75 m

FV  = W [1 + sin (θ)]

L
2
— = 0.75 m

L
2
—

Fig. 5-48
Solution of Example 5-17: 
(a) idealized beam and
 loading, (b) axial-force
 diagram, (c) shear-force
 diagram, and (d) bending-
moment diagram

(b)

(c)

(d)

0 L/2 L/2

0

0

N

V

M

11.69 kN

–9.03 kN

(RA)(L /2) = 8.412 kN·m

(RB)(L/2) = 6.775 kN·m

11.22 kN
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5.12 Beams with Axial Loads 481

The maximum compressive stress occurs either at the top of the beam
to the left of point C or at the top of the beam to the right

of point C. These two stresses are calculated as

Thus, the maximum compressive stress is

and occurs at the top of the beam to the left of point C.

(b) Maximum permissible load W. From Eq. (a), we see that the tensile stress
at the bottom of the beam just left of C (equal to 19.57 for a load

) will reach allowable normal stress first and
thus will be the determining factor in finding Wmax. Using expressions
for reactions [Eqs. (a), (b), and (c)], we find that the axial tension force in
beam segment AC and the positive moment just left of C are

From Eq. (5-58), we find

Solving for , we have

Note: This example shows how the normal stresses in a beam due to
combined bending and axial load can be determined. The shear stresses
acting on cross sections of the beam (due to the shear forces V ) can be
determined independently of the normal stresses, as described earlier in
this chapter. Later, in Chapter 7, we will see how to determine the
stresses on inclined planes when we know both the normal and shear
stresses acting on cross-sectional planes.

MPa

➥

➥

� 0.935 MPa � 18.638 MPa � �17.7 MPa

(σc)left �
N
A

�
My

I
�

11.691 kN

125 cm2
�

(8.412 kN # m)(75 mm)

3385 cm4

(y � 75 mm)

(σc)max � �17.7 MPa

(σc)right �
N
A

�
My

I
� 0 �

(6.775 kN # m)(75 mm)

3385 cm4
� �15.01 MPa

N � W cos (θ ) M � RA
L
2

� W a1 � sin (θ )
2

�
d
L

cos (θ )b a L
2
b

σa � 24 MPaW � 13.5 kN

Wmax �
σa

cos (θ )
A

�
bL[1 � sin (θ )]

8I
�

bd cos (θ )
4I

� 16.56 kN

W � Wmax

σa �
W cos (θ )

A
�

W a1 � sin (θ )
2

�
d
L

cos (θ )b a L
2
b a�b

2
b

I
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Chapter 5  Stresses in Beams (Basic Topics)

*5.13 STRESS CONCENTRATIONS IN BENDING
The flexure and shear formulas discussed in earlier sections of this chap-
ter are valid for beams without holes, notches, or other abrupt changes in
dimensions. Whenever such discontinuities exist, high localized stresses
are produced. These stress concentrations can be extremely important
when a member is made of brittle material or is subjected to dynamic
loads. (See Chapter 2, Section 2.10, for a discussion of the conditions
under which stress concentrations are important.)

For illustrative purposes, two cases of stress concentrations in beams
are described in this section. The first case is a beam of rectangular cross
section with a hole at the neutral axis (Fig. 5-49). The beam has height h
and thickness b (perpendicular to the plane of the figure) and is in pure
bending under the action of bending moments M.

When the diameter d of the hole is small compared to the height h,
the stress distribution on the cross section through the hole is approxi-
mately as shown by the diagram in Fig. 5-49a. At point B on the edge of
the hole the stress is much larger than the stress that would exist at that
point if the hole were not present. (The dashed line in the figure shows the
stress distribution with no hole.) However, as we go toward the outer
edges of the beam (toward point A), the stress distribution varies linearly
with distance from the neutral axis and is only slightly affected by the
presence of the hole.

When the hole is relatively large, the stress pattern is approximately
as shown in Fig. 5-49b. There is a large increase in stress at point B and
only a small change in stress at point A as compared to the stress dis-
tribution in the beam without a hole (again shown by the dashed line).
The stress at point C is larger than the stress at A but smaller than the
stress at B.

Extensive investigations have shown that the stress at the edge of the
hole (point B) is approximately twice the nominal stress at that point.
The nominal stress is calculated from the flexure formula in the standard
way, that is, , in which y is the distance d/2 from the neutral
axis to point B and I is the moment of inertia of the net cross section at
the hole. Thus, we have the following approximate formula for the stress
at point B:

(5-61)

At the outer edge of the beam (at point C ), the stress is approximately
equal to the nominal stress (not the actual stress) at point A (where

):

(5-62)σC L

My

I
�

6Mh
b(h3 � d3)

y � h/2

σB L 2
My

I
�

12Md
b(h3 � d3)

σ � My /I
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(a)

(b)

h

h

d

d

M

MM

M

A

A

B

B

C

Fig. 5-49
Stress distributions in a 

beam in pure bending with a
circular hole at the neutral axis.

(The beam has a rectangular
cross section with height h and

thickness b.)
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5.13 Stress Concentrations in Bending 483

From the last two equations we see that the ratio is approximately
2d/h. Hence we conclude that when the ratio d/h of hole diameter to height
of beam exceeds 1/2, the largest stress occurs at point B. When d/h is less
than 1/2, the largest stress is at point C.

The second case we will discuss is a rectangular beam with notches
(Fig. 5-50). The beam shown in the figure is subjected to pure bending and
has height h and thickness b (perpendicular to the plane of the figure).
Also, the net height of the beam (that is, the distance between the bases of
the notches) is h1 and the radius at the base of each notch is R. The max-
imum stress in this beam occurs at the base of the notches and may be
much larger than the nominal stress at that same point. The nominal
stress is calculated from the flexure formula with and

; thus,

(5-63)

The maximum stress is equal to the stress-concentration factor K times the
nominal stress:

(5-64)

The stress-concentration factor K is plotted in Fig. 5-50 for a few values
of the ratio . Note that when the notch becomes “sharper,” that is, the
ratio becomes smaller, the stress-concentration factor increases.
(Figure 5-50 is plotted from the formulas given in Ref. 2-9.)

The effects of the stress concentrations are confined to small regions
around the holes and notches, as explained in the discussion of Saint-
Venant’s principle in Section 2.10. At a distance equal to h or greater from
the hole or notch, the stress-concentration effect is negligible and the
 ordinary formulas for stresses may be used.

σB /σC

R/h1

h/h1

σmax � Kσnom

σnom �
My

I
�

6M
bh1

2

I � bh1
3/12

y � h1/2

h = h1 + 2R

R—
h1

3.0

2.5

2.0

1.5
0 0.05 0.10 0.15 0.20 0.25 0.30

K

1.05

= 1.2

1.1

b = thickness

K = 
σmax
σnom

  =  6M
  bh  2  1

σnom

h1h

M M

2R
h
h1
—

Fig. 5-50
Stress-concentration factor K
for a notched beam of 
rectangular cross section in 
pure bending ( of
beam; of beam, 
perpendicular to the plane of
the  figure). The dashed line is
for semicircular notches

.(h � h1 � 2R)

b � thickness
h � height
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Chapter 5  Stresses in Beams (Basic Topics)484

Example 5-18• • •
A simple beam AB with rectangular cross section has a hole with a
diameter of d at its centerline and two notches on either side and equidis-
tant from the beam centerline. Beam AB is simply supported, and loads P
are applied at L/5 from each end of the beam. Assume that dimensions
given in Fig. 5-51 are as follows: , , ,

, , and . Assume that the allowableh1 � 120 mm d � 85 mm R � 10 mm
h � 144 mmb � 50 mmL � 4.5 m

(b � h)

A

L/5 P P

hh1 d

b2R

B

L/5Fig. 5-51
Example 5-18: Rectangular
steel beam with notches  
and a hole

Solution
(a) Maximum permissible load P. The central part of the beam between the

loads is in pure bending and the maximum
moment in this region is . To find Pmax, we must compare the
maximum bending stress (at midspan around the hole and in the notch
regions) to the allowable stress value of .

First, we check the maximum stresses around the hole. The hole
diameter-to-beam depth ratio exceeds
1/2, so we know that the stress at B rather than at C (Fig. 5-49) will gov-
ern. Setting σB equal to σa and substituting PL/5 for M in Eq. (5-61), we
can develop the following expression for Pmax:

from which we can compute

Next, we check the peak stresses at the base of the two notches to get a
second value of Pmax. The ratio of notch radius R to height h1 is equal to
0.083, and the ratio . So from Fig. 5-50, we find that the stress
concentration factor K is approximately equal to 2.3 (see Fig. 5-52).

h/h1 � 1.2

Pmax1 �
5

4.5 m
e150 MPa c50 mm[(144 mm)3 � (85 mm)3]

12(85 mm)
d f � 19.378 kN

M � PL/5
P (x � L/5 to x � 4L/5)

Mmax � σa cb(h3 � d3)
12d

d and Pmax1 �
5
L
eσa cb(h3 � d3)

12d
d f

d/h � 85 mm/144 mm � 0.59

σa � 150 MPa

h = h1 + 2R

R—
h1

3.0

2.5

2.0

1.5
0 0.05 0.10 0.15 0.20 0.25 0.30

K

1.05

0.083

2.3

= 1.2

1.1

b = thickness

K = 
smax
snom

  =  6M
  bh  2  1

  snom

h1h

M M

2R
h
h1
—

Fig. 5-52
Stress concentration factor K
in notch regions of beam for
part (a) of Example 5-18

bending stress is .

(a) Find the maximum permissible value of applied load P.
(b) If , find the smallest acceptable radius of the notches, Rmin.
(c) If , find the maximum acceptable diameter of hole at mid-

height of beam.
P � 11 kN
P � 11 kN

σa � 150 MPa
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5.13 Stress Concentrations in Bending 485

From Eqs. (5-63) and (5-64), we get the expressions:

so

Comparing Pmax1 and Pmax2, we see that the peak stress at the base of the
notches controls, so

(b) Smallest acceptable radius R of the notches. The stress concentration fac-
tor K in Fig. 5-50 increases as the ratio of the notch radius R to dimen-
sion h1 decreases. We can compute the nominal stress using Eq. (5-63) as

Then set the maximum bending stress σmax equal to the allowable stress
to find the stress concentration factor K:

From Fig. 5-53, with and , we obtain

(c) Maximum acceptable diameter of the hole. We begin by assuming that ratio
, so we can start with Eq. (5-61) (which assumes that maximum

bending stress is at B, as in Fig. 5-49) to find dmax. If d/h turns out to be less
than 1/2, we will have to use Eq. (5-62), which means that maximum bending
stress is in fact at point C. If the peak stress is at B, we can write Eq. (5-61) as

which can be solved numerically to find that .        
Our original assumption about the d/h ratio is confirmed, since

exceeds 1/2, so the peak stress is indeed at B and not at C.

➥

➥

➥

dmax/h � 0.752

σmax � Kσnom � Ka 6M

bh1
2
b � K c 6

bh1
2
aPL

5
b d

dmax � 108.3 mm

12aPL
5
bd

b(h3 � d3)
� σa

d/h 7 1/2

R
h1

� 0.16 so Rmin � 0.16(120 mm) � 19.2 mm

K � 1.82h/h1 � 1.2

K �
σa

σnom
�

150 MPa
82.5 MPa

� 1.82

σa � 150 MPa

σnom �

6aPL
5
b

bh1
2

�
6(11 kN) � (4.5 m)

5(50 mm) � (120 mm)2
� 82.5 MPa

Pmax � 8.7 kN

Pmax2 � σaa5bh1
2

6KL
b � 150 MPa c5(50 mm)(120 mm)2

6(2.3) � (4.5 m)
d � 8.7 kN

h = h1 + 2R

R—
h1

3.0

2.5

2.0

1.5
0 0.05 0.10 0.15 0.20 0.25 0.30

K

1.05

0.16

= 1.2

1.1

b = thickness

K = 
smax
snom

  =  6M
  bh  2  1

  snom

h1h

M M

2R
h
h1
—

1.82

Fig. 5-53
Stress concentration factor K
in notch regions of beam for
part (b) of Example 5-18
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CHAPTER SUMMARY & REVIEW

In Chapter 5, we investigated the behavior of beams with loads applied
and bending occurring in the xy plane: a plane of symmetry in the beam
cross section. Both pure bending and nonuniform bending were consid-
ered. The normal stresses were seen to vary linearly from the neutral sur-
face in accordance with the flexure formula, which showed that the
stresses are directly proportional to the bending moment M and inversely
proportional to the moment of inertia I /of the cross section. Next, the
relevant properties of the beam cross section were combined into a single
quantity known as the section modulus S of the beam: a useful property
in beam design once the maximum moment and allowable normal
stress are known. The flexure formula was also shown to give rea-
sonably accurate values for the bending stresses in nonprismatic beams
provided the changes in cross-sectional dimensions were gradual. Next,
horizontal and vertical shear stresses (τ) were computed using the shear
formula for the case of nonuniform bending of beams with either rectan-
gular or circular cross sections. The special cases of shear in beams with
flanges and built-up beams also were considered. Finally, stocky beams
with both axial and transverse loads were discussed, followed by an eval-
uation of localized stresses in beams with abrupt changes in cross section
around notches or holes.

Some of the major concepts and findings presented in this chapter are
as follows:

1. If the xy plane is a plane of symmetry of a beam cross section and
applied loads act in the xy plane, the bending deflections occur in
this same plane, known as the plane of bending.

2. A beam in pure bending has constant curvature κ, and a beam in
nonuniform bending has varying curvature. Longitudinal strains
(εx) in a bent beam are proportional to its curvature, and the strains
in a beam in pure bending vary linearly with distance from the neu-
tral surface, regardless of the shape of the stress-strain curve of the
material in accordance with Eq. (5-5):

3. The neutral axis passes through the centroid of the cross-sectional
area when the material follows Hooke’s law and there is no axial
force acting on the cross section. When a beam of linearly elastic
material is subjected to pure bending, the y and z axes are principal
centroidal axes.

4. If the material of a beam is linearly elastic and follows Hooke’s law,
the moment-curvature equation shows that the curvature is directly
proportional to the bending moment M and inversely proportional

εx � �κy

(σallow)
(Mmax )

486
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to the quantity EI, referred to as the flexural rigidity of the beam.
The moment curvature relation was given in Eq. (5-13):

5. The flexure formula shows that the normal stresses σx are directly
proportional to the bending moment M and inversely proportional
to the moment of inertia I of the cross section as given in Eq. (5-14):

The maximum tensile and compressive bending stresses acting at
any given cross section occur at points located farthest from the neu-
tral axis

6. The normal stresses calculated from the flexure formula are not sig-
nificantly altered by the presence of shear stresses and the associated
warping of the cross section for the case of nonuniform bending.
However, the flexure formula is not applicable near the supports of
a beam or close to a concentrated load, because such irregularities
produce stress concentrations that are much greater than the stresses
obtained from the flexure formula.

7. To design a beam to resist bending stresses, we calculate the required
section modulus S from the maximum moment and allowable normal
stress as follows:

To minimize weight and save material, we usually select a beam
from a material design manual (e.g., see sample tables in Appendices
E and F for steel and wood) that has the least cross-sectional area
while still providing the required section modulus; wide-flange sec-
tions, and I-sections have most of their material in the flanges and
the width of their flanges helps to reduce the likelihood of sideways
buckling.

8. Nonprismatic beams (found in automobiles, airplanes, machinery,
bridges, buildings, tools, and many other applications) commonly
are used to reduce weight and improve appearance. The flexure
 formula gives reasonably accurate values for the bending stresses in
nonprismatic beams, provided that the changes in cross-sectional

κ �
M
EI

S �
Mmax

σallow

(y � c1, y � �c2).

σx � �
My

I
.
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dimensions are gradual. However, in a nonprismatic beam, the
 section modulus also varies along the axis, so we cannot assume that
the maximum stresses occur at the cross section with the largest
bending moment.

9. Beams subjected to loads that produce both bending moments (M) and
shear forces (V ) (nonuniform bending) develop both normal and shear
stresses in the beam. Normal stresses are calculated from the flexure
 formula (provided the beam is constructed of a linearly elastic material),
and shear stresses are computed using the shear  formula as follows:

Shear stress varies parabolically over the height of a rectangular
beam, and shear strain also varies parabolically; these shear strains
cause cross sections of the beam that were originally plane surfaces
to become warped. The maximum values of the shear stress and
strain occur at the neutral axis, and the shear stress and
strain are zero on the top and bottom surfaces of the beam.

10. The shear formula applies only to prismatic beams and is valid only
for beams of linearly elastic materials with small deflections; also,
the edges of the cross section must be parallel to the y axis. For rec-
tangular beams, the accuracy of the shear formula depends upon the
height-to-width ratio of the cross section: the formula may be con-
sidered as exact for very narrow beams but becomes less accurate as
width b increases relative to height h. Note that we can use the shear
formula to calculate the shear stresses only at the neutral axis of a
beam of circular cross section.

For rectangular cross sections,

and for solid circular cross sections

11. Shear stresses rarely govern the design of either circular or rectangu-
lar beams made of metals such as steel and aluminum for which the
allowable shear stress is usually in the range 25 to 50% of the allow-
able tensile stress. However, for materials that are weak in shear, such
as wood, the allowable stress in horizontal shear is in the range of 4 to
10% of the allowable bending stress and so may  govern the design.

τmax �
4
3

V
A

τmax �
3
2

V
A

(τmax , γmax )

τ �
VQ

Ib
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12. Shear stresses in the flanges of wide-flange beams act in both vertical
and horizontal directions. The horizontal shear stresses are much
larger than the vertical shear stresses in the flanges. The shear
stresses in the web of a wide-flange beam act only in the vertical direc-
tion, are larger than the stresses in the flanges, and may be computed
using the shear formula. The maximum shear stress in the web of a
wide-flange beam occurs at the neutral axis, and the minimum shear
stress occurs where the web meets the flanges. For beams of typical
proportions, the shear force in the web is 90 to 98% of the total shear
force V acting on the cross section; the remainder is carried by shear
in the flanges.

13. Connections between the parts in built-up beams (e.g., nails, bolts,
welds, and glue) must be strong enough to transmit the horizontal
shear forces acting between the parts of the beam. The connections
are designed using the shear flow formula

to ensure that the beam behaves as a single entity. Shear flow f is
defined as horizontal shear force per unit distance along the longi-
tudinal axis of the beam.

14. Normal stresses in beams with axial loads are obtained by superpos-
ing the stresses produced by the axial force N and the bending
moment M as

Whenever bending and axial loads act simultaneously, the neutral
axis no longer passes through the centroid of the cross section and
may be outside the cross section, at the edge of the section, or within
the section. The discussion in Section 5.12 applies only to stocky
beams for which the lateral deflections are so small as to have no sig-
nificant effect on the line of action of the axial forces. If there is an
interaction or coupling between the axial effects and the bending
effects, this type of behavior is discussed in Chapter 11 on columns.

15. Stress distributions in beams are altered by holes, notches, or other
abrupt changes in dimensions leading to high localized stresses or
stress concentrations. These are especially important to consider
when the beam material is brittle or the member is subjected to
dynamic loads. The maximum stress values may be several times
larger than the nominal stress.

σ �
N
A

�
My

I

f �
VQ

I
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Longitudinal Strains in Beams

5.4-1 A steel wire with a diameter of is bent
around a cylindrical drum with a radius of 
(see figure).

(a) Determine the maximum normal strain εmax.
(b) What is the minimum acceptable radius of the

drum if the maximum normal strain must remain below
yield? Assume and .

(c) If , what is the maximum acceptable
diameter of the wire if the maximum normal strain must
remain below yield?

R � 0.9 m
σY � 690 MPaE � 210 GPa

R � 0.9 m
d � 1.6 mm

5.4-2 A copper wire having a diameter of is
bent into a circle and held with the ends just touching (see
figure).

(a) If the maximum permissible strain in the copper is
, what is the shortest length L of wire that

can be used?
(b) If , what is the maximum acceptable

diameter of the wire if the maximum normal strain must
remain below yield? Assume and

.σY � 300 MPa
E � 120 GPa

L � 5.5 m

ε max � 0.0024

d � 4 mm

PROBLEMS CHAPTER 5
5.4-3 A 120 mm outside diameter polyethylene pipe
designed to carry chemical wastes is placed in a trench and
bent around a quarter-circular 90� bend (see figure). The
bent section of the pipe is 16 m long.

(a) Determine the maximum compressive strain εmax
in the pipe.

(b) If the normal strain cannot exceed ,
what is the maximum diameter of the pipe?

(c) If , what is the minimum acceptable
length of the bent section of the pipe?

6.1 � 10�3

d � 120 mm

490 Chapter 5  Stresses in Beams (Basic Topics)

d

R

PROB. 5.4-1

90°

PROB. 5.4-3

A

B
M0

d

L

PROB. 5.4-4

d = diameter

L = length

PROB. 5.4-2

5.4-4 A cantilever beam AB is loaded by a couple M0 at its
free end (see figure). The length of the beam is ,
and the longitudinal normal strain at the top surface is

. The distance from the top surface of the
beam to the neutral surface is .

(a) Calculate the radius of curvature ρ, the curvature
κ, and the vertical deflection δ at the end of the beam.

(b) If allowable strain , what is the maxi-
mum acceptable depth of the beam? [Assume that the cur-
vature is unchanged from part(a)].

(c) If allowable strain , , and
, what is deflection δ ?L � 4 m

εa � 0.0008 c � 85 mm

εa � 0.0008

c � 85 mm
ε � 0.0010

L � 2.0 m
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5.5-2 A steel wire of diameter
is bent around a pulley of radius

(see figure).
(a) What is the maximum stress σmax in the wire?
(b) By what percent does the stress increase or decrease

if the radius of the pulley is increased by 25%?
(c) By what percent does the stress increase or decrease

if the diameter of the wire is increased by 25% while the
pulley radius remains at ?

(E � 200 GPa)

R0 � 500 mm
d � 1.25 mm

R0 � 500 mm

Normal Stresses in Beams

5.5-1 A thin strip of hard copper having
length and thickness is bent into
a circle and held with the ends just touching (see figure).

(a) Calculate the maximum bending stress σmax in the
strip.

(b) By what percent does the stress increase or
decrease if the thickness of the strip is increased by 0.8 mm?

(c) Find the new length of the strip so that the stress
in part (b) is equal to that
in part (a) .(t � 2.4 mm and L � 2.3 m)

(t � 3.2 mm and L � 2.3 m)

L � 2.3 m t � 2.4 mm
(E � 110 GPa)

491

5.4-5 A thin strip of steel with a length of 
and thickness of is bent by couples M0 (see
 figure). The deflection at the midpoint of the strip
 (measured from a line joining its end points) is found to
be 7.5 mm.

(a) Determine the longitudinal normal strain ε at the
top surface of the strip.

(b) If allowable strain , what is the maxi-
mum acceptable thickness of the strip?

(c) If allowable strain , , andεa � 0.0008 t � 7 mm

εa � 0.0008

t � 7 mm
L � 0.5 m

Problems Chapter 5

t

M0M0

d

L
2
— L

2
—

PROB. 5.4-5

t = 2.4 mm

PROB. 5.5-1

d

R0

PROB. 5.5-2

P
h

P

a a

d

L
2
— L

2
—

PROB. 5.4-6

5.4-6 A bar of rectangular cross section is loaded and sup-
ported as shown in the figure. The distance between sup-
ports is , and the height of the bar is

. The deflection at the midpoint is measured
as 2.5 mm.

(a) What is the maximum normal strain ε at the top
and bottom of the bar?

(b) If allowable strain and the deflection
cannot exceed 4.3 mm, what is the maximum permissible
length of the bar?

εa � 0.0006

h � 140 mm
L � 1.75 m

, what is deflection δ ?
(d) If allowable strain , , and

the deflection cannot exceed 25 mm, what is the maximum
permissible length of the strip?

εa � 0.0008 t � 7 mm
L � 0.8 m
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Chapter 5  Stresses in Beams (Basic Topics)

5.5-5 Each girder of the lift bridge (see figure) is 50 m long
and simply supported at the ends. The design load for each
girder is a uniform load of intensity 18 kN/m. The girders
are fabricated by welding three steel plates so as to form an
I-shaped cross section (see figure) having section modulus

.
What is the maximum bending stress σmax in a girder

due to the uniform load?

S � 46,000 cm3
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5.5-3 A thin, high-strength steel rule hav-
ing thickness and length is bent by
couples M0 into a circular are subtending a central angle

(see figure).
(a) What is the maximum bending stress σmax in the

rule?
(b) By what percent does the stress increase or

decrease if the central angle is increased by 10%?
(c) What percent increase or decrease in rule thickness

will result in the maximum stress reaching the allowable
value of 290 MPa?

α � 40°

L � 1.5 mt � 4 mm
(E � 200 GPa)

L = length

M0M0

t

a

PROB. 5.5-3

PROB. 5.5-5

(a)

q
2
—

A

L 

B

q

h

b

(b)

A

L 

B

q

PROB. 5.5-4

d
d

b b

A

P P

RR

L

B

PROB. 5.5-6

5.5-4 A simply supported wood beam AB with span
length carries a uniform load of intensity

(see figure).
(a) Calculate the maximum bending stress σmax due to

the load q if the beam has a rectangular cross section with
width and height .

(b) Repeat part (a) but use the trapezoidal distributed
load shown in the figure part b.

h � 240 mmb � 140 mm

q � 5.8 kN/m
L � 4 m

5.5-6 A freight-car axle AB is loaded approximately as
shown in the figure, with the forces P representing the car
loads (transmitted to the axle through the axle boxes) and
the forces R representing the rail loads (transmitted to the
axle through the wheels). The diameter of the axle is

, the distance between centers of the rails is L,
and the distance between the forces P and R is

.
Calculate the maximum bending stress σmax in the

axle if .

d � 82 mm

b � 220 mm

P � 50 kN

5.5-7 A seesaw weighing 45 N/m of length is occupied by
two children, each weighing 400 N (see figure). The center
of gravity of each child is 2.5 m from the fulcrum. The
board is 6 m long, 200 mm wide, and 40 mm thick.

What is the maximum bending stress in the board?
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Problems Chapter 5

5.5-8 During construction of a highway bridge, the main
girders are cantilevered outward from one pier toward the
next (see figure). Each girder has a cantilever length of  
48 m and an I-shaped cross section with dimensions shown
in the figure. The load on each girder (during construc-
tion) is assumed to be 9.5 kN/m, which includes the weight
of the girder.

Determine the maximum bending stress in a girder
due to this load.
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5.5-10 A railroad tie (or sleeper) is subjected to two rail
loads, each of magnitude , acting as shown in
the figure. The reaction q of the ballast is assumed to be
 uniformly distributed over the length of the tie, which has
 cross-sectional dimensions and .

Calculate the maximum bending stress σmax in the tie
due to the loads P, assuming the distance
and the overhang length .a � 500 mm

L �1500 mm

h � 250 mmb � 300 mm

P � 175 kN

PROB. 5.5-7

28 mm

52 mm

620 mm

2600 mm

PROB. 5.5-8

15 mm

22 mm

200 mm

500 mm

ABC

PROB. 5.5-9

L

q

P P
b

h

a a

PROB. 5.5-10

s

L

PROB. 5.5-11

5.5-9 The horizontal beam ABC of an oil-well pump has the
cross section shown in the figure. If the vertical pumping
force acting at end C is 39 kN and if the distance from the line
of action of that force to point B is 4.5 m, what is the maxi-
mum bending stress in the beam due to the pumping force?

Horizontal beam transfers loads as part of oil well pump
(Gabriel M. Covian/Getty Images)

5.5-11 A fiberglass pipe is lifted by a sling, as shown in the
figure. The outer diameter of the pipe is 150 mm, its thick-
ness is 6 mm, and its weight density is 18 kN/m3. The
length of the pipe is and the distance between
lifting points is .

(a) Determine the maximum bending stress in the
pipe due to its own weight.

(b) Find the spacing s between lift points which will
minimize the bending stress. What is the minimum bend-
ing stress?

(c) What spacing s will lead to maximum bending
stress? What is that stress?

s � 4 m
L � 13 m
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Chapter 5  Stresses in Beams (Basic Topics)

5.5-15 A simple beam AB of span length is sub-
jected to two wheel loads acting at distance
apart (see figure). Each wheel transmits a load
and the carriage may occupy any position on the beam.

(a) Determine the maximum bending stress σmax due
to the wheel loads if the beam is an I-beam having section
modulus 

(b) If , find the required span length L to
reduce the maximum stress in part (a) to 124 MPa.

(c) If , find the required wheel spacing s to
reduce the maximum stress in part (a) to 124 MPa.

L � 7 m

d � 1.5 m
S � 265 cm3.

P � 14 kN,
d � 1.5 m

L � 7 m
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5.5-12 A small dam of height is constructed of
vertical wood beams AB of thickness , as
shown in the figure. Consider the beams to be simply sup-
ported at the top and bottom.

Determine the maximum bending stress σmax in the
beams, assuming that the weight density of water is

.γ � 9.81 kN/m3

t � 120 mm
h � 2.0 m

h

t

A

B

PROB. 5.5-12

A B C

d
P P

L

PROB. 5.5-15

d

A B

P

b

h1h

t

L

PROB. 5.5-16

C

d

b

b

PROB. 5.5-14

a a

y

x

(c)

r

C

O

C h

(a)

d

(b)

b2

b1

xc

xc

y

x x

C xc

PROB. 5.5-13

5.5-13 Determine the maximum tensile stress σt (due to
pure bending about a horizontal axis through C by posi-
tive bending moments M) for beams having cross sections
as follows (see figure).

(a) A semicircle of diameter d
(b) An isosceles trapezoid with bases and

, and altitude h
(c) A circular sector with and r � d/2α � π /3

b2 � 4b/3
b1 � b

5.5-14 Determine the maximum bending stress σmax (due
to pure bending by a moment M) for a beam having a
cross section in the form of a circular core (see figure). The
circle has diameter d and the angle . (Hint: Use
the formulas given in Appendix D, Cases 9 and 15.)

β � 60°

5.5-16 Determine the maximum tensile stress σt and max-
imum compressive stress σc due to the load P acting on the
simple beam AB (see figure).

(a) Data are as follows: , ,
, , , , and
.

(b) Find the value of d for which tensile and compres-
sive stresses will be largest. What are these stresses?

h1 � 90 mm
h � 120 mmt � 25 mmb � 80 mmd � 1.25 m

L � 3.2 mP � 6.2 kN

5.5-17 A cantilever beam AB, loaded by a uniform load
and a concentrated load (see figure), is constructed of a
channel section.

(a) Find the maximum tensile stress σt and maximum
compressive stress σc if the cross section has the dimen-
sions indicated and the moment of inertia about the z axis
(the neutral axis) is . (Note: The uniform load
represents the weight of the beam.)

(b) Find the maximum value of the concentrated load
if the maximum tensile stress cannot exceed 27 MPa and
the maximum compressive stress is limited to 100 MPa.

I � 130 cm4
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Problems Chapter 5

(c) How far from A can load be positioned
if the maximum tensile stress cannot exceed 27 MPa and
the maximum compressive stress is limited to 100 MPa?

P � 1 kN
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5.5-20 A frame ABC travels horizontally with an acceler-
ation a0 (see figure). Obtain a formula for the maximum
stress σmax in the vertical arm AB, which has length L,
thickness t, and mass density ρ.

A B

1.5 m 1 m

320 N/m

z

y

C

15 mm

1 kN

55 mm

PROB. 5.5-17

b2

b1
q

L

hC

PROB. 5.5-18

L

CB

A
t

a0 = acceleration

PROB. 5.5-20

q = 2 kN/m
P = 4.5 kN

h =
75 mm

b = 65 mm

L1 =
1.25 m

L3 = 1.5 mL2 = 2.5 m

t = 13 mm

t = 13 mm

PROB. 5.5-21

A
B

C

a = 4 m

q = 3 kN/m

z

y

C

17 mm

63 mm

b = 2 m

PROB. 5.5-19

5.5-18 A cantilever beam AB of isosceles trapezoidal cross
section has length , dimensions ,

, and height (see figure). The
beam is made of brass weighing 85 kN/m3.

(a) Determine the maximum tensile stress σt and max-
imum compressive stress σc due to the beam’s own weight.

(b) If the width b1 is doubled, what happens to the
stresses?

(c) If the height h is doubled, what happens to the
stresses?

h � 110 mmb2 � 90 mm
b1 � 80 mmL � 0.8 m

5.5-19 A beam ABC with an overhang from B to C sup-
ports a uniform load of 3 kN/m throughout its length (see
figure). The beam is a channel section with dimensions as
shown in the figure. The moment of inertia about the  
z axis (the neutral axis) equals 210 cm4.

(a) Calculate the maximum tensile stress σt and max-
imum compressive stress σc due to the uniform load.

(b) Find required span length a that results in the
ratio of larger to smaller compressive stress being equal to
the ratio of larger to smaller tensile stress for the beam.
Assume that the total length remains
unchanged.

L � a � b � 6 m

5.5-21 A beam of T-section is supported and loaded as
shown in the figure. The cross section has width
height , and thickness .

(a) Determine the maximum tensile and compressive
stresses in the beam.

(b) If the allowable stresses in tension and compression
are 124 MPa and 82 MPa, respectively, what is the required
depth h of the beam? Assume that thickness t remains at
13 mm and that flange width .

(c) Find the new values of loads P and q so that allow-
able tension (124 MPa) and compression (82 MPa) stresses
are reached simultaneously for the beam. Use the beam
cross section in part (a) (see figure) and assume that L1, L2,
and L3 are unchanged.

b � 65 mm

t � 13 mmh � 75 mm
b � 65 mm,
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Chapter 5  Stresses in Beams (Basic Topics)

5.5-24 Consider the compound beam with segments AB
and BCD joined by a pin connection (moment release) just
right of B (see figure part a). The beam cross section is a
double-T made up from three wood
members (actual dimensions, see figure part b).

(a) Find the centroid C of the double-T cross section
, then compute the moment of inertia .(c1, c2) Iz (mm4)

50 mm � 150 mm
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5.5-22 A cantilever beam AB with a rectangular cross sec-
tion has a longitudinal hole drilled throughout its length
(see figure). The beam supports a load . The
cross section is 25 mm wide and 50 mm high, and the hole
has a diameter of 10 mm.

Find the bending stresses at the top of the beam, at
the top of the hole, and at the bottom of the beam.

P � 600 N

50 mm
12.5 mm

25 mm

10 mm

A B

P = 600 N

L = 0.4 m

37.5 mm

PROB. 5.5-22

Each piece is 
a 50 mm �
150 mm
wood plank
(actual
dimensions) 

C

c1

c2

z

y

B

A

q
1 = 920 N/m

q
2 = 460 N/m

3 m3 m3 m

x
Pin
connection

1.5 m 1.5 m DC

P = 1730 NMA = 600 N.m

(a)

(b)

PROB. 5.5-24

Wood beam

Wood beam

Steel beam

Steel beam

Side view Top view

B

A

h

d

t

t

PROB. 5.5-23

5.5-23 A small dam of height is constructed of
vertical wood beams AB, as shown in the figure. The wood
beams, which have thickness , are simply sup-
ported by horizontal steel beams at A and B.

Construct a graph showing the maximum bending
stress σmax in the wood beams versus the depth d of the
water above the lower support at B. Plot the stress σmax
(MPa) as the ordinate and the depth d (m) as the abscissa.
(Note: The weight density γ of water equals 10 kN/m3.)

t � 64 mm

h � 2 m

5.5-25 A steel post having thickness
and height supports a stop sign (see

figure: ). The height of the post L is measured
from the base to the centroid of the sign. The stop sign is
subjected to wind pressure normal to its
surface. Assume that the post is fixed at its base.

(a) What is the resultant load on the sign? (See
Appendix D, Case 25, for properties of an octagon, .)

(b) What is the maximum bending stress σmax in the
post?

(c) Repeat part (b) if the circular cut-outs are elimi-
nated over the height of the post.

(E � 200 GPa)

n � 8

p � 0.95 kPa

s � 310 mm
L � 2 mt � 3 mm

(b) Find the maximum tensile normal stress σt and
maximum compressive normal stress σc (kPa) for the load-
ing shown. (Ignore the weight of the beam.)
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Problems Chapter 5

Design of Beams

5.6-1 The cross section of a narrow-gage railway bridge is
shown in part a of the figure. The bridge is constructed
with longitudinal steel girders that support the wood cross
ties. The girders are restrained against lateral buckling by
diagonal bracing, as indicated by the dashed lines.

The spacing of the girders is and the
 spacing of the rails is . The load transmitted by
each rail to a single tie is . The cross section of
a tie, shown in part b of the figure, has width
and depth d.

b � 120 mm
P � 16 kN

s2 � 0.6 m
s1 � 0.8 m

497

Determine the minimum value of d based upon an
allowable bending stress of 8 MPa in the wood tie.
(Disregard the weight of the tie itself.)

s

L

A A

Elevation
view of post

z

y

Stop sign

Circular cut-out, d = 10 mm

Post, t = 3 mm

Wind load

Section A–A

C

12.5
mm

12.5
mm

16 mm

38 mm

25 mm 25 mm

c2

c1

Numerical properties of post

A = 373 mm2, c1 = 19.5 mm, c2 = 18.5 mm,
Iy = 1.868 � 105 mm4, Iz = 0.67 � 105 mm4

PROB. 5.5-25

6b

(a)

2b

A B

D C

P 2b

6b

(b)

A B

D C
P

P

2b

2b

PROB. 5.6-2

s1

d

s2
P P

Wood 
tie

Steel
girder

Steel rail

(a)

(b)

b

PROB. 5.6-1

5.6-2 A fiberglass bracket ABCD of solid circular cross
section has the shape and dimensions shown in the figure.
A vertical load acts at the free end D.

(a) Determine the minimum permissible diameter dmin
of the bracket if the allowable bending stress in the mate-
rial is 30 MPa and . (Note: Disregard the
weight of the bracket itself.)

(b) If , , and
what is the maximum value of load P if vertical

load P at D is replaced with horizontal loads P at B and D
(see figure part b)?

30 MPa,
σallow �b � 37 mmd � 10 mm

b � 37 mm

P � 40 N
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Chapter 5  Stresses in Beams (Basic Topics)

5.6-5 A simple beam AB is loaded as shown in the figure.
(a) Calculate the required section modulus S if

, , , and .
Then select a suitable I-beam (IPN shape) from Table E-2,
Appendix E, and recalculate S taking into account the
weight of the beam. Select a new beam size if necessary.

(b) What is the maximum load P that can be applied
to your final beam selection in part (a)?

124 MPa L � 9.75 m P � 13 kN q � 6.6 kN/m
σallow �
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5.6-3 A cantilever beam AB is loaded by a uniform load q
and a concentrated load P, as shown in the figure.

(a) Select the most economical steel UPN shape from
Table E-3, Appendix E; use and
(assume allowable normal stress is 

(b) Select the most economical steel IPN shape from
Table E-2, Appendix E; use and
(assume allowable normal stress is ).

(c) Select the most economical steel HE shape from
Table E-1, Appendix E; use and
(assume allowable normal stress is ).
However, assume that the design requires that the HE shape
must be used in weak axis bending, i.e., it must bend about
the 2–2 (or y) axis of the cross section.

Note: For parts (a), (b), and (c), revise your initial
beam selection as needed to include the distributed weight
of the beam in addition to uniform load q.

σa � 138 MPa
P � 9 kN

1.33 kNP �

q � 657 N/m

σa � 138 MPa
P � 9 kNq � 657 N/m

σa � 124 MPa).
q � 292 N/m

1.22 m

q

A B

P

1.83 m

PROB. 5.6-3

A B

Pq q

L
4
— L

4
— L

4
— L

4
—

PROB. 5.6-5

Chess

Pontoon

Balk

PROB. 5.6-6

L = 5 m

q = 5.8 kN/m

P = 22.5 kN 1.5 m

PROB. 5.6-4

5.6-4 A simple beam of length carries a uniform
load of intensity and a concentrated load 
22.5 kN (see figure).

(a) Assuming , calculate the
required section modulus S. Then select the most econom-
ical wide-flange beam (HE shape) from Table E-1,
Appendix E, and recalculate S, taking into account the
weight of the beam. Select a new beam if necessary.

(b) Repeat part (a), but now assume that the design
requires that the HE shape must be used in weak axis bend-
ing (i.e., it must bend about the 2–2 (or y) axis of the cross
section).

σallow � 110 MPa

q � 5.8 kN/m
L � 5 m

5.6-6 A pontoon bridge (see figure) is constructed of two
longitudinal wood beams, known as balks, that span
between adjacent pontoons and support the transverse
floor beams, which are called chesses. For purposes of
design, assume that a uniform floor load of 7.5 kPa acts
over the chesses. (This load includes an allowance for the
weights of the chesses and balks.) Also, assume that the
chesses are 2.5 m long and that the balks are simply sup-
ported with a span of 3.0 m. The allowable bending stress
in the wood is 15 MPa.

(a) If the balks have a square cross section, what is
their minimum required width bmin?

(b) Repeat part (a) if the balk width is 1.5 b and the
balk depth is b; compare the cross-sectional areas of the
two designs.
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Problems Chapter 5

5.6-7 A floor system in a small building consists of wood
planks supported by 50 mm (nominal width) joists spaced at
distance s and measured from center to center (see figure).
The span length L of each joist is 3 m, the spacing s of the
joists is 400 mm, and the allowable bending stress in the
wood is 8 MPa. The uniform floor load is 6 kN/m2, which
includes an allowance for the weight of the floor system itself.

(a) Calculate the required section modulus S for the
joists, and then select a suitable joist size (surfaced lumber)
from Appendix F, assuming that each joist may be repre-
sented as a simple beam carrying a uniform load.

(b) What is the maximum floor load that can be
applied to your final beam selection in part (a)?
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5.6-10 A so-called “trapeze bar” in a hospital room pro-
vides a means for patients to exercise while in bed (see
 figure). The bar is 2.1 m long and has a cross section in the
shape of a regular octagon. The design load is 1.2 kN
applied at the midpoint of the bar, and the allowable
bending stress is 200 MPa.

Determine the minimum height h of the bar. (Assume
that the ends of the bar are simply supported and that the
weight of the bar is negligible.)

Joists

Planks

s

s

s

L

PROBS. 5.6-7 and 5.6-8

q
0

A B C

C
23.6 mm

66.4 mm90 mm

260 mm

L L

PROB. 5.6-9

h
C

PROB. 5.6-10

1.5 m

5 m

18 kN 9 kN

A B

PROB. 5.6-11

5.6-8 The wood joists supporting a plank floor (see figure)
are in cross section (actual dimensions)
and have a span length of . The floor load is  
5.0 kPa, which includes the weight of the joists and the
floor.

(a) Calculate the maximum permissible spacing s of
the joists if the allowable bending stress is 14 MPa.
(Assume that each joist may be represented as a simple
beam carrying a uniform load.)

(b) If spacing , what is the required
depth h of the joist? Assume all other variables remain
unchanged.

5.6-9 A beam ABC with an overhang from B to C is con-
structed of a UPN 260 channel section with flanges facing
upward (see figure). The beam supports its own weight
(372 N/m) plus a triangular load of maximum intensity q0
acting on the overhang. The allowable stresses in tension
and compression are 138 MPa and 75 MPa, respectively.

(a) Determine the allowable triangular load intensity

,allow if the distance L equals 1.2 m.
(b) What is the allowable triangular load intensity 

q0,allow if the beam is rotated 180� about its longitudinal
centroidal axis so that the flanges are downward.

q0

s � 406 mm

L � 4.0 m
38 mm � 220 mm

5.6-11 A two-axle carriage that is part of an overhead trav-
eling crane in a testing laboratory moves slowly across a
simple beam AB (see figure). The load transmitted to the
beam from the front axle is 9 kN and from the rear axle is
18 kN. The weight of the beam itself may be disregarded.

(a) Determine the minimum required section modulus
S for the beam if the allowable bending stress is 110 MPa,
the length of the beam is 5 m, and the wheelbase of the car-
riage is 1.5 m.

(b) Select the most economical I-beam (IPN shape)
from Table E-2, Appendix E.
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Chapter 5  Stresses in Beams (Basic Topics)

density .) The allowable bending stress in
the cantilevers is 15 MPa.

Assuming that the middle cantilever supports 50% of
the load and each outer cantilever supports 25% of the
load, determine the required dimensions b and h.

γ � 5.5 kN/m3

500

5.6-12 A cantilever beam AB of circular cross section and
length supports a load acting at
the free end (see figure). The beam is made of steel with an
allowable bending stress of 120 MPa.

(a) Determine the required diameter dmin (figure part a)
of the beam, considering the effect of the beam’s own
weight.

(b) Repeat part (a) if the beam is hollow with wall
thickness (figure part b); compare the cross-
 sectional areas of the two designs.

t � d/8

L � 750 mm P � 800 N

L

A
B

P

d

d

d
t =

8

(a)
(b)

PROB. 5.6-12

5.6-13 A propped cantilever beam ABC (see figure) has a
shear release just right of the mid-span.

(a) Select the most economical wood beam from the
table in Appendix F; assume , ,

, and . Include the self-
weight of the beam in your design.

(b) If a UPN 180 steel beam is now used for beam
ABC, what is the maximum permissible value of load vari-
able q? Assume and . Include
the self-weight of the beam in your analysis.

σas � 110 MPa L � 3 m

σaw � 12 MPa τaw � 2.6 MPa
q � 800 N/m L � 5 m

L L / 2L / 2

B
C

A

q P = qL

Shear release

PROB. 5.6-13

4b—
3

h =

L2 L1 b

PROB. 5.6-14

40 mm
30 mm

40 mm

z

b

y

C

400 mm

300 mm

PROB. 5.6-15

5.6-14 A small balcony constructed of wood is supported
by three identical cantilever beams (see figure). Each beam
has length , width b, and height . The
dimensions of the balcony floor are , with

. The design load is 5.5 kPa acting over the
entire floor area. (This load accounts for all loads except
the weights of the cantilever beams, which have a weight

L2 � 2.5 m
L1 � L2

L1 � 2.1 m h � 4b/3

5.6-15 A beam having a cross section in the form of an
unsymmetric wide-flange shape (see figure) is subjected to
a negative bending moment acting about the z axis.

Determine the width b of the top flange in order that
the stresses at the top and bottom of the beam will be in
the ratio 4:3, respectively.

5.6-16 A beam having a cross section in the form of a
channel (see figure) is subjected to a bending moment
 acting about the z axis.

Calculate the thickness t of the channel in order that
the bending stresses at the top and bottom of the beam will
be in the ratio 7:3, respectively.
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Problems Chapter 5

5.6-17 Determine the ratios of the weights of four
beams that have the same length, are made of the same
material, are subjected to the same maximum bending
moment, and have the same maximum bending stress if
their cross sections are (1) a rectangle with height equal
to twice the width, (2) a square, (3) a circle, and (4) a
pipe with outer diameter d and wall thickness
(see figures).

t � d/8
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5.6-19 A steel plate (called a cover plate) having cross
 sectional dimensions is welded along the
full length of the bottom flange of a HE 260B wide-flange
beam (see figure, which shows the beam cross section).

What is the percent increase in the smaller  section
modulus (as compared to the wide-flange beam alone)?

200 mm � 12 mm

200 mm � 12 mm cover plate

HE 260B

PROB. 5.6-19

A
B

C

b

2b

q
1.5 q

2L L

PROB. 5.6-20

b

h = 2b

a

a

d d

d
t =

8

Part 1 Part 2 Part 3 Part 4

PROB. 5.6-17

C1
C2

b/4

b � t

b/2 � t/2

(c)

t

B
A

C
D

(a)

(b)

A
B C

D

q

L

L
b

PROB. 5.6-18

z

y

C 55 mm

tt

t

152 mm

PROB. 5.6-16

5.6-18 A horizontal shelf AD of length ,
width , and thickness is sup-
ported by brackets at B and C (see part a of the figure).
The brackets are adjustable and may be placed in any
desired positions between the ends of the shelf. A uniform
load of intensity q, which includes the weight of the shelf
itself, acts on the shelf (see part b of the figure).

(a) Determine the maximum permissible value of the
load q if the allowable bending stress in the shelf is

and the position of the supports is
adjusted for maximum load carrying capacity.

(b) The bookshelf owner decides to reinforce the shelf
with a bottom wood plate along its entire length
(see figure part c). Find the new maximum permissible
value of the load q if the allowable bending stress in the
shelf remains at .σallow � 8.5 MPa

b/2 � t/2

σallow � 8.5 MPa

b � 305 mm t � 22 mm
L � 1215 mm

5.6-20 A steel beam ABC is simply supported at A and B
and has an overhang BC of length (see
 figure). The beam supports a uniform load of intensity

over its entire span AB and 1.5q over BC.
The cross section of the beam is rectangular with width b and
height 2b. The allowable bending stress in the steel is

, and its weight density is 
(a) Disregarding the weight of the beam, calculate the

required width b of the rectangular cross section.
(b) Taking into account the weight of the beam,

 calculate the required width b.

γ � 77.0 kN/m3.σallow � 60 MPa

q � 4.0 kN/m

L � 150 mm
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Chapter 5  Stresses in Beams (Basic Topics)

(a) Determine the ratio β defining the areas that
should be removed in order to obtain the strongest cross
section in bending.

(b) By what percent is the section modulus increased
when the areas are removed?

502

5.6-21 A retaining wall 1.5 m high is constructed of hori-
zontal wood planks 75 mm thick (actual dimension) that
are supported by vertical wood piles of a 300 mm diame-
ter (actual dimension), as shown in the figure. The lateral
earth pressure is at the top of the wall and

at the bottom.
(a) Assuming that the allowable stress in the wood is

8 MPa, calculate the maximum permissible spacing s of
the piles.

(b) Find the required diameter of the wood piles so
that piles and planks reach the allowable
stress at the same time.

(Hint: Observe that the spacing of the piles may be
governed by the load-carrying capacity of either the
planks or the piles. Consider the piles to act as cantilever
beams subjected to a trapezoidal distribution of load, and
consider the planks to act as simple beams between the
piles. To be on the safe side, assume that the pressure on
the bottom plank is uniform and equal to the maximum
pressure.)

(t � 75 mm)

p2 � 20 kPa
p1 � 5 kPa

75 mm

s
1.5 m

Top view

Side view

75 mm

300 mm
diam.

300 mm
diam.

p1 = 5 kPa

p2 = 20 kPa

PROB. 5.6-21

a

a

Cz

y

ba

ba

PROB. 5.6-22

h

b—
9

b—
9

d

d

h

(a) (b)

b

PROB. 5.6-23

5.6-22 A beam of square cross section ( of
each side) is bent in the plane of a diagonal (see figure). By
removing a small amount of material at the top and bot-
tom corners, as shown by the shaded triangles in the
 figure, we can increase the section modulus and obtain a
stronger beam, even though the area of the cross section is
reduced.

a � length

5.6-23 The cross section of a rectangular beam having
width b and height h is shown in part a of the figure. For
reasons unknown to the beam designer, it is planned to
add structural projections of width b/9 and height d to the
top and bottom of the beam (see part b of the figure).

For what values of d is the bending-moment capacity
of the beam increased? For what values is it decreased?
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Problems Chapter 5

5.7-2 A tall signboard is supported by two vertical beams
consisting of thin-walled, tapered circular tubes (see figure
part a). For purposes of this analysis, each beam may be
represented as a cantilever AB of length sub-
jected to a lateral load at the free end. The
tubes have constant thickness and average
diameters and at ends A and
B, respectively.

Because the thickness is small compared to the
 diameters, the moment of inertia at any cross section may
be obtained from the formula (see Case 22,
Appendix D), and therefore, the section modulus may be
obtained from the formula .S � πd2t/4

I � πd3t/8

dA � 90 mm dB � 270 mm
t � 10.0 mm

P � 2.4 kN
L � 8.0 m

503

(a) At what distance x from the free end does the
maximum bending stress occur? What is the magnitude
σmax of the maximum bending stress? What is the ratio
of the maximum stress to the largest stress σB at the
 support?

(b) Repeat part (a) if concentrated load P is applied
upward at A and downward uniform load is
applied over the entire beam as shown in the figure part b.
What is the ratio of the maximum stress to the stress at the
location of maximum moment?

q(x) � 2P/L

BA

(a)

A
hA

hB

x
P

L

(b)

Sliding
support

L

q = P/L

B

x

PROB. 5.7-1

Wind
load

P = 2.4 kN

A
B

x

t = 10.0 mm

dA = 90 mm dB = 270 mm

L = 8.0 m

(a)

2P
L
—q(x) =

A
B

x

t

d

L = 8.0 m

P

(b)

PROB. 5.7-2

Nonprismatic Beams

5.7-1 A tapered cantilever beam AB of length L has
square cross sections and supports a concentrated load P
at the free end (see figure part a). The width and height of
the beam vary linearly from hA at the free end to hB at the
fixed end.

Determine the distance x from the free end A to the
cross section of maximum bending stress if .hB � 3hA

(a) What is the magnitude σmax of the maximum
bending stress? What is the ratio of the maximum stress to
the largest stress B at the support?

(b) Repeat part (a) if load P is now applied as a uni-
form load of intensity over the entire beam, A is
restrained by a roller support and B is a sliding support
(see figure part b).

q � P/L

77742_05_ch05_p416-523.qxd:77742_05_ch05_p416-523.qxd  3/2/12  6:37 PM  Page 503

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 5  Stresses in Beams (Basic Topics)

Considering only the effects of bending due to the
loads P and M0, determine the following quantities.

(a) The largest bending stress σA at end A.
(b) The largest bending stress σB at end B.
(c) The distance x to the cross section of maximum

bending stress.
(d) The magnitude σmax of the maximum bending

stress.
(e) Repeat part (d) if uniform load is

added to loadings P and M0, as shown in the figure part b.
q(x) � 10P/3L
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5.7-3 A tapered cantilever beam AB having rectangular
cross sections is subjected to a concentrated load

and a couple acting at the free
end (see figure part a). The width b of the beam is constant
and equal to 25 mm, but the height varies linearly from

at the loaded end to at the
 support.

(a) At what distance x from the free end does the
maximum bending stress σmax occur? What is the magni-
tude σmax of the maximum bending stress? What is the
ratio of the maximum stress to the largest stress σB at the
support?

(b) Repeat part (a) if, in addition to P and M0, a tri-
angular distributed load with peak intensity
acts upward over the entire beam as shown in the figure
part b. What is the ratio of the maximum stress to the stress
at the location of maximum moment?

q0 � 3P/L

hA � 50 mm hB � 75 mm

P � 220 N M0 � 90 N # m

(a)

hA = 
50 mm

hB = 
75 mm

BA

b = 25 mm b = 25 mm

x

P = 220 N

M0 = 90 N·m

L = 500 mm

(b)

BA

x

P = 220 N

M0 = 90 N·m

L = 500 mm

3P
L
—q0 =

PROB. 5.7-3

5.7-4 The spokes in a large flywheel are modeled as beams
fixed at one end and loaded by a force P and a couple M0
at the other (see figure). The cross sections of the spokes
are elliptical with major and minor axes (height and width,
respectively) having the lengths shown in the figure part a.
The cross-sectional dimensions vary linearly from end A
to end B.

(a)

x

A

P = 12 kN
BM0 = 10 kN·m

hB = 120 mmhA = 90 mm

bB = 80 mm

bA = 60 mm

L = 1.25 m

(b)

x
A

P

B

M0

L = 1.25 m

10P
3L
—q(x) =

PROB. 5.7-4

5.7-5 Refer to the tapered cantilever beam of solid circu-
lar cross section shown in Fig. 5-24 of Example 5-9.

(a) Considering only the bending stresses due to the
load P, determine the range of values of the ratio
for which the maximum normal stress occurs at the
 support.

(b) What is the maximum stress for this range of
values?

dB /dA
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Problems Chapter 5

Fully Stressed Beams
Problems 5.7-6 to 5.7-8 pertain to fully stressed beams of
rectangular cross section. Consider only the bending stresses
obtained from the flexure formula and disregard the weights
of the beams.

5.7-6 A cantilever beam AB having rectangular cross sec-
tions with constant width b and varying height hx is sub-
jected to a uniform load of intensity q (see figure).

How should the height hx vary as a function of x
(measured from the free end of the beam) in order to have
a fully stressed beam? (Express hx in terms of the height hB
at the fixed end of the beam.)

505

5.7-8 A cantilever beam AB having rectangular cross
sections with varying width bx and varying height hx is
subjected to a uniform load of intensity q (see figure). If
the width varies linearly with x according to the equa-
tion , how should the height hx vary as a
function of x in order to have a fully stressed beam?
(Express hx in terms of the height hB at the fixed end of
the beam.)

bx � bBx/L

x

hBhx

hBhx

A
B

b
b

q

L 

PROB. 5.7-6

x

hB

hB

hx

bB

bx

q

hxA

B

L 

PROB. 5.7-8

A B

P

x

C
h

h

bx

h

bB

L
2
— L

2
—

PROB. 5.7-7

5.7-7 A simple beam ABC having rectangular cross sec-
tions with constant height h and varying width bx supports
a concentrated load P acting at the midpoint (see figure).

How should the width bx vary as a function of x in
order to have a fully stressed beam? (Express bx in terms of
the width bB at the midpoint of the beam.)

Shear Stresses in Rectangular
Beams

5.8-1 The shear stresses τ in a rectangular beam are given
by Eq. (5-43):

in which V is the shear force, I is the moment of inertia of
the cross-sectional area, h is the height of the beam, and y1
is the distance from the neutral axis to the point where the
shear stress is being determined (Fig. 5-30).

By integrating over the cross-sectional area, show
that the resultant of the shear stresses is equal to the shear
force V.

τ �
V
2I
ah2

4
� y1

2b
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Chapter 5  Stresses in Beams (Basic Topics)

5.8-4 A cantilever beam of length supports a
load (see figure). The beam is made of wood
with cross-sectional dimensions .

Calculate the shear stresses due to the load P at points
located 25 mm, 50 mm, 75 mm, and 100 mm from the top
surface of the beam. From these results, plot a graph
showing the distribution of shear stresses from top to bot-
tom of the beam.

120 mm � 200 mm
P � 8.0 kN

L � 2 m
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5.8-2 Calculate the maximum shear stress τmax and the
maximum bending stress σmax in a wood beam (see figure)
carrying a uniform load of 22.5 kN/m (which includes the
weight of the beam) if the length is 1.95 m and the cross
section is rectangular with width 150 mm and height
300 mm, and the beam is either (a) simply supported as in
the figure part a, or (b) has a sliding support at right as in
the figure part b.

(a)

1.95 m

22.5 kN/m

300 mm

150 mm

(b)

1.95 m

22.5 kN/m

PROB. 5.8-2

200 mm

120 mm
L = 2 m

P = 8.0 kN

PROB. 5.8-4

q = 45 kN/m

b = 12 mm

h = 50 mm

L = 400 mm

PROB. 5.8-5

200 mm

90 mm

M

2.5 m

PROB. 5.8-3

5.8-3 Two wood beams, each of rectangular cross sec-
tion ( , actual dimensions) are glued
together to form a solid beam of dimensions

(see  figure). The beam is simply sup-
ported with a span of 2.5 m.

(a) What is the maximum moment Mmax that may
be applied at the left support if the allowable shear stress
in the glued joint is 1.4 MPa? (Include the effects of the
beam’s own weight, assuming that the wood weighs  
5.4 kN/m3.)

(b) Repeat part (a) if Mmax is based on allowable
bending stress of 17.25 MPa.

200 mm � 90 mm

100 mm � 90 mm

5.8-5 A steel beam of length and cross-
 sectional dimensions and (see fig-
ure) supports a uniform load of intensity ,
which includes the weight of the beam.

Calculate the shear stresses in the beam (at the
cross section of maximum shear force) at points located
6.25 mm, 12.5 mm, 18.75 mm, and 25 mm from the top
surface of the beam. From these calculations, plot a
graph showing the distribution of shear stresses from
top to bottom of the beam.

q � 45 kN/m
b � 12 mm h � 50 mm

L � 400 mm

5.8-6 A beam of rectangular cross section (width b and
height h) supports a uniformly distributed load along its
entire length L. The allowable stresses in bending and
shear are σallow and τallow, respectively.

(a) If the beam is simply supported, what is the span
length L0 below which the shear stress governs the allow-
able load and above which the bending stress governs?

(b) If the beam is supported as a cantilever, what is
the length L0 below which the shear stress governs the
allowable load and above which the bending stress
 governs?
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Problems Chapter 5

5.8-7 A laminated wood beam on simple supports
 (figure part a) is built up by gluing together four

boards (actual dimensions) to form a
solid beam in cross section, as
shown in the  figure part b. The allowable shear stress in
the glued joints is 425 kPa, the allowable shear stress
in the wood is 1.2 MPa, and the allowable bending stress
in the wood is 11.4 MPa.

(a) If the beam is 3.6 m long, what is the allowable
load P acting at the one-third point along the beam, as
shown? (Include the effects of the beam’s own weight,
assuming that the wood weighs 5.5 kN/m3.)

(b) Repeat part (a) if the beam is assembled by  gluing
together two boards and a

board (see figure part c).50 mm � 100 mm
75 mm � 100 mm

100 mm � 200 mm
50 mm � 100 mm
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5.8-9 A wood beam AB on simple supports with span
length equal to 3 m is subjected to a uniform load of
intensity 2 kN/m acting along the entire length of the
beam, a concentrated load of magnitude 30 kN acting at
a point 1 m from the right-hand support, and a moment
at A of 26 kN m (see figure). The allowable stresses
in bending and shear, respectively, are 15 MPa and
1.1 MPa.

(a) From the table in Appendix F, select the lightest
beam that will support the loads (disregard the weight of
the beam).

(b) Taking into account the weight of the beam
, verify that the selected

beam is satisfactory, or if it is not, select a new beam.
(weight density � 5.4 kN/m3)

#

L

L/3

(a)
(b) (c)

50 mm

50 mm

50 mm

50 mm

75 mm

50 mm

75 mm

100 mm 100 mm

P

PROB. 5.8-7

A B

30 kN26 kN·m
2 kN/m

3 m

1 m

PROB. 5.8-9

0.6 m 0.6 m

P

140 mm

240 mm

PROB. 5.8-10

M

30 mm

30 mm

10 mm
10 mm
10 mm

q

L

PROB. 5.8-8

5.8-8 A laminated plastic beam of square cross section is
built up by gluing together three strips, each

in cross section (see figure). The beam
has a total weight of 3.6 N and is simply supported with
span length .

Considering the weight of the beam (q), calculate the
maximum permissible CCW moment M that may be
placed at the right support.

(a) If the allowable shear stress in the glued joints is
0.3 MPa.

(b) If the allowable bending stress in the plastic is 
8 MPa.

L � 360 mm

10 mm � 30 mm
5.8-10 A simply supported wood beam of rectangular
cross section and span length 1.2 m carries a concen-
trated load P at midspan in addition to its own weight
(see figure). The cross section has width 140 mm and
height 240 mm. The weight density of the wood is 
5.4 kN/m3.

Calculate the maximum permissible value of the load
P if (a) the allowable bending stress is 8.5 MPa, and (b) the
allowable shear stress is 0.8 MPa.
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Chapter 5  Stresses in Beams (Basic Topics)

(a) Determine the required width b of the beam based
upon an allowable bending stress of 8.2 MPa.

(b) Determine the required width based upon an
allowable shear stress of 0.7 MPa.
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5.8-11 A square wood platform, in area,
rests on masonry walls (see figure). The deck of the platform
is constructed of 50 mm nominal thickness tongue-and-
groove planks (actual thickness 47 mm; see Appendix F)
supported on two 2.4-m long beams. The beams have

nominal dimensions (actual dimen-
sions ).

The planks are designed to support a uniformly dis-
tributed load acting over the entire top surface
of the platform. The allowable bending stress for the
planks is 17 MPa and the allowable shear stress is
0.7 MPa. When analyzing the planks, disregard their
weights and assume that their reactions are uniformly dis-
tributed over the top surfaces of the supporting beams.

(a) Determine the allowable platform load
based upon the bending stress in the planks.

(b) Determine the allowable platform load
based upon the shear stress in the planks.

(c) Which of the preceding values becomes the allow-
able load wallow on the platform?

(Hints: Use care in constructing the loading diagram
for the planks, noting especially that the reactions are dis-
tributed loads instead of concentrated loads. Also, note
that the maximum shear forces occur at the inside faces of
the supporting beams.)

w2 (kN/m2)

w1 (kN/m2)

w (kN/m2)

97 mm � 147 mm
100 mm � 150 mm

2.4 m � 2.4 m

2.4 m
2.4 m

PROB. 5.8-11

5.8-12 A wood beam ABC with simple supports at A and B
and an overhang BC has height (see  figure).
The length of the main span of the beam is and
the length of the overhang is The beam sup-
ports a concentrated load at the midpoint of
the main span and a moment at the
free end of the overhang. The wood has weight density

.γ � 5.5 kN/m3

PL/2 � 10.8 kN # m
3P � 18 kN

L/3 � 1.2 m.
L � 3.6 m

h � 300 mm

A CB

b

h =
300 mm

3P

L

L
2
—

L
3
—

M =
PL
2

–––

PROB. 5.8-12

Shear Stresses in Circular Beams

5.9-1 A wood pole of solid circular cross section
is subjected to a triangular distributed

horizontal force of peak intensity (see
 figure). The length of the pole is , and the allow-
able stresses in the wood are 13 MPa in bending and
820 kPa in shear.

Determine the minimum required diameter of the
pole based upon (a) the allowable bending stress, and 
(b) the allowable shear stress.

L � 2 m
q0 � 3.75 kN/m

(d � diameter)

L
d

d

q0 = 3.75 kN/m

PROB. 5.9-1

5.9-2 A simple log bridge in a remote area consists of two
parallel logs with planks across them (see figure). The logs
are Douglas fir with average diameter 300 mm. A truck
moves slowly across the bridge, which spans 2.5 m.
Assume that the weight of the truck is equally distributed
between the two logs.

Because the wheelbase of the truck is greater than 2.5 m,
only one set of wheels is on the bridge at a time. Thus, the
wheel load on one log is equivalent to a concentrated load
W acting at any position along the span. In addition, the
weight of one log and the planks it supports is equivalent to
a uniform load of 850 N/m acting on the log.
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Problems Chapter 5

Determine the maximum permissible wheel load W
based upon (a) an allowable bending stress of 7.0 MPa,
and (b) an allowable shear stress of 0.75 MPa.

509

(see figure). Assume the following pipe properties and
dimensions: height L, outside diameter and
wall thickness . Allowable stresses for flexure
and shear are and .

(a) If , find , assuming that
allowable flexure and shear stresses in the pipe are not to
be exceeded.

(b) If , find the maximum height
of the pipe if the allowable flexure and shear

stresses in the pipe are not to be exceeded.
Lmax (m)

q0 � 60 kN/m

L � 2.6 m q0,max (kN/m)
σa � 125 MPa τa � 30 MPa
t � 10 mm

d � 200 mm,

W

2.5 m

x

850 N/m

300 mm

PROB. 5.9-2

5.9-3 A sign for an automobile service station is sup-
ported by two aluminum poles of hollow circular cross
section, as shown in the figure. The poles are being
designed to resist a wind pressure of 3.8 kPa against the
full area of the sign. The dimensions of the poles and sign
are , , and . To prevent
buckling of the walls of the poles, the thickness t is speci-
fied as one-tenth the outside diameter d.

(a) Determine the minimum required diameter of the
poles based upon an allowable bending stress of 52 MPa in
the aluminum.

(b) Determine the minimum required diameter based
upon an allowable shear stress of 14 MPa.

h1 � 7 m h2 � 2 m b � 3.5 m

d

t = 

b

h2

h1

Wind
load

d
10
—

PROB. 5.9-3

z

t

y

O hh1

b

PROBS. 5.10-1 through 5.10-6

L

q(x) =
q

0
[1–(x/L)2]

q
0

x

Shear Stresses in Beams 
with Flanges

5.10-1 through 5.10-6 A wide-flange beam (see figure)
having the cross section described below is subjected to a
shear force V. Using the dimensions of the cross section,
calculate the moment of inertia and then determine the fol-
lowing quantities:

(a) The maximum shear stress τmax in the web.
(b) The minimum shear stress τmin in the web.
(c) The average shear stress τaver (obtained by dividing

the shear force by the area of the web) and the ratio
.

(d) The shear force Vweb carried in the web and the
ratio .

(Note: Disregard the fillets at the junctions of the web
and flanges and determine all quantities, including the
moment of inertia, by considering the cross section to con-
sist of three rectangles.)

Vweb /V

τmax /τaver

PROB. 5.9-4

5.9-4 A steel pipe is subjected to a quadratic distributed
load over its height, with the peak intensity q0 at the base
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Chapter 5  Stresses in Beams (Basic Topics)

5.10-9 A simple beam with an overhang supports a uni-
form load of intensity and a concentrated
load at 2.5 m to the right of A and also at C
(see figure). The uniform load includes an allowance for
the weight of the beam. The allowable stresses in bending
and shear are 124 MPa and 76 MPa, respectively.

Select from Table E-2, Appendix E, the lightest  I-
beam (IPN shape) that will support the given loads.

(Hint: Select a beam based upon the bending stress
and then calculate the maximum shear stress. If the beam
is overstressed in shear, select a heavier beam and
repeat.)

P � 13 kN
q � 17.5 kN/m

510

5.10-1 Dimensions of cross section: ,
, , and .

5.10-2 Dimensions of cross section: ,
, , , and

.

5.10-3 Wide-flange shape, HE 160B (see Table E-1,
Appendix E); .

5.10-4 Dimensions of cross section: ,
, , , and

.

5.10-5 Wide-flange shape, HE 450A (see Table E-1,
Appendix E); .

5.10-6 Dimensions of cross section: ,
, , , and .

5.10-7 A cantilever beam AB of length supports
a trapezoidal distributed load of peak intensity q, and min-
imum intensity q/2, that includes the weight of the beam
(see figure). The beam is a steel HE 340B wide-flange shape
(see Table E-1, Appendix E).

Calculate the maximum permissible load q based
upon (a) an allowable bending stress ,
and (b) an allowable shear stress . (Note:
Obtain the moment of inertia and section modulus of the
beam from Table E-1.)

τallow � 52 MPa

12 mm,
t �

σallow � 124 MPa

L � 2 m

t � 7 mm h � 350 mm h1 � 330 mm V � 60 kN
b � 120 mm

V � 90 kN

200 kN
t � 12 mm h � 600 mm h1 � 570 mm V �

b � 220 mm

V � 45 kN

125 kN
t � 12 mm h � 420 mm h1 � 380 mm V �

b � 180 mm

h � 300 mm h1 � 270 mm V � 130 kN
b � 150 mm

HE 340BA
B

q

L = 2 m

q
2

—

q
2
—q

2
—

A B

L = 14 m

q

450 mm

450 mm

1800 mm
16 mm

32 mm

32 mm

A
B

C

P = 13 kN

q = 17.5 kN/m

P = 13 kN

3.75 m 1.25 m

2.5 m

PROB. 5.10-7

PROB. 5.10-8

PROB. 5.10-95.10-8 A bridge girder AB on a simple span of length
supports a distributed load of maximum inten-

sity q at mid-span and minimum intensity q/2 at supports
A and B that includes the weight of the girder (see figure).
The girder is constructed of three plates welded to form
the cross section shown.

Determine the maximum permissible load q based
upon (a) an allowable bending stress 
and (b) an allowable shear stress .τallow � 50 MPa

σallow � 110 MPa,

L � 14 m

5.10-10 A hollow steel box beam has the rectangular
cross section shown in the figure. Determine the maximum
allowable shear force V that may act on the beam if the
allowable shear stress is 36 MPa.
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Problems Chapter 5

5.10-11 A hollow aluminum box beam has the square
cross section shown in the figure. Calculate the maximum
and minimum shear stresses τmax and τmin in the webs of
the beam due to a shear force .V � 125 kN

511

Built-Up Beams

5.11-1 A prefabricated wood I-beam serving as a floor
joist has the cross section shown in the figure. The allow-
able load in shear for the glued joints between the web and
the flanges is 12 kN/m in the longitudinal direction.

Determine the maximum allowable shear force Vmax
for the beam.

10 mm

200 mm

20
mm

20
mm

10 mm 450
mm

25 mm

25 mm

300 mm

z

y

C
h1 h

c

t

b

PROB. 5.10-10

PROB. 5.10-11

PROBS. 5.10-12 and 5.10-13

5.10-12 The T-beam shown in the figure has cross-
 sectional dimensions as follows: ,

, , and . The beam
is subjected to a shear force .

Determine the maximum shear stress τmax in the web
of the beam.

V � 68 kN
t � 16 mm h � 300 mm h1 � 280 mm

b � 210 mm

20 mm

20 mm

15 mm
z

y

O 200 mm

130 mm

z

y

O

300 mm

16 mm

25 mm

25 mm

800 mm

PROB. 5.11-1

PROB. 5.11-2

5.11-2 A welded steel girder having the cross section
shown in the figure is fabricated of two
flange plates and a web plate. The
plates are joined by four fillet welds that run continuously
for the length of the girder. Each weld has an allowable
load in shear of 920 kN/m.

Calculate the maximum allowable shear force Vmax
for the girder.

800 mm � 16 mm
300 mm � 25 mm

5.10-13 Calculate the maximum shear stress τmax in the
web of the T-beam shown in the figure which is one half of
an HE 450A (see Appendix E-1). Assume the shear force

.V � 24 kN
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Chapter 5  Stresses in Beams (Basic Topics)512

z

y

O

450 mm

10 mm

24 mm

24 mm

1.6 m

PROB. 5.11-3

5.11-4 A box beam of wood is constructed of two
boards and two

boards (see figure). The boards are nailed at a longitudinal
spacing .

If each nail has an allowable shear force
what is the maximum allowable shear force Vmax?

F � 1200 N,
s � 100 mm

260 mm � 50 mm 260 mm � 25 mm

PROB. 5.11-4

PROB. 5.11-5

PROB. 5.11-6

5.11-5 A box beam is constructed of four wood boards as
shown in the figure part a. The webs are
and the flanges are boards (actual
dimensions), joined by screws for which the allowable load
in shear is per screw.

(a) Calculate the maximum permissible longitudinal
spacing Smax of the screws if the shear force V is 5.3 kN.

(b) Repeat part (a) if the flanges are attached to the
webs using a horizontal arrangement of screws as shown in
the figure part b.

F � 1.1 kN

150 mm � 25 mm
200 mm � 25 mm

z

y

O
50

 mm

25 mm

25 mm

50
 mm

260 mm

260 mm

(a)

y

z O

Web

Flange

25 mm

25 mm

25 mm 25 mm

(b)

Web

Flange

25 mm25 mm

150
mm

150
mm

200
mm

200
mm

25 mm

25 mm

z

y

O z

y

O

200 mm

360
mm

360
mm

t =
20 mm

t =
20 mm

A

200 mm

B

5.11-6 Two wood box beams (beams A and B) have the
same outside dimensions and the
same thickness throughout, as shown in the
figure. Both beams are formed by nailing, with each nail
having an allowable shear load of 250 N. The beams are
designed for a shear force .

(a) What is the maximum longitudinal spacing sA for
the nails in beam A?

(b) What is the maximum longitudinal spacing sB for
the nails in beam B?

(c) Which beam is more efficient in resisting the shear
force?

V � 3.2 kN

(t � 20 mm)
(200 mm � 360 mm)

5.11-7 A hollow wood beam with plywood webs has the
cross-sectional dimensions shown in the figure. The ply-
wood is attached to the flanges by means of small nails.
Each nail has an allowable load in shear of 130 N.

z

y

O

75 mm

5 mm 5 mm

200 mm

19 mm

19 mm

PROB. 5.11-7

5.11-3 A welded steel girder having the cross section
shown in the figure is fabricated of two
flange plates and a web plate. The plates
are joined by four longitudinal fillet welds that run con-
tinuously throughout the length of the girder.

If the girder is subjected to a shear force of 1300 kN,
what force F (per meter of length of weld) must be resisted
by each weld?

1.6 m � 10 mm
450 mm � 24 mm
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Problems Chapter 5 513

5.11-10 A steel beam is built up from a HE 180B wide
flange beam and two cover plates (see
figure). The allowable load in shear on each bolt is 9.8 kN.
What is the required bolt spacing s in the longitudinal
direction if the shear force (Note: Obtain the
dimensions and moment of inertia of the HE shape from
Table E-1.)

V � 110 kN

180 mm � 9 mm

z

y

C

60 mm

60 mm

240 mm

200 mm

z

y

C

13 mm

13 mm

125 mm

150 mm

z

y

O

180 mm � 9 mm
cover plates

HE 180B

150 mm � 14 mm

IPN 400

150 mm � 14 mm
Beam 1

90 mm � 10 mm

UPN 380

90 mm � 10 mm
Beam 3

340 mm � 16 mm

Four angles

L 180 � 180 � 15 

Beam 2

PROB. 5.11-8

PROB. 5.11-9

PROB. 5.11-10

Find the maximum allowable spacing s of the nails at
cross sections where the shear force V is equal to (a) 900 N,
and (b) 1350 N.

5.11-8 A beam of a T cross section is formed by nailing
together two boards having the dimensions shown in the
figure.

If the total shear force V acting on the cross section is
1500 N and each nail may carry 760 N in shear, what is the
maximum allowable nail spacing s?

5.11-9 The T-beam shown in the figure is fabricated by
welding together two steel plates. If the allowable load for
each weld is 400 kN/m in the longitudinal direction, what
is the maximum allowable shear force V?

PROB. 5.11-11

5.11-11 The three beams shown have approximately the
same cross-sectional area. Beam 1 is a IPN 400 with flange
plates; Beam 2 consists of a web plate with four angles; and
Beam 3 is constructed of 2 UPN shapes with flange plates.

(a) Which design has the largest moment capacity?
(b) Which has the largest shear capacity?
(c) Which is the most economical in bending?
(d) Which is the most economical in shear?
Assume allowable stress values are:

and . The most economical beam is that hav-
ing the largest capacity-to-weight ratio. Neglect fabrica-
tion costs in answering parts (c) and (d) above. (Note:
Obtain the dimensions and properties of all rolled shapes
from tables in Appendix E.)

τa � 75 MPa
σa � 120 MPa
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Chapter 5  Stresses in Beams (Basic Topics)

5.12-2 An aluminum pole for a street light weighs 4600 N
and supports an arm that weighs 660 N (see figure). The
center of gravity of the arm is 1.2 m from the axis of the
pole. A wind force of 300 N also acts in the direction
at 9 m above the base. The outside diameter of the pole (at
its base) is 225 mm, and its thickness is 18 mm.

Determine the maximum tensile and compressive
stresses σt and σc, respectively, in the pole (at its base) due
to the weights and the wind force.

(�y)

514

5.11-12 Two IPN 300 steel wide-flange beams are bolted
together to form a built-up beam as shown in the figure.
What is the maximum permissible bolt spacing s if the
shear force and the allowable load in shear on
each bolt is (Note: Obtain the dimensions
and properties of the IPN shapes from Table E-2.)

F � 13.5 kN
V � 80 kN

IPN 300

IPN 300

P = 100 N

d = 11 mm

b = 125 mm

1.2 m

225 mm

18 mm

W1 = 4600 N

W2 = 660 N

P1 = 300 N

9 m

y

x
y

x

z

45° 45°

B

P P
A C

h

r

h

t

PROB. 5.11-12

PROB. 5.12-1

PROB. 5.12-2

PROB. 5.12-3

Beams with Axial Loads

When solving the problems for Section 5.12, assume that the
bending moments are not affected by the presence of lateral
deflections.

5.12-1 While drilling a hole with a brace and bit, you exert
a downward force on the handle of the brace
(see figure). The diameter of the crank arm is
and its lateral offset is .

Determine the maximum tensile and compressive
stresses σt and σc, respectively, in the crank.

b � 125 mm
d � 11 mm

P � 100 N

5.12-3 A curved bar ABC having a circular axis (radius
) is loaded by forces (see figure).

The cross section of the bar is rectangular with height h
and thickness t.

If the allowable tensile stress in the bar is 80 MPa and
the height , what is the minimum required
thickness tmin?

h � 30 mm

r � 300 mm P � 1.6 kN

5.12-4 A rigid frame ABC is formed by welding two
steel pipes at B (see figure). Each pipe has cross-
sectional area , moment of iner-
tia , and outside diameter

.d � 200 mm
I � 46.37 � 106 mm4

A � 11.31 � 103 mm2
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Problems Chapter 5

Find the maximum tensile and compressive stresses σt
and σc, respectively, in the frame due to the load

if .P � 8.0 kN L � H � 1.4 m

515

diameter and inner diameter
The circular cover plate has diameter 1.5d2.

Determine the allowable tensile force Tallow in the
cable if the allowable compressive stress in the aluminum
pole is 90 MPa.

d2 � 280 mm d1 � 220 mm.

B

P

A C
H

d d

d

L L

60°

9 m

3.6 m

P2 = 500 N

P1 = 4.5 kN

L

T

d2

1.5 d2

d1

d2

a

h d1

d2

a

PROB. 5.12-4

PROB. 5.12-5

PROB. 5.12-6

PROB. 5.12-7

5.12-5 A palm tree weighing 5 kN is inclined at an angle
of 60� (see figure). The weight of the tree may be resolved
into two resultant forces, a force acting at a
point 3.6 m from the base and a force acting
at the top of the tree, which is 9 m long. The diameter at
the base of the tree is 350 mm.

Calculate the maximum tensile and compressive
stresses σt and σc, respectively, at the base of the tree due
to its weight.

P2 � 500 N
P1 � 4.5 kN

5.12-6 A vertical pole of aluminum is fixed at the base and
pulled at the top by a cable having a tensile force T (see
 figure). The cable is attached at the outer edge of a stiff-
ened cover plate on top of the pole and makes an angle

at the point of attachment. The pole has length
and a hollow circular cross section with outerL � 2.5 m

α � 20°

5.12-7 Because of foundation settlement, a circular tower
is leaning at an angle α to the vertical (see figure). The
structural core of the tower is a circular cylinder of height
h, outer diameter d2, and inner diameter d1. For simplicity
in the analysis, assume that the weight of the tower is uni-
formly distributed along the height.

Obtain a formula for the maximum permissible angle
α if there is to be no tensile stress in the tower.
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Chapter 5  Stresses in Beams (Basic Topics)

5.12-10 A flying buttress transmits a load ,
acting at an angle of 60� to the horizontal, to the top of a
vertical buttress AB (see figure). The vertical buttress has
height and rectangular cross section of
 thickness and width (perpendicular
to the plane of the figure). The stone used in the construc-
tion weighs .

What is the required weight W of the pedestal and
statue above the vertical buttress (that is, above section A)
to avoid any tensile stresses in the vertical buttress?

γ � 26 kN/m3

t � 1.5 m b � 1.0 m
h � 5.0 m

P � 25 kN

516

5.12-8 A steel bracket of solid circular cross section is sub-
jected to two loads, each of which is at D (see
figure). Let the dimension variable be .

(a) Find the minimum permissible diameter dmin of
the bracket if the allowable normal stress is 110 MPa.

(b) Repeat part (a), including the weight of the
bracket. The weight density of steel is .77.0 kN/m3

b � 240 mm
P � 4.5 kN

6b

2b

A B

D C

P
2b

P

w

d1

d2

p

H

PROB. 5.12-9

PROB. 5.12-8

5.12-9 A cylindrical brick chimney of height H weighs
of height (see figure). The inner and outer

diameters are and , respectively.
The wind pressure against the side of the chimney is

of projected area.
Determine the maximum height H if there is to be no

tension in the brickwork.

p � 480 N/m2

d1 � 0.9 m d2 � 1.2 m
w � 12 kN/m

PROB. 5.12-10

60°

P

A
A

B B

W

h h
t—2

Flying
buttress

t t

PROB. 5.12-11

5.12-11 A plain concrete wall (i.e., a wall with no steel
reinforcement) rests on a secure foundation and serves as
a small dam on a creek (see figure). The height of the wall
is and the thickness of the wall is .

(a) Determine the maximum tensile and compressive
stresses σt and σc, respectively, at the base of the wall when
the water level reaches the top . Assume plain con-
crete has weight density .

(b) Determine the maximum permissible depth dmax
of the water if there is to be no tension in the concrete.

γc � 23 kN/m3
(d � h)

h � 2 m t � 0.3 m

h

d

t

Eccentric Axial Loads
5.12-12 A circular post, a rectangular post, and a post of
cruciform cross section are each compressed by loads that
produce a resultant force P acting at the edge of the cross
section (see figure). The diameter of the circular post and the
depths of the rectangular and cruciform posts are the same.

(a) For what width b of the rectangular post will the
maximum tensile stresses be the same in the circular and
rectangular posts?

(b) Repeat part (a) for the post with cruciform cross
section.

(c) Under the conditions described in parts (a)  
and (b), which post has the largest compressive stress?
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Problems Chapter 5

5.12-13 Two cables, each carrying a tensile force
, are bolted to a block of steel (see figure). The

block has thickness and width .
(a) If the diameter d of the cable is 7 mm, what are the

maximum tensile and compressive stresses σt and σc,
respectively, in the block?

(b) If the diameter of the cable is increased (without
changing the force P), what happens to the maximum ten-
sile and compressive stresses?

t � 25 mm b � 75 mm
P � 5.5 kN

517

(a) If the end cross sections of the bar are square with
sides of length b, what are the maximum tensile and com-
pressive stresses σt and σc, respectively, at cross section mn
within the reduced region?

(b) If the end cross sections are circular with diameter b,
what are the maximum stresses σt and σc?

5.12-15 A short column constructed of a IPN 300 wide-
flange shape is subjected to a resultant compressive load

having its line of action at the midpoint of
one flange (see figure).

(a) Determine the maximum tensile and compressive
stresses σt and σc, respectively, in the column.

(b) Locate the neutral axis under this loading
 condition.

(c) Recompute maximum tensile and compressive
stresses if a UPN 180 is attached to one flange, as shown.

P � 100 kN

PROB. 5.12-12

PROB. 5.12-13

PROB. 5.12-14 PROB. 5.12-15

4 �      = d
d
4
—

4 �      = b
b
4
—

Load P here

P P P

b

d dd

x

b

t

P P

5.12-14 A bar AB supports a load P acting at the centroid
of the end cross section (see figure). In the middle region
of the bar the cross-sectional area is reduced by removing
one-half of the bar.

(a)

(b)

m n

b
b

P

B

A

b

b

b
2
—

b
2
—

b
2
—

P = 100 kN

2

2

1 1

z

y

C

IPN 300

UPN 180
(Part (c) only)
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Chapter 5  Stresses in Beams (Basic Topics)

5.12-17 A tension member constructed of an L 100 � 100 �
12 angle section (see Table E-4, Appendix E) is subjected
to a tensile load that acts through the point
where the mid-lines of the legs intersect (see  figure part a).

(a) Determine the maximum tensile stress σt in the
angle section.

(b) Recompute the maximum tensile stress if two
angles are used and P is applied as shown in the figure
part b.

P � 56 kN

518

5.12-16 A short column of wide-flange shape is subjected
to a compressive load that produces a resultant force

acting at the midpoint of one flange (see
 figure).

(a) Determine the maximum tensile and compressive
stresses σt and σc, respectively, in the column.

(b) Locate the neutral axis under this loading condi-
tion.

(c) Recompute maximum tensile and compressive
stresses if a cover plate is added to one
flange as shown.

120 mm � 10 mm

P � 55 kN

PROB. 5.12-16

P = 55 kN

z

y

C

P

12 mm

8 mm

160
mm

200
mm

Cover plate
(120 mm � 10 mm)
(Part (c) only)

z

y

C

1 1

3

3

2

2

C

L 100 � 100 � 12 2L 100 � 100 � 12

(a) (b)

P

�

C

P �

Cz

y

P
UPN 220

�

(a)

C

y

P
�

��

UPN 220

(b)

z

Two L 90 � 90 � 7 angles

PROB. 5.12-17

5.12-18 A short length of a UPN 200 channel is subjected
to an axial compressive force P that has its line of action
through the midpoint of the web of the channel (see figure
part a).

(a) Determine the equation of the neutral axis under
this loading condition.

(b) If the allowable stresses in tension and compres-
sion are 76 MPa and 52 MPa respectively, find the maxi-
mum permissible load Pmax.

(c) Repeat parts (a) and (b) if two L
angles are added to the channel as shown in the figure
part b.

See Table E-3, Appendix E for channel properties and
Table E-4 for angle properties.

90 � 90 � 7

PROB. 5.12-18

Stress Concentrations

The problems for Section 5.13 are to be solved considering
the stress-concentration factors.

5.13-1 The beams shown in the figure are subjected to
bending moments . Each beam has a
 rectangular cross section with height and
width (perpendicular to the plane of the
 figure).

(a) For the beam with a hole at midheight, determine
the maximum stresses for hole diameters , and
24 mm.

d � 6, 12, 18

b � 10 mm
h � 40 mm

M � 250 N # m
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Some Additional Review Problems: Chapter 5

5.13-2 The beams shown in the figure are subjected to
bending moments . Each beam has a rec-
tangular cross section with height and width

(perpendicular to the plane of the figure).
(a) For the beam with a hole at midheight, determine

the maximum stresses for hole diameters ,
and 28 mm.

(b) For the beam with two identical notches (inside
height ), determine the maximum stresses for
notch radii , and 8 mm.R � 2, 4, 6

h1 � 40 mm

d � 10, 16, 22

b � 10 mm
h � 44 mm

M � 250 N # m

519

5.13-3 A rectangular beam with semicircular notches, as
shown in part b of the figure, has dimensions
and . The maximum allowable bending stress
in the metal beam is , and the bending
moment is .

Determine the minimum permissible width bmin of the
beam.

5.13-4 A rectangular beam with semicircular notches, as
shown in part b of the figure, has dimensions
and . The maximum allowable bending
stress in the plastic beam is , and the bend-
ing moment is .

Determine the minimum permissible width bmin of the
beam.

5.13-5 A rectangular beam with notches and a hole (see
figure) has dimensions , , and
width . The beam is subjected to a bending
moment , and the maximum allowable
bending stress in the material (steel) is .

(a) What is the smallest radius Rmin that should be
used in the notches?

(b) What is the diameter dmax of the largest hole that
should be drilled at the midheight of the beam?

M � 150 N # m
σmax � 6 MPa

h1 � 100 mm
h � 120 mm

M � 68 N # m
σmax � 410 MPa

h1 � 20 mm
h � 22 mm

b � 40 mm
h � 140 mm h1 � 128 mm

σmax � 290 MPa
M � 15 kN # m(b)

(a)

M

MM

M

dh

h h1

2R

M
M

dh1 h

2R

PROBS. 5.13-1 through 5.13-4

PROB. 5.13-5

(b) For the beam with two identical notches (inside
height ), determine the maximum stresses for
notch radii , and 5.0 mm.R � 1.25, 2.5, 3.75

h1 � 30 mm

SOME ADDITIONAL REVIEW PROBLEMS: CHAPTER 5

R-5.1 A copper wire is bent around a tube
of radius . The maximum normal strain in the
wire is approximately:

(A)
(B)
(C)
(D) 1.92 � 10�3

1.76 � 10�3
1.55 � 10�3
1.25 � 10�3

R � 0.6 m
(d � 1.5 mm) d

R
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Chapter 5  Stresses in Beams (Basic Topics)

R-5.5 A steel hanger with solid cross section has horizon-
tal force applied at free end D. Dimension
variable and allowable normal stress is
150 MPa. Neglect self-weight of the hanger. The required
diameter of the hanger is approximately:

(A) 5 cm
(B) 7 cm
(C) 10 cm
(D) 13 cm

b � 175 mm
P � 5.5 kN

520

R-5.2 A simply supported wood beam with rec-
tangular cross section carries
uniform load includes the weight of the
beam. The maximum flexural stress is  approximately:

(A) 8.7 MPa
(B) 10.1 MPa
(C) 11.4 MPa
(D) 14.3 MPa

(b � 200 mm, h � 280 mm)
(L � 5 m)

q � 6.5 kN/m

R-5.3 A cast iron pipe
is lifted by a

hoist. The lift points are 6 m apart. The maximum bend-
ing stress in the pipe is approximately:

(A) 28 MPa
(B) 33 MPa
(C) 47 MPa
(D) 59 MPa

72 kN/m3,d2 � 100 mm, and d1 � 75 mm)
(L � 12 m, weight density �

R-5.6 A cantilever wood pole carries force
applied at its free end, as well as its own weight

. The length of the pole is
and the allowable bending stress is 14 MPa.

The required diameter of the pole is approximately:
(A) 4.2 cm
(B) 5.5 cm
(C) 6.1 cm
(D) 8.5 cm

L � 0.75 m
(weight density � 6 kN/m3)

P � 300 N

R-5.4 A beam with an overhang is loaded by a uniform
load of 3 kN/m over its entire length. Moment of inertia

and  distances to top and bottom of
the beam cross section are 20 mm and 66.4 mm, respec-
tively. It is known that reactions at A and B are 4.5 kN and
13.5 kN, respectively. The maximum bending stress in the
beam is approximately:

(A) 36 MPa
(B) 67 MPa
(C) 102 MPa
(D) 119 MPa

Iz � 3.36 � 106 mm4

A

L 

B

q

h

b

s

L

A
B

C

4 m 2 m

3 kN/m

z

y

C

20 mm

66.4 mm

6b

2b

A B

D C
P

2b

L

A
B

P

d

d2

d1
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Some Additional Review Problems: Chapter 5

R-5.7 A simply supported steel beam of length
and rectangular cross section
carries a uniform load of that includes its
own weight. The maximum transverse shear stress on
the cross section at 0.25 m from the left support is
 approximately:

(A) 20 MPa
(B) 24 MPa
(C) 30 MPa
(D) 36 MPa

b � 20 mm)(h � 75 mm,
q � 48 kN/m

L � 1.5 m

521

R-5.10 An aluminum light pole weighs 4300 N and sup-
ports an arm of weight 700 N, with the arm center of grav-
ity at 1.2 m left of the centroidal axis of the pole. A wind
force of 1500 N acts to the right at 7.5 m above the base.
The pole cross section at the base has an outside diameter
of 235 mm and thickness of 20 mm. The maximum com-
pressive stress at the base is approximately:

(A) 16 MPa
(B) 18 MPa
(C) 21 MPa
(D) 24 MPa

R-5.9 An aluminum cantilever beam of length
carries a  distributed load, which includes its

own weight, of intensity q/2 at A and q at B. The beam
cross section has a width of 50 mm and height of 170 mm.
Allowable bending stress is 95 MPa and allowable shear
stress is 12 MPa. The permissible value of load intensity q
is approximately:

(A) 110 kN/m
(B) 122 kN/m
(C) 130 kN/m
(D) 139 kN/m

L � 0.65 m

R-5.8 A simply supported laminated beam of length
and square cross section weighs 4.8 N. Three

strips are glued together to form the beam, with the allow-
able shear stress in the glued joint equal to 0.3 MPa.
Considering also the weight of the beam, the maximum
load P that can be applied at L/3 from the left support is
approximately:

(A) 240 N
(B) 360 N
(C) 434 N
(D) 510 N

L � 0.5 m

q

b

h

L

36 mm

P at L/3

36 mm

12 mm
12 mm
12 mm

q

L

A
B

q

L

q
2

—

b

t

P P

1.2 m

235 mm

20 mm

W1 = 4300 N

W2 = 700 N

P1 = 1500 N

7.5 m

y

x
y

x

z

R-5.11 Two thin cables, each having a diameter of
and carrying tensile loads P, are bolted to the top

of a rectangular steel block with cross-sectional dimen-
sions . The ratio of the maximum tensile to com-
pressive stress in the block due to loads P is:

(A) 1.5
(B) 1.8
(C) 2.0
(D) 2.5

b � t

d � t/6
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Chapter 5  Stresses in Beams (Basic Topics)522

FIG. 5-50 Stress-concentration factor K for a notched beam of rectangular
cross section in pure bending ( ; ,
perpendicular to the plane of the figure). The dashed line is for semicircular
notches .(h � h1 � 2R)

b � thickness of beamh � height of beam

R-5.12 A rectangular beam with semicircular notches has
dimensions and . The maxi-
mum allowable bending stress in the plastic beam is

, and the bending moment is . The
minimum permissible width of the beam is:

(A) 12 mm
(B) 20 mm
(C) 28 mm
(D) 32 mm

6.5 MPa M � 185 N # m
σ max �

h1 � 140 mmh � 160 mm

h = h1 + 2R

R—
h1

3.0

2.5

2.0

1.5
0 0.05 0.10 0.15 0.20 0.25 0.30

K

1.05

= 1.2

1.1

b = thickness

K = 
σmax
σnom

  =  6M
  bh  2  1

  σnom

h1h

M M

2R
h
h1
—

MM

h h1

2R
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C H A P T E R6
Stresses in Beams
(Advanced Topics)

I CHAPTER OVERVIEW

A more advanced  theory is required for analysis and design of composite beams and beams with
 unsymmetric cross  sections. (© Can Stock Photo Inc./toneteam)

In Chapter 6, we will consider a number of advanced
topics related to shear and bending of beams of
 arbitrary cross section. First, stresses and strains in
composite beams, that is beams fabricated of more
than one material, is discussed in Section 6.2. First,

we locate the neutral axis then find the flexure
 formula for a composite beam made up of two
 different materials. We then study the transformed-
section method as an alternative procedure for
 analyzing the bending stresses in a composite beam
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Chapter Summary & Review 584
Problems 587

*Advanced Topics

Chapter 6 is organized as follows:

in Section 6.3. Next, we study bending of doubly
symmetric beams acted on by inclined loads having a
line of action through the centroid of the cross
 section (Section 6.4). In this case, there are bending
moments (My, Mz) about each of the principal axes
of the cross section, and the neutral axis is no longer
perpendicular to the longitudinal plane containing
the applied loads. The final normal stresses are
obtained by superposing the stresses obtained from
the flexure formulas for each of the separate axes of
the cross section. Next, we investigate the general
case of  unsymmetric beams in pure bending,
 removing the restriction of at least one axis of sym-
metry in the cross section (Section 6.5). We develop
a general procedure for analyzing an unsymmetric
beam subjected to any bending moment M resolved
into components along the principal centroidal axes

of the cross section. Of course, symmetric beams are
special cases of unsymmetric beams, and therefore,
the discussions also apply to symmetric beams. If  the
restriction of  pure bending is removed and
 transverse loads are allowed, we note that these loads
must act through the shear center of the cross section
so that twisting of the beam about a longitudinal
axis can be avoided (Sections 6.6 and 6.9). The
 distributions of shear stresses in the elements of the
cross sections of a number of beams of thin-walled
open section (such as channels, angles, and Z shapes)
are calculated and then used to locate the shear
 center for each particular cross-sectional shape
(Sections 6.7, 6.8 and 6.9). As the final topic in the
chapter, the bending of  elastoplastic beams is
described in which the normal stresses go beyond the
linear elastic range of behavior (Section 6.10).
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Chapter 6  Stresses in Beams (Advanced Topics)

6.1 INTRODUCTION
In this chapter, we continue our study of the bending of beams by
examining several specialized topics. These subjects are based upon the fun-
damental topics discussed previously in Chapter 5—topics such as
 curvature, normal stresses in beams (including the flexure formula), and
shear stresses in beams. However, we will no longer require that beams be
composed of one material only; and we will also remove the restriction that
the beams have a plane of symmetry in which transverse loads must be
applied. Finally, we will extend the performance into the inelastic range of
behavior for beams made of elastoplastic materials.

Later, in Chapters 9 and 10, we will discuss two additional subjects of
fundamental importance in beam design—deflections of beams and stati-
cally indeterminate beams.

6.2 COMPOSITE BEAMS
Beams that are fabricated of  more than one material are called composite
beams. Examples are bimetallic beams (such as those used in thermo-
stats), plastic coated pipes, and wood beams with steel reinforcing plates
 (see Fig. 6-1).

Many other types of composite beams have been developed in recent
years, primarily to save material and reduce weight. For instance, sandwich
beams are widely used in the aviation and aerospace industries, where light
weight plus high strength and rigidity are required. Such familiar objects
as skis, doors, wall panels, book shelves, and cardboard boxes are also
manufactured in sandwich style.

A typical sandwich beam (Fig. 6-2) consists of two thin faces of rela-
tively high-strength material (such as aluminum) separated by a thick core
of lightweight, low-strength material. Since the faces are at the greatest
distance from the neutral axis (where the bending stresses are highest),
they function somewhat like the flanges of an I-beam. The core serves as
a filler and provides support for the faces, stabilizing them against wrin-
kling or buckling. Lightweight plastics and foams, as well as honeycombs
and corrugations, are often used for cores.

Strains and Stresses
The strains in composite beams are determined from the same basic axiom
that we used for finding the strains in beams of one material, namely, cross
sections remain plane during bending. This axiom is valid for pure bend-
ing regardless of the nature of the material (see Section 5.4). Therefore, the
longitudinal strains εx in a composite beam vary linearly from top to bot-
tom of the beam, as expressed by Eq. (5-6), which is repeated here:

(6-1)

In this equation, y is the distance from the neutral axis, ρ is the radius of
curvature, and κ is the curvature.

Beginning with the linear strain distribution represented by Eq. (6-1),
we can determine the strains and stresses in any composite beam. To show
how this is accomplished, consider the composite beam shown in Fig. 6-3.

εx � �
y

ρ
� �κy

526

(c)

(b)

(a)

Fig. 6-1 
Examples of composite beams:
(a) bimetallic beam, (b) plastic-

coated steel pipe, and (c) wood
beam reinforced with a steel

plate

Roof structure: composite 
timber–steel I-beam and rafters

(© Can Stock Photo Inc./tin) 
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6.2 Composite Beams 527

This beam consists of two materials, labeled 1 and 2 in the figure, which
are securely bonded so that they act as a single solid beam.

As in our previous discussions of beams (Chapter 5), we assume that
the xy plane is a plane of symmetry and that the xz plane is the neutral
plane of the beam. However, the neutral axis (the z axis in Fig. 6-3b) does
not pass through the centroid of the cross-sectional area when the beam is
made of two different materials.

If the beam is bent with positive curvature, the strains εx will vary as shown
in Fig. 6-3c, where εA is the compressive strain at the top of the beam, εB is the
tensile strain at the bottom, and εC is the strain at the contact surface of the two
materials. Of course, the strain is zero at the neutral axis (the z axis).

The normal stresses acting on the cross section can be obtained from the
strains by using the stress-strain relationships for the two materials. Let us
assume that both materials behave in a linearly elastic manner so that
Hooke’s law for uniaxial stress is valid. Then the stresses in the materials are
obtained by multiplying the strains by the appropriate modulus of elasticity.

Denoting the moduli of elasticity for materials 1 and 2 as E1 and E2,
respectively, and also assuming that , we obtain the stress diagram
shown in Fig. 6-3d. The compressive stress at the top of the beam is

and the tensile stress at the bottom is .
At the contact surface (C ) the stresses in the two materials are differ-

ent because their moduli are different. In material 1 the stress is
and in material 2 it is .

Using Hooke’s law and Eq. (6-1), we can express the normal stresses
at distance y from the neutral axis in terms of the curvature:

(6-2a,b)

in which σx1 is the stress in material 1 and σx2 is the stress in material 2.
With the aid of these equations, we can locate the neutral axis and obtain
the moment-curvature relationship.

σx1 � �E1κy σx2 � �E2κy

σ1C � E1εC σ2C � E2εC

σA � E1εA σB � E2εB

E2 7 E1

Fig. 6-3 
(a) Composite beam of two
materials, (b) cross section of
beam, (c) distribution of strains
εx throughout the height of the
beam, and (d) distribution of
stresses σx in the beam for the
case where E2 7 E1

z

x

y

z

y

(a)

(b) (c) (d)

A

C

O B

1

1

2

2

σA = E1

σB = E2

σ1C

σ2C

εA

εB εB

εA

εC

Fig. 6-2 
Sandwich beams with: (a) plastic
core, (b) honeycomb core, and
(c) corrugated core (© Barry
Goodno)
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Fig. 6-4 
Doubly symmetric cross section

t

t

h
2
—

h
2
—

hz

y

O

Neutral Axis
The position of the neutral axis (the z axis) is found from the condition
that the resultant axial force acting on the cross section is zero (see
Section 5.5); therefore,

(6-3)

where it is understood that the first integral is evaluated over the cross-
sectional area of material 1 and the second integral is evaluated over the
cross-sectional area of material 2. Replacing and in the preceding
equation by their expressions from Eqs. (6-2a) and (6-2b), we get

Since the curvature is a constant at any given cross section, it is not
involved in the integrations and can be cancelled from the equation; thus,
the equation for locating the neutral axis becomes

(6-4)

The integrals in this equation represent the first moments of the two parts
of the cross-sectional area with respect to the neutral axis. (If  there are
more than two materials—a rare condition—additional terms are required
in the equation.)

Equation (6-4) is a generalized form of the analogous equation for a
beam of one material [Eq. (5-9)]. The details of the procedure for locating the
neutral axis with the aid of Eq. (6-4) are illustrated later in Example 6-1.

If  the cross section of a beam is doubly symmetric, as in the case of a
wood beam with steel cover plates on the top and bottom (Fig. 6-4), the
neutral axis is located at the mid-height of the cross section and Eq. (6-4)
is not needed.

Moment-Curvature Relationship
The moment-curvature relationship for a composite beam of two materi-
als (Fig. 6-3) may be determined from the condition that the moment
resultant of the bending stresses is equal to the bending moment M acting
at the cross section. Following the same steps as for a beam of one material
[see Eqs. (5-10) through (5-13)], and also using Eqs. (6-2a) and (6-2b), 
we obtain

(6-5a)

This equation can be written in the simpler form

(6-5b)

in which I1 and I2 are the moments of inertia about the neutral axis (the 
z axis) of the cross-sectional areas of materials 1 and 2, respectively. Note

M � κ(E1I1 � E2I2)

� κE1
L1

y2dA � κE2
L2

y2dA

M � �
LA

σxydA � �
L1

σx1ydA �
L2

σx2ydA

σx1 σx2

L1
σx1dA �

L2
σx2dA � 0

E1
L1

ydA � E2
L2

ydA � 0

�
L1

E1κydA �
L2

E2κydA � 0
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6.2 Composite Beams 529

that , where I is the moment of inertia of the entire cross-
sectional area about the neutral axis.

Equation (6-5b) can now be solved for the curvature in terms of the
bending moment:

(6-6)

This equation is the moment-curvature relationship for a beam of two mate-
rials [compare with Eq. (5-13) for a beam of one material]. The denomina-
tor on the right-hand side is the flexural rigidity of the composite beam.

Normal Stresses (Flexure Formulas)
The normal stresses (or bending stresses) in the beam are obtained by sub-
stituting the expression for curvature [Eq. (6-6)] into the expressions for

and [Eqs. (6-2a) and (6-2b)]; thus,

(6-7a,b)

These expressions, known as the flexure formulas for a composite beam,
give the normal stresses in materials 1 and 2, respectively. If  the two
materials have the same modulus of  elasticity , then
both equations reduce to the flexure formula for a beam of  one material
[Eq. (5-14)].

The analysis of composite beams, using Eqs. (6-4) through (6-7), is
illustrated in Examples 6-1 and 6-2 at the end of this section.

Approximate Theory for Bending 
of Sandwich Beams
Sandwich beams having doubly symmetric cross sections and composed of
two linearly elastic materials (Fig. 6-5) can be analyzed for bending using
Eqs. (6-6) and (6-7), as described previously. However, we can also develop
an approximate theory for bending of sandwich beams by introducing
some simplifying assumptions.

If  the material of  the faces (material 1) has a much larger modulus
of  elasticity than does the material of  the core (material 2), it is reason-
able to disregard the normal stresses in the core and assume that the
faces resist all of  the longitudinal bending stresses. This assumption is
equivalent to saying that the modulus of  elasticity E2 of  the core is zero.
Under these conditions the flexure formula for material 2 [Eq. (6-7b)]
gives (as expected), and the flexure formula for material 1
[Eq. (6-7a)] gives

(6-8)

which is similar to the ordinary flexure formula [Eq. (5-14)]. The quantity
I1 is the moment of inertia of the two faces evaluated with respect to the
neutral axis; thus,

(6-9)I1 �
b
12
ah3 � hc

3b

σx1 � �
My

I1

σx2 � 0

(E1 � E2 � E )

I � I1 � I2

σx1 � �
MyE1

E1I1 � E2I2

σx2 � �
MyE2

E1I2 � E2I2

σx2σx1

κ �
1
ρ

�
M

E1I1 � E2I2

Fig. 6-5 
Cross section of a sandwich
beam having two axes of
 symmetry (doubly symmetric
cross section)
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Fig. 6-6 
Reinforced concrete beam with

longitudinal reinforcing bars and
vertical stirrups

530

in which b is the width of the beam, h is the overall height of the beam,
and hc is the height of the core. Note that where t is the
thickness of the faces.

The maximum normal stresses in the sandwich beam occur at the top
and bottom of the cross section where and , respectively.
Thus, from Eq. (6-8), we obtain

(6-10a,b)

If the bending moment M is positive, the upper face is in compression and
the lower face is in tension. [These equations are conservative because they
give stresses in the faces that are higher than those obtained from Eqs. (6-7a)
and (6-7b).]

If the faces are thin compared to the thickness of the core (that is, if t is
small compared to hc), we can disregard the shear stresses in the faces and
assume that the core carries all of the shear stresses. Under these conditions
the average shear stress and average shear strain in the core are, respectively,

(6-11a,b)

in which V is the shear force acting on the cross section and Gc is the shear
modulus of elasticity for the core material. (Although the maximum shear
stress and maximum shear strain are larger than the average values, the
average values are often used for design purposes.)

Limitations
Throughout the preceding discussion of composite beams, we assumed
that both materials followed Hooke’s law and that the two parts of the
beam were adequately bonded so that they acted as a single unit. Thus, our
analysis is highly idealized and represents only a first step in understand-
ing the behavior of composite beams and composite materials. Methods
for dealing with nonhomogeneous and nonlinear materials, bond stresses
between the parts, shear stresses on the cross sections, buckling of the
faces, and other such matters are treated in reference books dealing specif-
ically with composite construction.

Reinforced concrete beams are one of the most complex types of com-
posite construction (Fig. 6-6), and their behavior differs significantly from
that of the composite beams discussed in this section. Concrete is strong
in compression but extremely weak in tension. Consequently, its tensile
strength is usually disregarded entirely. Under those conditions, the formu-
las given in this section do not apply. Working stress design in which the
portion of the beam in tension is removed from the composite beam cross
section is used in evaluating deflections of reinforced concrete beams, so
an allowable stress approach will be presented in Example 6-4 to show the
general analysis procedure. Example 6-4 uses a “cracked section analysis”
to demonstrate this reinforced-concrete analysis procedure.

Note that most reinforced concrete beams are not designed on the
basis of linearly elastic behavior—instead, more realistic design methods
(based upon load-carrying capacity instead of allowable stresses) are used.
The design of reinforced concrete members is a highly specialized subject
that is presented in courses and textbooks devoted solely to that subject.

τaver �
V

bhc

γaver �
V

bhcGc

hc � h � 2t

σtop � �
Mh
2I1

σbottom �
Mh
2I1

�h/2y � h/2
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A composite beam (Fig. 6-7) is constructed from a wood beam (100 mm � 150 mm
actual dimensions) and a steel reinforcing plate (100 mm wide and 12 mm
thick). The wood and steel are securely fastened to act as a single beam. The
beam is subjected to a positive bending moment .

Calculate the largest tensile and compressive stresses in the wood
(material 1) and the maximum and minimum tensile stresses in the steel
(material 2) if and .

Solution
Neutral axis. The first step in the analysis is to locate the neutral axis of the
cross section. For that purpose, let us denote the distances from the neutral
axis to the top and bottom of the beam as h1 and h2, respectively. To obtain
these distances, we use Eq. (6-4). The integrals in that equation are
 evaluated by taking the first moments of areas 1 and 2 about the z axis, as
follows:

in which A1 and A2 are the areas of parts 1 and 2 of the cross section, 1 and

2 are the y coordinates of the centroids of the respective areas, and h1 has
units of millimeters.

Substituting the preceding expressions into Eq. (6-4) gives the equation
for locating the neutral axis, as follows:

or

Solving this equation, we obtain the distance h1 from the neutral axis to the
top of the beam:

Also, the distance h2 from the neutral axis to the bottom of the beam is

Thus, the position of the neutral axis is established.
Moments of inertia. The moments of inertia I1 and I2 of areas A1 and A2

with respect to the neutral axis can be found by using the parallel-axis
theorem (see Section 12.5 of Chapter 12). Beginning with area 1 (Fig. 6-7),
we get

Similarly, for area 2 we get

� 1.18 � 106 mm4

I2 �
1

12
(100 mm)(12 mm)3 � (100 mm)(12 mm)(h2 � 6 mm)2

� 65.33 � 106 mm4

L1
ydA � yq2A2 � �(156 mm � h1)(100 mm � 12 mm) � (h1�75 mm)(1200 mm2)

I1 �
1

12
(100 mm)(150 mm)3 � (100 mm)(150 mm)(h1 � 75 mm)2

h2 � 162 mm � h1 � 37.2 mm

h1 � 124.8 mm

(10.5 GPa)(h1 � 75 mm)(15000 mm2) � (210 GPa)(h1 � 75 mm)(1200 mm2) � 0

E1
L1

ydA � E2
L2

ydA � 0

yq
yq

L1
ydA � yq1A1 � (h1 � 75 mm)(100 mm � 150 mm) � (h1 � 75 mm)(15000 mm2)

E1 � 10.5 GPa

M � 6 kN # m

E2 � 210 GPa

Example 6-1• • •

Continues ➥

Fig. 6-7 
Example 6-1: Cross section of a
composite beam of wood and
steel

12 mm
h2

1

2

z

y

O
C

B

A

h1

100 mm

150 mm

5316.2 Composite Beams

77742_06_ch06_p524-607.qxd:77742_06_ch06_p524-607.qxd  2/22/12  7:44 PM  Page 531

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Example 6-1 - Continued• • •
To check these calculations, we can determine the moment of inertia I of the
entire cross-sectional area about the z axis as 

which agrees with the sum of I1 and I2.
Normal stresses. The stresses in materials 1 and 2 are calculated from

the flexure formulas for composite beams [Eqs. (6-7a and b)]. The largest
compressive stress in material 1 occurs at the top of the beam (A) where

. Denoting this stress by and using Eq. (6-7a), we get

The largest tensile stress in material 1 occurs at the contact plane between
the two materials (C ) where . Proceeding
as in the previous calculation, we get

Thus, we have found the largest compressive and tensile stresses in the
wood.

The steel plate (material 2) is located below the neutral axis, and there-
fore it is entirely in tension. The maximum tensile stress occurs at the bottom
of the beam (B) where . Hence, from Eq. (6-7b) we get

The minimum tensile stress in material 2 occurs at the contact plane (C )
where . Thus,

These stresses are the maximum and minimum tensile stresses in the steel.
The stress distribution over the cross section of the composite wood–steel
beam is shown in Fig. 6-8.

Note: At the contact plane the ratio of the stress in the steel to the
stress in the wood is

which is equal to the ratio of the moduli of elasticity (as expected).
Although the strains in the steel and wood are equal at the contact plane,
the stresses are different because of the different moduli.

� 34 MPa

� 50.2 MPa

� 1.7 MPa

� �8.42 MPa

� 66.51 � 106 mm4

➥

➥

➥

➥

I �
1
3

(100 mm)h1
3 �

1
3

(100 mm)h2
3 � 106(64.79 � 172)mm4

E2 /E1

σ2C /σ1C � 34 MPa/1.7 MPa � 20

σ2C � �
(6 kN # m)(�25.2 mm)(210 GPa)

(10.5 GPa)(65.33 � 106 mm4) � (210 GPa)(1.18 � 106 mm4)

y � �25.2 mm

� �
(6 kN # m)(�37.2 mm)(210 GPa)

(10.5 GPa)(65.33 � 106 mm4) � (210 GPa)(1.18 � 106 mm4)

σ2B � �
M(�h2)E2

E1I1 � E2I2

y � �h2 � �37.2 mm

σ1C � �
(6 kN # m)(�25.2 mm)(10.5 GPa)

(10.5 GPa)(65.33 � 106 mm4) � (210 GPa)(1.18 � 106 mm4)

y � �(h2 � 12 mm) � �25.2 mm

� �
(6 kN # m)(124.8 mm)(10.5 GPa)

(10.5 GPa)(65.33 � 106 mm4) � (210 GPa)(1.18 � 106 mm4)

σ1A � �
Mh1E1

E1I1 � E2I2

σ1Ay � h1 � 124.8 mm

Fig. 6.8
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A sandwich beam having aluminum-alloy faces enclosing a plastic core 
(Fig. 6-9) is subjected to a bending moment . The thickness
of the faces is and their modulus of elasticity is .E1 � 72 GPat � 5 mm

M � 3.0 kN # m

Example 6-2• • •

The height of the plastic core is and its modulus of elasticity hc � 150 mm
is . The overall dimensions of the beam are and E2 � 800 MPa h � 160 mm

.
Determine the maximum tensile and compressive stresses in the faces

and the core using: (a) the general theory for composite beams, and (b) the
approximate theory for sandwich beams.

b � 200 mm

Solution
Neutral axis. Because the cross section is doubly symmetric, the neutral axis
(the z axis in Fig. 6-9) is located at mid-height.

Moments of inertia. The moment of inertia I1 of the cross-sectional
areas of the faces (about the z axis) is

and the moment of inertia I2 of the plastic core is

As a check on these results, note that the moment of inertia of the entire
cross-sectional area about the z axis is equal to the sum of I1
and I2.

(a) Normal stresses calculated from the general theory for com-
posite beams. To calculate these stresses, we use Eqs. (6-7a) and (6-7b).

(I � bh3/12)

� 12.017 � 106 mm4

I2 �
b
12

(hc
3) �

200 mm
12

(150 mm)3 � 56.250 � 106 mm4

I1 �
b
12

(h3 � hc
3) �

200 mm
12

c(160 mm)3 � (150 mm)3 d

Fig. 6-9 
Example 6-2: Cross section 
of sandwich beam having 
aluminum-alloy faces and a
plastic core
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Continues ➥
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As a  preliminary matter, we will evaluate the term in the denominator
of those equations (that is, the flexural rigidity of the composite
beam):

The maximum tensile and compressive stresses in the aluminum faces are
found from Eq. (6-7a):

The corresponding quantities for the plastic core [from Eq. (6-7b)] are

The maximum stresses in the faces are 96 times greater than the maximum
stresses in the core, primarily because the modulus of elasticity of the alu-
minum is 90 times greater than that of the plastic.

(b) Normal stresses calculated from the approximate theory for sand-
wich beams. In the approximate theory we disregard the normal stresses in
the core and assume that the faces transmit the entire bending moment.
Then the maximum tensile and compressive stresses in the faces can be
found from Eqs. (6-10a) and (6-10b), as follows:

As expected, the approximate theory gives slightly higher stresses in the
faces than does the general theory for composite beams.

➥

➥

➥

� �
(3.0 kN # m)(75 mm)(800 MPa)

910,200 N # m2
� �0.198 MPa

E1I1 � E2I2 � (72 GPa)(12.017 � 106 mm4) � (800 MPa)(56.250 � 106 mm4)

� 910,200 N # m2

(σ2)max � �
M(hc /2)(E2)

E1I1 � E2I2

(σ1) max � �
Mh
2I1

� �
(3.0 kN # m)(80 mm)

12.017 � 106 mm4
� �20.0 MPa

� �
(3.0 kN # m)(80 mm)(72 GPa)

910,200 N # m2
� �19.0 MPa

(σ1)max � �
M(h/2)(E1)

E1I1 � E2I2

Example 6-2 - Continued• • •
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Fig. 6-10 
Composite beam of two
 materials: (a) actual cross
 section, and (b) transformed
 section consisting only of
 material 1

b1
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6.3 TRANSFORMED-SECTION METHOD
The transformed-section method is an alternative procedure for analyzing
the bending stresses in a composite beam. The method is based upon the
theories and equations developed in the preceding section, and therefore it
is subject to the same limitations (for instance, it is valid only for linearly
elastic materials) and gives the same results. Although the transformed-
section method does not reduce the calculating effort, many designers
find that it provides a convenient way to visualize and organize the cal-
culations.

The method consists of transforming the cross section of a composite
beam into an equivalent cross section of an imaginary beam that is
 composed of only one material. This new cross section is called the
transformed section. Then the imaginary beam with the transformed sec-
tion is analyzed in the customary manner for a beam of one material. As
a final step, the stresses in the transformed beam are converted to those in
the original beam.

Neutral Axis and Transformed Section
If  the transformed beam is to be equivalent to the original beam, its neu-
tral axis must be located in the same place and its moment-resisting capac-
ity must be the same. To show how these two requirements are met,
consider again a composite beam of two materials (Fig. 6-10a). The
neutral axis of the cross section is obtained from Eq. (6-4), which is
repeated here:

(6-12)

In this equation, the integrals represent the first moments of the two parts
of the cross section with respect to the neutral axis.

Let us now introduce the notation

(6-13)

where n is the modular ratio. With this notation, we can rewrite Eq. (6-12)
in the form

(6-14)

Since Eqs. (6-12) and (6-14) are equivalent, the preceding equation shows
that the neutral axis is unchanged if  each element of area dA in material 2
is multiplied by the factor n, provided that the y coordinate for each such
element of area is not changed.

Therefore, we can create a new cross section consisting of two parts:
(1) area 1 with its dimensions unchanged, and (2) area 2 with its width
(that is, its dimension parallel to the neutral axis) multiplied by n. This new
cross section (the transformed section) is shown in Fig. 6-10b for the case
where (and therefore ). Its neutral axis is in the same posi-
tion as the neutral axis of the original beam. (Note that all dimensions
perpendicular to the neutral axis remain the same.)

E2 7 E1 n 7 1

L1
ydA �

L2
yn dA � 0

n �
E2

E1

E1
L1

ydA � E2
L2

ydA � 0

5356.3 Transformed-Section Method
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536 Chapter 6  Stresses in Beams (Advanced Topics)

Since the stress in the material (for a given strain) is proportional to
the modulus of elasticity , we see that multiplying the width of
material 2 by is equivalent to transforming it to material 1. For
instance, suppose that . Then the area of part 2 of the cross section
is now 10 times wider than before. If  we imagine that this part of the beam
is now material 1, we see that it will carry the same force as before because
its modulus is reduced by a factor of 10 (from E2 to E1) at the same time
that its area is increased by a factor of 10. Thus, the new section (the trans-
formed section) consists only of material 1.

Moment-Curvature Relationship
The moment-curvature relationship for the transformed beam must be the
same as for the original beam. To show that this is indeed the case, we note
that the stresses in the transformed beam (since it consists only of material 1)
are given by Eq. (5-8) of Section 5.5:

Using this equation, and also following the same procedure as for a beam
of one material (see Section 5.5), we can obtain the moment-curvature
relation for the transformed beam:

or

(6-15)

This equation is the same as Eq. (6-5), thereby demonstrating that the
moment-curvature relationship for the transformed beam is the same as
for the original beam.

Normal Stresses
Since the transformed beam consists of only one material, the normal
stresses (or bending stresses) can be found from the standard flexure
 formula [Eq. (5-14)]. Thus, the normal stresses in the beam transformed to
material 1 (Fig. 6-10b) are

(6-16)

where IT is the moment of inertia of the transformed section with respect
to the neutral axis. By substituting into this equation, we can calculate the
stresses at any point in the transformed beam. (As explained later, the
stresses in the transformed beam match those in the original beam in the
part of the original beam consisting of material 1; however, in the part of
the original beam consisting of material 2, the stresses are different from
those in the transformed beam.)

σx1 � �
My

IT

M � κ (E1I1 � E2I2)

� E1κ
L1

y2 dA � E1κ
L2

y2 dA � κ (E1I1 � E1nI2)

M � �
LA

σxy dA � �
L1

σxy dA �
L2

σxy dA

σx � �E1κy

n � 10
n � E2 /E1

(σ � Eε)
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We can easily verify Eq. (6-16) by noting that the moment of inertia
of the transformed section (Fig. 6-10b) is related to the moment of inertia
of the original section (Fig. 6-10a) by the following relation:

(6-17)

Substituting this expression for IT into Eq. (6-16) gives

(6-18a)

which is the same as Eq. (6-7a), thus demonstrating that the stresses in
material 1 in the original beam are the same as the stresses in the corre-
sponding part of the transformed beam.

As mentioned previously, the stresses in material 2 in the original beam
are not the same as the stresses in the corresponding part of the trans-
formed beam. Instead, the stresses in the transformed beam [Eq. (6-16)]
must be multiplied by the modular ratio n to obtain the stresses in mate-
rial 2 of the original beam:

(6-18b)

We can verify this formula by noting that when Eq. (6-17) for IT is substi-
tuted into Eq. (6-18b), we get

(6-18c)

which is the same as Eq. (6-7b).

General Comments
In this discussion of the transformed-section method, we chose to trans-
form the original beam to a beam consisting entirely of material 1. It is
also possible to transform the beam to material 2. In that case the stresses
in the original beam in material 2 will be the same as the stresses in the cor-
responding part of the transformed beam. However, the stresses in mate-
rial 1 in the original beam must be obtained by multiplying the stresses in
the corresponding part of the transformed beam by the modular ratio n,
which in this case is defined as .

It is also possible to transform the original beam into a material hav-
ing any arbitrary modulus of elasticity E, in which case all parts of the
beam must be transformed to the fictitious material. Of course, the calcu-
lations are simpler if  we transform to one of the original materials. Finally,
with a little ingenuity it is possible to extend the transformed-section
method to composite beams of more than two materials.

n � E1/E2

σx2 � �
MynE1

E1I1 � E2I2

� �
MyE2

E1I1 � E2I2

σx2 � �
My

IT

n

σx1 � �
MyE1

E1I1 � E2I2

IT � I1 � nI2 � I1 �
E2

E1

I2
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The composite beam shown in Fig. 6-11a is formed of a wood beam
(100 mm � 150 mm actual dimensions) and a steel reinforcing plate
(100 mm wide and 12 mm thick). The beam is subjected to a positive bend-
ing moment .

Using the transformed-section method, calculate the largest tensile and
compressive stresses in the wood (material 1) and the maximum and mini-
mum tensile stresses in the steel (material 2) if and

.
Note: This same beam was analyzed previously in Example 6-1 of

 Section 6.2.

E2 � 210 GPa
E1 � 10.5 GPa

M � 6 kN # m

Example 6-3• • •

Fig. 6-11 
Example 6-3: Composite beam
of Example 6-1 analyzed by
the transformed-section
method: (a) cross section
of original beam, and
(b) transformed section
 (material 1)

12 mm

12 mm

h2
h2

1 1

1

2

z

y

O z

y

OC C

B

A

B

A

(a) (b)

150 mm 150 mm
h1 h1

100 mm 2 m

100 mm

Solution
Transformed section. We will transform the original beam into a beam of
material 1, which means that the modular ratio is defined as

The part of the beam made of wood (material 1) is not altered but the part
made of steel (material 2) has its width multiplied by the modular ratio.
Thus, the width of this part of the beam becomes

in the transformed section (Fig. 6-11b).
Neutral axis. Because the transformed beam consists of only one mate-

rial, the neutral axis passes through the centroid of the cross-sectional area.
Therefore, with the top edge of the cross section serving as a reference line,

n(100 mm) � 20(100 mm) � 2 m

n �
E2

E1

�
210 GPa
10.5 GPa

� 20
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and with the distance yi measured positive downward, we can calculate the
distance h1 to the centroid as

Also, the distance h2 from the lower edge of the section to the centroid is

Thus, the location of the neutral axis is determined.
Moment of inertia of the transformed section. Using the parallel-axis

theorem (see Section 12.5 of Chapter 12), we can calculate the moment
of inertia IT of the entire cross-sectional area with respect to the neutral
axis as

Normal stresses in the wood (material 1). The stresses in the trans-
formed beam (Fig. 6-11b) at the top of the cross section (A) and at the
 contact plane between the two parts (C ) are the same as in the original
beam (Fig. 6-11a). These stresses can be found from the flexure formula in
Eq. (6-16) as 

These are the largest tensile and compressive stresses in the wood (mate-
rial 1) in the original beam. The stress is compressive and the stress 
is tensile.

Normal stresses in the steel (material 2). The maximum and minimum
stresses in the steel plate are found by multiplying the corresponding
stresses in the transformed beam by the modular ratio n in Eq. (6-18b). The

➥

➥

h1 �
©yiAi

©Ai

�
(75 mm)(100 mm)(150 mm) � (156 mm)(2000 mm)(12 mm)

(100 mm)(150 mm) � (2000 mm)(12 mm)

�
4869 � 103 mm3

39 � 103 mm2
� 124.8 mm

� 65.3 � 106 mm4 � 23.7 � 106 mm4 � 89.0 � 106 mm4

σ1C � �
My

IT
� �

(6 � 106 N # mm)(�25.2 mm)

89 � 106 mm4
� 1.13 MPa

σ1A � �
My

IT
� �

(6 � 106 N # mm)(124.8 mm)

89 � 106 mm4
� �8.42 MPa

σ1A σ1C

�
1

12
(2000 mm)(12 mm)3 � (2000 mm)(12 mm)(h2 � 6 mm)2

IT �
1
12

(100 mm)(150 mm)3 � (100 mm)(150 mm)(h1 � 75 mm)2

h2 � 162 mm � h1 � 37.2 mm

Continues ➥
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maximum stress occurs at the lower edge of the cross section (B) and the
minimum stress occurs at the contact plane (C ):

Both of these stresses are tensile.
Note that the stresses calculated by the transformed-section method

agree with those found in Example 6-1 by direct application of the formu-
las for a composite beam.

Balanced design. As a final evaluation of the wood–steel composite
beam considered here and in Example 6-1, we note that neither wood nor
steel has reached typical allowable stress levels. Perhaps some redesigning
of this beam would be of interest; we will consider only the steel plate here
(but could re-size the wood beam too if we wish).

A balanced design is one in which wood and steel reach their allowable
stress values at the same time under the design moment; this could be
regarded as a more efficient design of this beam. First, holding the steel
plate thickness at , we will find the required width bs of the steel
plate, so the wood and steel reach allowable stress values simultaneously
under design moment MD. Then setting , we will repeat the
previous process but also find required plate thickness ts to achieve the same
objective. Assume that the allowable stress values for wood and steel are

and , respectively. Also assume that the
wood beam dimensions are unchanged.

Using the transformed-section approach, we can write the expressions
for the stresses at the top of the wood and bottom of the steel. We can
equate each to its allowable value as

(a,b)

Next, we solve each of Eqs. (a) and (b) for ratio , then equate the two 
expressions to find the ratio for which allowable stress levels are
reached in both materials:

(c)

Expressions for h1 and h2 can be obtained in terms of the transformed-
section dimensions b, h, bs, and ts (Figs. 6-11c and d) by taking first moments
about the z axis to get

(d)

➥

➥

h1 �
h
2

�
(bsnts

2) � (bshnts)

(2bh) � (2bsnts)
and h2 �

nbstsa
ts

2
b � bhats �

h
2
b

(nbsts) � (bh)

h1

h2

� n
σaw

σas

h1/h2

σ2B � �
My

IT
n � �

(6 � 106 N # mm)(�37.2 mm)

89.0 � 106 mm4
(20) � 50.2 MPa

σ2C � �
My

IT
n � �

(6 � 106 N # mm)(�25.2 mm)

89.0 � 106 mm4
(20) � 34 MPa

ts � 12 mm

MD/IT

σaw �
�MDh1

IT
and σas �

�MDh2n

IT

σaw � 12.7 MPa σas � 96 MPa

bs � 100 mm

Example 6-3 - Continued• • •

540 Chapter 6  Stresses in Beams (Advanced Topics)

77742_06_ch06_p524-607.qxd:77742_06_ch06_p524-607.qxd  2/22/12  7:58 PM  Page 540

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



With some effort (and perhaps with computer assistance), we can re-write
Eq. (c) as

(e)

Collecting terms and solving for the required width of bs for the steel plate
(with thickness ts unchanged), then substituting numerical values, we get
for bs (instead of the original width of 100 mm):

(f)

So for a 100 mm � 150 mm wood beam reinforced by a
steel plate (Fig. 6-11a) under any applied moment M that is less than or
equal to MD, the stress ratio will be equal to . If ,
then and .

Alternatively, we could reformulate Eq.(e) to get a quadratic equation
for the steel plate thickness ts (with the original width ) to
obtain

(g)

The solution of Eq. (g) results in a revised steel plate thickness leading to a
balanced design of the wood–steel composite beam as . Oncets � 7.46 mm

bh2 � (2bsnhts) � (bsnts
2)

bh2 � (2bhts) � (bsnts
2)

� n
σaw
σas

ts
2 cnbsa1 � n

σaw

σas
b d � tse2h cnbs � banσaw

σas
b d f � bh2a1 � n

σaw

σas
b � 0

bs � 100 mm

σ1A � σaw σ2B � σas

σ1A/σ2B σaw/σas M � MD

69.2 mm � 12 mm

bs �

anσaw
σas
b abh2 � 2bhtsb � bh2

12nhts2 � nts
2a1 � n

σaw
σas
b

� 69.2 mm

b � 100 mm h � 150 mm ts � 12 mm n � 20 σaw � 12.7 MPa σas � 96 MPa

ts

ts

h2
h2

1 1

1

2

z

y

O z

y

OC C

B

A

B

A

b � h

(c) (d)

h h
h1 h1

bs nbs

b
Fig. 6-11 (Continued)
Example 6-3: Balanced design
of composite beam: (c) original
beam, and (d) transformed
beam

5416.3 Transformed-Section Method

again, for and , the stress ratio
for applied moments M which are less than or equal to MD.

σ1A/σ2B � σaw/σasbs � 100 mm ts � 7.46 mm
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An inverted precast concrete T-beam is used to support precast double-tee floor
beams in a parking deck (see Fig. 6-12 and photo). Beam dimensions are

, , and . Steel reinforce-
ment consists of four bars each with a 25-mm diameter. The modulus of  elasticity
for the concrete is , while that of the steel is .
Allowable stresses for concrete and steel are and 

, respectively.

(a) Use the transformed section in Fig. 6-13 (in which the concrete in
tension is neglected and the steel reinforcing bars are converted to the
equivalent concrete) to find the maximum permissible moment that
can be applied to this beam.

(b) Repeat part (a) if the beam is rotated 180�, as shown in Fig. 6-14, and if
the steel reinforcement remains in the bottom tension zone.

σas � 137 MPa

Es � 200 GPa
σac � 9.3 MPa

Ec � 25 GPa

tf � 100 mmd � 600 mmbw � 300 mmb � 500 mm

Example 6-4• • •

Fig. 6-12 
Example 6-4: Cross section 
of a singly reinforced concrete
inverted T-beam

d

y

bw

tf

NA

b

d

y

bw

n As
tf

NA

b

Fig. 6-13 
Transformed section for singly
reinforced concrete inverted
T-beam

Solution
(a) Inverted T-beam. We start by finding the neutral axis (at some distance y

down from the top of the beam) for the transformed section shown in
Fig. 6-13. Equating the first moments of areas of concrete in compression
(bw � y) and transformed area of steel in tension leads to a quad-
ratic equation. The solution for y gives the position of the neutral axis as

(a)

(b)y �
C
anAs

bw

b2
� 2danAs

bw

b � anAs

bw

b � 0.204 m

bwy
y

2
� nAs(d � y) � 0 where n �

Es

Ec

� 8

(n � As)
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Now using Eq. (6-17), we compute the moment of inertia of the trans-
formed section:

(c)

Finally, we obtain the moment capacity of the beam by solving Eqs. (6-16)
(allowable stress in concrete controls) and Eq. (6-18b) (allowable stress in
steel controls) for M, where the lower value based on allowable stress in
the steel governs:

(d)

(e)

(b) T-beam. Now the flange of the T-beam with a thickness of tf is on top, so
we start by assuming that neutral axis location distance y is greater than
tf. We can divide the compression of the concrete for the transformed
section (Fig. 6-14) into three rectangles, then equate the first moments
of areas of the concrete in compression and transformed area of the
steel to get a quadratic equation for distance y. The solution
for y gives the position of the neutral axis as

(f)

Solving Eq. (f) for y, we get

The moment of inertia of the transformed section is now

Finally, we repeat the solutions for maximum permissible moment M in
Eqs. (d) and (e) as

(g)

(h)

and find that once again, the lower value of moment M based on allow-
able stress in the steel governs. Since the allowable stress in the reinforc-
ing steel bars controls both beams, their moment capacities [Eqs.(e) and
(h)] are approximately the same.

➥

➥

� 147.4 kN # m

Ms �
σas

n(d � y)
IT �

137 MPa
8(0.6 m � 0.1702 m)

13.7 � 10�3 m42

� 143.2 kN # m

Ms �
σas

n(d � y)
IT �

137 MPa
8(0.6 m � 0.204 m)

13.312 � 10�3 m42

IT �
bwy3

3
� nAs C(d � y)2D � 3.312 � 10�3 m4

Mc �
σac

y
IT �

(9.3 MPa)
0.1702 m

13.7 � 10�3 m42 � 202 kN # m

(n � As)

Mc �
σac

y
IT � a9.3 MPa

0.204 m
b a3.312 � 10�3 m4b � 151 kN # m

� 3.7 � 10�3 m4

IT �
bwy3

3
�
1b � bw2t f

3

12
� 1b � bw2tfay �

tf

2
b2

� nAs(d � y)2

y � 0.1702 m

1b � bw2tfay �
tf

2
b � bwy

y
2

� nAs(d � y) � 0

d

y

bw

n As

tf

NA

(b–bw)/2

b

Fig. 6-14 
Transformed section for singly
reinforced concrete T-beam
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6.4 DOUBLY SYMMETRIC BEAMS 
WITH INCLINED LOADS
In our previous discussions of bending we dealt with beams possessing a
longitudinal plane of symmetry (the xy plane in Fig. 6-15) and supporting
lateral loads acting in that same plane. Under these conditions the bend-
ing stresses can be obtained from the flexure formula [Eq. (5-14)] provided
the material is homogeneous and linearly elastic.

In this section, we will extend those ideas and consider what happens
when the beam is subjected to loads that do not act in the plane of sym-
metry, that is, inclined loads (Fig. 6-16). We will limit our discussion to
beams that have a doubly symmetric cross section, that is, both the xy and
xz planes are planes of symmetry. Also, the inclined loads must act
through the centroid of the cross section to avoid twisting the beam about
the longitudinal axis.

We can determine the bending stresses in the beam shown in Fig. 6-16
by resolving the inclined load into two components, one acting in each
plane of symmetry. Then the bending stresses can be obtained from the
flexure formula for each load component acting separately, and the final
stresses can be obtained by superposing the separate stresses.

Sign Conventions for Bending Moments
As a preliminary matter, we will establish sign conventions for the bend-
ing moments acting on cross sections of  a beam.* For this purpose, we
cut through the beam and consider a typical cross section (Fig. 6-17).
The bending moments My and Mz acting about the y and z axes, respec-
tively, are represented as vectors using double-headed arrows. The
moments are positive when their vectors point in the positive directions
of  the corresponding axes, and the right-hand rule for vectors
gives the direction of  rotation (indicated by the curved arrows in the
 figure).

From Fig. 6-17 we see that a positive bending moment My pro-
duces compression on the right-hand side of  the beam (the negative 
z side) and tension on the left-hand side (the positive z side). Similarly,
a positive moment Mz produces compression on the upper part of  the
beam (where y is positive) and tension on the lower part (where y is
negative). Also, it is important to note that the bending moments
shown in Fig. 6-17 act on the positive x face of  a segment of  the beam,
that is, on a face having its outward normal in the positive direction of
the x axis.

Normal Stresses (Bending Stresses)
The normal stresses associated with the individual bending moments My
and Mz are obtained from the flexure formula [Eq. (5-14)]. These stresses are
then superposed to give the stresses produced by both moments acting

Fig. 6-15 
Beam with a lateral load acting

in a plane of symmetry

Fig. 6-16 
Doubly symmetric beam with

an inclined load

Fig. 6-17 
Sign conventions for bending

moments My and Mz

x

y

z

x

y

z

y

z x

My

Mz
*The directions of the normal and shear stresses in a beam are usually apparent from an inspection of the
beam and its loading, and therefore we often calculate stresses by ignoring sign conventions and using only
absolute values. However, when deriving general formulas we need to maintain rigorous sign conventions to
avoid ambiguity in the equations.
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Fig. 6-18 
Cross section of beam subjected
to bending moments My and Mz

Mz
z

z
y

y

C

A

n

n

My
β

Fig. 6-19
Doubly symmetric beam with 
an inclined load P acting at an
angle θ to the positive y axis

(a)

(b)

x

y

z
P

Mz

My

z

y

C

n

n

M

P

L
L-x

θ

β

θ

θ

simultaneously. For instance, consider the stresses at a point in the cross
 section having positive coordinates y and z (point A in Fig. 6-18). A positive
moment My produces tension at this point and a positive moment Mz
 produces compression; thus, the normal stress at point A is

(6-19)

in which Iy and Iz are the moments of inertia of the cross-sectional area
with respect to the y and z axes, respectively. Using this equation, we can
find the normal stress at any point in the cross section by substituting the
appropriate algebraic values of the moments and the coordinates.

Neutral Axis
The equation of the neutral axis can be determined by equating the nor-
mal stress σx [Eq. (6-19)] to zero:

(6-20)

This equation shows that the neutral axis nn is a straight line passing
through the centroid C (Fig. 6-18). The angle β between the neutral axis
and the z axis is determined as follows:

(6-21)

Depending upon the magnitudes and directions of the bending moments,
the angle β may vary from to . Knowing the orientation of the
neutral axis is useful when determining the points in the cross section
where the normal stresses are the largest. (Since the stresses vary linearly
with distance from the neutral axis, the maximum stresses occur at points
located farthest from the neutral axis.)

Relationship Between the Neutral Axis 
and the Inclination of the Loads
As we have just seen, the orientation of  the neutral axis with respect to
the z axis is determined by the bending moments and the moments of
inertia [Eq. (6-21)]. Now we wish to determine the orientation of  the
neutral axis relative to the angle of  inclination of  the loads acting on the
beam. For this purpose, we will use the cantilever beam shown in  
Fig. 6-19a as an example. The beam is loaded by a force P acting in the
plane of  the end cross section and inclined at an angle θ to the positive
y axis. This particular orientation of  the load is selected because it
means that both bending moments (My and Mz) are positive when θ is
between 0 and 90�.

�90° �90°

tan β �
y
z

�
MyIz

MzIy

My

Iy

z �
Mz

Iz

y � 0

σx �
My z

Iy

�
Mz y

Iz

5456.4 Doubly Symmetric Beams with Inclined Loads
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546

The load P can be resolved into components P cos θ in the positive y
direction and P sin θ in the negative z direction. Therefore, the bending
moments My and Mz (Fig. 6-19b) acting on a cross section located at dis-
tance x from the fixed support are

(6-22a,b)

in which L is the length of the beam. The ratio of these moments is

(6-23)

which shows that the resultant moment vector M is at the angle θ from the
z axis (Fig. 6-19b). Consequently, the resultant moment vector is perpen-
dicular to the longitudinal plane containing the force P.

The angle β between the neutral axis nn and the z axis (Fig. 6-19b) is
obtained from Eq. (6-21):

(6-24)

which shows that the angle β is generally not equal to the angle θ. Thus,
except in special cases, the neutral axis is not perpendicular to the longitudi-
nal plane containing the load.

Exceptions to this general rule occur in three special cases:

1. When the load lies in the xy plane ( or 180�), which means that
the z axis is the neutral axis.

2. When the load lies in the xz plane , which means that
the y axis is the neutral axis.

3. When the principal moments of inertia are equal, that is, when
.

In case (3), all axes through the centroid are principal axes and all have the
same moment of inertia. The plane of loading, no matter what its direc-
tion, is always a principal plane, and the neutral axis is always perpendicu-
lar to it. (This situation occurs with square, circular, and certain other
cross sections, as described in Section 12.9 of Chapter 12.)

The fact that the neutral axis is not necessarily perpendicular to the
plane of  the load can greatly affect the stresses in a beam, especially if
the ratio of  the principal moments of  inertia is very large. Under these
conditions the stresses in the beam are very sensitive to slight changes in
the direction of  the load and to irregularities in the alignment of  the
beam itself. This characteristic of  certain beams is illustrated next in
Example 6-5.

Iy � Iz

(θ � �90°)

θ � 0

tan β �
MyIz

MzIy

�
Iz

Iy

tan θ

My

Mz

� tan θ

My � (P sin θ)(L � x) Mz � (P cos θ)(L � x)
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A 4-m long cantilever beam (Fig. 6-20a) is constructed from an IPN
 section (see Table E-2 of Appendix E for the dimensions and properties of
this beam). A load acts in the vertical direction at the end of the
beam.

Because the beam is very narrow compared to its height (Fig. 6-20b), its
moment of inertia about the z axis is much larger than its moment of iner-
tia about the y axis.

(a) Determine the maximum bending stresses in the beam if the y axis of the
cross section is vertical and therefore aligned with the load P (Fig. 6-20a).

(b) Determine the maximum bending stresses if the beam is inclined at a
small angle to the load P (Fig. 6-20b). (A small inclination can be
caused by imperfections in the fabrication of the beam, misalignment of
the beam during construction, or movement of the supporting structure.)

α � 1°

P � 45 kN

500

Example 6-5• • •

Continues ➥

Fig. 6-20 
Example 6-5: Cantilever beam
with moment of inertia Iz much
larger than Iy

β = 25.8°

(a) (b)

z

x

y

C

L = 4 m

P = 45 kN

IPN 500

z

y

C

A

B

P

n

n

α = 1°

5476.4 Doubly Symmetric Beams with Inclined Loads

moment at the support, h is the height of the beam, and Iz is the moment
of inertia about the z axis. Substituting numerical values, we obtain

This stress is tensile at the top of the beam and compressive at the
 bottom of the beam.

➥σmax �
(45 kN)(4000 mm)(250 mm)

68740 cm4
� 65.5 MPa

Solution
(a) Maximum bending stresses when the load is aligned with the y axis. If

the beam and load are in perfect alignment, the z axis is the neutral axis
and the maximum stresses in the beam (at the support) are obtained
from the flexure formula:

in which and so is the bending 

σmax �
My

Iz
�

PL(h/2)
Iz

M � PLMy � 0Mz � �M � �PL
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(b) Maximum bending stresses when the load is inclined to the y axis. We
now assume that the beam has a small inclination (Fig. 6-20b), so that
the angle between the y axis and the load is .

The components of the load P are P cos α in the negative y direction
and P sin α in the positive z direction. Therefore, the bending moments
at the support are

The angle β giving the orientation of the neutral axis nn (Fig. 6-20b) is
obtained from Eq. (6-21):

This calculation shows that the neutral axis is inclined at an angle of
25.8� from the z axis even though the plane of the load is inclined only
1� from the y axis. The sensitivity of the position of the neutral axis to
the angle of the load is a consequence of the large ratio.

From the position of the neutral axis (Fig. 6-20b), we see that the max-
imum stresses in the beam occur at points A and B, which are located at the
farthest distances from the neutral axis. The coordinates of point A are

Therefore, the tensile stress at point A [see Eq. (6-19)] is

The stress at B has the same magnitude but is a compressive stress:

These stresses are 18% larger than the stress MPa for
the same beam with a perfectly aligned load. Furthermore, the inclined
load produces a lateral deflection in the z direction, whereas the per-
fectly aligned load does not.

This example shows that beams with Iz much larger than Iy may
develop large stresses if the beam or its loads deviate even a small
amount from their planned alignment. Therefore, such beams should be
used with caution, because they are highly susceptible to overstress and
to lateral (that is, sideways) bending and buckling. The remedy is to pro-
vide adequate lateral support for the beam, thereby preventing side-
ways bending. For instance, wood floor joists in buildings are supported
laterally by installing bridging or blocking between the joists.

α � 1°

➥

➥

σmax � 65.5

σB � �77.2 MPa

� 11.7 MPa � 65.5 MPa � 77.2 MPa

�
(�3.14 kN # m)(�92.5 mm)

2480 cm4
�

(�180 kN # m)(250 mm)

68740 cm4

σA �
My zA

Iy
�

MzyA

Iz

zA � �92.5 mm yA � 250 mm

Iz /Iy

tan β �
y

z
�

MyIz

MzIy
�

(�3.14 kN # m)(68740 cm4)

(�180 kN # m)(2480 cm4)
� 0.878 β � 25.8°

Mz � �(P cos α)L � �(45kN)(cos 1°)(4000 mm) � �180 kN # m

My � �(P sin α)L � �(45 kN)(sin 1°)(4000 mm) � �3.14 kN # m

Example 6-5 - Continued• • •
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A wood beam AB of rectangular cross section serving as a roof purlin
(Figs. 6-21a and b) is simply supported by the top chords of two adjacent
roof trusses. The beam supports the weight of the roof sheathing and the
roofing material, plus its own weight and any additional loads that affect
the roof (such as wind, snow, and earthquake loads).

In this example, we will consider only the effects of a uniformly distrib-
uted load of intensity acting in the vertical direction through
the centroids of the cross sections (Fig. 6-21c). The load acts along the entire
length of the beam and includes the weight of the beam. The top chords of
the trusses have a slope of 1 on 2 , and the beam has width

, height , and span .
Determine the maximum tensile and compressive stresses in the beam

and locate the neutral axis.

Solution
Loads and bending moments. The uniform load q acting in the vertical direc-
tion can be resolved into components in the y and z directions (Fig. 6-22a):

(6-25a,b)

The maximum bending moments occur at the midpoint of the beam and are
found from the general formula ; hence,

(6-26a,b)

Both of these moments are positive because their vectors are in the positive
directions of the y and z axes (Fig. 6-22b).

Moments of inertia. The moments of inertia of the cross-sectional area
with respect to the y and z axes are

(6-27a,b)

Bending stresses. The stresses at the mid-section of the beam are obtained
from Eq. (6-19) with the bending moments given by Eqs. (6-26) and the
moments of inertia given by Eqs. (6-27):

(6-28)

The stress at any point in the cross section can be obtained from this
 equation by substituting the coordinates y and z of the point.

�
3qL3

2bh
a sin α

b2
z �

cos α
h2

yb

σx �
Myz

Iy
�

Mzy

Iz
�

qL2 sin α

8hb3/12
z �

qL2 cos α

8bh3/12
y

Iy �
hb3

12
Iz �

bh3

12

My �
qzL2

8
�

qL2 sin α
8

Mz �
qy L2

8
�

qL2 cos α
8

M � qL2/8

qy � q cos α qz � q sin α

L � 1.6 mh � 150 mmb � 100 mm
(α � 26.57°)

q � 3.0 kN/m

Example 6-6• • •

Fig. 6-21 
Example 6-6: Wood beam of
rectangular cross section
 serving as a roof purlin

Continues ➥

5496.4 Doubly Symmetric Beams with Inclined Loads

Roof
sheathing

Purlin

Roof truss

A

B

(a)

α

L

A

B

(b)

α

α

(c)

1
2

α = 26.57°

h

z

y

C

b

q
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From the orientation of the cross section and the directions of the
loads and bending moments (Fig. 6-22), it is apparent that the maximum
compressive stress occurs at point D (where and ) and
the maximum tensile stress occurs at point E (where and

). Substituting these coordinates into Eq. (6-28) and then simpli-
fying, we obtain expressions for the maximum and minimum stresses in
the beam:

(6-29)

Numerical values. The maximum tensile and compressive stresses can be
 calculated from the preceding equation by substituting the given data:

The results are

Neutral axis. In addition to finding the stresses in the beam, it is often use-
ful to locate the neutral axis. The equation of this line is obtained by setting
the stress [Eq. (6-28)] equal to zero:

(6-30)

The neutral axis is shown in Fig. 6-22b as line nn. The angle β from the z axis
to the neutral axis is obtained from Eq. (6-30) as

(6-31)

Substituting numerical values, we get

Since the angle β is not equal to the angle α, the neutral axis is inclined to
the plane of loading (which is vertical).

From the orientation of the neutral axis (Fig. 6-22b), we see that points
D and E are the farthest from the neutral axis, thus confirming our assump-
tion that the maximum stresses occur at those points. The part of the beam
above and to the right of the neutral axis is in compression, and the part to
the left and below the neutral axis is in tension.

➥

➥

➥

y � h/2 z � �b/2
y � �h/2

z � b/2

σE � �σD �
3qL2

4bh
a sin α

b
�

cos α
h
b

tan β �
h2

b2
tan α �

(150 mm)2

(100 mm)2
1 tan 26.57°2 � 1.125 β � 48.4°

tan β �
y

z
�

h2

b2
tan α

sin α
b2

z �
cos α
h2

y � 0

σE � �σD � 4.01 MPa

q � 3.0 kN/m L � 1.6 m b � 100 mm h � 150 mm α � 26.57°

Example 6-6 - Continued• • •

Fig. 6-22 
Solution to Example 6-6: 
(a) Components of the uniform
load, (b) bending moments
 acting on a cross section, and
(c) normal stress distribution

(c)

(a)

q

qz

qy

z

y

C

D

E

α

α

(b)

n

n

Mz

M

z

y

C

D

E

My
h

b

α

α

β

b
n

D

E

n

x

y

z

4.01 MPa

4.01 MPa
0.57 MPa

0.57 MPa
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Fig. 6-23 
Unsymmetric beam subjected to
a bending moment M

y

z

x

M

(a)

(b)

z

y

y

C

dA

z

Unsymmetric composite beam
made up from channel section
and old wood beam
(Franz Pflueg/Shutterstock)

6.5 BENDING OF UNSYMMETRIC BEAMS
In our previous discussions of bending, we assumed that the beams had
cross sections with at least one axis of symmetry. Now we will abandon
that restriction and consider beams having unsymmetric cross sections. We
begin by investigating beams in pure bending, and then in later sections
(Sections 6.6 through 6.9) we will consider the effects of lateral loads. As
in earlier discussions, it is assumed that the beams are made of linearly
elastic materials.

Suppose that a beam having an unsymmetric cross section is subjected
to a bending moment M acting at the end cross section (Fig. 6-23a). We
would like to know the stresses in the beam and the position of the neu-
tral axis. Unfortunately, at this stage of the analysis there is no direct way
of determining these quantities. Therefore, we will use an indirect
approach—instead of starting with a bending moment and trying to find
the neutral axis, we will start with an assumed neutral axis and find the
associated bending moment.

Neutral Axis
We begin by constructing two perpendicular axes (the y and z axes) at an
arbitrarily selected point in the plane of the cross section (Fig. 6-23b). The
axes may have any orientation, but for convenience we will orient them
horizontally and vertically. Next, we assume that the beam is bent in such
a manner that the z axis is the neutral axis of the cross section.
Consequently, the beam deflects in the xy plane, which becomes the plane
of bending. Under these conditions, the normal stress acting on an ele-
ment of area dA located at distance y from the neutral axis [see Fig. 6-23b
and Eq. (5-8) of Chapter 5] is

(6-32)

The minus sign is needed because the part of the beam above the z axis
(the neutral axis) is in compression when the curvature is positive. (The
sign convention for curvature when the beam is bent in the xy plane is
shown in Fig. 6-24a on the next page.)

The force acting on the element of area dA is , and the resultant
force acting on the entire cross section is the integral of this elemental
force over the cross-sectional area A. Since the beam is in pure bending,
the resultant force must be zero; hence,

The modulus of elasticity and the curvature are constants at any given
cross section, and therefore

(6-33)
LA

ydA � 0

LA
σxdA � �

LA
Eκxy dA � 0

σxdA

σx � �Eκyy
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Fig. 6-24 
Sign conventions for curvatures

ky and kz in the xy and xz
planes, respectively

y

x

Positive
curvature ky

O
(a)

z

x

Positive
curvature kz

O
(b)

�

�

Fig. 6-25 
Bending moments My and Mz

acting about the y and z axes,
respectively

z

y

C

My

Mz

*Products of inertia are discussed in Section 12.7 of Chapter 12.
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This equation shows that the z axis (the neutral axis) passes through the
centroid C of the cross section.

Now assume that the beam is bent in such a manner that the y axis is
the neutral axis and the xz plane is the plane of bending. Then the normal
stress acting on the element of area dA (Fig. 6-23b) is

(6-34)

The sign convention for the curvature κz in the xz plane is shown in
Fig. 6-24b. The minus sign is needed in Eq. (6-34) because positive curva-
ture in the xz plane produces compression on the element dA. The
 resultant force for this case is

from which we get

(6-35)

and again we see that the neutral axis must pass through the centroid.
Thus, we have established that the origin of the y and z axes for an unsym-
metric beam must be placed at the centroid C.

Now let us consider the moment resultant of the stresses σx. Once
again we assume that bending takes place with the z axis as the neutral
axis, in which case the stresses σx are given by Eq. (6-32). The correspon-
ding bending moments Mz and My about the z and y axes, respectively
(Fig. 6-25), are

(6-36a)

(6-36b)

In these equations, Iz is the moment of inertia of the cross-sectional area
with respect to the z axis and Iyz is the product of inertia with respect to the
y and z axes.*

From Eqs. (6-36a) and (6-36b) we can draw the following conclusions:
(1) If the z axis is selected in an arbitrary direction through the centroid, it
will be the neutral axis only if  moments My and Mz act about the y and
z axes and only if  these moments are in the ratio established by Eqs. (6-36a)
and (6-36b). (2) If the z axis is selected as a principal axis, then the product
of inertia Iyz equals zero and the only bending moment is Mz. In that case,
the z axis is the neutral axis, bending takes place in the xy plane, and the
moment Mz acts in that same plane. Thus, bending occurs in a manner
analogous to that of a symmetric beam.

In summary, an unsymmetric beam bends in the same general man-
ner as a symmetric beam provided the z axis is a principal centroidal axis

My �
LA

σxz dA � �κyE
LA

yzdA � �κyEIyz

Mz � �
LA

σxydA � κyE
LA

y2dA � κyEIz

LA
zdA � 0

LA
σxdA � �

LA
Eκzz dA � 0

σx � �Eκzz
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*Principal axes are discussed in Sections 12.8 and 12.9 of Chapter 12.

Fig. 6-26 
Unsymmetric cross section with
the bending moment M resolved
into components My and Mz
 acting about the principal
 centroidal axes

z

y

C

n

n

My

Mz

Mβ

θ

and the only bending moment is the moment Mz acting about that
same axis.

If  we now assume that the y axis is the neutral axis, we will arrive at
similar conclusions. The stresses σx are given by Eq. (6-34) and the bend-
ing moments are

(6-37a)

(6-37b)

in which Iy is the moment of inertia with respect to the y axis. Again we
observe that if  the neutral axis (the y axis in this case) is oriented arbitrar-
ily, moments My and Mz must exist. However, if  the y axis is a principal
axis, the only moment is My and we have ordinary bending in the xz plane.
Therefore, we can state that an unsymmetric beam bends in the same
 general manner as a symmetric beam when the y axis is a principal cen-
troidal axis and the only bending moment is the moment My acting about
that same axis.

One further observation—since the y and z axes are orthogonal, we
know that if  either axis is a principal axis, then the other axis is automat-
ically a principal axis.

We have now arrived at the following important conclusion: When an
unsymmetric beam is in pure bending, the plane in which the bending
moment acts is perpendicular to the neutral surface only if the y and z axes
are principal centroidal axes of the cross section and the bending moment
acts in one of the two principal planes (the xy plane or the xz plane). In
such a case, the principal plane in which the bending moment acts
becomes the plane of  bending and the usual bending theory (including
the flexure formula) is valid.

Having arrived at this conclusion, we now have a direct method for
finding the stresses in an unsymmetric beam subjected to a bending
moment acting in an arbitrary direction.

Procedure for Analyzing an Unsymmetric Beam
We will now describe a general procedure for analyzing an unsymmetric
beam subjected to any bending moment M (Fig. 6-26). We begin by locat-
ing the centroid C of the cross section and constructing a set of principal
axes at that point (the y and z axes in the figure).* Next, the bending
moment M is resolved into components My and Mz, positive in the direc-
tions shown in the figure. These components are

(6-38a,b)

in which θ is the angle between the moment vector M and the z axis
(Fig. 6-26). Since each component acts in a principal plane, it produces

My � M sin θ Mz � M cos θ

Mz � �
LA

σxy dA � κzE
LA

yz dA � κzEIyz

My �
LA

σxz dA � �κzE
LA

z2dA � �κzEIy
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pure bending in that same plane. Thus, the usual formulas for pure
bending apply, and we can readily find the stresses due to the moments
My and Mz acting separately. The bending stresses obtained from the
moments acting separately are then superposed to obtain the stresses
produced by the original bending moment M. (Note that this general
procedure is similar to that described in the preceding section for ana-
lyzing doubly symmetric beams with inclined loads.)

The superposition of the bending stresses in order to obtain the result-
ant stress at any point in the cross section is given by Eq. (6-19):

(6-39)

in which y and z are the coordinates of the point under consideration.
Also, the equation of the neutral axis nn (Fig. 6-26) is obtained by set-

ting σx equal to zero and simplifying:

(6-40)

The angle β between the neutral axis and the z axis can be obtained from
the preceding equation, as

(6-41)

This equation shows that in general the angles β and θ are not equal,
hence the neutral axis is generally not perpendicular to the plane in
which the applied couple M acts. The only exceptions are the three spe-
cial cases described in the preceding section in the paragraph following
Eq. (6-24).

In this section we have focused our attention on unsymmetric
beams. Of  course, symmetric beams are special cases of  unsymmetric
beams, and therefore the discussions of  this section also apply to sym-
metric beams. If  a beam is singly symmetric, the axis of  symmetry is
one of  the centroidal principal axes of  the cross section; the other prin-
cipal axis is perpendicular to the axis of  symmetry at the centroid. If  a
beam is doubly symmetric, the two axes of  symmetry are centroidal
principal axes.

In a strict sense the discussions of  this section apply only to pure
bending, which means that no shear forces act on the cross sections.
When shear forces do exist, the possibility arises that the beam will
twist about the longitudinal axis. However, twisting is avoided when the
shear forces act through the shear center, which is described in the next
section.

The following examples illustrate the analysis of a beam having one
axis of symmetry. (The calculations for an unsymmetric beam having no
axes of symmetry proceed in the same general manner, except that the
determination of the various cross-sectional properties is much more
 complex.)

tan β �
y
z

�
Iz

Iy

tan θ

sin θ
Iy

z �
cos θ

Iz

y � 0

σx �
Myz

Iy

�
Mzy

Iz

�
(M sin θ)z

Iy

�
(M cos θ)y

Iz
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Example 6-7• • •

Continues ➥

*See Table E-3, Appendix E, for dimensions and properties of channel sections.

Fig. 6-27 
Example 6-7: Channel section
subjected to a bending
moment M acting at an angle
θ to the z axis

C

D

z

y

UPN 220 

A

EB

M = 2 kN·m

θ = 10°

Fig. 6-28 
(a) Solution to Example 6-7 

(a)

Cz

y

A

E

D

My

Mz

M

B

n

n

β = 67.4°

c = 2.14 cm

θ = 10°
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A channel section UPN is subjected to a bending moment  
oriented at an angle to the z axis (Fig. 6-27).

Calculate the bending stresses σA and σB at points A and B, respectively,
and determine the position of the neutral axis.

Solution
Properties of the cross section. The centroid C is located on the axis of sym-
metry (the z axis) at a distance

from the back of the channel (Fig. 6-28).* The y and z axes are principal cen-
troidal axes with moments of inertia

Also, the coordinates of points A, B, D, and E are

Bending moments. The bending moments about the y and z axes  
(Fig. 6-28) are

Bending stresses. We now calculate the stress at point A from Eq. (6-39):

By a similar calculation, we obtain the stress at point B:

These stresses are the maximum compressive and tensile stresses in the
beam.

2 kN # m

➥

➥� 3.77 MPa � 8.06 MPa � 11.83 MPa

�
(0.347 kN # m)(0.0214 m)

1.97 � 10�6 m4
�

(1.97 kN # m)(�0.110 m)

2.69 � 10�5 m4

σB �
MyzB

Iy
�

MzyB

Iz

� �10.32 MPa � 8.06 MPa � �18.38 MPa

�
(0.347 kN # m)(�0.0586 m)

1.97 � 10�6 m4
�

(1.97 kN # m)(0.110 m)

2.69 � 10�5 m4

σA �
MyzA

Iy
�

MzyA

Iz

Mz � M cos θ � (2 kN # m)(cos 10°) � 1.97 kN # m

My � M sin θ � (2 kN # m)(sin 10°) � 0.347 kN # m

yE � yB, zE � zA

yD � yA, zD � zB

yB � �110 mm zB � 21.4 mm

yA � 110 mm zA � �80 mm � 21.4 mm � �58.6 mm

Iy � 197 cm4 Iz � 2690 cm4

c � 2.14 cm

θ � 10°
M �220

77742_06_ch06_p524-607.qxd:77742_06_ch06_p524-607.qxd  2/22/12  8:18 PM  Page 555

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The normal stresses at points D and E also can be computed using the
procedure shown.

The normal stresses acting on the cross section are shown in Fig. 6-28(b).
Neutral axis. The angle β that locates the neutral axis [Eq. (6-41)] is

found as 

The neutral axis nn is shown in Fig. 6-28, and we see that points A and B are
located at the farthest distances from the neutral axis, thus confirming that
σA and σB are the largest stresses in the beam.

In this example, the angle β between the z axis and the neutral axis
is much larger than the angle θ (Fig. 6-28) because the ratio is large.

➥

Iz /Iy

tan β �
Iz
Iy

tan θ �
2690 cm4

197 cm4
tan 10° � 2.408 β � 67.4°

σD � �4.29 MPa, σE � �2.27 MPa

Example 6-7 - Continued• • •

Fig. 6-28 (Continued)
(b) Normal stress distribution in
channel section
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11.83 MPa
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n

The angle β varies from 0 to 67.4� as the angle θ varies from 0 to 10�. As
discussed previously in Example 6-5 of Section 6.4, beams with large Iz /Iy
ratios are very sensitive to the direction of loading. Thus, beams of this
kind should be provided with lateral support to prevent excessive lateral
deflections.
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A Z-section is subjected to bending moment at an angle
to the z axis, as shown. Find the normal stresses at A, B, D, and E

(σA, σB, σD, and σE, respectively) and also find the position of the neutral axis.
Use the following numerical data: , , thickness

.

Solution
Properties of the cross section. Use the results of Example 12-7 of Chapter 12.

Coordinates (y, z) of points A, B, D, D�, E, and E�:

Bending moments (kN	m) :

Bending stresses at A, B, D, and E (see plots of normal stresses in Fig. 6-29b):

σD �
MyzD

Iy
�

MzyD

Iz
� 17.088 � 7.953 � 9.14 MPa

σB �
MyzB

Iy
�

MzyB

Iz
� 19.249 � 10.513 � 29.8 MPa

σA �
MyzA

Iy
�

MzyA

Iz
� �19.249 � 10.513 � �29.8 MPa

Mz � M cos(θ ) Mz � 2.819 kN # m

My � M sin(θ ) My � �1.026 kN # m

M � 3 kN # m

zE � 39.969 mmzE � �zD

zE¿ � 32.887 mmzE¿ � �zD¿

zD� � �32.887 mmzD� �
�h
2

sin(θp1)

zD � �39.969 mmzD �
�h
2

sin(θp1) �
t
2

cos(θp1)

zB � �45.024 mmzB � �zA

zA � 45.024 mmzA � ab �
t
2
b cos(θp1) �

h
2

sin(θp1)

yE � �91.971 mmyE � �yD

yE¿ � �94.438 mmyE¿ � �yD¿

yD� � 94.438 mmyD� �
h
2

cos(θp1)

yD � 91.971 mmyD �
h
2

cos(θp1) �
t
2

sin(θp1)

yB � �121.569 mmyB � �yA

yA � 121.569 mmyA �
h
2

cos(θp1) � ab �
t
2
b sin(θp1)

θ � �20a π
180
b radians

θp1 � 19.2° θp1 � (19.2)
π

180
radians

IZ � 32.6(106) mm4 IY � 2.4(106) mm4

t � 15 mm
b � 90 mmh � 200 mm

θ � �20°
M � 3 kN # m

Example 6-8• • •

Continues ➥
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Example 6-8 - Continued• • •

Fig. 6-29
(a) Z section subjected to
bending moment M at angle θ
to Z axis (b) normal stress
 distribution in Z section
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:

tan(β ) �
Iz
Iz

tan(θ )

β � �89.1°

Location of neutral axis

σE �
MyzE

Iy
�

MzyE

Iz
� �17.088 � 7.953 � �9.14 MPa

σD� �
MyzD�

Iy
�

MzyD�

Iz
� 14.06 � 8.167 � 5.89 MPa � �σE�
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Fig. 6-30 
Cantilever beam with singly
 symmetric cross section:
(a) beam with load, and
(b) intermediate cross section
of beam showing stress
 resultants P and M0, centroid C,
and shear center S
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y
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P

z
S

y

P

C
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(b)

6.6 THE SHEAR-CENTER CONCEPT
In the preceding sections of this chapter, we were concerned with deter-
mining the bending stresses in beams under a variety of special conditions.
For instance, in Section 6.4 we considered symmetrical beams with
inclined loads, and in Section 6.5 we considered unsymmetrical beams.
However, lateral loads acting on a beam produce shear forces as well as
bending moments, and therefore in this and the next three sections we will
examine the effects of shear.

In Chapter 5, we saw how to determine the shear stresses in beams
when the loads act in a plane of symmetry, and we derived the shear for-
mula for calculating those stresses for certain shapes of beams. Now we
will examine the shear stresses in beams when the lateral loads act in a
plane that is not a plane of symmetry. We will find that the loads must be
applied at a particular point in the cross section, called the shear center, if
the beam is to bend without twisting.

Consider a cantilever beam of singly symmetric cross section support-
ing a load P at the free end (see Fig. 6-30a). A beam having the cross sec-
tion shown in Fig. 6-30b is called an unbalanced I-beam. Beams of I-shape,
whether balanced or unbalanced, are usually loaded in the plane of sym-
metry (the xz plane), but in this case the line of action of the force P is per-
pendicular to that plane. Since the origin of coordinates is taken at the
centroid C of the cross section, and since the z axis is an axis of symmetry
of the cross section, both the y and z axes are principal centroidal axes.

Let us assume that under the action of the load P the beam bends with
the xz plane as the neutral plane, which means that the xy plane is the
plane of bending. Under these conditions, two stress resultants exist at
intermediate cross sections of the beam (Fig. 6-30b): a bending moment
M0 acting about the z axis and having its moment vector in the negative
direction of the z axis, and a shear force of magnitude P acting in the neg-
ative y direction. For a given beam and loading, both M0 and P are known
quantities.

The normal stresses acting on the cross section have a resultant that is
the bending moment M0, and the shear stresses have a resultant that is the
shear force (equal to P). If the material follows Hooke’s law, the normal
stresses vary linearly with the distance from the neutral axis (the z axis) and
can be calculated from the flexure formula. Since the shear stresses acting
on a cross section are determined from the normal stresses solely from equi-
librium considerations (see the derivation of  the shear formula in
Section 5.8), it follows that the distribution of shear stresses over the cross
section is also determined. The resultant of these shear stresses is a vertical
force equal in magnitude to the force P and having its line of action
through some point S lying on the z axis (Fig. 6-30b). This point is known
as the shear center (also called the center of flexure) of the cross section.

In summary, by assuming that the z axis is the neutral axis, we can
determine not only the distribution of the normal stresses but also the dis-
tribution of the shear stresses and the position of the resultant shear force.
Therefore, we now recognize that a load P applied at the end of the beam
(Fig. 6-30a) must act through a particular point (the shear center) if  bend-
ing is to occur with the z axis as the neutral axis.

If the load is applied at some other point on the z axis (say, at point A
in Fig. 6-31), it can be replaced by a statically equivalent system consisting

5596.6 The Shear-Center Concept
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Fig. 6-32 
(a) Doubly symmetric beam with a
load P acting through the  centroid

(and shear center), and (b) singly
symmetric beam with a load P

 acting through the shear center

(a)

(b)
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Fig. 6-33 
Unsymmetric beam with a load P
acting through the shear center S
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Singly symmetric beam with

load P applied at point A
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of a force P acting at the shear center and a torque T. The force acting at
the shear center produces bending about the z axis and the torque produces
torsion. Therefore, we now recognize that a lateral load acting on a beam
will produce bending without twisting only if it acts through the shear center.

The shear center (like the centroid) lies on any axis of symmetry, and
therefore the shear center S and the centroid C coincide for a doubly sym-
metric cross section (Fig. 6-32a). A load P acting through the centroid pro-
duces bending about the y and z axes without torsion, and the
corresponding bending stresses can be found by the method described in
Section 6.4 for doubly symmetric beams.

If a beam has a singly symmetric cross section (Fig. 6-32b), both the cen-
troid and the shear center lie on the axis of symmetry. A load P acting
through the shear center can be resolved into components in the y and
z directions. The component in the y direction will produce bending in the
xy plane with the z axis as the neutral axis, and the component in
the z direction will produce bending (without torsion) in the xz plane with
the y axis as the neutral axis. The bending stresses produced by these com-
ponents can be superposed to obtain the stresses caused by the original load.

Finally, if  a beam has an unsymmetric cross section (Fig. 6-33), the
bending analysis proceeds as follows (provided the load acts through the
shear center). First, locate the centroid C of the cross section and deter-
mine the orientation of the principal centroidal axes y and z. Then resolve
the load into components (acting at the shear center) in the y and z direc-
tions and determine the bending moments My and Mz about the principal
axes. Lastly, calculate the bending stresses using the method described in
Section 6.5 for unsymmetric beams.

Now that we have explained the significance of the shear center and
its use in beam analysis, it is natural to ask, “How do we locate the shear
center?” For doubly symmetric shapes the answer, of course, is simple—it
is at the centroid. For singly symmetric shapes the shear center lies on the
axis of symmetry, but the precise location on that axis may not be easy to
determine. Locating the shear center is even more difficult if  the cross sec-
tion is unsymmetric (Fig. 6-33). In such cases, the task requires more
advanced methods than are appropriate for this book. (A few engineering
handbooks give formulas for locating shear centers; e.g., see Ref. 2-9.)

Beams of thin-walled open cross sections, such as wide-flange beams,
channels, angles, T-beams, and Z-sections, are a special case. Not only are
they in common use for structural purposes, they also are very weak in tor-
sion. Consequently, it is especially important to locate their shear centers.
Cross sections of this type are considered in the following three sections—
in Sections 6.7 and 6.8 we discuss how to find the shear stresses in such
beams, and in Section 6.9 we show how to locate their shear centers.

Chapter 6  Stresses in Beams (Advanced Topics)
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Fig. 6-34 
Typical beams of thin-walled
open cross section (wide-flange
beam or I-beam, channel beam,
angle section, Z-section, and 
T-beam)

We can determine the shear stresses in thin-walled beams of open
cross section by using the same techniques we used when deriving the
shear formula [Eq. (6-42)]. To keep the derivation as general as possible,
we will consider a beam having its cross-sectional centerline mm of arbi-
trary shape (Fig. 6-35a). The y and z axes are principal centroidal axes of
the cross section, and the load P acts parallel to the y axis through the
shear center S (Fig. 6-35b). Therefore, bending will occur in the xy plane
with the z axis as the neutral axis.

Under these conditions, we can obtain the normal stress at any point
in the beam from the flexure formula:

(6-43)

where Mz is the bending moment about the z axis (positive as defined in
Fig. 6-17) and y is a coordinate of the point under consideration.

Now consider a volume element abcd cut out between two cross sec-
tions distance dx apart (Fig. 6-35a). Note that the element begins at the
edge of  the cross section and has length s measured along the centerline
mm (Fig. 6-35b). To determine the shear stresses, we isolate the element

σx � �
Mzy

Iz

6.7 SHEAR STRESSES IN BEAMS OF 
THIN-WALLED OPEN CROSS SECTIONS
The distribution of shear stresses in rectangular beams, circular beams,
and in the webs of  beams with flanges was described previously in
Sections 5.8, 5.9, and 5.10, and we derived the shear formula [Eq. (5-41)]
for calculating the stresses:

(6-42)

In this formula, V represents the shear force acting on the cross section, 
I is the moment of inertia of the cross-sectional area (with respect to the
neutral axis), b is the width of the beam at the location where the shear
stress is to be determined, and Q is the first moment of the cross-sectional
area outside of the location where the stress is being found.

Now we will consider the shear stresses in a special class of beams
known as beams of thin-walled open cross section. Beams of this type are
distinguished by two features: (1) The wall thickness is small compared to
the height and width of the cross section, and (2) the cross section is open,
as in the case of an I-beam or channel beam, rather than closed, as in the
case of a hollow box beam. Examples are shown in Fig. 6-34. Beams of
this type are also called structural sections or profile sections.

τ �
VQ

lb

5616.7 Shear Stresses in Beams of Thin-Walled Open Cross Sections
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Fig. 6-35 
Shear stresses in a beam of 

thin-walled open cross section
(The y and z axes are principal

centroidal axes.)
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as shown in Fig. 6-35c. The resultant of  the normal stresses acting on face
ad is the force F1 and the resultant on face bc is the force F2. Since the nor-
mal stresses acting on face ad are larger than those acting on face bc
(because the bending moment is larger), the force F1 will be larger than
F2. Therefore, shear stresses τ must act along face cd in order for the ele-
ment to be in equilibrium. These shear stresses act parallel to the top and
bottom surfaces of  the element and must be accompanied by complemen-
tary shear stresses acting on the cross-sectional faces ad and bc, as shown
in the figure.

To evaluate these shear stresses, we sum forces in the x direction for
element abcd (Fig. 6-35c); thus,

(6-44)

where t is the thickness of the cross section at face cd of the element. In
other words, t is the thickness of the cross section at distance s from the
free edge (Fig. 6-35b). Next, we obtain an expression for the force F1 by
using Eq. (6-43):

(6-45a)

where dA is an element of area on side ad of the volume element abcd, y
is a coordinate to the element dA, and Mz1 is the bending moment at the
cross section. An analogous expression is obtained for the force F2:

(6-45b)

Substituting these expressions for F1 and F2 into Eq. (a), we get

(6-46)τ � aMz2 � Mz1

dx
b 1

Izt L

s

0
y dA

F2 �
L

s

0
σxdA � �

Mz2

Iz L

s

0
y dA

F1 �
L

s

0
σx dA � �

Mz1

Iz L

s

0
y dA

τt dx � F2 � F1 � 0 or τt dx � F1 � F2
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The quantity is the rate of change dM/dx of the bending
moment and is equal to the shear force acting on the cross section [see
Eq. (4-6)]:

(6-47)

The shear force Vy is parallel to the y axis and positive in the negative direc-
tion of the y axis, that is, positive in the direction of the force P (Fig. 6-35).
This convention is consistent with the sign convention previously adopted
in Chapter 4 (see Fig. 4-5 for the sign convention for shear forces).

Substituting from Eq. (6-47) into Eq. (6-46), we get the following
equation for the shear stress τ:

(6-48)

This equation gives the shear stresses at any point in the cross section at
distance s from the free edge. The integral on the right-hand side repre-
sents the first moment with respect to the z axis (the neutral axis) of the
area of the cross section from to . Denoting this first moment
by Qz, we can write the equation for the shear stresses τ in the simpler form

(6-49)

which is analogous to the standard shear formula [Eq. (6-42)].
The shear stresses are directed along the centerline of the cross section

and act parallel to the edges of the section. Furthermore, we tacitly assumed
that these stresses have constant intensity across the thickness t of the wall,
which is a valid assumption when the thickness is small. (Note that the wall
thickness need not be constant but may vary as a function of the distance s.)

The shear flow at any point in the cross section, equal to the product
of the shear stress and the thickness at that point, is

(6-50)

Because Vy and Iz are constants, the shear flow is directly proportional
to Qz. At the top and bottom edges of the cross section, Qz is zero and
hence the shear flow is also zero. The shear flow varies continuously
between these end points and reaches its maximum value where Qz is
 maximum, which is at the neutral axis.

Now suppose that the beam shown in Fig. 6-35 is bent by loads that
act parallel to the z axis and through the shear center. Then the beam will
bend in the xz plane and the y axis will be the neutral axis. In this case we
can repeat the same type of analysis and arrive at the following equations
for the shear stresses and shear flow [compare with Eqs. (6-49) and (6-50)]:

(6-51a,b)

In these equations, Vz is the shear force parallel to the z axis and Qy is the
first moment with respect to the y axis.

τ �
VzQy

Iyt
f � τt �

VzQy

Iy

f � τt �
VyQz

Iz

τ �
VyQz

Izt

s � 0 s � s

τ �
Vy

Izt L

s

0
y dA

dM
dx

�
Mz2 � Mz1

dx
� Vy

(Mz2 � Mz1)/dx
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Fig. 6-36 
Shear stresses in a wide-flange

beam
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In summary, we have derived expressions for the shear stresses in
beams of thin-walled open cross sections with the stipulations that the
shear force must act through the shear center and must be parallel to one
of the principal centroidal axes. If  the shear force is inclined to the y and
z axes (but still acts through the shear center), it can be resolved into com-
ponents parallel to the principal axes. Then two separate analyses can be
made, and the results can be superimposed.

To illustrate the use of the shear-stress equations, we will consider the
shear stresses in a wide-flange beam in the next section. Later, in Section 6.9,
we will use the shear-stress equations to locate the shear centers of several
thin-walled beams with open cross sections.

6.8 SHEAR STRESSES IN WIDE-FLANGE
BEAMS
We will now use the concepts and equations discussed in the preceding
 section to investigate the shear stresses in wide-flange beams. For discus-
sion purposes, consider the wide-flange beam of Fig. 6-36a on the next
page. This beam is loaded by a force P acting in the plane of the web, that
is, through the shear center, which coincides with the centroid of the cross
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section. The cross-sectional dimensions are shown in Fig. 6-36b, where we
note that b is the flange width, h is the height between centerlines of the
flanges, tf is the flange thickness, and tw is the web thickness.

Shear Stresses in the Upper Flange
We begin by considering the shear stresses at section bb in the right-hand
part of the upper flange (Fig. 6-36b). Since the distance s has its origin at
the edge of the section (point a), the cross-sectional area between point a
and section bb is stf. Also, the distance from the centroid of this area to the
neutral axis is h/2, and therefore its first moment Qz is equal to . Thus,
the shear stress τf in the flange at section bb [from Eq. (6-49)] is

(6-52)

The direction of this stress can be determined by examining the forces act-
ing on element A, which is cut out of the flange between point a and sec-
tion bb (see Figs. 6-36a and b).

The element is drawn to a larger scale in Fig. 6-36c in order to show
clearly the forces and stresses acting on it. We recognize immediately that
the tensile force F1 is larger than the force F2, because the bending moment
is larger on the rear face of the element than it is on the front face. It fol-
lows that the shear stress on the left-hand face of element A must act
toward the reader if  the element is to be in equilibrium. From this obser-
vation it follows that the shear stresses on the front face of element A must
act toward the left.

Returning now to Fig. 6-36b, we see that we have completely deter-
mined the magnitude and direction of the shear stress at section bb, which
may be located anywhere between point a and the junction of the top
flange and the web. Thus, the shear stresses throughout the right-hand
part of the flange are horizontal, act to the left, and have a magnitude
given by Eq. (6-52). As seen from that equation, the shear stresses increase
linearly with the distance s.

The variation of the stresses in the upper flange is shown graphically
in Fig. 6-36d, and we see that the stresses vary from zero at point a (where

) to a maximum value τ1 at :

(6-53)

The corresponding shear flow is

(6-54)

Note that we have calculated the shear stress and shear flow at the junction
of the centerlines of the flange and web, using only centerline dimensions
of the cross section in the calculations. This approximate procedure simpli-
fies the calculations and is satisfactory for thin-walled cross sections.

By beginning at point c on the left-hand part of  the top flange
(Fig. 6-36b) and measuring s toward the right, we can repeat the same
type of  analysis. We will find that the magnitude of  the shear stresses is

f1 � τ1tf �
bhtfP

4Iz

τ1 �
bhP
4Iz

s � 0 s � b/2

τf �
VyQz

Izt
�

P(stfh/2)

Iztf

�
shP
2Iz

stfh/2
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566

again given by Eqs. (6-52) and (6-53). However, by cutting out an ele-
ment B (Fig. 6-36a) and considering its equilibrium, we find that the
shear stresses on the cross section now act toward the right, as shown in
Fig. 6-36d.

Shear Stresses in the Web
The next step is to determine the shear stresses acting in the web.
Considering a horizontal cut at the top of the web (at the junction of the
flange and web), we find the first moment about the neutral axis to be

, so that the corresponding shear stress is

(6-55)

The associated shear flow is

(6-56)

Note that the shear flow f2 is equal to twice the shear flow f1, which is
expected since the shear flows in the two halves of the upper flange com-
bine to produce the shear flow at the top of the web.

The shear stresses in the web act downward and increase in magni-
tude until the neutral axis is reached. At section dd, located at distance r
from the neutral axis (Fig. 6-36b), the shear stress τw in the web is calcu-
lated as follows:

(6-57)

When , this equation reduces to Eq. (6-55), and when , it
gives the maximum shear stress:

(6-58)

Again it should be noted that we have made all calculations on the basis
of the centerline dimensions of the cross section. For this reason, the shear
stresses in the web of a wide-flange beam calculated from Eq. (6-57) may
be slightly different from those obtained by the more exact analysis made
in Chapter 5 [see Eq. (5-51) of Section 5.10].

The shear stresses in the web vary parabolically, as shown in Fig. 6-36d,
although the variation is not large. The ratio of to τ2 is

(6-59)

For instance, if we assume and , the ratio is 

Qz �
btfh

2
� ah

2
� rb (tw)ah/2 � r

2
b �

btfh

2
�

tw

2
ah2

4
� r2b

τmax /τ2 � 1.25.h � 2b tf � 2tw

τmax

τ2

� 1 �
htw

4btf

τmax

τmax � abtf

tw

�
h
4
bPh

2Iz

r � h/2 r � 0

τw � abtfh

tw

�
h2

4
� r2b P

2Iz

f2 � τ2tw �
bhtfP

2Iz

τ2 �
bhtfP

2Iztw

Qz � btfh/2
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Shear Stresses in the Lower Flange
As the final step in the analysis, we can investigate the shear stresses in the
lower flange using the same methods we used for the top flange. We will
find that the magnitudes of the stresses are the same as in the top flange,
but the directions are as shown in Fig. 6-36d.

General Comments
From Fig. 6-36d we see that the shear stresses on the cross section “flow”
inward from the outermost edges of the top flange, then down through the
web, and finally outward to the edges of the bottom flange. Because this
flow is always continuous in any structural section, it serves as a conven-
ient method for determining the directions of the stresses. For instance, if
the shear force acts downward on the beam of Fig. 6-36a, we know imme-
diately that the shear flow in the web must also be downward. Knowing
the direction of the shear flow in the web, we also know the directions of
the shear flows in the flanges because of the required continuity in the
flow. Using this simple technique to get the directions of the shear stresses
is easier than visualizing the directions of the forces acting on elements
such as A (Fig. 6-36c) cut out from the beam.

The resultant of all the shear stresses acting on the cross section is
clearly a vertical force, because the horizontal stresses in the flanges produce
no resultant. The shear stresses in the web have a resultant R, which can be
found by integrating the shear stresses over the height of the web, as follows:

Substituting from Eq. (6-57), we get

(6-60)

The moment of inertia Iz can be calculated as follows (using centerline
dimensions):

(6-61)

in which the first term is the moment of inertia of the web and the second
term is the moment of inertia of the flanges. When this expression for Iz is
substituted into Eq. (6-60), we get , which demonstrates that the
resultant of the shear stresses acting on the cross section is equal to the
load. Furthermore, the line of action of the resultant is in the plane of the
web, and therefore the resultant passes through the shear center.

The preceding analysis provides a more complete picture of the shear
stresses in a wide-flange or I-beam because it includes the flanges (recall
that in Chapter 5 we investigated only the shear stresses in the web).
Furthermore, this analysis illustrates the general techniques for finding
shear stresses in beams of thin-walled open cross section. Other illustra-
tions can be found in the next section, where the shear stresses in a chan-
nel section and an angle section are determined as part of the process of
locating their shear centers.

R � P

Iz �
twh3

12
�

btfh
2

2

R � 2tw
L

h/2

o
abtfh

tw

�
h2

4
� r2b a P

2Iz

bdr � abtf

tw

�
h
6
bh2twP

2Iz

R �
L
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Fig. 6-37
Shear center S of a channel
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6.9 SHEAR CENTERS OF THIN-WALLED
OPEN SECTIONS
In Sections 6.7 and 6.8 we developed methods for finding the shear stresses
in beams of thin-walled open cross section. Now we will use those meth-
ods to locate the shear centers of several shapes of beams. Only beams
with singly symmetric or unsymmetric cross sections will be considered,
because we already know that the shear center of a doubly symmetric
cross section is located at the centroid.

The procedure for locating the shear center consists of two principal
steps: first, evaluating the shear stresses acting on the cross section when
bending occurs about one of the principal axes, and second, determining
the resultant of those stresses. The shear center is located on the line of
action of the resultant. By considering bending about both principal axes,
we can determine the position of the shear center.

As in Sections 6.7 and 6.8, we will use only centerline dimensions
when deriving formulas and making calculations. This procedure is satis-
factory if  the beam is thin-walled, that is, if  the thickness of the beam is
small compared to the other dimensions of the cross section.

Channel Section
The first beam to be analyzed is a singly symmetric channel section
 (Fig. 6-37a). From the general discussion in Section 6.6 we know imme-
diately that the shear center is located on the axis of  symmetry (the z axis).
To find the position of  the shear center on the z axis, we assume that the
beam is bent about the z axis as the neutral axis, and then we determine
the line of  action of  the resultant shear force Vy acting parallel to the y axis.
The shear center is located where the line of  action of  Vy intersects the
z axis. (Note that the origin of  axes is at the centroid C, so that both the
y and z axes are principal centroidal axes.)

Based upon the discussions in Section 6.8, we conclude that the shear
stresses in a channel vary linearly in the flanges and parabolically in the
web (Fig. 6-37b). We can find the resultant of those stresses if  we know the
maximum stress τ1 in the flange, the stress τ2 at the top of the web, and the
maximum stress τmax in the web.

To find the stress τ1 in the flange, we use Eq. (6-49) with Qz equal to
the first moment of the flange area about the z axis:

(6-62)

in which b is the flange width, tf is the flange thickness, and h is the height
of the beam. (Note again that the dimensions b and h are measured along
the centerline of the section.) Thus, the stress τ1 in the flange is

(6-63)τ1 �
VyQz

Iztf

�
bhVy

2Iz

Qz �
btfh

2
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where Iz is the moment of inertia about the z axis.
The stress τ2 at the top of  the web is obtained in a similar manner

but with the thickness equal to the web thickness instead of  the flange
thickness:

(6-64)

Also, at the neutral axis the first moment of area is

(6-65)

Therefore, the maximum stress is

(6-66)

The stresses τ1 and τ2 in the lower half  of the beam are equal to the corre-
sponding stresses in the upper half  (Fig. 6-37b).

The horizontal shear force F1 in either flange (Fig. 6-37c) can be found
from the triangular stress diagrams. Each force is equal to the area of the
stress triangle multiplied by the thickness of the flange:

(6-67)

The vertical force F2 in the web must be equal to the shear force Vy,
since the forces in the flanges have no vertical components. As a check,
we can verify that by considering the parabolic stress diagram 
of  Fig. 6-37b. The diagram is made up of  two parts—a rectangle of  area

and a parabolic segment of  area

Thus, the shear force F2, equal to the area of the stress diagram times the
web thickness tw, is

Substituting the expressions for τ2 and τmax [Eqs. (6-64) and (6-66)] into the
preceding equation, we obtain

(6-68)F2 � a twh3

12
�

bh2tf

2
b Vy

Iz

F2 � τ2htw �
2
3
1τmax � τ22htw

2

3
1τmax � τ22h

τ2h

F2 � Vy

F1 � a τ1b

2
b (tf) �

hb2tfVy

4Iz
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h
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Finally, we note that the expression for the moment of inertia is

(6-69)

in which we again base the calculations upon centerline dimensions.
Substituting this expression for Iz into Eq. (6-68) for F2, we get

(6-70)

as expected.
The three forces acting on the cross section (Fig. 6-37c) have a result-

ant Vy that intersects the z axis at the shear center S (Fig. 6-37d). Hence,
the moment of the three forces about any point in the cross section must
be equal to the moment of the force Vy about that same point. This
moment relationship provides an equation from which the position of the
shear center may be found.

As an illustration, let us select the shear center itself  as the center of
moments. In that case, the moment of the three forces (Fig. 6-37c) is

, where e is the distance from the centerline of the web to the
shear center, and the moment of the resultant force Vy is zero (Fig. 6-37d).
Equating these moments gives

(6-71)

Substituting for F1 from Eq. (6-67) and for F2 from Eq. (6-70), and then
solving for e, we get

(6-72)

When the expression for Iz [Eq. (6-69)] is substituted, Eq. (6-72) becomes

(6-73)

Thus, we have determined the position of the shear center of a channel
section.

As explained in Section 6.6, a channel beam will undergo bending
without twisting whenever it is loaded by forces acting through the shear
center. If  the loads act parallel to the y axis but through some point other
than the shear center (for example, if  the loads act in the plane of the web),
they can be replaced by a statically equivalent force system consisting of
loads through the shear center and twisting couples. We then have a com-
bination of bending and torsion of the beam. If  the loads act along the
z axis, we have simple bending about the y axis. If  the loads act in skew
directions through the shear center, they can be replaced by statically
equivalent loads acting parallel to the y and z axes.

Angle Section
The next shape to be considered is an equal-leg angle section (Fig. 6-38a),
in which each leg of the angle has length b and thickness t. The z axis is an
axis of symmetry and the origin of coordinates is at the centroid C; there-
fore, both the y and z axes are principal centroidal axes.

Iz �
twh3

12
�

bh2tf

2

e �
3b2tf

htw � 6btf

e �
b2h2tf

4Iz

F1h � F2e � 0

F1h � F2e

F2 � Vy
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Fig. 6-38 
Shear center of an equal-leg
angle section
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To locate the shear center, we will follow the same general procedure
as that described for a channel section, because we wish to determine the
distribution of the shear stresses as part of the analysis. However, as we
will see later, the shear center of an angle section can be determined by
inspection.

We begin by assuming that the section is subjected to a shear force
Vy acting parallel to the y axis. Then we use Eq. (6-49) to find the corre-
sponding shear stresses in the legs of  the angle. For this purpose we need
the first moment of  the cross-sectional area between point a at the outer
edge of  the beam (Fig. 6-38b) and section bb located at distance s from
point a. The area is equal to st and its centroidal distance from the neu-
tral axis is

Thus, the first moment of the area is

(6-74)Qz � stab � s/2
12

b

b � s/2
12

5716.9 Shear Centers of Thin-Walled Open Sections

77742_06_ch06_p524-607.qxd:77742_06_ch06_p524-607.qxd  2/22/12  8:33 PM  Page 571

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



572

Substituting into Eq. (6-49), we get the following expression for the shear
stress at distance s from the edge of the cross section:

(6-75)

The moment of inertia Iz can be obtained from Case 24 of Appendix D
with :

(6-76)

Substituting this expression for Iz into Eq. (6-75), we get

(6-77)

This equation gives the shear stress at any point along the leg of the angle.
The stress varies quadratically with s, as shown in Fig. 6-38c.

The maximum value of  the shear stress occurs at the intersection of
the legs of  the angle and is obtained from Eq. (6-77) by substituting

:

(6-78)

The shear force F in each leg (Fig. 6-38d) is equal to the area of the para-
bolic stress diagram (Fig. 6-38c) times the thickness t of the legs:

(6-79)

Since the horizontal components of the forces F cancel each other, only
the vertical components remain. Each vertical component is equal to

, or , and therefore the resultant vertical force is equal to the 
shear force Vy, as expected.

Since the resultant force passes through the intersection point of the
lines of action of the two forces F (Fig. 6-38d), we see that the shear cen-
ter S is located at the junction of the two legs of the angle.

Sections Consisting of Two Intersecting Narrow
Rectangles
In the preceding discussion of an angle section we evaluated the shear
stresses and the forces in the legs in order to illustrate the general method-
ology for analyzing thin-walled open sections. However, if  our sole objec-
tive had been to locate the shear center, it would not have been necessary
to evaluate the stresses and forces.
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τ �
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Fig. 6-39 
Shear centers of sections
 consisting of two intersecting
narrow rectangles

SS

SS

Fig. 6-40 
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Let us now determine the location of the shear center of a Z-section hav-
ing thin walls (Fig. 6-40a). The section has no axes of symmetry but is
symmetric about the centroid C (see Section 12.2 of Chapter 12 for a dis-
cussion of symmetry about a point). The y and z axes are principal axes
through the centroid.

We begin by assuming that a shear force Vy acts parallel to the y axis
and causes bending about the z axis as the neutral axis. Then the shear
stresses in the flanges and web will be directed as shown in Fig. 6-40a.
From symmetry considerations we conclude that the forces F1 in the two
flanges must be equal to each other (Fig. 6-40b). The resultant of  the
three forces acting on the cross section (F1 in the flanges and F2 in the
web) must be equal to the shear force Vy. The forces F1 have a resultant
2F1 acting through the centroid and parallel to the flanges. This force
intersects the force F2 at the centroid C, and therefore we conclude that
the line of  action of  the shear force Vy must be through the centroid.

If  the beam is subjected to a shear force Vz parallel to the z axis, we
arrive at a similar conclusion, namely, that the shear force acts through the
centroid. Since the shear center is located at the intersection of the lines of
action of the two shear forces, we conclude that the shear center of the
Z section coincides with the centroid.

This conclusion applies to any Z section that is symmetric about the
centroid, that is, any Z section having identical flanges (same width and
same thickness). Note, however, that the thickness of the web does not
have to be the same as the thickness of the flanges.

The locations of the shear centers of many other structural shapes are
given in the problems at the end of this chapter.*

*The first determination of a shear center was made by S. P. Timoshenko in 1913 (Ref. 6-1).

Since the shear stresses are parallel to the centerlines of the legs
(Fig. 6-38b), we would have known immediately that their resultants are
two forces F (Fig. 6-38d). The resultant of those two forces is a single force
that passes through their point of intersection. Consequently, this point is
the shear center. Thus, we can determine the location of the shear center
of an equal-leg angle section by a simple line of reasoning (without mak-
ing any calculations).

The same line of reasoning is valid for all cross sections consisting of
two thin, intersecting rectangles (Fig. 6-39). In each case the resultants of
the shear stresses are forces that intersect at the junction of the rectangles.
Therefore, the shear center S is located at that point.
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A thin-walled semicircular cross section of radius r and thickness t is shown
in Fig. 6-41a. Determine the distance e from the center O of the semicircle
to the shear center S.

Example 6-9• • •
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Fig. 6-41 
Example 6-9: Shear center 
of a thin-walled semicircular
section
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Solution
We know immediately that the shear center is located somewhere on the
axis of symmetry (the z axis). To determine the exact position, we assume
that the beam is bent by a shear force Vy acting parallel to the y axis and
producing bending about the z axis as the neutral axis (Fig. 6-41b).

Shear stresses. The first step is to determine the shear stresses τ acting
on the cross section (Fig. 6-41b). We consider a section bb defined by the dis-
tance s measured along the centerline of the cross section from point a. The
central angle subtended between point a and section bb is denoted θ.
Therefore, the distance s equals rθ, where r is the radius of the centerline
and θ is measured in radians.

To evaluate the first moment of the cross-sectional area between point
a and section bb, we identify an element of area dA (shown shaded in the
figure) and integrate as follows:

(a)

in which φ is the angle to the element of area and t is the thickness of the
section. Thus, the shear stress τ at section bb is

(b)

Substituting (see Case 22 or Case 23 of Appendix D), we get

(6-80)

When or , this expression gives , as expected. When
, it gives the maximum shear stress.θ � π /2

θ � 0 θ � π τ � 0

τ �
2Vy sin θ

πrt

Iz � π r 3t /2

τ �
VyQz

Izt
�

Vyr2 sin θ

Iz

Qz �
L

y dA �
L

θ

0
(r cos φ) � r2t sin θ
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5756.9 Shear Centers of Thin-Walled Open Sections

Location of shear center. The resultant of the shear stresses must be the
vertical shear force Vy . Therefore, the moment M0 of the shear stresses
about the center O must equal the moment of the force Vy about that same
point:

(c)

To evaluate M0, we begin by noting that the shear stress τ acting on the ele-
ment of area dA (Fig. 6-41b) is

as found from Eq. (6-80). The corresponding force is τ dA, and the moment
of this force is

Since , this expression becomes

Therefore, the moment produced by the shear stresses is

(d)

It follows from Eq. (c) that the distance e to the shear center is

(6-81)

This result shows that the shear center S is located outside of the semicircu-
lar section.

Note: The distance from the center O of the semicircle to the centroid C
of the cross section (Fig. 6-41a) is (from Case 23 of Appendix D), which is
one-half of the distance e. Thus, the centroid is located midway between the
shear center and the center of the semicircle.

The location of the shear center in a more general case of a thin-walled
circular section is determined in Prob. 6.9-13.

➥

2r/π

e �
M0

Vy

�
4r
π

L 1.27r

M0 �
L

dM0 �
L

π

0

2rVy sin φ dφ

π
�

4rVy

π

dM0 �
2rVy sin φ dφ

π

dA � t rdφ

dM0 � r (τ dA) �
2Vy sin φ dA

π t

τ �
2Vy sin φ

π rt

M0 � Vye
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576

*6.10 ELASTOPLASTIC BENDING
In our previous discussions of bending we assumed that the beams were
made of materials that followed Hooke’s law (linearly elastic materials).
Now we will consider the bending of elastoplastic beams when the mate-
rial is strained beyond the linear region. When that happens, the distribu-
tion of the stresses is no longer linear but varies according to the shape of
the stress-strain curve.

Elastoplastic materials were discussed earlier when we analyzed axi-
ally loaded bars in Section 2.12. As explained in that section, elastoplastic
materials follow Hooke’s law up to the yield stress σY and then yield plas-
tically under constant stress (see the stress-strain diagram of Fig. 6-42).
From the figure, we see that an elastoplastic material has a region of
 linear elasticity between regions of perfect plasticity. Throughout this
 section, we will assume that the material has the same yield stress σY and
same yield strain εY in both tension and compression.

Structural steels are excellent examples of elastoplastic materials
because they have sharply defined yield points and undergo large strains
during yielding. Eventually the steels begin to strain harden, and then the
assumption of perfect plasticity is no longer valid. However, strain hard-
ening provides an increase in strength, and therefore the assumption of
perfect plasticity is on the side of safety.

Yield Moment
Let us consider a beam of elastoplastic material subjected to a bending
moment M that causes bending in the xy plane (Fig. 6-43). When the
bending moment is small, the maximum stress in the beam is less than the
yield stress σY, and therefore the beam is in the same condition as a beam
in ordinary elastic bending with a linear stress distribution, as shown in
Fig. 6-44b. Under these conditions, the neutral axis passes through the
centroid of  the cross section and the normal stresses are obtained from
the flexure formula . Since the bending moment is positive, 
the stresses are compressive above the z axis and tensile below it.

The preceding conditions exist until the stress in the beam at the point
farthest from the neutral axis reaches the yield stress σY, either in tension
or in compression (Fig. 6-44c). The bending moment in the beam when the
maximum stress just reaches the yield stress, called the yield moment MY,
can be obtained from the flexure formula:

(6-82)

in which c is the distance to the point farthest from the neutral axis and S
is the corresponding section modulus.

Plastic Moment and Neutral Axis
If  we now increase the bending moment above the yield moment MY, the
strains in the beam will continue to increase and the maximum strain will
exceed the yield strain εY. However, because of perfectly plastic yielding,
the maximum stress will remain constant and equal to σY, as pictured in
Fig. 6-44d. Note that the outer regions of the beam have become fully
plastic while a central core (called the elastic core) remains linearly elastic.

(σ � �My /I )

MY �
σYI

c
� σYS

Chapter 6  Stresses in Beams (Advanced Topics)

Fig. 6-42
Idealized stress-strain diagram

for an elastoplastic material
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If  the z axis is not an axis of symmetry (singly symmetric cross sec-
tion), the neutral axis moves away from the centroid when the yield
moment is exceeded. This shift in the location of the neutral axis is not
large, and in the case of the trapezoidal cross section of Fig. 6-44, it is too
small to be seen in the figure. If  the cross section is doubly symmetric, the
neutral axis passes through the centroid even when the yield moment is
exceeded.

As the bending moment increases still further, the plastic region
enlarges and moves inward toward the neutral axis until the condition
shown in Fig. 6-44e is reached. At this stage the maximum strain in the
beam (at the farthest distance from the neutral axis) is perhaps 10 or
15 times the yield strain εY and the elastic core has almost disappeared.
Thus, for practical purposes the beam has reached its ultimate moment-
resisting capacity, and we can idealize the ultimate stress distribution as
consisting of two rectangular parts (Fig. 6-44f). The bending moment
 corresponding to this idealized stress distribution, called the plastic
moment MP, represents the maximum moment that can be sustained by a
beam of elastoplastic material.

To find the plastic moment MP, we begin by locating the neutral axis
of the cross section under fully plastic conditions. For this purpose, con-
sider the cross section shown in Fig. 6-45a on the next page and let the 
z axis be the neutral axis. Every point in the cross section above the neutral
axis is subjected to a compressive stress σY (Fig. 6-45b), and every point
below the neutral axis is subjected to a tensile stress σY. The resultant com-
pressive force C is equal to σY times the cross-sectional area A1 above the

5776.10 Elastoplastic Bending

Fig. 6-44 
Stress distributions in a beam 
of elastoplastic material
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578

neutral axis (Fig. 6-45a), and the resultant tensile force T equals σY times
the area A2 below the neutral axis. Since the resultant force acting on the
cross section is zero, it follows that

(6-83a,b)

Because the total area A of the cross section is equal to , we
see that

(6-84)

Therefore, under fully plastic conditions, the neutral axis divides the cross
section into two equal areas.

As a result, the location of the neutral axis for the plastic moment MP
may be different from its location for linearly elastic bending. For instance,
in the case of a trapezoidal cross section that is narrower at the top than
at the bottom (Fig. 6-45a), the neutral axis for fully plastic bending is
slightly below the neutral axis for linearly elastic bending.

Since the plastic moment MP is the moment resultant of the stresses
acting on the cross section, it can be found by integrating over the cross-
sectional area A (Fig. 6-45a):

(6-85)

in which y is the coordinate (positive upward) of the element of area dA
and and are the distances from the neutral axis to the centroids c1 and
c2 of areas A1 and A2, respectively.

An easier way to obtain the plastic moment is to evaluate the
moments about the neutral axis of the forces C and T (Fig. 6-45b):

(6-86)

Replacing T and C by , we get

(6-87)

which is the same as Eq. (6-85).

MP �
σYA(yq1 � yq2)

2

σYA/2

MP � Cyq1 � Tyq2

yq1 yq2

� σY(yq1A1) � σY(�yq2A2) �
σYA(yq1 � yq2)

2

MP � �
LA

σy dA � �
LA1

(�σY)y dA �
LA2

σYy dA

A1 � A2 �
A
2

A1 � A2

T � C or A1 � A2
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Fig. 6-45 
Location of the neutral axis and

determination of the plastic
moment MP under fully plastic

conditions
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The procedure for obtaining the plastic moment is to divide the cross
section of the beam into two equal areas, locate the centroid of each half,
and then use Eq. (6-87) to calculate MP.

Plastic Modulus and Shape Factor
The expression for the plastic moment can be written in a form simi-

lar to that for the yield moment [Eq. (6-82)], as

(6-88)

in which

(6-89)

is the plastic modulus (or the plastic section modulus) for the cross section. The
plastic modulus may be interpreted geometrically as the first moment (eval-
uated with respect to the neutral axis) of the area of the cross section above
the neutral axis plus the first moment of the area below the neutral axis.

The ratio of the plastic moment to the yield moment is solely a func-
tion of the shape of the cross section and is called the shape factor f:

(6-90)

This factor is a measure of the reserve strength of the beam after yielding
first begins. It is highest when most of the material is located near the neu-
tral axis (for instance, a beam having a solid circular section), and lowest
when most of the material is away from the neutral axis (for instance, a
beam having a wide-flange section). Values of f for cross sections of rec-
tangular, wide-flange, and circular shapes are given in the remainder of
this section. Other shapes are considered in the problems at the end of the
chapter.

Beams of Rectangular Cross Section
Now let us determine the properties of a beam of rectangular cross section
(Fig. 6-46) when the material is elastoplastic. The section modulus is

, and therefore the yield moment [Eq. (6-82)] is

(6-91)

in which b is the width and h is the height of the cross section.
Because the cross section is doubly symmetric, the neutral axis passes

through the centroid even when the beam is loaded into the plastic range.
Consequently, the distances to the centroids of the areas above and below
the neutral axis are

(6-92)

Therefore, the plastic modulus [Eq. (6-89)] is

(6-93)Z �
A(yq1 � yq2)

2
�

bh
2
ah

4
�

h
4
b �

bh2

4

yq1 � yq2 �
h
4

MY �
σYbh2

6

S � bh2/6

f �
MP

MY

�
Z
S

Z �
A(yq1 � yq2)

2

MP � σYZ
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and the plastic moment [Eq. (6-88)] is

(6-94)

Finally, the shape factor for a rectangular cross section is

(6-95)

which means that the plastic moment for a rectangular beam is 50%
greater than the yield moment.

Next, we consider the stresses in a rectangular beam when the bend-
ing moment M is greater than the yield moment but has not yet reached
the plastic moment. The outer parts of  the beam will be at the yield stress

and the inner part (the elastic core) will have a linearly varying stress
distribution (Figs. 6-47a and b). The fully plastic zones are shaded in 
Fig. 6-47a, and the distances from the neutral axis to the inner edges of
the plastic zones (or the outer edges of  the elastic core) are denoted by e.

The stresses acting on the cross section have the force resultants C1, C2,
T1, and T2, as shown in Fig. 6-47c. The forces C1 and T1 in the plastic zones
are each equal to the yield stress times the cross-sectional area of the zone:

(6-96)

The forces C2 and T2 in the elastic core are each equal to the area of the
stress diagram times the width b of the beam:

(6-97)C2 � T2 �
σYe

2
b

C1 � T1 � σYbah
2

� eb

σY

f �
MP

MY

�
Z
S

�
3
2

MP �
σYbh2

4
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Fig. 6-47 
Stress distribution in a beam of

rectangular cross section with an
elastic core (MY … M … MP)
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Thus, the bending moment (see Fig. 6-47c) is

M � C1ah
2

� eb � C2a4e
3
b � σYbah

2
� eb ah

2
� eb �

σYbe

2
a4e

3
b
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Fig. 6-48 
Cross section of a wide-flange
beam
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(6-98)

Note that when , the equation gives , and when ,
it gives , which is the plastic moment MP.

Equation (6-98) can be used to determine the bending moment when
the dimensions of the elastic core are known. However, a more common
requirement is to determine the size of the elastic core when the bending
moment is known. Therefore, we solve Eq. (6-98) for e in terms of the
bending moment:

(6-99)

Again we note the limiting conditions: When , the equation gives
, and when , it gives , which is the fully

plastic condition.

Beams of Wide-Flange Shape
For a doubly symmetric wide-flange beam (Fig. 6-48), the plastic modulus Z
[Eq. (6-89)] is calculated by taking the first moment about the neutral axis of
the area of one flange plus the upper half of the web and then multiplying
by 2. The result is

(6-100)

With a little rearranging, we can express Z in a more convenient form:

(6-101)

After calculating the plastic modulus from Eq. (6-101), we can obtain the
plastic moment MP from Eq. (6-88).

Values of Z for commercially available shapes of wide-flange beams
are listed in the various steel structure publications (Ref. 5-4). The shape
factor f for wide-flange beams is typically in the range from 1.1 to 1.2,
depending upon the pro portions of the cross section.

Other shapes of elastoplastic beams can be analyzed in a manner sim-
ilar to that described for rectangular and wide-flange beams (see the fol-
lowing examples and the problems at the end of the chapter).

Z �
1
4
cbh2 � (b � tw)(h � 2tf)

2 d

� btf (h � tf) � twah
2

� tfb
2

Z � 2 c(btf)ah
2

�
tf

2
b � (tw)ah

2
� tfb a1

2
b ah

2
� tfb d

e � h/2 M � MP � 3MY /2 e � 0
M � MY

e � h
C

1
2
a3

2
�

M
MY

b MY … M … MP

M � 3MY /2
e � h/2 M � MY e � 0

�
σYbh2

6
a3

2
�

2e2

h2 b � MYa3
2

�
2e2

h2 b MY … M … MP

77742_06_ch06_p524-607.qxd:77742_06_ch06_p524-607.qxd  2/22/12  8:41 PM  Page 581

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



582 Chapter 6  Stresses in Beams (Advanced Topics)

Determine the yield moment, plastic modulus, plastic moment, and shape
factor for a beam of circular cross section with diameter d (Fig. 6-49).

Solution
As a preliminary matter, we note that since the cross section is doubly sym-
metric, the neutral axis passes through the center of the circle for both lin-
early elastic and elastoplastic behavior.

The yield moment MY is found from the flexure formula [Eq. (6-82)] as 

(6-102)

The plastic modulus Z is found from Eq. (6-89) in which A is the area
of the circle and and 2 are the distances to the centroids c1 and c2 of
the two halves of the circle (Fig. 6-50). Thus, from Cases 9 and 10 of
Appendix D, we get

Now substituting into Eq. (6-89) for the plastic modulus, we find

(6-103)

Therefore, the plastic moment MP [Eq. (6-88)] is

(6-104)

and the shape factor f [Eq. (6-90)] is

(6-105)

This result shows that the maximum bending moment for a circular beam of
elastoplastic material is about 70% larger than the bending moment when
the beam first begins to yield.

➥

➥

➥

➥

f �
MP

MY

�
16
3π

L 1.70

MP � σY Z �
σYd3

6

Z �
A(yq1 � yq2)

2
�

d 3

6

A �
πd 2

4
yq1 � yq2 �

2d
3π

yqyq

� σY aπd 3

32
bMY �

σY I

c
�

σY (πd 4/64)

d/2

Example 6-10• • •

Fig. 6-49 
Example 6-10: Cross section of
a circular beam (elastoplastic
material)
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5836.10 Elastoplastic Bending

A doubly symmetric hollow box beam (Fig. 6-51) of elastoplastic material
is subjected to a bending moment M of such magnitude

that the flanges yield but the webs remain linearly elastic.
Determine the magnitude of the moment M if the dimensions of the cross

section are , , , and .

Solution
The cross section of the beam and the distribution of the normal stresses are
shown in Figs. 6-52a and b, respectively. From the figure, we see that the
stresses in the webs increase linearly with distance from the neutral axis and
the stresses in the flanges equal the yield stress σY. Therefore, the bending
moment M acting on the cross section consists of two parts:

(1) a moment M1 corresponding to the elastic core, and
(2) a moment M2 produced by the yield stresses σY in the flanges.
The bending moment supplied by the core is found from the flexure

formula [Eq. (6-82)] with the section modulus calculated for the webs alone; thus,

(6-106)

and

(6-107)

To find the moment supplied by the flanges, we note that the resultant
force F in each flange (Fig. 6-52b) is equal to the yield stress multiplied by
the area of the flange:

(a)

The force in the top flange is compressive and the force in the bottom
flange is tensile if the bending moment M is positive. Together, the two
forces create the bending moment M2:

(6-108)

Therefore, the total moment acting on the cross section, after some rear-
ranging, is

(6-109)

Substituting the given numerical values, we obtain

Note: The yield moment MY and the plastic moment MP for the beam
in this example have the following values (determined in Prob. 6.10-13):

The bending moment M is between these values, as expected.

➥

➥

�
σYb(h2 � h1

2)

4
M2 � Fah � h1

2
b

MY � 122 kN # m MP � 147 kN # m

M � 138 kN # m

M � M1 � M2 �
σY

12
c3bh2 � (b � 2b1)h1

2 d

F � σYbah � h1

2
b

M1 � σYS1 �
σY(b � b1)h1

2

6

S1 �
(b � b1)h1

2

6

h1 � 160 mmh � 200 mmb1 � 130 mmb � 150 mm

(σY � 220 MPa)

Example 6-11• • •

Fig. 6-51 
Example 6-11: Cross section of a
hollow box beam (elastoplastic
material)

z

y

C

b1

b

hh1

Fig. 6-52 
Solution to Example 6-11
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584

CHAPTER SUMMARY & REVIEW

In Chapter 6, we considered a number of specialized topics related to the
bending of beams, including the analysis of composite beams (that is,
beams of more than one material), beams with inclined loads, unsymmetric
beams, shear stresses in thin-walled beams, shear centers, and elastoplastic
bending.

Some of the major concepts and findings presented in this chapter are
as follows:

1. In the introduction to composite beams, specialized moment-
curvature relationship and flexure formulas for composite beams
of  two materials were developed:

We assumed that both materials follow Hooke’s law and that the two
parts of the beam are adequately bonded so that they act as a single
unit. Advanced topics such as nonhomogeneous and nonlinear
materials, bond stresses between the parts, shear stresses on the cross
sections, buckling of the faces, and other such matters are not con-
sidered. In particular, the formulas above do not apply to reinforced
concrete beams which are not designed on the basis of  linearly elas-
tic behavior. However, a transformed section approach (see below
and see Example 6-4) can be used as part of a cracked section
 analysis of reinforced concrete beams.

2. The transformed-section method offers a convenient way of trans-
forming the cross section of a composite beam into an equivalent
cross section of an imaginary beam that is composed of only one
material. The ratio of the modulus of elasticity of material 2 to that
of material 1 is known as the modular ratio, . The neutral
axis of the transformed beam is located in the same place, and its
moment-resisting capacity is the same as that of the original com-
posite beam. The moment of inertia of the transformed section is
defined as

Normal stresses in the beam transformed to material 1 are computed
using the simplified flexure formula:

σx1 � �
My

lT

lT � l1 � nl2 � l1 �
E2

E1

l2

n � E2/E1

σx1 � �
MyE1

E1I1 � E2I2

σx2 � �
MyE2

E1I1 � E2I2

κ �
1
ρ �

M
E1I1 � E2I2
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while those in material 2 are computed as

3. If  inclined loads act through the centroid of the cross section of
beams with two axes of symmetry in the cross section, there will be
no twisting of the beam about the longitudinal axis. For these
beams, we determined the bending stresses by resolving the inclined
load into two components, one acting in each plane of symmetry.
The bending stresses were obtained from the flexure formula for
each load component acting separately, and the final stresses
obtained by superposing the separate stresses. Also, in general, the
angle of inclination of the neutral axis (β ) is not equal to the angle
of the inclined loads (θ). As a result, except in special cases, the
 neutral axis is not perpendicular to the longitudinal plane contain-
ing the load. In this case, the stresses in the beam are very sensitive
to slight changes in the direction of the load and to irregularities in
the alignment of the beam itself.

4. When the restriction of symmetry about at least one axis of the cross
section was removed, we found that for pure bending the plane in
which the bending moment acts is perpendicular to the neutral
surface only if  the y and z axes are principal centroidal axes of the
cross section and the bending moment acts in one of the two
principal planes (the xy plane or the xz plane). We then established
a general procedure for computing normal stresses in unsymmetric
beams acted on by any moment M. First, the centroid is found, and
then, normal stresses are obtained by superposing results of the flex-
ure formula about the two principal centroidal axes.

5. A lateral load acting on a beam will produce bending without
twisting only if  it acts through the shear center. The shear center (like
the centroid) lies on any axis of symmetry; the shear center S and the
centroid C coincide for a doubly symmetric cross section.

6. Beams of thin-walled open cross sections (such as wide-flange beams,
channels, angles, T-beams, and Z-sections) are in common use for
structural purposes, but are very weak in torsion.

7. We derived expressions for the shear stresses in beams of thin-
walled open cross sections for the case of  the shear force acting
through the shear center and parallel to one of  the principal
centroidal axes. We used these expressions to find the shear-stress
distributions in the flanges and webs of  wide-flange beams,
channels and angles. We saw that the shear stresses on the cross
section flow inward from the outermost edges, then down through
the web, and finally outward to the edges of  the bottom flange.

σx2 � �
My

lT
n

585
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8. The procedure for locating the shear center was illustrated for several
thin-walled open sections. First, the shear stresses acting on the cross
section when bending occurs about one of the principal axes were
computed, and then, the resultant force associated with those
stresses was determined. The shear center was seen to lie on the line
of action of the resultant.

9. Any Z-section that is symmetric about the centroid (i.e., any Z-section
having identical flanges—same width and same thickness) has its
shear center at the centroid of the cross section. The locations of
the shear centers of many other structural shapes are given in both
the examples and the problems at the end of the chapter.

10. Finally, we considered elastoplastic materials, which follow Hooke’s
law up to the yield stress σY and then yield plastically under constant
stress. Structural steels are excellent examples of  elastoplastic
materials, because they have sharply defined yield points and undergo
large strains during yielding. First, we found the yield moment

using the flexure formula. Then, we continued on to the plastic
moment

where S and Z are the section modulus and plastic section modulus
of the cross section, respectively. MY is the bending moment in the
beam when the maximum stress just reaches the yield stress, and MP
is the maximum moment that can be sustained by a beam of
elastoplastic material. We defined the shape factor

as a measure of the reserve strength of the beam after yielding first
begins.

MP � σY � Z

MY � σY � S

f � MP /MY � Z/S
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587Problems Chapter 6

Composite Beams

When solving the problems for Section 6.2, assume that
the component parts of the beams are securely bonded by
adhesives or connected by fasteners. Also, be sure to use
the general theory for composite beams described in
Section 6.2.

6.2-1 A composite beam consisting of fiberglass faces and
a core of particle board has the cross section shown in the
figure. The width of the beam is 50 mm, the thickness of
the faces is 3 mm, and the thickness of the core is 14 mm.
The beam is subjected to a bending moment of 55 N m
acting about the z axis.

Find the maximum bending stresses σface and σcore in
the faces and the core, respectively, if  their respective
 moduli of elasticity are and .28 GPa 10 GPa

#

PROBLEMS CHAPTER 6

z

y

C 14 mm

3 mm

3 mm

50 mm

PROB. 6.2-1

(b)(a)

z

y

C

50 mm

50 mm

24 mm 24 mm100 mm

30
0 

m
m

z

yC

24 mm

24 mm

50 mm 50 mm

10
0 

m
m

300 mm

PROB. 6.2-3

6.2-2 A wood beam with cross-sectional dimensions
is reinforced on its sides by steel plates

12 mm thick (see figure). The moduli of elasticity for the
steel and wood are and ,
respectively. Also, the corresponding allowable stresses are

and .
(a) Calculate the maximum permissible bending

moment Mmax when the beam is bent about the z axis.
(b) Repeat part (a) if  the beam is now bent about its

y axis.
(c) Find the required thickness of the steel plates on

the beam bent about the y axis so that Mmax is the same for
both beam orientations.

σw � 7.5 MPaσs � 110 MPa

Ew � 11 GPaEs � 190 GPa

200 mm � 300 mm

(a) (b)

z

y

C

200 mm
12 mm12 mm

30
0 

m
m

z

yC

20
0 

m
m

12 mm

12 mm
300 mm

PROB. 6.2-2

6.2-3 A hollow box beam is constructed with webs of
Douglas-fir plywood and flanges of pine, as shown in the
figure in a cross-sectional view. The plywood is 24 mm thick
and 300 mm wide; the flanges are
(actual size). The modulus of elasticity for the plywood is
11 GPa and for the pine is 8 GPa.

(a) If  the allowable stresses are 14 MPa for the
plywood and 12 MPa for the pine, find the allowable
bending moment Mmax when the beam is bent about the
z axis.

(b) Repeat part (a) if  the beam is now bent about its
y axis.

50 mm � 100 mm
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Chapter 6  Stresses in Beams (Advanced Topics)

6.2-5 A beam with a guided support and 4 m span supports
a distributed load of intensity over its first half
(see figure part a) and a moment at joint B.
The beam consists of a wood member actual dimensions

in cross section, as shown in the figure
part b) that is reinforced by 7-mm thick steel plates on top
and bottom. The moduli of elasticity for the steel and wood
are and , respectively.Ew � 10 GPaEs � 210 GPa

97 mm � 295 mm

M0 � 5 kN # m
q � 4 kN/m

588

d2

d1

S

B

PROB. 6.2-4

295 mm

(a)

(b)

M0

2 m 2 m

q

A C B

7 mm

97 mm

7 mm

z

y

C

PROB. 6.2-5

z

y

C
d1 d2 d3

PROB. 6.2-6

t

t

z

y

C
hc h

b

PROBS. 6.2-7 and 6.2-8

6.2-7 The cross section of a sandwich beam consisting of
aluminum alloy faces and a foam core is shown in the
 figure. The width b of the beam is 200 mm, the thickness t
of the faces is 6 mm, and the height hc of the core is 140 mm
(total height ). The moduli of  elasticity areh � 152 mm

(a) Calculate the maximum bending stresses σs in the
steel plates and σw in the wood member due to the applied
loads.

(b) If  the allowable bending stress in the steel plates
is and that in the wood is
find qmax. (Assume that the moment at B, M0, remains at
5 .)

(c) If  and allowable stress values in part
(b) apply, what is at B?

6.2-6 A plastic-lined steel pipe has the cross-sectional shape
shown in the figure. The steel pipe has outer diameter

and inner diameter . The plas-
tic liner has inner diameter . The modulus of
elasticity of the steel is 75 times the modulus of the plastic.

(a) Determine the allowable bending moment Mallow
if  the allowable stress in the steel is 35 MPa and in the plas-
tic is 600 kPa.

(b) If pipe and liner diameters remain unchanged,
what new value of allowable stress for the steel pipe will
result in the steel pipe and plastic liner reaching their allow-
able stress values under the same maximum moment (i.e., a
balanced design)? What is the new maximum moment?

kN # m

d1 � 82 mm
d2 � 94 mmd3 � 100 mm

M0,max

q � 4 kN/m

σaw � 6.5 MPa,σas � 100 MPa

6.2-4 A round steel tube of outside diameter d2 and a
brass core of diameter d1 are bonded to form a composite
beam, as shown in the figure.

(a) Derive formulas for the allowable bending
moment M that can be carried by the beam based upon an
allowable stress σS in the steel and an allowable stress σB in
the brass. (Assume that the moduli of elasticity for the
steel and brass are ES and EB, respectively.)

(b) If  , , ,
, , and ,

what is the maximum bending moment M?
(c) What new value of brass diameter d1 will result in a

balanced design? (i.e., a balanced design is that in which steel
and brass reach allowable stress values at the same time.)

EB � 110 GPa σs � 150 MPa σB � 100 MPa
d2 � 50 mm d1 � 40 mm Es � 210 GPa
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Problems Chapter 6

for the aluminum faces and 80 MPa for the foam
core. A bending moment acts about the
z axis.

Determine the maximum stresses in the faces and the
core using (a) the general theory for composite beams, and
(b) the approximate theory for sandwich beams.

6.2-8 The cross section of a sandwich beam consisting of
fiberglass faces and a lightweight plastic core is shown in the
figure. The width b of the beam is 50 mm, the thickness t of
the faces is 4 mm, and the height hc of the core is 92 mm
(total height ). The moduli of elasticity are 
75 GPa for the fiberglass and 1.2 GPa for the plastic. 
A bending moment acts about the z axis.

Determine the maximum stresses in the faces and the
core using (a) the general theory for composite beams, and
(b) the approximate theory for sandwich beams.

6.2-9 A bimetallic beam used in a temperature-control
switch consists of strips of aluminum and copper bonded
together as shown in the figure, which is a cross-sectional
view. The width of the beam is 25 mm, and each strip has
a thickness of 2 mm.

Under the action of a bending moment
acting about the z axis, what are the maximum stresses σa
and σc in the aluminum and copper, respectively? (Assume

and .)Ea � 72 GPa Ec � 115 GPa

M � 2 N # m

70 GPa

M � 275 N # m

h � 100 mm

M � 4.5 kN # m

589

25 mm 2 mm

z

y

O C

A
2 mm

PROB. 6.2-9

3 m

q = 3.0 kN/m

150 mm

8
mm

100 mm

z

y

O

PROB. 6.2-10

3.6 m

q

A B

(a)

C
50 mm

50 mm

50 mm

50 mm � 50 mm pine flange

10 mm plywood
(Douglas fir)

205 mm

y

z

15 mm

(b)

PROB. 6.2-11

6.2-10 A simply supported composite beam 3 m long car-
ries a uniformly distributed load of intensity
(see figure). The beam is constructed of a wood member,
100 mm wide by 150 mm deep, reinforced on its lower side
by a steel plate 8 mm thick and 100 mm wide.

(a) Find the maximum bending stresses σw and σs in
the wood and steel, respectively, due to the uniform load if
the moduli of elasticity are for the wood
and for the steel.

(b) Find the required thickness of the steel plate so
that the steel plate and wood reach their allowable stress
values, and , simultane-
ously under the maximum moment.

σas � 100 MPa σaw � 8.5 MPa

Es � 210 GPa
Ew � 10 GPa

q � 30 kN/m

6.2-11 A simply supported wooden I-beam with a 3.6 m
span supports a distributed load of intensity
over its length (see figure part a). The beam is constructed
with a web of Douglas-fir plywood and flanges of pine
glued to the web, as shown in the figure part b. The plywood
is 10 mm thick; the flanges are (actual
size). The modulus of elasticity for the plywood is 11 GPa
and for the pine is 8.3 GPa.

(a) Calculate the maximum bending stresses in the
pine flanges and in the plywood web.

(b) What is qmax if  allowable stresses are 11 MPa in
the flanges and 8 MPa in the web?

50 mm � 50 mm

q � 1.3 kN/m
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Chapter 6  Stresses in Beams (Advanced Topics)

6.3-2 A simple beam of span length 3.2 m carries a uniform
load of intensity 48 kN/m. The cross section of the beam is
a hollow box with wood flanges and steel side plates, as
shown in the figure. The wood flanges are 75 mm by 100 mm
in cross section, and the steel plates are 300 mm deep.

What is the required thickness t of the steel plates if the
allowable stresses are 120 MPa for the steel and 6.5 MPa for
the wood? (Assume that the moduli of elasticity for the steel
and wood are 210 GPa and 10 GPa, respectively, and disre-
gard the weight of the beam.)

590

1.8 m 1.8 m

q0

A B

(a) (b)

y

6 mm � 120 mm
steel plate

6 mm � 80 mm
steel plate

50 mm � 280 mm
wood joist C

z

280 mm

PROB. 6.2-12

(a) (b)

12 mm

12 mm

200 mm

30
0 

m
m

y

z C

29
5 

m
m

97 mm

100 � 300
joists

6 mm � 280 mm
steel plate

C

z

y

PROB. 6.3-1

300 mm

75 mm

75 mm

100 mm

t t

z

y

C

PROB. 6.3-2

(a) (b)

UPN 200

UPN 200

z

zy

yC

C

Wood beam Wood beam

PROB. 6.3-3

Transformed-Section Method

When solving the problems for Section 6.3, assume that the
component parts of the beams are securely bonded by adhe-
sives or connected by fasteners. Also, be sure to use the
 transformed-section method in the solutions.

6.3-1 A wood beam 200 mm wide and 300 mm deep (nom-
inal dimensions) is reinforced on top and bottom by 12 mm-
thick steel plates (see figure part a).

(a) Find the allowable bending moment Mmax about
the z axis if  the allowable stress in the wood is 7 MPa and
in the steel is 120 MPa. (Assume that the ratio of the mod-
uli of elasticity of steel and wood is 20.)

(b) Compare the moment capacity of the beam in
part (a) with that shown in the figure part b which has two

joists (nominal dimensions) attached
to a steel plate.6 mm � 280 mm
100 mm � 300 mm

6.3-3 A simple beam that is 5.5 mm long supports a uni-
form load of intensity q. The beam is constructed of two
UPN sections (channel sections or C shapes) on either
side of a (actual dimensions) wood
beam (see the cross section shown in the figure part a). The
modulus of elasticity of the steel is 20
times that of the wood (Ew).

(a) If  the allowable stresses in the steel and wood are
110 MPa and 8.2 MPa, respectively, what is the allowable
load qallow? (Note: Disregard the weight of the beam, and
see Table E-3 of Appendix E for the dimensions and prop-
erties of the UPN-shape beam.)

(b) If  the beam is rotated 90� to bend about its y axis
(see figure part b), and uniform load is
applied, find the maximum stresses σs and σw in the steel
and wood, respectively. Include the weight of the beam.
(Assume weight densities of and for
the wood and steel, respectively.)

97 mm � 195 mm
200

(Es � 210 GPa)

5.5 kN/m3 77 kN/m3

q � 3.6 kN/m

6.2-12 A simply supported composite beam with a 3.6 m
span supports a triangularly distributed load of peak
intensity q0 at midspan (see figure part a). The beam is
constructed of two wood joists, each ,
fastened to two steel plates, one of  dimensions

and the lower plate of  dimensions
(see figure part b). The modulus of elas-

ticity for the wood is 11 GPa and for the steel is 210 GPa.
If  the allowable stresses are 7 MPa for the wood and

120 MPa for the steel, find the allowable peak load inten-
sity q0,max when the beam is bent about the z axis. Neglect
the weight of the beam.

6 mm � 120 mm
6 mm � 80 mm

50 mm � 280 mm
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Problems Chapter 6

6.3-4 The composite beam shown in the figure is simply
supported and carries a total uniform load of 40 kN/m on
a span length of 4.0 m. The beam is built of a southern
pine wood member having cross-sectional dimensions of

and two brass plates of cross-sectional
dimensions .

(a) Determine the maximum stresses σB and σw in the
brass and wood, respectively, if  the moduli of elasticity are

and . (Disregard the weight
of the beam.)

(b) Find the required thickness of the brass plates so
that the plate and wood reach their allowable stress values of

and simultaneously under
the maximum moment. What is the maximum moment?

30 mm � 150 mm
150 mm � 250 mm

σaB � 70 MPa σaw � 8.5 MPa

EB � 96 GPa Ew � 14 GPa

591

4.0 m

40 kN/m

z

y

C
250 mm

150 mm

30 mm

30 mm

PROB. 6.3-4

6.3-5 The cross section of a beam made of thin strips of
aluminum separated by a lightweight plastic is shown in
the figure. The beam has width , the aluminum
strips have thickness , and the plastic segments
have heights and . The total
height of the beam is .

The moduli of  elasticity for the aluminum and
 plastic are and , respectively.

t � 2.5 mm
b � 75 mm

d � 30 mm 3d � 90 mm

Ea � 75 GPa EP � 3 GPa

h � 160 mm

z

y

C

t d

d

h � 4t � 5d

b

3d

PROBS. 6.3-5 and 6.3-6

6.3-6 Consider the preceding problem if  the beam has
width , the aluminum strips have thickness

, the plastic segments have heights 
and , and the total height of the beam is

. Also, the moduli of elasticity are 
and , respectively.

Determine the maximum stresses σa and σp in the alu-
minum and plastic, respectively, due to a bending moment
of .

6.3-7 A simple beam that is 5.5 m long supports a uniform
load of intensity q. The beam is constructed of two angle
sections, each L , on either side of a

(actual dimensions) wood beam (see
the cross section shown in the figure part a). The modulus
of elasticity of the steel is 20 times that of the wood.

(a) If  the allowable stresses in the steel and wood are
110 MPa and 8.3 MPa, respectively, what is the allowable
load qallow? (Note: Disregard the weight of the beam, and
see Table E-5 of Appendix E for the dimensions and prop-
erties of the angles.)

(b) Repeat part (a) if  a wood
flange (actual dimensions) is added (see figure part b).

3d � 120 mm
t � 3 mm d � 40 mm

b � 75 mm

h � 212 mm Ea =

75 GPa

25 mm � 250 mm

50 mm � 200 mm
150 � 100 � 10

1.0 kN # m

EP � 3 GPa

PROB. 6.3-7

(a)

Wood beam

50 mm

100 mm

15
0 

m
m

20
0 

m
m

Cy

z

Steel angle

(b)

Steel angle
Wood beam

50 mm

100 mm Cy

z

Wood flange

Determine the maximum stresses σa and σP in the alu-
minum and plastic, respectively, due to a bending moment
of 1.2 .kN # m
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Chapter 6  Stresses in Beams (Advanced Topics)

6.3-10 The cross section of a bimetallic strip is shown in
the figure. Assuming that the moduli of elasticity for met-
als A and B are and , respec-
tively, determine the smaller of the two section moduli for
the beam. (Recall that section modulus is equal to bending
moment divided by maximum bending stress.) In which
material does the maximum stress occur?

EA � 168 GPa EB � 90 GPa

592

6.3-8 The cross section of a composite beam made of
 aluminum and steel is shown in the figure. The moduli of
elasticity are and .

(a) Under the action of a bending moment that
 produces a maximum stress of 50 MPa in the aluminum,
what is the maximum stress σs in the steel?

(b) If  the height of the beam remains at 120 mm and
allowable stresses in steel and aluminum are defined as 
94 MPa and 40 MPa, respectively, what heights ha and hs
are required for aluminum and steel, respectively, so that
both steel and aluminum reach their allowable stress values
under the maximum moment?

Ea � 75 GPa Es � 200 GPa

40 mm

30 mm

80 mm

Aluminum

Steel

z

y

O

PROB. 6.3-8

6.3-9 A beam is constructed of two angle sections, each
L , which reinforce a
(actual dimensions) wood plank (see the cross section shown
in the  figure). The modulus of elasticity for the wood is 
Ew � and for the steel is 

Find the allowable bending moment Mallow for the
beam if  the allowable stress in the wood is
and in the steel is . (Note: Disregard the
weight of the beam, and see Table E-5 of Appendix E for
the dimensions and properties of the angles.)

120 � 80 � 12 50 mm � 200 mm

8 GPa Es � 200 GPa.

σs � 110 MPa
σw � 10 MPa

3 mm

10 mm

3 mm

z

y

O
A

B

PROB. 6.3-10

6.3-11 A HE steel wide-flange beam and a segment
of a 100-mm thick concrete slab (see figure) jointly resist a
positive bending moment of . The beam and
slab are joined by shear connectors that are welded to the
steel beam. (These connectors resist the horizontal shear at
the contact surface.) The moduli of elasticity of the steel
and the concrete are in the ratio 12 to 1.

Determine the maximum stresses σs and σc in the steel
and concrete, respectively. (Note: See Table E-1 of
Appendix E for the dimensions and properties of the
steel beam.)

130 kN # m

260B

PROB. 6.3-9 PROB. 6.3-11

z

y

O

750 mm

100 mm

HE 260BSteel angles

50 mm � 200 mm
wood plank

120 mm
80 mm

C
y

z
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Problems Chapter 6

6.3-12 A reinforced concrete beam (see figure) is acted on
by a positive bending moment of . Steel
reinforcement consists of 4 bars of 28 mm diameter. The
modulus of elasticity for the concrete is
while that of the steel is .

(a) Find the maximum stresses in steel and concrete.
(b) If  allowable stresses for concrete and steel are

and , respectively, what is
the maximum permissible positive bending moment?

(c) What is the required area of steel reinforcement,
As, if  a balanced condition must be achieved? What is the
allowable positive bending moment? (Recall that in a bal-
anced design, both steel and concrete reach allowable
stress values simultaneously under the design moment.)

M � 160 kN # m

Ec � 25 GPa
Es � 200 GPa

σac � 9.2 MPa σas � 135 MPa

593

6.3-14 A reinforced concrete slab (see figure) is reinforced
with 13-mm bars spaced 160 mm apart at
from the top of the slab. The modulus of elasticity for the
concrete is , while that of  the steel is

. Assume that allowable stresses for con-
crete and steel are and .

(a) Find the maximum permissible positive bending
moment for a 1-m-wide strip of the slab.

(b) What is the required area of  steel reinforcement,
As, if  a balanced condition must be achieved? What is the
allowable positive bending moment? (Recall that in a bal-
anced design, both steel and concrete reach allowable
stress values simultaneously under the design moment.)

d � 105 mm

σac � 9.2 MPa σas � 135 MPa
Es � 200 GPa

Ec � 25 GPa

6.3-13 A reinforced concrete T-beam (see figure) is acted on
by a positive bending moment of . Steel
reinforcement consists of four bars of 40 mm diameter. The
modulus of elasticity for the concrete is while
that of the steel is . Let ,

, , and .
(a) Find the maximum stresses in steel and concrete.
(b) If  allowable stresses for concrete and steel are

and , respectively, what is
the maximum permissible positive bending moment?
σac � 9.5 MPa σas � 125 MPa

b � 1200 mm
tf � 100 mm bw � 380 mm d � 610 mm

Ec � 20 GPa
Es � 210 GPa

M � 240 kN # m

Beams with Inclined Loads

When solving the problems for Section 6.4, be sure to draw
a sketch of the cross section showing the orientation of the
neutral axis and the locations of the points where the stresses
are being found.

PROB. 6.3-15

6.3-15 A wood beam reinforced by an aluminum channel
section is shown in the figure. The beam has a cross section
of dimensions 150 mm by 250 mm, and the channel has a
uniform thickness of 6 mm. If the allowable stresses in the
wood and aluminum are 8 MPa and 38 MPa, respectively,
and if their moduli of elasticity are in the ratio 1 to 6, what
is the maximum allowable bending moment for the beam?

PROB. 6.3-14

PROB. 6.3-13

PROB. 6.3-12

625 mm

4 bars @
28 mm

300 mm

4 bars @
40 mm

bw

b

y

d

(b–bw)/2 tf

NA

160 mm

105 mm

160 mm 160 mm 160 mm

z

y

O

250 mm
216 mm

40 mm
6 mm

150 mm

162 mm
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Chapter 6  Stresses in Beams (Advanced Topics)

6.4-7 Solve the preceding problem for a cantilever beam
with data as follows: , ,

, , and .

6.4-8 A steel beam of I-section (see figure) is simply sup-
ported at the ends. Two equal and oppositely directed
bending moments M0 act at the ends of the beam, so that
the beam is in pure bending. The moments act in plane mm,
which is oriented at an angle 
 to the xy plane.

P � 2 kN α � 45°
b � 100 mm h � 200 mm

L � 2 m

594

6.4-1 A beam of rectangular cross section supports an
inclined load P having its line of action along a diagonal
of the cross section (see figure). Show that the neutral axis
lies along the other diagonal.

PROBS. 6.4-2 and 6.4-3

6.4-3 Solve the preceding problem for the following
data: , , ,
and .

6.4-4 A simply supported wide-flange beam of span
length L carries a vertical concentrated load P acting
through the centroid C at the midpoint of the span (see 
figure). The beam is attached to supports inclined at an
angle 
 to the horizontal.

Determine the orientation of the neutral axis and calcu-
late the maximum stresses at the outside corners of the cross
section (points A, B, D, and E) due to the load P. Data for

q � 3 kN/m
b � 100 mm h � 200 mm L � 3 m tan α � 1/3,

PROBS. 6.4-6 and 6.4-7

PROBS. 6.4-4 and 6.4-5

6.4-5 Solve the preceding problem using the following
data: HE section, , , and

.

6.4-6 A wood cantilever beam of rectangular cross section
and length L supports an inclined load P at its free end (see
figure).

Determine the orientation of  the neutral axis and
 calculate the maximum tensile stress σmax due to the
load P. Data for the beam are as follows: ,

, , , and .h � 140 mm L � 2.0 m P � 575 N α � 30°
b � 80 mm

α � 22.5°
140A L � 2.5 m P � 20 kN

6.4-2 A wood beam of rectangular cross section (see 
figure) is simply supported on a span of length L. The longi-
tudinal axis of the beam is horizontal, and the cross section
is tilted at an angle 
. The load on the beam is a vertical uni-
form load of intensity q acting through the centroid C.

Determine the orientation of the neutral axis and
 calculate the maximum tensile stress σmax if , 
h � , , , and 140 mm L � 1.75 m α � 22.5° q � 7.5 kN/m.

b � 80 mm

PROB. 6.4-1

b

z

y

C

P

h

C

z

y

q

h

b

α

z

y

n

n

C

A

D

P

E

B

α

β

z

y

C

P

b

h

α

the beam are as follows: IPN section, ,
, and . (Note: See Table E-2 of

Appendix E for the dimensions and properties of the beam.)
P � 18 kN α � 26.57°

280 L � 3.5 m
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Problems Chapter 6

6.4-9 A cantilever beam of wide-flange cross section and
length L supports an inclined load P at its free end (see
 figure).

Determine the orientation of the neutral axis and cal-
culate the maximum tensile stress σmax due to the load P.

Data for the beam are as follows: HE section,
, , and . (Note: See

Table E-1 of Appendix E for the dimensions and properties
of the beam.)

L � 2.5 m P � 16.7 kN α � 55°
650B

595

6.4-11 A cantilever beam of IPN section and length
supports a slightly inclined load at

the free end (see figure).
(a) Plot a graph of the stress σA at point A as a func-

tion of the angle of inclination α.
(b) Plot a graph of the angle β, which locates the neu-

tral axis nn, as a function of the angle α. (When plotting the
graphs, let α vary from 0 to 10�.) (Note: See Table E-2 of
Appendix E for the dimensions and properties of the beam.)

P � 2.5 kNL � 3 m
300

6.4-10 Solve the preceding problem using the following
data: HE section, , , and

. (Note: See Table E-1 of Appendix E for the
dimensions and properties of the beam.)
α � 60°

320B L � 1.8 m P � 9.5 kN

PROB. 6.4-11

PROBS. 6.4-9 and 6.4-10

PROB. 6.4-8

z

y

C

M0

m

m
α

z

y

C

P

α

y

z

n

n

A

C

P α

β

P

C

UPN 180

y

z

α

PROB. 6.4-12

Determine the orientation of the neutral axis and cal-
culate the maximum tensile stress σmax due to the moments
M0. Data for the beam are as follows: IPN  section,

, and . (Note: See Table E-2 
of Appendix E for the dimensions and properties of the
beam.)

M0 � 4 kN # m. α � 24°
220

6.4-12 A cantilever beam built up from two channel
shapes, each UPN and of length L, supports an
inclined load P at its free end (see figure).

Determine the orientation of the neutral axis and cal-
culate the maximum tensile stress σmax due to the load P.
Data for the beam are as follows: ,
and .α � 30°

L � 4.5 m P � 500 N,

180
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Chapter 6  Stresses in Beams (Advanced Topics)

6.5-1 A beam of channel section is subjected to a bending
moment M having its vector at an angle θ to the z axis (see
figure).

Determine the orientation of the neutral axis and 
calculate the maximum tensile stress σt and maximum
compressive stress σc in the beam.

Use the following data: UPN section,
, . (Note: See Table E-3 of

Appendix E for the dimensions and properties of the channel
section.)

M � 2.5 kN # m tan θ � 1/3
160

596

6.4-13 A built-up steel beam of I-section with channels
attached to the flanges (see figure part a) is simply sup-
ported at the ends. Two equal and oppositely directed
bending moments M0 act at the ends of the beam, so that
the beam is in pure bending. The moments act in plane mm,
which is oriented at an angle α to the xy plane.

(a) Determine the orientation of the neutral axis and
calculate the maximum tensile stress σmax due to the
moments M0.

(b) Repeat part (a) if  the channels are now with their
flanges pointing away from the beam flange, as shown in
the figure part b. Data for the beam are as follows: IPN
section with UPN sections attached to the flanges,

, and . (Note: See Tables E-2
and E-3 of Appendix E for the dimensions and properties
of the IPN and UPN shapes.)

M0 � 5 kN # m α � 40°

160
100

6.5-2 A beam of channel section is subjected to a bending
moment M having its vector at an angle θ to the z axis (see
figure).

Determine the orientation of the neutral axis and cal-
culate the maximum tensile stress σt and maximum com-
pressive stress σc in the beam. Use a UPN channel
section with and .

6.5-3 An angle section with equal legs is subjected to a
bending moment M having its vector directed along the
1–1 axis, as shown in the figure.

Determine the orientation of the neutral axis and cal-
culate the maximum tensile stress σt and maximum com-
pressive stress σc if  the angle is an L
section and . (Note: See Table E-4 of
Appendix E for the dimensions and properties of the angle
section.)

M � 2.5 kN # m
150 � 150 � 14

M � 0.75 kN # m θ � 20°
200

PROBS. 6.5-1 and 6.5-2

PROBS. 6.5-3 and 6.5-4

PROB. 6.4-13

(a)

C

a

m

m

UPN 100

IPN 160

y

z

M0

UPN 100

(b)

C

a

m

m

UPN 100

IPN 160

y

z

UPN 100

M0

z

y

C

M

θ

2

2

C1 1
MBending of Unsymmetric Beams

When solving the problems for Section 6.5, be sure to draw
a sketch of the cross section showing the orientation of the
neutral axis and the locations of the points where the stresses
are being found.
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Problems Chapter 6

6.5-4 An angle section with equal legs is subjected to a
bending moment M having its vector directed along the
1–1 axis, as shown in the figure.

Determine the orientation of the neutral axis and calcu-
late the maximum tensile stress σt and maximum compressive
stress σc if the section is an L section and

. (Note: See Table E-4 of Appendix E for the
dimensions and properties of the angle section.)

6.5-5 A beam made up of two unequal leg angles is sub-
jected to a bending moment M having its vector at an
angle θ to the z axis (see figure part a).

(a) For the position shown in the figure, determine
the orientation of the neutral axis and calculate the maxi-
mum tensile stress σt and maximum compressive stress σc
in the beam. Assume that and 

(b) The two angles are now inverted and attached
back-to-back to form a lintel beam which supports two
courses of brick façade (see figure part b). Find the new
orientation of the neutral axis and calculate the maximum
tensile stress σt and maximum compressive stress σc in the
beam using and .θ � 30° M � 3.5 kN # m

θ � 30° M � 3.5 kN # m.

200 � 200 � 19
M � 4.5 kN # m

597

6.5-7 The cross section of a steel beam is constructed of a
HE wide-flange section with a cover
plate welded to the top flange and a UPN channel sec-
tion welded to the bottom flange. This beam is subjected to
a bending moment M having its vector at an angle θ to the
z axis (see figure).

Determine the orientation of the neutral axis and cal-
culate the maximum tensile stress σt and maximum com-
pressive stress σc in the beam. Assume that and

. (Note: Refer to the cross-sectional
properties of the beam computed in Examples 12-2 and
12-5 of Chapter 12.)

450A 25 cm � 1.5 cm

M � 18.5 kN # m

320

θ � 30°

PROB. 6.5-5

PROB. 6.5-6

PROB. 6.5-7

(a)

y

M

z
C

19 mm

θ

L 120 � 80 � 12

(b)

y

M

z

C

Lintel beam supporting
brick facade

θ

L 120 � 80 � 12

C

b

y1

t

t

y

t

M

h
2
—

h
2
—

x1θp

x

b

UPN 320

HE 450A y1

C3

z
θ

y

C

C2

C1

M

Plate
25 cm � 1.5 cm

y3

c

6.5-6 The Z-section of Example 12-7 of Chapter 12 is sub-
jected to , as shown in the figure.

Determine the orientation of the neutral axis and cal -
culate the maximum tensile stress σt and maximum compres-
sive stress σc in the beam. Use the following  numerical data:
height , width , constant thickness

, and . Use t � 15 mm θP � 19.2° I1 � 32.6 � 106 mm4
h � 200 mm b � 90 mm

M � 5 kN # m

and from Example 12-7.I2 � 2.4 � 106 mm4

77742_06_ch06_p524-607.qxd:77742_06_ch06_p524-607.qxd  2/22/12  8:59 PM  Page 597

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 6  Stresses in Beams (Advanced Topics)

Determine the orientation of the neutral axis and cal-
culate the maximum tensile stress σt and maximum
 compressive stress σc in the beam. Assume that
and .

Use the following numerical properties: 
c1 � 4.111 mm, c2 � 4.169 mm, bf � 134 mm, 
Ls � 76 mm, A � 4144 mm2, Iy � 3.88 � 106 mm4, and 
Iz � 34.18 � 106 mm4.

M � 10 kN # m
θ � 30°

598

6.5-9 A beam of semicircular cross section of radius r is
subjected to a bending moment M having its vector at an
angle θ to the z axis (see figure).

Derive formulas for the maximum tensile stress σt and
the maximum compressive stress σc in the beam for
45�, and 90�. (Note: Express the results in the form 
 M/r3,
where 
 is a numerical value.)

θ � 0,

Built-up beam
(© Barry Goodno)

6.5-8 The cross section of a steel beam is shown in the
 figure. This beam is subjected to a bending moment M
having its vector at an angle θ to the z axis.

Determine the orientation of the neutral axis and
 calculate the maximum tensile stress σt and maximum
compressive stress σc in the beam. Assume that 
and . Use cross sectional propertiesM � 4.5 kN # m

θ � 22.5°

PROB. 6.5-8

PROB. 6.5-9

y

z
y = 52.5 mm

30 mm

30 mm

15 mm 30 mm

90 mm

90 mm

30 mm

120 mm

180 mm
180 mm

105 mm

O

C

M

θ

y1

x1

θp

r

O
z

y

C

M

θ

�θ, �β   

Ls

c1

c2

Ls

bf /2 bf /2

θ
z

y

C

M

PROB. 6.5-10

, , andIx1
� 93.14 � 106 mm4 Iy1

� 152.7 � 106 mm4

.θP � 27.3°

6.5-10 A built-up beam supporting a condominium bal-
cony is made up of a structural T for the top flange and
web and two angles for the bottom flange and web, as
shown. The beam is subjected to a bending moment M
having its vector at an angle θ to the z axis (see figure).

6.5-11 A steel post (E having thickness
and height supports a stop sign (see

figure). The stop sign post is subjected to a bending
moment M having its vector at an angle θ to the z axis.

Determine the orientation of the neutral axis and cal-
culate the maximum tensile stress σt and maximum com-
pressive stress σc in the beam. Assume that and

.

t � 3 mm L � 2 m
� 200 GPa)

M � 350 N # m
θ � 30°
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Problems Chapter 6

Use the following numerical properties for the
post: , , ,

, and .Iy � 1.868 � 105 mm4 Iz � 0.67 � 105 mm4
A � 373 mm2 c1 � 19.5 mm c2 � 18.5 mm

599

. Use the following properties for principal
axes for the combined section: 

, (CW), 

xc � , .

Iy1
� 4.265 � 106 mm4 θP � 7.826°

Ix1
� 35.14 � 106 mm4,

M � 3.5 kN # m

11.32 mm yc � 21.08 mm

L

A A

Elevation view of post

θ
z

y

Stop
sign

Circular cut-out,
d = 10 mm

Post, t = 3 mm

Section A–A

C

M
12.5 mm

16 mm

38 mm

12.5 mm25 mm 25 mm

c2

c1

PROB. 6.5-11

y

z M

C C1 yc

xc

UPN 220L 90 � 90 � 7
lintel

y1

x1

θp

PROB. 6.5.12

Shear Stresses in Wide-Flange
Beams

When solving the problems for Section 6.8, assume that the
cross sections are thin-walled. Use centerline dimensions for
all calculations and derivations, unless otherwise specified.

6.8-1 A simple beam of  HE wide-flange cross 
section supports a uniform load of intensity
on a span of length (see figure). The dimen-
sions of the cross section are , , 

, and 

(a) Calculate the maximum shear stress τmax on cross
section A–A located at distance from the end
of the beam.

(b) Calculate the shear stress τ at point B on the cross
section. Point B is located at a distance from
the edge of the lower flange.

tf � 16 mm

a � 38 mm

d � 0.75 m

tw � 9.5 mm
h � 220 mm b � 220 mm

L � 3.8 m
q � 45 kN/m

220B

A

A

L

q

d a

z

y

C

B
tf

tw h
2
—

b
2
—b

2
—

h
2
—

PROBS. 6.8-1 and 6.8-2

6.5-12 A UPN channel section has an angle with equal
legs attached as shown; the angle serves as a lintel beam.
The combined steel section is subjected to a bending
moment M having its vector directed along the z axis, as
shown in the figure. The centroid C of the combined
 section is located at distances xc and yc from the centroid
(C1) of the channel alone. Principal axes x1 and y1 are also
shown in the figure and properties , and θP are
given below.

Find the orientation of the neutral axis and calculate
the maximum tensile stress σt and maximum compressive
stress σc if  the angle is an L section and

220

90 � 90 � 7

Ix1
, Iy1

Steel post
(© Barry Goodno)
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Chapter 6  Stresses in Beams (Advanced Topics)

6.9-1 Calculate the distance e from the centerline of the
web of a UPN channel section to the shear center S (see
figure). (Note: For purposes of analysis, consider the
flanges to be rectangles with thickness tf equal to the aver-
age flange thickness given in Table E-3 of Appendix E.)

380

600

6.8-2 Solve the preceding problem for a IPN standard
beam with the following data: , ,

, , , ,
, and .

6.8-3 A beam of wide-flange shape, IPN , has the cross
section shown in the figure. The dimensions are

, , , and
. The loads on the beam produce a shear

force at the cross section under consideration.
(a) Using centerline dimensions, calculate the maxi-

mum shear stress τmax in the web of the beam.
(b) Using the more exact analysis of Section 5.10 in

Chapter 5, calculate the maximum shear stress in the web
of the beam and compare it with the stress obtained in
part (a).

d � 0.5 m a � 50 mm
h � 360 mm b � 143 mm tf � 19.5 mm tw � 13 mm

L � 3.5 m q � 60 kN/m
360

tf � 13.1 mm
V � 35 kN

b � 106 mm h � 240 mm tw � 8.7 mm

240

b

hz

y

C

tf

tf

tw

PROBS. 6.8-3 and 6.8-4

z

y

CS

e

PROBS. 6.9-1 and 6.9-2

z

y

CS

t2
t1b1

h1 h2

b2

h

PROB. 6.9-3

6.8-4 Solve the preceding problem for a HE shape
with the following data: , ,

, , and .

Shear Centers of Thin-Walled 
Open Sections

When locating the shear centers in the problems for
Section 6.9, assume that the cross sections are thin-walled
and use centerline dimensions for all calculations and
 derivations.

tw � 15 mm tf � 29 mm V � 115 kN
b � 300 mm h � 550 mm

550B

6.9-2 Calculate the distance e from the centerline of  the
web of  a UPN channel section to the shear center S
(see figure). (Note: For purposes of  analysis, consider the
flanges to be rectangles with thickness tf equal to the
average flange thickness given in Table E-3 of
Appendix E.)

6.9-3 The cross section of an unbalanced wide-flange
beam is shown in the figure. Derive the following formula
for the distance h1 from the centerline of one flange to the
shear center S:

Also, check the formula for the special cases of a T-beam
and a balanced wide-flange beam (

and ).

100

b2 � b1

(b2 � t2 � 0) t2 � t1

h1 �
t2b2

3h

t1b1
3 � t2b2

3
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Problems Chapter 6

6.9-4 The cross section of an unbalanced wide-flange
beam is shown in the figure. Derive the following formula
for the distance e from the centerline of the web to the
shear center S:

Also, check the formula for the special cases of a channel
section ( and ) and a doubly symmetric
beam .

e �
3tf(b2

2 � b1
2)

htw � 6tt(b1 � b2)

(b1 � b2 � b/2)
b1 � 0 b2 � b

601

6.9-7 The cross section of a slit square tube of constant
thickness is shown in the figure. Derive the following for-
mula for the distance e from the corner of the cross section
to the shear center S:

e �
b

212

z

y

C
S

tf

tf

tw

b1 b2

e

h
2
—

h
2
—

PROB. 6.9-4

z

y

h2h1CS

e

b

PROB. 6.9-5

6.9-5 The cross section of a channel beam with double
flanges and constant thickness throughout the section is
shown in the figure.

Derive the following formula for the distance e from
the centerline of the web to the shear center S:

e �
3b2(h1

2 � h2
2)

h2
3 � 6b(h1

2 � h2
2)

6.9-6 The cross section of a slit circular tube of constant
thickness is shown in the figure.

(a) Show that the distance e from the center of the cir-
cle to the shear center S is equal to 2r in the figure part a.

(b) Find an expression for e if  flanges with the same
thickness as that of the tube are added, as shown in the
 figure part b.

z
r

y

C
S

r/2

e

(b)

Flange
(r/2  t)

Flange
(r/2  t)

(a)

z

y

C

r
S

e

PROB. 6.9-6

z
e

y

C
S

b

PROB. 6.9-7
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Chapter 6  Stresses in Beams (Advanced Topics)

6.9-11 Derive the following formula for the distance e
from the centerline of the wall to the shear center S for the
hat section of constant thickness shown in the figure:

Also, check the formula for the special case of a channel
section .(a � 0)

e �
3bh2(b � 2a) � 8ba3

h2(h � 6b � 6a) � 4a2(2a � 3h)

602

6.9-8 The cross section of a slit rectangular tube of con-
stant thickness is shown in the figures.

(a) Derive the following formula for the distance e
from the centerline of  the wall of  the tube in the figure
part a to the shear center S:

(b) Find an expression for e if  flanges with the same
thickness as that of the tube are added as shown in figure
part b.

e �
b(2h � 3b)

2(h � 3b)

z

r

e

b

y

C
S

O

PROB. 6.9-9

z

e

b

a

a

y

C
S

h
2
—

h
2
—

PROB. 6.9-10

z

a

a

b

y

C
S

e

h
2
—

h
2
—

PROB. 6.9-11

(a)

z

y

C
S

e

h
2
—

h
2
—

b
2
— b

2
—

(b)

Flange
(h/4 � t)

z

y

C
S

e

h
2
—

h
2
—

b
2
— b

2
—

PROB. 6.9-8

6.9-9 A U-shaped cross section of constant thickness is
shown in the figure. Derive the following formula for the
distance e from the center of the semicircle to the shear
center S:

Also, plot a graph showing how the distance e (expressed
as the nondimensional ratio e/r) varies as a function of the
ratio b/r. (Let b/r range from 0 to 2.)

e �
2(2r2 � b2 � πbr)

4b � πr

6.9-10 Derive the following formula for the distance e
from the centerline of the wall to the shear center S for the
C-section of constant thickness shown in the figure:

Also, check the formula for the special cases of a channel
section and a slit rectangular tube .(a � 0) (a � h/2)

e �
3bh2(b � 2a) � 8ba3

h2(h � 6b � 6a) � 4a2(2a � 3h)
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Problems Chapter 6

6.9-12 The cross section of a sign post of constant thick-
ness is shown in the figure.

Derive the formula for the distance e from the center-
line of the wall of the post to the shear center S:

where moment of inertia about the z axis
Also, compare this formula with that given in

Prob. 6.9-11 for the special case of here and
in both formulas.a � h/2

β � 0

Iz �

� 2 sin (β)b2)
cos (β)

Iz

e �
1
3

t ba (4a2 � 3ab sin (β ) � 3ab

603

Elastoplastic Bending

The problems for Section 6.10 are to be solved using the assump-
tion that the material is elastoplastic with yield stress σY.

6.10-1 Determine the shape factor f for a cross section in
the shape of a double trapezoid having the dimensions
shown in the figure.

Also, check your result for the special cases of a
rhombus and a rectangle .(b1 � 0) (b1 � b2)

6.9-13 A cross section in the shape of a circular arc of
constant thickness is shown in the figure. Derive the fol-
lowing formula for the distance e from the center of the arc
to the shear center S:

in which β is in radians. Also, plot a graph showing how
the distance e varies as β varies from 0 to π.

e �
2r (sin β � β cos β)

β � sin β cos β

β

z

y

x

A A

(a) (b)

e

b
b sin(β ) 

a

a

b sin(β )

a

a

b

C

y

β

PROB. 6.9-12

z

e

y

r

C
S

O

β

β

PROB. 6.9-13

z

y

h
2
—

h
2
—

C

b2

b1

b1

PROB. 6.10-1

z

y

C

r1

r2

PROB. 6.10-2

6.10-2 (a) Determine the shape factor f for a hollow circular
cross section having inner radius r1 and outer radius r2 (see
figure). (b) If the section is very thin, what is the shape factor?

6.10-3 A propped cantilever beam of length
with a sliding support supports a uniform load of intensity
q (see figure). The beam is made of steel
and has a rectangular cross section of width
and height 

What load intensity q will produce a fully plastic con-
dition in the beam?

h � 150 mm.
b � 100 mm

(σY � 250 MPa)

L � 1.5 m

L = 1.5 m

q

z

y

C
Sliding support

h = 150 mm

b = 100 mm

PROB. 6.10-3
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6.10-12 Solve the preceding problem for a box beam with
dimensions , , and . The
yield stress of the steel is 210 MPa.

6.10-13 A hollow box beam with height ,
inside height , width , and
inside width is shown in the figure.

Assuming that the beam is constructed of steel with
yield stress , calculate the yield moment
MY, plastic moment MP, and shape factor f.

σY � 250 MPa

b1 � 100 mm
h1 � 250 mm b � 150 mm

h � 300 mm

h � 0.5 m b � 0.18 m t � 22 mm

Chapter 6  Stresses in Beams (Advanced Topics)604

z

y

C

40 mm

80 mm

PROB. 6.10-4

z

y

C

tf

tf
tw

h

PROBS. 6.10-5 and 6.10-6

z

y

C

t

t

h

b

PROBS. 6.10-11 and 6.10-12

6.10-4 A steel beam of rectangular cross section is 40 mm
wide and 80 mm high (see figure). The yield stress of the
steel is 210 MPa.

(a) What percent of the cross-sectional area is occu-
pied by the elastic core if the beam is subjected to a bending
moment of 12.0 kN	m acting about the z axis?

(b) What is the magnitude of the bending moment
that will cause 50% of the cross section to yield?

6.10-5 Calculate the shape factor f for the wide-flange
beam shown in the figure if  , ,

, and .tf � 15.5 mm tw � 9 mm
h � 310 mm b � 300 mm

6.10-6 Solve the preceding problem for a wide-flange
beam with , , ,
and .

6.10-7 Determine the plastic modulus Z and shape factor f
for a IPN wide-flange beam. (Note: Obtain the cross-
sectional dimensions and section modulus of the beam
from Table E-2 of Appendix E.)

180

tw � 6.99 mm
h � 404 mm b � 140 mm tf � 11.2 mm

6.10-8 Solve the preceding problem for a HE wide-
flange beam. (Note: Obtain the cross-sectional dimensions
and section modulus of the beam from Table E-1 of
Appendix E.)

6.10-9 Determine the yield moment MY, plastic moment
MP, and shape factor f for a IPN wide-flange beam if

. (Note: Obtain the cross-sectional dimen-
sions and section modulus of the beam from Table E-2 of
Appendix E.)

6.10-10 Solve the preceding problem for a IPN wide-
flange beam. Assume that . (Note: Obtain
the cross-sectional dimensions and section modulus of the
beam from Table E-2 of Appendix E.)

6.10-11 A hollow box beam with height ,
width , and constant wall thickness

is shown in the figure. The beam is con-
structed of steel with yield stress .

Determine the yield moment MY, plastic moment MP,
and shape factor f.

σY � 210 MPa

b � 100 mm
t � 15 mm

h � 300 mm

σY � 250 MPa
400

σY � 250 MPa
500

260B

77742_06_ch06_p524-607.qxd:77742_06_ch06_p524-607.qxd  2/22/12  9:10 PM  Page 604

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems Chapter 6 605

6.10-19 A wide-flange beam of unbalanced cross section
has the dimensions shown in the figure.

Determine the plastic moment MP if  σY � 250 MPa.

z

y

C h
h1

b1

b

PROBS. 6.10-13 through 6.10-16

6.10-14 Solve the preceding problem for a box beam with
dimensions , , ,
and . Assume that the beam is constructed
of steel with yield stress .

6.10-15 The hollow box beam shown in the figure is sub-
jected to a bending moment M of such magnitude that the
flanges yield but the webs remain linearly elastic.

(a) Calculate the magnitude of the moment M if
the dimensions of the cross section are ,

, , and . Also, the
yield stress is .

(b) What percent of the moment M is produced by
the elastic core?

6.10-16 Solve the preceding problem for a box beam with
dimensions , , ,
and , and with yield stress .

6.10-17 A HE wide-flange beam is subjected to a
bending moment M of such magnitude that the flanges
yield but the web remains linearly elastic.

(a) Calculate the magnitude of the moment M if  the
yield stress is .

(b) What percent of the moment M is produced by
the elastic core?

6.10-18 A singly symmetric beam of T-section (see 
figure) has cross-sectional dimensions ,

, , and .
Calculate the plastic modulus Z and the shape

 factor f.

a � 190.8 mm tw � 6.99 mm tf � 11.2 mm
b � 140 mm

σY � 220 MPa
b1 � 130 mm

h � 200 mm h1 � 160 mm b � 150 mm

h � 350 mm
h1 � 310 mm b � 200 mm b1 � 175 mm

σY � 250 MPa

260A

b1 � 160 mm σY � 220 MPa
h � 400 mm h1 � 360 mm b � 200 mm

σY � 220 MPa

6.10-20 Determine the plastic moment MP for a beam
having the cross section shown in the figure if

. σY � 210 MPa

tf

tw

z

y

O

a

b

PROB. 6.10-18

z

y
250 mm

12 mm

12 mm

12 mm

O
176 mm

125 mm

PROB. 6.10-19

z

y

O

30 mm

120 
mm

150 
mm

250 mm

PROB. 6.10-20
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Chapter 6  Stresses in Beams (Advanced Topics)

R-6.3 A steel pipe has a
plastic liner with inner diameter . The modu-
lus of elasticity of the steel is 75 times that of the modulus
of the plastic. Allowable stresses in steel and plastic are
40 MPa and 550 kPa, respectively. The allowable bending
moment for the composite pipe is approximately:

(A) 1100 N m
(B) 1230 N m
(C) 1370 N m
(D) 1460 N m#

d1 � 82 mm
(d3 � 104 mm, d2 � 96 mm)

#

#

#

606

R-6.1 A composite beam is made up of  a
core and an exterior

cover sheet on each
side. Allowable stresses in core and exterior sheets are
9.5 MPa and 140 MPa, respectively. The ratio of the max-
imum permissible bending moment about the z axis to that
about the y axis is most nearly:

(A) 0.5
(B) 0.7
(C) 1.2
(D) 1.5

Ee � 100 GPa)(300 mm � 12 mm,
(Ec � 14 GPa)200 mm � 300 mm

SOME ADDITIONAL REVIEW PROBLEMS: CHAPTER 6

z

y

C

200 mm
12 mm12 mm

30
0 

m
m

160 mm

8
mm

90 mm

z

y

O

z

y

C
d1 d2 d3

b t

t

z

y

O C

A

R-6.2 A composite beam is made up of  a
wood beam and a steel

bottom cover plate
Allowable stresses in wood and steel are 6.5 MPa and
110 MPa, respectively. The allowable bending moment
about the z axis of the composite beam is most nearly:

(A) 2.9 kN m
(B) 3.5 kN m
(C) 4.3 kN m
(D) 9.9 kN m#

#

#

#

(90 mm � 8 mm,Es � 190 GPa).
90 mm � 160 mm (Ew � 11 GPa) R-6.4 A bimetallic beam of aluminum

and copper strips has a width of
; each strip has a thickness . A

bending moment of  1.75 N	m is applied about 
the z axis. The ratio of the maximum stress in the alu-
minum to that in the copper is approximately:

(A) 0.6
(B) 0.8
(C) 1.0
(D) 1.5

b � 25 mm t � 1.5 mm
(Ec � 110 GPa)

(Ea � 70 GPa)
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Some Additional Review Problems: Chapter 6

R-6.5 A composite beam of aluminum
and steel has a width and
heights and , respectively. A
bending moment is applied about the z axis resulting in a
maximum stress in the aluminum of 55 MPa. The maxi-
mum stress in the steel is approximately:

(A) 86 MPa
(B) 90 MPa
(C) 94 MPa
(D) 98 MPa

hs � 68 mmha � 42 mm
b � 25 mm(Es � 190 GPa)

(Ea � 72 GPa)

607

ha

b

hs

Aluminum

Steel

z

y

O
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C H A P T E R7
Analysis of Stress
and Strain

Photoelasticity is an
experimental method

that can be used to find
the complex state of

stress near a bolt 
connecting two plates.

(Alfred Pasieka/Peter
Arnold, Inc.)
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I CHAPTER OVERVIEW
Chapter 7 is concerned with finding normal and
shear stresses acting on inclined sections cut through
a member, because these stresses may be larger than
those on a stress element aligned with the cross sec-
tion. In two dimensions, a stress element displays the
state of plane stress at a point (normal stresses σx, σy,
and shear stress τxy) (Section 7.2), and transforma-
tion equations (Section 7.3) are needed to find the
stresses acting on an element rotated by some 
angle θ from that position. The resulting expressions
for normal and shear stresses can be reduced to those
examined in Section 2.6 for uniaxial stress

and in Section 3.5 for
pure shear . Maximum
values of stress are needed for design, and the trans-
formation equations can be used to find these princi-
pal stresses and the planes on which they act
(Section 7.3). There are no shear stresses acting on
the principal planes, but a separate analysis can be
made to find the maximum shear stress and
the inclined plane on which it acts. Maximum shear
stress is shown to be equal to one-half  of the differ-
ence between the principal normal stresses .
A graphical representation of the transformation
equations for plane stress, known as Mohr’s Circle,
provides a convenient way of calculating stresses on

any inclined plane of interest and those on principal
planes, in particular (Section 7.4). Mohr’s Circle also
can be used to represent strains (Section 7.7) and
moments of inertia. In Section 7.5, normal and shear
strains are studied, and Hooke’s law for
plane stress is derived, which relates elastic moduli E
and G and Poisson’s ratio ν for homogeneous and
isotropic materials. The general expressions for
Hooke’s law can be simplified to the stress-strain
 relationships for biaxial stress, uniaxial stress, and
pure shear. Further examination of strains leads to
an expression for unit volume change (or dilatation e)
as well as the strain-energy density in plane stress
(Section 7.5). Next, triaxial stress is discussed
(Section 7.6). Special cases of triaxial stress, known as
spherical stress and hydrostatic stress are then
explained: for spherical stress, the three normal
stresses are equal and tensile, while for hydro static
stress, they are equal and compressive. Finally, the
transformation equations for plane strain (Section 7.7)
are derived, relating strains on inclined sections to
those in the reference axes directions, and then com-
pared to plane stress. The plane-strain transformation
equations are needed for evaluation of strain measure-
ments obtained using strain gages in field or labora-
tory experiments of actual structures.

(εx, εy, γxy)

(σ1, σ2)

(τmax)

(σx � 0, σy � 0, τxy Z 0)
(σx Z 0, σy � 0, τxy � 0)

7.1 Introduction 610
7.2 Plane Stress 610
7.3 Principal Stresses and Maximum Shear

Stresses 618
7.4 Mohr’s Circle for Plane Stress 627

7.5 Hooke’s Law for Plane Stress 643
7.6 Triaxial Stress 649
7.7 Plane Strain 653

Chapter Summary & Review 668
Problems 672

Chapter 7 is organized as follows:
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Chapter 7  Analysis of Stress and Strain

7.1 INTRODUCTION
Normal and shear stresses in beams, shafts, and bars can be calculated
from the basic formulas discussed in the preceding chapters. For instance,
the stresses in a beam are given by the flexure and shear formulas

, and the stresses in a shaft are given by the
torsion formula . The stresses calculated from these formulas
act on cross sections of the members, but larger stresses may occur on
inclined sections. Therefore, we will begin our analysis of stresses and
strains by discussing methods for finding the normal and shear stresses
acting on inclined sections cut through a member.

We have already derived expressions for the normal and shear stresses
acting on inclined sections in both uniaxial stress and pure shear (see Sections
2.6 and 3.5, respectively). In the case of uniaxial stress, we found that the
maximum shear stresses occur on planes inclined at 45� to the axis, whereas
the maximum normal stresses occur on the cross sections. In the case of pure
shear, we found that the maximum tensile and compressive stresses occur on
45� planes. In an analogous manner, the stresses on inclined sections cut
through a beam may be larger than the stresses acting on a cross section. To
calculate such stresses, we need to determine the stresses acting on inclined
planes under a more general stress state known as plane stress (Section 7.2).

In our discussions of plane stress we will use stress elements to repre-
sent the state of stress at a point in a body. Stress elements were discussed
previously in a specialized context (see Sections 2.6 and 3.5), but now we
will use them in a more formalized manner. We will begin our analysis by
considering an element on which the stresses are known, and then we will
derive the transformation equations that give the stresses acting on the sides
of an element oriented in a different direction.

When working with stress elements, we must always keep in mind that
only one intrinsic state of stress exists at a point in a stressed body, regardless
of the orientation of the element being used to portray that state of stress.
When we have two elements with different orientations at the same point in a
body, the stresses acting on the faces of the two elements are different, but they
still represent the same state of stress, namely, the stress at the point under
consideration. This situation is analogous to the representation of a force vec-
tor by its components—although the components are different when the coor-
dinate axes are rotated to a new position, the force itself is the same.

Furthermore, we must always keep in mind that stresses are not vec-
tors. This fact can sometimes be confusing, because we customarily repre-
sent stresses by arrows just as we represent force vectors by arrows.
Although the arrows used to represent stresses have magnitude and direction,
they are not vectors because they do not combine according to the parallelo-
gram law of addition. Instead, stresses are much more complex quantities
than are vectors, and in mathematics they are called tensors. Other tensor
quantities in mechanics are strains and moments of inertia.

7.2 PLANE STRESS
The stress conditions that we encountered in earlier chapters when ana-
lyzing bars in tension and compression, shafts in torsion, and beams in
bending are examples of  a state of  stress called plane stress. To explain

(τ � Tρ/IP)
(σ � My/I and τ � VQ/Ib)

610
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7.2 Plane Stress 611

plane stress, we will consider the stress element shown in Fig. 7-1a. This
element is infinitesimal in size and can be sketched either as a cube or as
a rectangular parallelepiped. The xyz axes are parallel to the edges of  the
element, and the faces of  the element are designated by the directions of
their outward normals, as explained previously in Section 1.6. For
instance, the right-hand face of  the element is referred to as the 
positive x face, and the left-hand face (hidden from the viewer) is referred
to as the negative x face. Similarly, the top face is the positive y face, and
the front face is the positive z face.

When the material is in plane stress in the xy plane, only the x and y
faces of the element are subjected to stresses, and all stresses act parallel
to the x and y axes, as shown in Fig. 7-la. This stress condition is very com-
mon because it exists at the surface of any stressed body, except at points
where external loads act on the surface. When the element shown in 
Fig. 7-1a is located at the free surface of a body, the z axis is normal to the
surface and the z face is in the plane of the surface.

The symbols for the stresses shown in Fig. 7-1a have the following
meanings. A normal stress σ has a subscript that identifies the face on
which the stress acts; for instance, the stress σx acts on the x face of the
element and the stress σy acts on the y face of the element. Since the ele-
ment is infinitesimal in size, equal normal stresses act on the opposite
faces. The sign convention for normal stresses is the familiar one, namely,
tension is positive and compression is negative.

A shear stress τ has two subscripts—the first subscript denotes the face
on which the stress acts, and the second gives the direction on that face.
Thus, the stress τxy acts on the x face in the direction of the y axis (Fig. 7-1a),
and the stress τyx acts on the y face in the direction of the x axis.

The sign convention for shear stresses is as follows. A shear stress is
positive when it acts on a positive face of an element in the positive direc-
tion of an axis, and it is negative when it acts on a positive face of an ele-
ment in the negative direction of an axis. Therefore, the stresses τxy and τyx
shown on the positive x and y faces in Fig. 7-la are positive shear stresses.
Similarly, on a negative face of the element, a shear stress is positive when
it acts in the negative direction of an axis. Hence, the stresses τxy and τyx
shown on the negative x and y faces of the element are also positive.

This sign convention for shear stresses is easy to remember if  we state
it as follows:

A shear stress is positive when the directions associated with its
subscripts are plus-plus or minus-minus; the stress is negative when the
directions are plus-minus or minus-plus.

The preceding sign convention for shear stresses is consistent with the
equilibrium of the element, because we know that shear stresses on oppo-
site faces of an infinitesimal element must be equal in magnitude and
opposite in direction. Hence, according to our sign convention, a positive
stress τxy acts upward on the positive face (Fig. 7-1a) and downward on
the negative face. In a similar manner, the stresses τyx acting on the top and
bottom faces of the element are positive although they have opposite
directions.

We also know that shear stresses on perpendicular planes are equal
in magnitude and have directions such that both stresses point toward,
or both point away from, the line of  intersection of  the faces. Inasmuch
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Fig. 7-1
Elements in plane stress: 
(a) three-dimensional view of 
an element oriented to the xyz
axes, (b) two-dimensional view
of the same element, and 
(c) two-dimensional view of 
an element oriented to the
x1y1z1 axes
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Chapter 7  Analysis of Stress and Strain

as τxy and τyx are positive in the directions shown in the figure, they are
consistent with this observation. Therefore, we note that

(7-1)

This relationship was derived previously from equilibrium of the element
(see Section 1.7).

For convenience in sketching plane-stress elements, we usually draw
only a two-dimensional view of the element, as shown in Fig. 7-1b.
Although a figure of this kind is adequate for showing all stresses acting
on the element, we must still keep in mind that the element is a solid body
with a thickness perpendicular to the plane of the figure.

Stresses on Inclined Sections
We are now ready to consider the stresses acting on inclined sections,
assuming that the stresses σx, σy, and τxy (Figs. 7-1a and b) are known. To
portray the stresses acting on an inclined section, we consider a new stress
element (Fig. 7-1c) that is located at the same point in the material as the
original element (Fig. 7-1b). However, the new element has faces that are
parallel and perpendicular to the inclined direction. Associated with this
new element are axes x1, y1, and z1, such that the z1 axis coincides with the
z axis and the axes are rotated counterclockwise through an angle θ
with respect to the xy axes.

The normal and shear stresses acting on this new element are denoted
, and , using the same subscript designations and sign

conventions described previously for the stresses acting on the xy ele-
ment. The previous conclusions regarding the shear stresses still apply,
so that

(7-2)

From this equation and the equilibrium of  the element, we see that the
shear stresses acting on all four side faces of an element in plane stress
are known if  we determine the shear stress acting on any one of those
faces.

The stresses acting on the inclined element (Fig. 7-1c) can be
expressed in terms of the stresses on the xy element (Fig. 7-1b) by using
equations of equilibrium. For this purpose, we choose a wedge-shaped
stress element (Fig. 7-2a) having an inclined face that is the same as the x1
face of the inclined element shown in Fig. 7-1c. The other two side faces
of the wedge are parallel to the x and y axes.

In order to write equations of equilibrium for the wedge, we need to
construct a free-body diagram showing the forces acting on the faces. Let us
denote the area of the left-hand side face (that is, the negative x face) as A0.
Then the normal and shear forces acting on that face are and , as
shown in the free-body diagram of Fig. 7-2b. The area of the bottom face
(or negative y face) is A0 tan θ, and the area of the inclined face (or positive
x1 face) is A0 sec θ. Thus, the normal and shear forces acting on these faces
have the magnitudes and directions shown in Fig. 7-2b.

The forces acting on the left-hand and bottom faces can be resolved
into orthogonal components acting in the x1 and y1 directions. Then we can

τxyA0σxA0

x1y1

τx1y1
� τy1x1

τy1x1
σx1

, σy1
, τx1y1

x1 y1

τxy � τyx
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Fig. 7-1 (Repeated)
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7.2 Plane Stress 613

obtain two equations of equilibrium by summing forces in those directions.
The first equation, obtained by summing forces in the x1 direction, is

In the same manner, summation of forces in the y1 direction gives

Using the relationship , and also simplifying and rearranging, we
obtain the following two equations:

(7-3a)

(7-3b)

Equations (7-3a) and (7-3b) give the normal and shear stresses acting on
the x1 plane in terms of the angle θ and the stresses σx, σy, and τxy acting
on the x and y planes.

For the special case when , we note that Eqs. (7-3a) and (7-3b) give
and , as expected. Also, when , the equations 

give and . In the latter case, since the x1 axis 
is vertical when , the stress will be positive when it acts to

θ � 90°

τx1y1
θ � 90°

τx1y1
� �τxy � �τyxσx1

� σy

τx1y1
� τxyσx1

� σx

θ � 0

τx1y1
� �(σx � σy) sin θ cos θ � τxy(cos2 θ � sin2 θ)

σx1
� σx cos2 θ � σy sin2 θ � 2τxy sin θ cos θ

τxy � τyx

�σyA0 tan θ cos θ � τyxA0 tan θ sin θ � 0

τx1y1
A0 sec θ � σxA0 sin θ � τxyA0 cos θ

�σyA0 tan θ sin θ � τyxA0 tan θ cos θ � 0

σx1
A0 sec θ � σxA0 cos θ � τxyA0 sin θ

Fig. 7-2
Wedge-shaped stress element in
plane stress: (a) stresses acting
on the element, and (b) forces
acting on the element 
(free-body diagram)
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the left. However, the stress τyx acts to the right, and therefore .

Transformation Equations for Plane Stress
Equations (7-3a) and (7-3b) for the stresses on an inclined section can be
expressed in a more convenient form by introducing the following trigono-
metric identities (see Appendix C):

When these substitutions are made, the equations become

(7-4a)

(7-4b)

These equations are usually called the transformation equations for plane
stress because they transform the stress components from one set of axes
to another. However, as explained previously, the intrinsic state of stress at
the point under consideration is the same whether represented by stresses
acting on the xy element (Fig. 7-1b) or by stresses acting on the inclined

element (Fig. 7-1c).x1y1

τx1y1
� �

σx � σy

2
sin 2θ � τxy cos 2θ

σx1
�

σx � σy

2
�

σx � σy

2
cos 2θ � τxy sin 2θ

sin θ cos θ �
1
2

sin 2θ

cos2 θ �
1
2

(1 � cos 2θ) sin2 θ �
1
2

(1 � cos 2θ)

τx1y1
� �τyx
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Chapter 7  Analysis of Stress and Strain

Since the transformation equations were derived solely from equilib-
rium of an element, they are applicable to stresses in any kind of material,
whether linear or nonlinear, elastic or inelastic.

An important observation concerning the normal stresses can be
obtained from the transformation equations. As a preliminary matter, we
note that the normal stress acting on the y1 face of the inclined elementσy1

614

Fig. 7-3
Graph of normal stress σx1

sx1

sx1

or
τx1y1

u

–sx

–0.5sx

sx
τxyτx1y1

sy

–180° 180°90°–90° 0

sx1

τx1y10.5sx

(Fig. 7-1c) can be obtained from Eq. (7-4a) by substituting for θ.
The result is the following equation for :

(7-5)

Summing the expressions for and [Eqs. (7-4a) and (7-5)], we obtain
the following equation for plane stress:

(7-6)

This equation shows that the sum of the normal stresses acting on perpen-
dicular faces of plane-stress elements (at a given point in a stressed body)
is constant and independent of the angle θ.

The manner in which the normal and shear stresses vary is shown in Fig.
7-3, which is a graph of and versus the angle θ [from Eqs. (7-4a) and
(7-4b)]. The graph is plotted for the particular case of and

. We see from the plot that the stresses vary continuously as the
orientation of the element is changed. At certain angles, the normal stress 
reaches a maximum or minimum value; at other angles, it becomes zero.
Similarly, the shear stress has maximum, minimum, and zero values at
 certain angles. A detailed investigation of these maximum and minimum
values is made in Section 7.3.

σy � 0.2σx
τxy � 0.8σx

σx1
τx1y1

σx1
� σy1

� σx � σy

σx1
σy1

σy1
�

σx � σy

2
�

σx � σy

2
cos 2θ � τxy sin 2θ

σy1

θ � 90°

and shear stress versus theτx1y1

angle θ (for 
and )τxy � 0.8σx

σy � 0.2σx

Special Cases of Plane Stress
The general case of  plane stress reduces to simpler states of  stress under
special conditions. For instance, if  all stresses acting on the xy element
(Fig. 7-1b) are zero except for the normal stress σx, then the element is
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7.2 Plane Stress 615

in uniaxial stress (Fig. 7-4). The corresponding transformation equa-
tions, obtained by setting σy and τxy equal to zero in Eqs. (7-4a) and 
(7-4b), are

(7-7a,b)

These equations agree with the equations derived previously in Section 2.6
[see Eqs. (2-29a) and (2-29b)], except that now we are using a more gener-
alized notation for the stresses acting on an inclined plane.

Another special case is pure shear (Fig. 7-5), for which the transforma-
tion equations are obtained by substituting and into
Eqs. (7-4a) and (7-4b):

(7-8a,b)

Again, these equations correspond to those derived earlier [see Eqs. (3-30a)
and (3-30b) in Section 3.5].

Finally, we note the special case of biaxial stress, in which the xy ele-
ment is subjected to normal stresses in both the x and y directions but
without any shear stresses (Fig. 7-6). The equations for biaxial stress are
obtained from Eqs. (7-4a) and (7-4b) simply by dropping the terms con-
taining τxy, as follows:

(7-9a)

(7-9b)

Biaxial stress occurs in many kinds of structures, including thin-walled
pressure vessels (see Sections 8.2 and 8.3).

τx1y1
� �

σx � σy

2
sin 2θ

σx1
�

σx � σy

2
�

σx � σy

2
cos 2θ

σx1
� τxy sin 2θ τx1y1

� τxy cos 2θ

σy � 0σx � 0

σx1
�

σx

2
(1 � cos 2θ) τx1y1

� �
σx

2
(sin 2θ)

y

xO
sxsx

Fig. 7-4
Element in uniaxial stress
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τyx

τxy
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Fig. 7-5
Element in pure shear

y

xO
sx
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Fig. 7-6
Element in biaxial stress
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Chapter 7  Analysis of Stress and Strain616

Example 7-1• • •
A cylindrical pressure vessel rests on simple supports at A and B (see Fig. 7-7).
The vessel is under internal pressure resulting in longitudinal stress

and circumferential stress on a stress element atσx � 40 MPa σy � 80 MPa
point C on the wall of the vessel. In addition, differential settlement after an
earthquake has caused the support at B to rotate, which applies a torsional
moment to the vessel leading to shear stress . Find the stresses τxy � 17 MPa
acting on the element at C when rotated through angle .

Solution
Transformation equations. To determine the stresses acting on an inclined
element, we will use the transformation equations given in Eqs. (7-4a) and
(7-4b). From the given numerical data, we obtain the following values for
substitution into those equations:

Substituting these values into Eqs. (7-4a) and (7-4b), we get

In addition, the stress may be obtained from Eq. (7-5):

Stress elements. From these results, we can readily obtain the stresses
acting on all sides of an element oriented at , as shown in Fig. 7-7c.
The arrows show the true directions in which the stresses act. Note especially
the directions of the shear stresses, all of which have the same magnitude.
Also, observe that the sum of the normal stresses remains constant and
equal to 120 MPa [see Eq. (7-6)].

Note: The stresses shown in Fig. 7-7b represent the same intrinsic state
of stress as do the stresses shown in Fig. 7-7a. However, the stresses have
different values, because the elements on which they act have different
orientations.

σy1
�

σx � σy

2
�

σx � σy

2
cos 2θ � τxy sin 2θ

τx1y1
� �

σx � σy

2
sin 2θ � τxy cos 2θ

σx1
�

σx � σy

2
�

σx � σy

2
cos 2θ � τxy sin 2θ

σx � σy

2
� 60 MPa

σx � σy

2
� �20 MPa τxy � 17 MPa

➥

➥

➥

sin 2θ � sin 90° � 1 cos 2θ � cos 90° � 0

θ � 45°

� 60 MPa � (�20 MPa)(0) � (17 MPa)(1) � 43 MPa
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Fig. 7-7
Example 7-1: (a) Cylindrical
pressure vessel with stress 
element at C, (b) element C in
plane stress, and (c) element C
inclined at an angle θ � 45°

Fuel storage tanks (© Barry
Goodno)
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7.2 Plane Stress 617

A cylindrical pressure vessel rests on simple supports at A and B (see Fig. 7-8).
The vessel has a helical weld joint oriented at to the longitudinal
axis. The vessel is under internal pressure and also has some torsional shear
stress due to differential settlement of the support at B. The state of stress
on the element at D along and perpendicular to the weld seam is known
and is given in Fig. 7-8b. Find the equivalent stress state for the element  
at D when rotated through angle so that the element is aligned
with the longitudinal axis of the vessel.

Solution
The stresses acting on the original element (Fig 7-8b) have the following
values:

An element oriented at a clockwise angle of is shown in Fig. 7-8c,
where the x1 axis is at an angle with respect to the x axis.

Stress transformation equations. We can readily calculate the stresses
on the x1 face of the element oriented at by using the transfor-
mation equations given in Eqs. (7-4a) and (7-4b). The calculations proceed as
follows:

Substituting into the transformation equations, we get

The normal stress acting on the y1 face [see Eq. (7-5)] is

As a check on the results, we note that .
The stresses acting on the inclined element are shown in Fig. 7-8c, where

the arrows indicate the true directions of the stresses. Again, we note that
both stress elements shown in Fig. 7-8 represent the same state of stress.

σy1
�

σx � σy

2
�

σx � σy

2
cos (2θ ) � τxy sin (2θ )

τx1y1
� �aσx � σy

2
b sin (2θ ) � τxy cos (2θ)

σx1
�

σx � σy

2
�

σx � σy

2
cos (2θ ) � τxy sin (2θ)

σx � σy

2
� 60 MPa

σx � σy

2
� �20 MPa

sin 2θ � sin (�70°) � �0.94 cos 2θ � cos (�70°) � 0.342

σx1
� σy1

� σx � σy

� 60 MPa � (�20 MPa)(0.342) � (�22 MPa)(�0.94) � 46.2 MPa

� �(�20 MPa)(�0.94) � (�22 MPa)(0.342) � �26.3 MPa

� 60 MPa � (�20 MPa)(0.342) � (�22 MPa)(�0.94) � 73.8 MPa

θ � �35°

θ � �35°
�35°

σx � 40 MPa σy � 80 MPa τxy � �22 MPa
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θ � 35°

Example 7-2• • •
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Fig. 7-8
Example 7-2: (a) Cylindrical
pressure vessel with stress
 element at D, (b) element D in
plane stress, and (c) element D
inclined at an angle θ � �35°

Fuel storage tank supported on
pedestals. (© Barry Goodno)
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Chapter 7  Analysis of Stress and Strain

7.3 PRINCIPAL STRESSES AND MAXIMUM
SHEAR STRESSES
The transformation equations for plane stress show that the normal
stresses and the shear stresses vary continuously as the axes areσx1

τx1y1

618

Fig. 7-9
Photoelastic fringe pattern 

displays principal stresses in a
model of a crane-hook 

(a) (Frans Lemmens/Getty
Images)

(b) (Courtesy Eann Patterson)

(a) Photo of a crane-hook

Fig. 7-10
Geometric representation 

of Eq. (7-11)

2up

τxy

sx – sy

2

+ τ
2
xy

R =

sx –
 sy

2

2

rotated through the angle θ. This variation is pictured in Fig. 7-3 for a par-
ticular combination of stresses. From the figure, we see that both the nor-
mal and shear stresses reach maximum and minimum values at 90�
intervals. Not surprisingly, these maximum and minimum values are usu-
ally needed for design purposes. For instance, fatigue failures of structures
such as machines and aircraft are often associated with the maximum
stresses, and hence their magnitudes and orientations should be deter-
mined as part of the design process (see Fig. 7-9).

Principal Stresses
The maximum and minimum normal stresses, called the principal stresses,
can be found from the transformation equation for the normal stress σx1
[Eq. (7-4a)]. By taking the derivative of with respect to θ and setting σx1
it equal to zero, we obtain an equation from which we can find the values of θ
at which is a maximum or a minimum. The equation for the derivative is

(7-10)

from which we get

(7-11)

The subscript p indicates that the angle θp defines the orientation of the
principal planes, that is, the planes on which the principal stresses act.

Two values of the angle in the range from 0 to 360� can be
obtained from Eq. (7-11). These values differ by 180�, with one value
between 0 and 180� and the other between 180� and 360�. Therefore, the
angle θp has two values that differ by 90�, one value between 0 and 90� and
the other between 90� and 180�. The two values of θp are known as the prin-
cipal angles. For one of these angles, the normal stress is a maximum
principal stress; for the other, it is a minimum principal stress. Because the
principal angles differ by 90�, we see that the principal stresses occur on
mutually perpendicular planes.

The principal stresses can be calculated by substituting each of the two
values of θp into the first stress-transformation equation [Eq. (7-4a)] and
solving for . By determining the principal stresses in this manner, we not
only obtain the values of the principal stresses but we also learn which prin-
cipal stress is associated with which principal angle.

We can also obtain general formulas for the principal stresses. To do
so, refer to the right triangle in Fig. 7-10, which is constructed from 

σx1

σx1

2θp

tan 2θp �
2τxy

σx � σy

dσx1

dθ
� �(σx � σy) sin 2θ � 2τxy cos 2θ � 0

σx1

(b) Photoelastic fringe pattern
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7.3 Principal Stresses and Maximum Shear Stresses 619

Eq. (7-11). Note that the hypotenuse of the triangle, obtained from the
Pythagorean theorem, is

(7-12)

The quantity R is always a positive number and, like the other two sides of
the triangle, has units of stress. From the triangle we obtain two additional
relations:

(7-13a,b)

Now we substitute these expressions for and into sin 2θpcos 2θp

cos 2θp �
σx � σy

2R
sin 2θp �

τxy

R

R �
C
a σx � σy

2
b2

� τxy
2

Eq. (7-4a) and obtain the algebraically larger of the two principal stresses,
denoted by σ1:

After substituting for R from Eq. (7-12) and performing some algebraic
manipulations, we obtain

(7-14)

The smaller of the principal stresses, denoted by σ2, may be found from
the condition that the sum of the normal stresses on perpendicular planes
is constant [see Eq. (7-6)]:

(7-15)

Substituting the expression for σ1 into Eq. (7-15) and solving for σ2, 
we get

(7-16)

This equation has the same form as the equation for σ1 but differs by the
presence of the minus sign before the square root.

�
σx � σy

2
�

C
aσx � σy

2
b2

� τxy
2

σ2 � σx � σy � σ1

σ1 � σ2 � σx � σy

σ1 �
σx � σy

2
�

C
a σx � σy

2
b2

� τxy
2

�
σx � σy

2
�

σx � σy

2
aσx � σy

2R
b � τxya

τxy

R
b

σ1 � σx1
�

σx � σy

2
�

σx � σy

2
cos 2θp � τxy sin 2θp
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Chapter 7  Analysis of Stress and Strain

The preceding formulas for σ1 and σ2 can be combined into a single
formula for the principal stresses:

(7-17)

The plus sign gives the algebraically larger principal stress and the minus
sign gives the algebraically smaller principal stress.

Principal Angles
Let us now denote the two angles defining the principal planes as and ,
corresponding to the principal stresses and respectively. Both angles
can be determined from the equation for [Eq. (7-11)]. However, we 
cannot tell from that equation which angle is and which is . A simple 
procedure for making this determination is to take one of the values and
substitute it into the equation for [Eq. (7-4a)]. The resulting value of 
will be recognized as either or [assuming we have already found
and from Eq. (7-17)], thus correlating the two principal angles with the
two principal stresses.

Another method for correlating the principal angles and principal
stresses is to use Eqs. (7-13a) and (7-13b) to find since the only angle
that satisfies both of those equations is . Thus, we can rewrite those
equations as follows:

(7-18a,b)

Only one angle exists between 0 and that satisfies both of these equa-
tions. Thus, the value of can be determined uniquely from Eqs. (7-18a)
and (7-18b). The angle , corresponding to defines a plane that is
perpendicular to the plane defined by . Therefore, can be taken as
larger or smaller than .

Shear Stresses on the Principal Planes
An important characteristic of  the principal planes can be obtained from
the transformation equation for the shear stresses [Eq. (7-4b)]. If  we set
the shear stress equal to zero, we get an equation that is the same as 
Eq. (7-10). Therefore, if we solve that equation for the angle we get
the same expression for tan as before [Eq. (7-11)]. In other words, the
angles to the planes of  zero shear stress are the same as the angles to the
principal planes.

Thus, we can make the following important observation: The shear
stresses are zero on the principal planes.

Special Cases
The principal planes for elements in uniaxial stress and biaxial stress are the
x and y planes themselves (Fig. 7-11), because [see Eq. (7-11)]tan 2θp � 0

2θ
2θ,

σ2,

90°
90°

360°

θp,

σ2

σ1σ1 σ2

σ2,σ1

θp2

τx1y1

θp1

θp1
θp2

θp2

θp1

cos 2θp1
�

σx � σy

2R
sin 2θp1

�
τxy

R

θp1

σx1
σx1

θp1
θp2

tan 2θp

θp1

σ1,2 �
σx � σy

2
�

C
aσx � σy

2
b2

� τxy
2
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Fig. 7-11
Elements in uniaxial and 

biaxial stress
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7.3 Principal Stresses and Maximum Shear Stresses 621

and the two values of  are 0 and . We also know that the x and y
planes are the principal planes from the fact that the shear stresses are zero
on those planes.

For an element in pure shear (Fig. 7-12a), the principal planes are ori-
ented at 45� to the x axis (Fig. 7-12b), because is infinite and the

θp 90°

tan 2θp y

xO

O

τyx

τxy

τxy

τyx

(b)

(a)

s2 = –τxy s1 = τxy

up = 45°

y

x

Fig. 7-12
(a) Element in pure shear, and
(b) principal stresses

*The determination of principal stresses is an example of a type of mathematical analysis known as eigenvalue
analysis, which is described in books on matrix algebra. The stress-transformation equations and the concept
of principal stresses are due to the French mathematicians A. L. Cauchy (1789–1857) and Barré de Saint-Venant
(1797–1886) and to the Scottish scientist and engineer W. J. M. Rankine (1820–1872); see Refs. 7-1, 7-2, and 7-3,
respectively.

two values of θp are 45� and 135�. If  τxy is positive, the principal stresses are
and (see Section 3.5 for a discussion of pure shear).

The Third Principal Stress
The preceding discussion of principal stresses refers only to rotation of
axes in the xy plane, that is, rotation about the z axis (Fig. 7-13a).
Therefore, the two principal stresses determined from Eq. (7-17) are called
the in-plane principal stresses. However, we must not overlook the fact that
the stress element is actually three-dimensional and has three (not two)
principal stresses acting on three mutually perpendicular planes.

By making a more complete three-dimensional analysis, it can be
shown that the three principal planes for a plane-stress element are the two
principal planes already described plus the z face of the element. These
principal planes are shown in Fig. 7-13b, where a stress element has been
oriented at the principal angle , which corresponds to the principalθp1

σ1 � τxy σ2 � �τxy

stress σ1. The principal stresses σ1 and σ2 are given by Eq. (7-17), and the
third principal stress (σ3) equals zero.

By definition, σ1 is algebraically larger than σ2, but σ3 may be alge-
braically larger than, between, or smaller than σ1 and σ2. Of  course, it
is also possible for some or all of  the principal stresses to be equal. Note
again that there are no shear stresses on any of  the principal planes.*

(b)(a)

y y1

x1

x

z

O
τxyτxy

τyx

sy

sy

sx

s1

s3 = 0

s2

sx

τyx

y

x

z, z1

O
up1

Fig. 7-13
Elements in plane stress: 
(a) original element, and 
(b) element oriented to the
three principal planes and three
principal stresses

Maximum Shear Stresses
Having found the principal stresses and their directions for an element in
plane stress, we now consider the determination of the maximum shear
stresses and the planes on which they act. The shear stresses acting onτx1y1
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Chapter 7  Analysis of Stress and Strain

inclined planes are given by the second transformation equation [Eq. (7-4b)].
Taking the derivative of with respect to θ and setting it equal to zero,τx1y1

622

we obtain

(7-19)

from which

(7-20)

The subscript s indicates that the angle θs defines the orientation of the
planes of maximum positive and negative shear stresses.

Equation (7-20) yields one value of θs between 0 and 90� and another
between 90� and 180�. Furthermore, these two values differ by 90�, and
therefore the maximum shear stresses occur on perpendicular planes.
Because shear stresses on perpendicular planes are equal in absolute value,
the maximum positive and negative shear stresses differ only in sign.

Comparing Eq. (7-20) for θs with Eq. (7-11) for θp shows that

(7-21)

From this equation we can obtain a relationship between the angles θs
and θp. First, we rewrite the preceding equation in the form

Multiplying by the terms in the denominator, we get

which is equivalent to the following expression (see Appendix C):

Therefore,

and

(7-22)θs � θp�45°

2θs � 2θp � �90°

cos (2θs � 2θp) � 0

sin 2θs sin 2θp � cos 2θs cos 2θp � 0

sin 2θs

cos 2θs

�
cos 2θp

sin 2θp

� 0

tan 2θs � �
1

tan 2θp

� �cot 2θp

tan 2θs � �
σx � σy

2τxy

dτx1y1

dθ
� �(σx � σy) cos 2θ � 2τxy sin 2θ � 0
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7.3 Principal Stresses and Maximum Shear Stresses 623

This equation shows that the planes of maximum shear stress occur at 45�
to the principal planes.

The plane of the maximum positive shear stress τmax is defined by the
angle , for which the following equations apply:

(7-23a,b)

in which R is given by Eq. (7-12). Also, the angle is related to the
angle [see Eqs. (7-18a) and (7-18b)] as

(7-24)

The corresponding maximum shear stress is obtained by substituting the
expressions for and into the second transformation equa-cos 2θs1

sin 2θs1

θs1
� θp1

� 45°

θs1

θp1

θs1

cos 2θs1
�

τxy

R
sin 2θs1

� �
σx � σy

2R

tion [Eq. (7-4b)], yielding

(7-25)

The maximum negative shear stress τmin has the same magnitude but
opposite sign.

Another expression for the maximum shear stress can be obtained
from the principal stresses σ1 and σ2, both of which are given by Eq. (7-17).
Subtracting the expression for σ2 from that for σ1, and then comparing
with Eq. (7-25), we see that

(7-26)

Thus, the maximum shear stress is equal to one-half the difference of the
principal stresses.

The planes of maximum shear stress also contain normal stresses. The
normal stress acting on the planes of maximum positive shear stress can
be determined by substituting the expressions for the angle [Eqs. (7-23a) 
and (7-23b)] into the equation for [Eq. (7-4a)]. The resulting stress is

θs1

σx1

τmax �
C
aσx � σy

2
b2

� τxy
2

τmax �
σ1 � σ2

2

equal to the average of the normal stresses on the x and y planes:

(7-27)

This same normal stress acts on the planes of maximum negative shear
stress.

σaver �
σx � σy

2
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Chapter 7  Analysis of Stress and Strain624

In the particular cases of uniaxial stress and biaxial stress (Fig. 7-11),
the planes of maximum shear stress occur at 45� to the x and y axes. In the
case of pure shear (Fig. 7-12), the maximum shear stresses occur on the x
and y planes.

In-Plane and Out-of-Plane Shear Stresses
The preceding analysis of  shear stresses has dealt only with in-plane shear
stresses, that is, stresses acting in the xy plane. To obtain the maximum
in-plane shear stresses [Eqs. (7-25) and (7-26)], we considered elements
that were obtained by rotating the xyz axes about the z axis, which is a
principal axis (Fig. 7-13a). We found that the maximum shear stresses
occur on planes at 45� to the principal planes. The principal planes for the
element of  Fig. 7-13a are shown in Fig. 7-13b, where σ1 and σ2 are the
principal stresses. Therefore, the maximum in-plane shear stresses are
found on an element obtained by rotating the axes (Fig. 7-13b)
about the z1 axis through an angle of  45�. These stresses are given by 
Eq. (7-25) or Eq. (7-26).

We can also obtain maximum shear stresses by 45� rotations about the
other two principal axes (the x1 and y1 axes in Fig. 7-13b). As a result, we
obtain three sets of maximum positive and maximum negative shear stresses
[compare with Eq. (7-26)]:

(7-28a,b,c)

in which the subscripts indicate the principal axes about which the 45�
rotations take place. The stresses obtained by rotations about the x1 and y1
axes are called out-of-plane shear stresses.

The algebraic values of σ1 and σ2 determine which of the preceding
expressions gives the numerically largest shear stress. If  σ1 and σ2 have the
same sign, then one of the first two expressions is numerically largest; if
they have opposite signs, the last expression is largest.

(τmax)z1
� �

σ1 � σ2

2

(τmax)x1
� �

σ2

2
(τmax)y1

� �
σ1

2

x1y1z1

Fig. 7-13 (Repeated)

(b)(a)

y y1

x1

x

z

O
τxyτxy

τyx

sy

sy
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s1

s3 = 0

s2
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τyx

y

x

z, z1

O
up1
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7.3 Principal Stresses and Maximum Shear Stresses 625

A simply supported wide-flange beam has a concentrated load P applied
at mid-span (Fig. 7-14a). The state of stress in the beam web at element C
is known (Fig. 7-14b) to be , , and

.

(a) Determine the principal stresses and show them on a sketch of a prop-
erly oriented element.

(b) Determine the maximum shear stresses and show them on a sketch of a
properly oriented element. (Consider only the in-plane stresses.)

Solution
(a) Principal stresses. The principal angles θp that locate the principal planes
can be obtained from Eq. (7-11):

Solving for the angles, we get the following two sets of values:

The principal stresses may be obtained by substituting the two values
of into the transformation equation for from Eq. (7-4a). As a prelim-

tan 2θp �
2τxy

σx � σy

�
2(�32 MPa)

86 MPa � (�28 MPa)
� �0.5614

2θp σx1

2θp � 150.7° and θp � 75.3°

2θp � 330.7° and θp � 165.3°

τxy � �32 MPa
σy � �28 MPaσx � 86 MPa

Example 7-3• • •

Continues ➥

y

θs
2
 = 30.3°

65.4 MPa

29 MPa

29 MPa

(d)

xO

y

σ2 = –36.4 MPaσ1 = 94.4 MPa

(c)

(b)

(a)

x
O

y

–32 MPa

86 MPa

–28 MPa

x

P

O

CA B

θp
2
 = 75.3°

Fig. 7-14
Example 7-3: (a) Beam 
structure, (b) element at C in
plane stress, (c) principal
stresses, and (d) maximum
shear stresses

inary calculation, we determine the following quantities:

Now we substitute the first value of into Eq. (7-4a) and obtain

In a similar manner, we substitute the second value of and obtain 

σx1
�

σx � σy

2
�

σx � σy

2
cos 2θ � τxy sin 2θ

σx � σy

2
�

86 MPa � 28 MPa
2

� 57 MPa

σx � σy

2
�

86 MPa � 28 MPa
2

� 29 MPa

2θp

� �36.4 MPa

� 29 MPa � (57 MPa)(cos 150.7°) � (32 MPa)(sin 150.7°)

2θp

. Thus, the principal stresses and their corresponding prin-σx1
� 94.4 MPa

cipal angles are

Note that and differ by 90� and that .
The principal stresses are shown on a properly oriented element in

Fig. 7-14c. Of course, no shear stresses act on the principal planes.

➥
➥

θp1
θp2

σ1 � σ2 � σx � σy

σ2 � �36.4 MPa and θp2
� 75.3°

σ1 � 94.4 MPa and θp1
� 165.3°
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Chapter 7  Analysis of Stress and Strain626

Example 7-3 - Continued• • •

Alternative solution for the principal stresses. The principal stresses may
also be calculated directly from Eq. (7-17):

Therefore,

The angle to the plane on which σ1 acts is obtained from Eqs. (7-18a)
and (7-18b):

in which R is given by Eq. (7-12) and is equal to the square-root term in the
preceding calculation for the principal stresses σ1 and σ2.

The only angle between 0 and 360� having the specified sine and
cosine is ; hence, . This angle is associated with

σ1,2 �
σx � σy

2
�

C
aσx � σy

2
b2

� τxy
2

2θp1
� 330.7° θp1

� 165.3°

sin 2θp1
�

τxy

R
�

�32 MPa
65.4 MPa

� �0.489

cos 2θp1
�

σx � σy

2R
�

57 MPa
65.4 MPa

� 0.872

θp1

σ1 � 94.4 MPa σ2 � �36.4 MPa

σ1,2 � 29 MPa�65.4 MPa

� 29 MPa � 3(57 MPa)2 � (�32 MPa)2

y

θs
2
 = 30.3°

65.4 MPa

29 MPa

29 MPa

(d)

xO

y

σ2 = –36.4 MPaσ1 = 94.4 MPa

(c)

x
O

θp
2
 = 75.3°

Fig. 7-14c,d (Repeated)

the algebraically larger principal stress . The other angle isσ1 � 94.4 MPa
90� larger or smaller than ; hence, . This angle correspondsθp1

θp2
� 75.3°

to the smaller principal stress . Note that these results for
the principal stresses and principal angles agree with those found previously.

(b) Maximum shear stresses. The maximum in-plane shear stresses are given
by Eq. (7-25):

The angle to the plane having the maximum positive shear stress is cal-θ s1

� 3(57 MPa)2 � (�32 MPa)2 � 65.4 MPa ➥

τmax �
C
aσx � σy

2
b2

� τxy
2

σ2 � �36.4 MPa

culated from Eq. (7-24):

It follows that the maximum negative shear stress acts on the plane for
which .

The normal stresses acting on the planes of maximum shear stresses are
calculated from Eq. (7-27):

Finally, the maximum shear stresses and associated normal stresses are
shown on the stress element of Fig. 7-14d.

As an alternative approach to finding the maximum shear stresses, we
can use Eq. (7-20) to determine the two values of the angles θs, and then 
we can use the second transformation equation [Eq. (7-4b)] to obtain the
 corresponding shear stresses.

σaver �
σx � σy

2
� 29 MPa ➥

➥

θs2
� 120.3° � 90° � 30.3°

θs1
� θp1

� 45° � 165.3° � 45° � 120.3°
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7.4 Mohr’s Circle for Plane Stress 627

7.4 MOHR’S CIRCLE FOR PLANE STRESS
The transformation equations for plane stress can be represented in graph-
ical form by a plot known as Mohr’s circle. This graphical representation
is extremely useful because it enables you to visualize the relationships
between the normal and shear stresses acting on various inclined planes at
a point in a stressed body. It also provides a means for calculating princi-
pal stresses, maximum shear stresses, and stresses on inclined planes.
Furthermore, Mohr’s circle is valid not only for stresses but also for other
quantities of  a similar mathematical nature, including strains and
moments of inertia.*

Equations of Mohr’s Circle
The equations of Mohr’s circle can be derived from the transformation
equations for plane stress in Eqs. (7-4a) and (7-4b). The two equations are
repeated here, but with a slight rearrangement of the first equation:

(7-29a)

(7-29b)

From analytic geometry, we might recognize that these two equations are
the equations of  a circle in parametric form. The angle 2θ is the parame-
ter and the stresses and are the coordinates. However, it is notσx1

τx1y1

τx1y1
� �

σx � σy

2
sin 2θ � τxy cos 2θ

σx1
�

σx � σy

2
�

σx � σy

2
cos 2θ � τxy sin 2θ

*Mohr’s circle is named after the famous German civil engineer Otto Christian Mohr (1835–1918), who
 developed the circle in 1882 (Ref. 7-4).

 necessary to recognize the nature of  the equations at this stage—if we
eliminate the parameter, the significance of  the equations will become
apparent.

To eliminate the parameter 2θ, we square both sides of each equation
and then add the two equations. The equation that results is

(7-30)

This equation can be written in simpler form by using the following nota-
tion from Section 7.3 [see Eqs. (7-27) and (7-12), respectively]:

(7-31a,b)

Equation (7-30) now becomes

(7-32)(σx1
� σaver)

2 � τx1y1

2 � R2

σaver �
σx � σy

2
R �

C
aσx � σy

2
b2

� τxy
2

aσx1
�

σx � σy

2
b2

� τx1y1

2 � aσx � σy

2
b2

� τxy
2
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Chapter 7  Analysis of Stress and Strain

which is the equation of a circle in standard algebraic form. The coordi-
nates are and , the radius is R, and the center of  the circle has
coordinates and .

Two Forms of Mohr’s Circle
Mohr’s circle can be plotted from Eqs. (7-29) and (7-32) in either of  two
forms. In the first form of  Mohr’s circle, we plot the normal stress 
positive to the right and the shear stress positive downward, as
shown in Fig. 7-15a. The advantage of  plotting shear stresses positive
downward is that the angle 2θ on Mohr’s circle will be positive when
counterclockwise, which agrees with the positive direction of  2θ in the
derivation of  the transformation equations (see Figs. 7-1 and 7-2).

In the second form of Mohr’s circle, is plotted positive upward butτx1y1

τx1y1

σx1

σx1
� σaver τx1y1

� 0
σx1

τx1y1

628

Fig. 7-15
Two forms of Mohr’s circle: 

(a) is positive downward and
the angle 2θ is positive

counterclockwise, and (b) isτx1 y1

τx1 y1

(b)

O

τx1y1

sx1

saver

2u

C

R

(a)

O

τx1y1

sx1

saver

2u

C

R
positive upward and the angle 2θ

is positive clockwise (Note: The
first form is used in this book.)

the angle 2θ is now positive clockwise (Fig. 7-15b), which is opposite to
its usual positive direction.

Both forms of  Mohr’s circle are mathematically correct, and either
one can be used. However, it is easier to visualize the orientation of  the
stress element if  the positive direction of  the angle 2θ is the same in
Mohr’s circle as it is for the element itself. Furthermore, a counterclock-
wise rotation agrees with the customary right-hand rule for rotation.

Therefore, we will choose the first form of Mohr’s circle (Fig. 7-15a)
in which positive shear stress is plotted downward and a positive angle 2θ is
plotted counterclockwise.

77742_07_ch07_p608-691.qxd:77742_07_ch07_p608-691.qxd  2/22/12  12:17 PM  Page 628

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7.4 Mohr’s Circle for Plane Stress 629

Construction of Mohr’s Circle
Mohr’s circle can be constructed in a variety of ways, depending upon which
stresses are known and which are to be found. For our immediate purpose,
which is to show the basic properties of the circle, let us assume that we
know the stresses σx, σy, and τxy acting on the x and y planes of an element
in plane stress (Fig. 7-16a). As we will see, this information is sufficient to
construct the circle. Then, with the circle drawn, we can determine the
stresses , , and acting on an inclined element (Fig. 7-16b). We canσx1

σy1
τx1y1

Fig. 7-16
Construction of Mohr’s circle for
plane stress

also obtain the principal stresses and maximum shear stresses from the
 circle.

With σx, σy, and τxy known, the procedure for constructing Mohr’s cir-
cle is as follows (see Fig. 7-16c):

1. Draw a set of coordinate axes with as abscissa (positive to the
right) and as ordinate (positive downward).

2. Locate the center C of the circle at the point having coordinates
and [see Eqs. (7-31a) and (7-32)].

3. Locate point A, representing the stress conditions on the x face of the
element shown in Fig. 7-16a, by plotting its coordinates and

. Note that point A on the circle corresponds to .
Also, note that the x face of the element (Fig. 7-16a) is labeled “A” to
show its correspondence with point A on the circle.

4. Locate point B, representing the stress conditions on the y face of the
element shown in Fig. 7-16a, by plotting its coordinates and

. Note that point B on the circle corresponds to τx1y1
� �τxy θ � 90°.

σx1
� σy

θ � 0τx1y1
� τxy

σx1
� σx

σx1
� σaver τx1y1

� 0

τx1y1

σx1

(c)

D'

O C

s1

s2

S2

S1

P1
P2

sx

B(u = 90°)

D(u = u)

A(u = 0)

τx1y1

τx1y1

–τxy

τxy

sx1

sy

sx1

2u

2up1

b

sx – sy

2
saver =

sx + sy

2

(a)

y

B

A

xO

τxy

sy

sx

(b)

D'

D

y1

x1

y

τx1y1

sy1

sx1

x
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Chapter 7  Analysis of Stress and Strain630

In addition, the y face of the element (Fig. 7-16a) is labeled “B” to
show its correspondence with point B on the circle.

5. Draw a line from point A to point B. This line is a diameter of  the
circle and passes through the center C. Points A and B, represent-
ing the stresses on planes at 90� to each other (Fig. 7-16a), are at
opposite ends of  the diameter (and therefore are 180� apart on the
circle).

6. Using point C as the center, draw Mohr’s circle through points A
and B. The circle drawn in this manner has radius R [Eq. (7-31b)],
as shown in the next paragraph.

Now that we have drawn the circle, we can verify by geometry that
lines CA and CB are radii and have lengths equal to R. We note that the
abscissas of  points C and A are (σx � σy)/2 and σx, respectively. The dif-
ference in these abscissas is (σx � σy)/2, as dimensioned in the figure.
Also, the ordinate to point A is τxy. Therefore, line CA is the hypotenuse
of  a right triangle having one side of  length (σx � σy)/2 and the other
side of  length τxy. Taking the square root of  the sum of  the squares of
these two sides gives the radius R:

which is the same as Eq. (7-31b). By a similar procedure, we can show that
the length of line CB is also equal to the radius R of the circle.

Stresses on an Inclined Element
Now we will consider the stresses , , and acting on the faces of a
plane-stress element oriented at an angle from the x axis (Fig. 7-16b). If the
angle θ is known, these stresses can be determined from Mohr’s  circle. The
procedure is as follows.

On the circle (Fig. 7-16c), we measure an angle 2θ counterclockwise
from radius CA, because point A corresponds to and is the refer-
ence point from which we measure angles. The angle 2θ locates point D on
the circle, which (as shown in the next paragraph) has coordinates and

. Therefore, point D represents the stresses on the x1 face of the element 
of  Fig. 7-16b. Consequently, this face of  the element is labeled “D” in
Fig. 7-16b.

Note that an angle 2θ on Mohr’s circle corresponds to an angle θ on a
stress element. For instance, point D on the circle is at an angle 2θ from
point A, but the x1 face of the element shown in Fig. 7-16b (the face labeled
“D”) is at an angle θ from the x face of the element shown in Fig.7-16a (the
face labeled “A”). Similarly, points A and B are 180� apart on the circle, but
the corresponding faces of the element (Fig. 7-16a) are 90� apart.

To show that the coordinates and of point D on the circle are 
indeed given by the stress-transformation equations given in Eqs. (7-4a)
and (7-4b), we again use the geometry of the circle. Let β be the angle
between the radial line CD and the axis. Then, from the geometry of the 
figure, we obtain the following expressions for the coordinates of point D:

θ

σx1

σx1
τx1y1

τx1y1

σx1

θ � 0

σx1
σy1

τx1y1

R �
C
aσx � σy

2
b2

� τxy
2
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7.4 Mohr’s Circle for Plane Stress 631

(7-33a,b)

Noting that the angle between the radius CA and the horizontal axis is
, we get

Expanding the cosine and sine expressions (see Appendix C) gives

(7-34a)

(7-34b)

Multiplying the first of these equations by cos 2θ and the second by
sin 2θ and then adding, we obtain

(7-34c)

Also, multiplying Eq. (7-34a) by sin 2θ and Eq. (7-34b) by cos 2θ and then
subtracting, we get

(7-34d)sin β �
1
R
a�

σx � σy

2
sin 2θ � τxy cos 2θb

σx1
�

σx � σy

2
� R cos β τx1y1

� R sin β

cos β �
1
R
aσx � σy

2
cos 2θ � τxy sin 2θb

sin 2θ cos β � cos 2θ sin β �
τxy

R

cos 2θ cos β � sin 2θ sin β �
σx � σy

2R

cos (2θ � β) �
σx � σy

2R
sin (2θ � β) �

τxy

R

2θ � β

Fig. 7-16 (Repeated)
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Chapter 7  Analysis of Stress and Strain

When these expressions for cos β and sin β are substituted into Eqs. (7-33a)
and (7-33b), we obtain the stress-transformation equations for and τx1y1

σx1

632

[Eqs. (7-4a) and (7-4b)]. Thus, we have shown that point D on Mohr’s
 circle, defined by the angle 2θ, represents the stress conditions on the x1
face of the stress element defined by the angle θ (Fig. 7-16b).

Point D�, which is diametrically opposite point D on the circle, is
located by an angle 2θ (measured from line CA) that is 180� greater
than the angle 2θ to point D. Therefore, point D� on the circle repre-
sents the stresses on a face of  the stress element (Fig. 7-16b) at 90� from
the face represented by point D. Thus, point D� on the circle gives the
stresses and on the y1 face of  the stress element (the face
labeled “D�” in Fig. 7-16b).

From this discussion we see how the stresses represented by points on
Mohr’s circle are related to the stresses acting on an element. The stresses
on an inclined plane defined by the angle θ (Fig. 7-16b) are found on the
circle at the point where the angle from the reference point (point A) is 2θ.
Thus, as we rotate the axes counterclockwise through an angle θ
(Fig. 7-16b), the point on Mohr’s circle corresponding to the x1 face moves
counterclockwise through an angle 2θ. Similarly, if  we rotate the axes
clockwise through an angle, the point on the circle moves clockwise
through an angle twice as large.

Principal Stresses
The determination of principal stresses is probably the most important
application of Mohr’s circle. Note that as we move around Mohr’s circle
(Fig. 7-16c), we encounter point P1 where the normal stress reaches its
algebraically largest value and the shear stress is zero. Hence, point P1 rep-
resents a principal stress and a principal plane. The abscissa σ1 of point P1
gives the algebraically larger principal stress and its angle from the
reference point A (where ) gives the orientation of  the principal
plane. The other principal plane, associated with the algebraically
smallest normal stress, is represented by point P2, diametrically oppo-
site point P1.

From the geometry of the circle, we see that the algebraically larger
principal stress is

which, upon substitution of the expression for R [Eq. (7-31b)], agrees with
the earlier equation for this stress [Eq. (7-14)]. In a similar manner, we can
verify the expression for the algebraically smaller principal stress σ2.

The principal angle between the x axis (Fig. 7-16a) and the plane
of  the algebraically larger principal stress is one-half  the angle ,
which is the angle on Mohr’s circle between radii CA and CP1. The
cosine and sine of  the angle can be obtained by inspection from the
circle:

cos 2θp1
�

σx � σy

2R
sin 2θp1

�
τxy

R

2θp1

2θp1

θp1

σ1 � OC � CP1 �
σx � σy

2
� R

θ � 0
2θp1

x1y1

σy1
�τx1y1
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7.4 Mohr’s Circle for Plane Stress 633

These equations agree with Eqs. (7-18a) and (7-18b), and so once again we
see that the geometry of the circle matches the equations derived earlier.
On the circle, the angle to the other principal point (point P2) is 180�2θp2

(a) (b)

(c)

O sx1

saver

2u

C

R

Clockwise shear stresses

Counterclockwise shear stresses

τ τ

Fig. 7-17
Alternative sign convention for
shear stresses: (a) clockwise
shear stress, (b) counterclock-
wise shear stress, and (c) axes
for Mohr’s circle. (Note that
clockwise shear stresses are
 plotted upward and
 counterclockwise shear stresses
are plotted downward.)

larger than ; hence, , as expected.

Maximum Shear Stresses
Points S1 and S2, representing the planes of maximum positive and maxi-
mum negative shear stresses, respectively, are located at the bottom and
top of Mohr’s circle (Fig. 7-16c). These points are at angles
from points P1 and P2, which agrees with the fact that the planes of max-
imum shear stress are oriented at 45� to the principal planes.

The maximum shear stresses are numerically equal to the radius R
of  the circle [compare Eq. (7-31b) for R with Eq. (7-25) for τmax]. Also,
the normal stresses on the planes of  maximum shear stress are equal to
the abscissa of  point C, which is the average normal stress σaver [see  
Eq. (7-31a)].

Alternative Sign Convention for Shear Stresses
An alternative sign convention for shear stresses is sometimes used when
constructing Mohr’s circle. In this convention, the direction of a shear
stress acting on an element of the material is indicated by the sense of the
rotation that it tends to produce (Figs. 7-17a and b). If  the shear stress τ
tends to rotate the stress element clockwise, it is called a clockwise shear
stress, and if  it tends to rotate it counterclockwise, it is called a counter-
clockwise stress. Then, when constructing Mohr’s circle, clockwise shear
stresses are plotted upward and counterclockwise shear stresses are plot-
ted downward (Fig. 7-17c).

It is important to realize that the alternative sign convention produces
a circle that is identical to the circle already described (Fig. 7-16c). The
reason is that a positive shear stress is also a counterclockwise shear
stress, and both are plotted downward. Also, a negative shear stress
is a clockwise shear stress, and both are plotted upward.

Thus, the alternative sign convention merely provides a different
point of  view. Instead of  thinking of  the vertical axis as having nega-
tive shear stresses plotted upward and positive shear stresses plotted

τx1y1

τx1y1

2θ � 90°

2θp1
θp2

� θp1
� 90°
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Chapter 7  Analysis of Stress and Strain

downward (which is a bit awkward), we can think of  the vertical axis
as having clockwise shear stresses plotted upward and counterclock-
wise shear stresses plotted downward (Fig. 7-17c).

General Comments about the Circle
From the preceding discussions in this section, it is apparent that we can
find the stresses acting on any inclined plane, as well as the principal
stresses and maximum shear stresses, from Mohr’s circle. However, only
rotations of  axes in the xy plane (that is, rotations about the z axis) are
considered, and therefore all stresses on Mohr’s circle are in-plane
stresses.

For convenience, the circle of Fig. 7-16 was drawn with σx, σy, and τxy
as positive stresses, but the same procedures may be followed if  one or
more of the stresses is negative. If  one of the normal stresses is negative,
part or all of the circle will be located to the left of the origin, as illustrated
in Example 7-6 that follows.

Point A in Fig. 7-16c, representing the stresses on the plane ,
may be situated anywhere around the circle. However, the angle 2θ is
always measured counterclockwise from the radius CA, regardless of
where point A is located.

In the special cases of uniaxial stress, biaxial stress, and pure shear, the
construction of Mohr’s circle is simpler than in the general case of plane stress.
These special cases are illustrated in Example 7-4 and in Probs. 7.4-1 through
7.4-9.

Besides using Mohr’s circle to obtain the stresses on inclined planes
when the stresses on the x and y planes are known, we can also use the cir-
cle in the opposite manner. If we know the stresses , , and actingσx1

σy1
τx1y1

θ � 0

634

on an inclined element oriented at a known angle θ, we can easily construct
the circle and determine the stresses σx, σy, and τxy for the angle .
The procedure is to locate points D and D� from the known stresses and
then draw the circle using line DD� as a diameter. By measuring the angle
2θ in a negative sense from radius CD, we can locate point A, correspon-
ding to the x face of the element. Then we can locate point B by construct-
ing a diameter from A. Finally, we can determine the coordinates of
points A and B, and thereby obtain the stresses acting on the element for  
which .

If  desired, we can construct Mohr’s circle to scale and measure val-
ues of  stress from the drawing. However, it is usually preferable to
obtain the stresses by numerical calculations, either directly from the
various equations or by using trigonometry and the geometry of  the
circle.

Mohr’s circle makes it possible to visualize the relationships between
stresses acting on planes at various angles, and it also serves as a simple
memory device for calculating stresses. Although many graphical tech-
niques are no longer used in engineering work, Mohr’s circle remains valu-
able because it provides a simple and clear picture of an otherwise
complicated analysis.

Mohr’s circle is also applicable to the transformations for plane
strain and moments of  inertia of  plane areas, because these quantities
follow the same transformation laws as do stresses (see Sections 7.7, 12.8,
and 12.9).

θ � 0

θ � 0
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7.4 Mohr’s Circle for Plane Stress 635

At a point on the surface of a hydraulic ram on a piece of construction
equipment (Fig. 7-18a), the material is subjected to biaxial stresses 
σx � 90 MPa and σy � 20 MPa, as shown on the stress element of Fig. 7-18b.
Using Mohr’s circle, determine the stresses acting on an element inclined at
an angle . (Consider only the in-plane stresses, and show the results
on a sketch of a properly oriented element.)

Solution
Construction of Mohr’s circle. We begin by setting up the axes for the normal
and shear stresses, with positive to the right and positive downward,
as shown in Fig. 7-18c. Then we place the center C of the circle on the axis 
at the point where the stress equals the average normal stress [Eq. (7-31a)]:

Point A, representing the stresses on the x face of the element , has
coordinates

Similarly, the coordinates of point B, representing the stresses on the y face
, are

σx1
� 20 MPa τx1y1

� 0

(θ � 90°)

σx1
� 90 MPa τx1y1

� 0

(θ � 0)

σaver �
σx � σy

2
�

90 MPa � 20 MPa
2

� 55 MPa

σx1

σx1
τx1y1

θ � 30°

Example 7-4• • •

Continues ➥

Fig. 7-18b,c
Example 7-4: (b) Element on
hydraulic ram in plane stress,
and (c) the corresponding
Mohr’s circle (Note: All stresses
on the circle have units of
MPa.)

(a)

(b)

y

B

A

xO

sy = 20 MPa

sx = 90 MPa

Fig. 7-18a
Example 7-4: (a) Hydraulic
cylinder on construction 
equipment (© Can Stock Photo
Inc./zoomzoom)

(b)

(c)

y

B

A

xO

sy = 20 MPa

sx = 90 MPa

D'

O
C A

B
(u = 90°)

(u = 120°)

D (u = 30°)

(u = 0)

tx1y1

sx1

35 35

72.5

20
30.335
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Chapter 7  Analysis of Stress and Strain636

Now we draw the circle through points A and B with center at C and
radius R [see Eq. (7-31b)] equal to

Stresses on an element inclined at . The stresses acting on a
plane oriented at an angle are given by the coordinates of point D,
which is at an angle from point A (Fig. 7-18c). By inspection of the
circle, we see that the coordinates of point D are

In a similar manner, we can find the stresses represented by point D�, which
corresponds to an angle (or ):

These results are shown in Fig. 7-19 on a sketch of an element oriented at
an angle , with all stresses shown in their true directions. Note that
the sum of the normal stresses on the inclined element is equal to ,
or 110 MPa.

➥

➥

➥
➥� 55 MPa � (35 MPa)(cos 60°) � 72.5 MPa

R �
B
aσx � σy

2
b2

� τxy
2 �

B
a90 MPa � 20 MPa

2
b2

� 0 � 35 MPa

2θ � 60°
θ � 30°

θ � 30°

(Point D) σx1
� σaver � R cos 60°

� 55 MPa � (35 MPa)( cos 60°) � 37.5 MPa

(Point D¿) σx1
� σaver � R cos 60°

2θ � 240°θ � 120°

τx1y1
� �R sin 60° � �(35 MPa)(sin 60°) � �30.3 MPa

σx � σy

θ � 30°

τx1y1
� R sin 60° � (35 MPa)( sin 60°) � 30.3 MPa

Example 7-4 - Continued• • •

y

D

D'

xO

30.3 MPa

37.5 MPa

72.5 MPa

u = 30°

Fig. 7-19
Example 7-4 (continued):
Stresses acting on an element
oriented at an angle θ � 30°
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7.4 Mohr’s Circle for Plane Stress 637

An element in plane stress on the surface of an oil-drilling pump arm (Fig. 7-20a)
is subjected to stresses , , and , as
shown in Fig. 7-20b.

Using Mohr’s circle, determine the following quantities: (a) the stresses
acting on an element inclined at an angle , (b) the principal stresses,
and (c) the maximum shear stresses. (Consider only the in-plane stresses, and
show all results on sketches of properly oriented elements.)

Solution
Construction of Mohr’s circle. The first step in the solution is to set up the axes
for Mohr’s circle, with positive to the right and positive downward
(Fig. 7-20c). The center C of the circle is located on the axis at the point
where equals the average normal stress [Eq. (7-31a)]:

Point A, representing the stresses on the x face of the element , has
coordinates

Similarly, the coordinates of point B, representing the stresses on the y face
are

σaver �
σx � σy

2
�

100 MPa � 34 MPa
2

� 67 MPa

(θ � 0)

σx1

σx1

θ � 40°

σx1
� 34 MPa τx1y1

� �28 MPa

(θ � 90°)

σx1
� 100 MPa τx1y1

� 28 MPa

τx1y1
σx1

τxy � 28 MPaσy � 34 MPaσx � 100 MPa

Example 7-5• • •

Continues ➥

(a)

(b)

B

A

34 MPa

28 MPa

100 MPa

y

xO

Fig. 7-20a
Example 7-5: (a) Oil drilling
pumps (Can Stock Photo Inc.
ssvaphoto)

Fig. 7-20b,c
Example 7-5: (b) Element in
plane stress, and (c) the
 corresponding Mohr’s circle
(Note: All stresses on the circle
have units of MPa.)
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67 33
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Chapter 7  Analysis of Stress and Strain638

The circle is now drawn through points A and B with center at C. The radius
of the circle, from Eq. (7-31b), is

(a) Stresses on an element inclined at . The stresses acting on a
plane oriented at an angle are given by the coordinates of point D,
which is at an angle from point A (Fig. 7-20c). To evaluate these
coordinates, we need to know the angle between line CD and the axis
(that is, angle DCP1), which in turn requires that we know the angle
between line CA and the axis (angle ACP1). These angles are found from 
the geometry of the circle, as follows:

Knowing these angles, we can determine the coordinates of point D directly
from the Fig. 7-21a:

In an analogous manner, we can find the stresses represented by point D�,
which corresponds to a plane inclined at an angle (or ):

These stresses are shown in Fig. 7-21a on a sketch of an element oriented at
an angle (all stresses are shown in their true directions). Also, note
that the sum of the normal stresses is equal to .

➥

➥

➥

➥

R �
B
aσx � σy

2
b2

� τxy
2

θ � 40°
θ � 40°

�
B
a100 MPa � 34 MPa

2
b2

� (28 MPa)2 � 43 MPa

σx1

DCP1 � 80° � ACP1 � 80° � 40.3° � 39.7°

tan ACP1 �
28 MPa
33 MPa

� 0.848 ACP1 � 40.3°

σx1

2θ � 80°

σx � σy, or 134 MPa
θ � 40°

τx1y1
� (43 MPa)(sin 39.7°) � 27.5 MPa

(Point D�) σx1
� 67 MPa � (43 MPa)(cos 39.7°) � 33.9 MPa

2θ � 260°θ � 130°

τx1y1
� �(43 MPa)(sin 39.7°) � �27.5 MPa

(Point D) σx1
� 67 MPa � (43 MPa)(cos 39.7°) � 100 MPa

Example 7-5 - Continued• • •

(a)

D'

D

100 MPa33.9 MPa

27.5 MPa

y

xO

u = 40°

(b)

24 MPa

110 MPa

up1
 = 20.15°

y

xO

P2

P1

(c)

67 MPa

67 MPa

43 MPa

us1
 = –24.85°

xO

y

S1

S2

Fig. 7-21
Example 7-5 (continued): 
(a) Stresses acting on an 
element oriented at ,
(b) principal stresses, and 
(c) maximum shear stresses

θ � 40°
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7.4 Mohr’s Circle for Plane Stress 639639

(b) Principal stresses. The principal stresses are represented by points P1
and P2 on Mohr’s circle (Fig. 7-20c). The algebraically larger principal stress
(point P1) is

as seen by inspection of the circle. The angle to point P1 from point A
is the angle ACP1 on the circle, that is,

Thus, the plane of the algebraically larger principal stress is oriented at an
angle , as shown in Fig. 7-21b.

The algebraically smaller principal stress (represented by point P2) is
obtained from the circle in a similar manner:

The angle to point P2 on the circle is ; thus, the

➥

➥

➥

2θp2
40.3° � 180° � 220.3°

σ1 � 67 MPa � 43 MPa � 110 MPa

2θp1

ACP1 � 2θp1
� 40.3° θp1

� 20.15°

θp1
� 20.15°

σ2 � 67 MPa � 43 MPa � 24 MPa

second principal plane is defined by the angle . The principalθp2
� 110.2°

stresses and principal planes are shown in Fig. 7-21b, and again we note that
the sum of the normal stresses is equal to 134 MPa.

(c) Maximum shear stresses. The maximum shear stresses are repre-
sented by points S1 and S2 on Mohr’s circle; therefore, the maximum in-plane
shear stress (equal to the radius of the circle) is

The angle ACS1 from point A to point S1 is , and there-
fore the angle for point S1 is

This angle is negative because it is measured clockwise on the circle. The cor-
responding angle to the plane of the maximum positive shear stress is

➥

θs1

2θs1
� �49.7°

τmax � 43 MPa

2θs1

90° � 40.3° � 49.7°

one-half that value, or , as shown in Figs. 7-20c and 7-21c. Theθs1
� �24.85°

maximum negative shear stress (point S2 on the circle) has the same numer-
ical value as the maximum positive stress (43 MPa).

The normal stresses acting on the planes of maximum shear stress are
equal to σaver, which is the abscissa of the center C of the circle (67 MPa).
These stresses are also shown in Fig. 7-21c. Note that the planes of maximum
shear stress are oriented at 45� to the principal planes.
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Chapter 7  Analysis of Stress and Strain640

Example 7-6• • •
At a point on the surface of a metal-working lathe the stresses are

, , and , as shown in Fig. 7-22a.
Using Mohr’s circle, determine the following quantities: (a) the stresses

acting on an element inclined at an angle , (b) the principal stresses,
and (c) the maximum shear stresses. (Consider only the in-plane stresses, and
show all results on sketches of properly oriented elements.)

Solution
Construction of Mohr’s circle. The axes for the normal and shear stresses are
shown in Fig. 7-22b, with positive to the right and positive downward. τx1y1

σx1

θ � 45°

τxy � �40 MPaσy � 10 MPaσx � �50 MPa

Fig. 7-22
Example 7-6: (a) Element in
plane stress, and (b) the
 corresponding Mohr’s circle
(Note: All stresses on the circle
have units of MPa.)

The center C of the circle is located on the axis at the point where the stress σx1
equals the average normal stress [Eq. (7-31a)]:

Point A, representing the stresses on the x face of the element , has
coordinates

Similarly, the coordinates of point B, representing the stresses on the y face
, are

The circle is now drawn through points A and B with center at C and radius R
[from Eq. (7-31b)] equal to

�
B
a�50 MPa � 10 MPa

2
b2

� (�40 MPa)2 � 50 MPa

R �
C
aσx � σy

2
b2

� τxy
2

σx1
� 10 MPa τx1y1

� 40 MPa

(θ � 90°)

σx1
� �50 MPa τx1y1

� �40 MPa

(θ � 0)

σaver �
σx � σy

2
�

�50 MPa � 10 MPa
2

� �20 MPa

(a)

(b)

10 MPa

50 MPa

40 MPa
P2

(up2
 = 26.6°)

AB

y

xO
C

D (u = 45°)

P1 (up1
 = 116.6°)

A (u = 0)

B (u = 90°)

τx1y1

20 10

sx1

40

50

50

D'

50

50

(us1
 = 71.6°)

S1

S2

O

40

36.87°

50

53.13°90°
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7.4 Mohr’s Circle for Plane Stress 641

(a) Stresses on an element inclined at . The stresses acting on a
plane oriented at an angle are given by the coordinates of
point D, which is at an angle from point A (Fig. 7-22b). To eval-
uate these coordinates, we need to know the angle between line CD
and the negative axis (that is, angle DCP2), which in turn requires 

θ � 45°

2θ � 90°
θ � 45°

σx1

Continues ➥

(b) (c)

y

xO

y

O

(a)

x

y

xO

20 MPa 30 MPa

30 MPa

20 MPa
20 MPa

50 MPa

60 MPa 70 MPa
u = 45° up2

 = 26.6°
us1

 = 71.6°

D'

D

P1

P2

S2

S1

Fig. 7-23
Example 7-6 (continued): 
(a) Stresses acting on an
 element oriented at ,
(b) principal stresses, and 
(c) maximum shear stresses

θ � 45°

that we know the angle between line CA and the negative axis σx1
(angle ACP2). These angles are found from the geometry of the circle as
follows:

Knowing these angles, we can obtain the coordinates of point D directly
from Fig. 7-23a:

In an analogous manner, we can find the stresses represented by
point D�, which corresponds to a plane inclined at an angle (or

):

These stresses are shown in Fig. 7-23a on a sketch of an element oriented
at an angle (all stresses are shown in their true directions). 
Also, note that the sum of the normal stresses is equal to , 
or .

➥

➥

➥

➥

�40 MPa
σx � σy

θ � 45°

τx1y1
� (�50 MPa)(sin 36.87°) � �30 MPa

(Point D¿) σx1
� �20 MPa � (50 MPa)(cos 36.87°) � 20 MPa

2θ � 270°
θ � 135°

τx1y1
� (50 MPa)(sin 36.87°) � 30 MPa

(Point D) σx1
� �20 MPa � (50 MPa)(cos 36.87°) � �60 MPa

DCP2
� 90° � ACP2

� 90° � 53.13° � 36.87°

tan ACP2 �
40 MPa
30 MPa

�
4
3 ACP2

� 53.13°
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Chapter 7  Analysis of Stress and Strain642

(b) Principal stresses. The principal stresses are represented by points P1 and
P2 on Mohr’s circle. The algebraically larger principal stress (represented
by point P1) is

as seen by inspection of the circle. The angle to point P1 from point A

➥

2θp1

σ1 � �20 MPa � 50 MPa � 30 MPa

Example 7-6 - Continued• • •

pal plane is defined by the angle .θp2
� 26.6°

stress is one-half that value, or , as shown in Fig. 7-23c. Theθs1
� 71.6°

maximum negative shear stress (point S2 on the circle) has the same
numerical value as the positive stress (50 MPa).

The normal stresses acting on the planes of maximum shear stress
are equal to σaver, which is the coordinate of the center C of the circle

. These stresses are also shown in Fig. 7-23c. Note that the
planes of maximum shear stress are oriented at 45� to the principal
planes.

(�20 MPa)

is the angle ACP1 measured counterclockwise on the circle, that is,

Thus, the plane of the algebraically larger principal stress is oriented at
an angle .

The algebraically smaller principal stress (point P2) is obtained from
the circle in a similar manner:

The angle to point P2 on the circle is 53.13�; thus, the second princi-

➥

➥

2θp2

σ2 � �20 MPa � 50 MPa � �70 MPa

θp1
� 116.6°

ACP1 � 2θp1
� 53.13° � 180° � 233.13° θp1

� 116.6°

The principal stresses and principal planes are shown in Fig. 7-23b,
and again we note that the sum of the normal stresses is equal to

, or .

(c) Maximum shear stresses. The maximum positive and negative shear
stresses are represented by points S1 and S2 on Mohr’s circle (Fig. 7-22b).
Their magnitudes, equal to the radius of the circle, are

The angle ACS1 from point A to point S1 is , and
therefore the angle for point S1 is

The corresponding angle to the plane of the maximum positive shear

➥

θs1

2θs1
� 143.13°

2θs1

90° � 53.13° � 143.13°

τmax � 50 MPa

σx � σy �40 MPa
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7.5 Hooke’s Law for Plane Stress 643

7.5 HOOKE’S LAW FOR PLANE STRESS
The stresses acting on inclined planes when the material is subjected to
plane stress (Fig. 7-24) were discussed in Sections 7.2, 7.3, and 7.4. The
stress-transformation equations derived in those discussions were obtained
solely from equilibrium, and therefore the properties of the materials were
not needed. Now, in this section, we will investigate the strains in the mate-
rial, which means that the material properties must be considered.
However, we will limit our discussion to materials that meet two important
conditions: first, the material is uniform throughout the body and has the
same properties in all directions (homogeneous and isotropic material), and
second, the material follows Hooke’s law (linearly elastic material). Under
these conditions, we can readily obtain the relationships between the
stresses and strains in the body.

Let us begin by considering the normal strains εx, εy, and εz in plane
stress. The effects of these strains are pictured in Fig. 7-25, which shows
the changes in dimensions of a small element having edges of lengths a, b,
and c. All three strains are shown positive (elongation) in the figure. The
strains can be expressed in terms of the stresses (Fig. 7-24) by superimpos-
ing the effects of the individual stresses.

For instance, the strain εx in the x direction due to the stress σx is equal
to , where E is the modulus of elasticity. Also, the strain εx due to theσx /E
stress σy is equal to , where ν is Poisson’s ratio (see Section 1.6). Of�νσy /E
course, the shear stress τxy produces no normal strains in the x, y, or z direc-
tions. Thus, the resultant strain in the x direction is

(7-35a)

In a similar manner, we obtain the strains in the y and z directions:

(7-35b,c)

These equations may be used to find the normal strains (in plane stress)
when the stresses are known.

The shear stress τxy (Fig. 7-24) causes a distortion of the element such
that each z face becomes a rhombus (Fig. 7-26). The shear strain γxy is the
decrease in angle between the x and y faces of the element and is related
to the shear stress by Hooke’s law in shear, as follows:

(7-36)

where G is the shear modulus of elasticity. Note that the normal stresses σx
and σy have no effect on the shear strain γxy. Consequently, Eqs. (7-35) and
(7-36) give the strains (in plane stress) when all stresses (σx, σy, and τxy) act
simultaneously.

The first two equations [Eqs. (7-35a) and (7-35b)] give the strains εx
and εy in terms of the stresses. These equations can be solved simultane-
ously for the stresses in terms of the strains:

(7-37a,b)σx �
E

1 � ν2 (εx � νεy) σy �
E

1 � ν2 (εy � νεx)

γxy �
τxy

G

εy �
1
E

(σy � νσx) εz � �
ν
E

(σx � σy)

εx �
1
E

(σx � νσy)

y

x

z

O

τxy

sx

sy

Fig. 7-24
Element of material in plane
stress (σz � 0)

y

x

z

O

cεz

aεx

bεy

a

b

c

Fig. 7-25
Element of material subjected 
to normal strains εx, εy, and εz

y

x

z

O

2
– γxy

π
2

– γxy
π

Fig. 7-26
Shear strain γxy
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Chapter 7  Analysis of Stress and Strain

In addition, we have the following equation for the shear stress in terms of
the shear strain:

(7-38)

Equations (7-37) and (7-38) may be used to find the stresses (in plane
stress) when the strains are known. Of course, the normal stress σz in the
z direction is equal to zero.

Equations (7-35) through (7-38) are known collectively as Hooke’s law
for plane stress. They contain three material constants (E, G, and ν), but
only two are independent because of the relationship

(7-39)

which was derived previously in Section 3.6.

Special Cases of Hooke’s Law
In the special case of biaxial stress (Fig. 7-11b), we have , and
therefore Hooke’s law for plane stress simplifies to

(7-40a,b,c)

(7-41a,b)

These equations are the same as Eqs. (7-35) and (7-37) because the effects
of normal and shear stresses are independent of each other.

For uniaxial stress, with (Fig. 7-11a), the equations of
Hooke’s law simplify even further:

(7-42a,b,c)

Finally, we consider pure shear (Fig. 7-12a), which means that
. Then we obtain

(7-43a,b)

In all three of these special cases, the normal stress σz is equal to zero.

Volume Change
When a solid object undergoes strains, both its dimensions and its volume
will change. The change in volume can be determined if  the normal
strains in three perpendicular directions are known. To show how this is
accomplished, let us again consider the small element of  material shown

τxy � 0

εx � εy � εz � 0 γxy �
τxy

G

σx � σy � 0

εx �
σx

E
εy � εz � �

νσx

E
σx � Eεx

σy � 0

σx �
E

1 � ν2 (εx � νεy) σy �
E

1 � ν2 (εy � νεx)

εz � �
ν
E

(σx � σy)

εx �
1
E

(σx � νσy) εy �
1
E

(σy � νσx)

G �
E

2(1 � ν)

τxy � Gγxy

644

y

xO
sxsx

(b)

(a)

y

xO
sx

sy

sy

sx

Fig. 7-11 (Repeated)
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7.5 Hooke’s Law for Plane Stress 645

in Fig. 7-25. The original element is a rectangular parallelepiped having
sides of  lengths a, b, and c in the x, y, and z directions, respectively. The
strains εx, εy, and εz produce the changes in dimensions shown by the
dashed lines. Thus, the increases in the lengths of  the sides are aεx, bεy,
and cεz.

The original volume of the element is

(7-44a)

and its final volume is

(7-44b)

By referring to Eq. (7-44a), we can express the final volume of the element
[Eq. (7-44b)] in the form

(7-45a)

Upon expanding the terms on the right-hand side, we obtain the following
equivalent expression:

(7-45b)

The preceding equations for V1 are valid for both large and small strains.
If  we now limit our discussion to structures having only very small

strains (as is usually the case), we can disregard the terms in Eq. (7-45b)
that consist of products of small strains. Such products are themselves
small in comparison to the individual strains εx, εy, and εz. Then the
expression for the final volume simplifies to

(7-46)

and the volume change is

(7-47)

This expression can be used for any volume of material provided the strains
are small and remain constant throughout the volume. Note also that the
material does not have to follow Hooke’s law. Furthermore, the expression
is not limited to plane stress, but is valid for any stress conditions. (As a final
note, we should mention that shear strains produce no change in volume.)

The unit volume change e, also known as the dilatation, is defined as
the change in volume divided by the original volume; thus,

(7-48)

By applying this equation to a differential element of volume and then
integrating, we can obtain the change in volume of a body even when the
normal strains vary throughout the body.

e �
¢V
V0

� εx � εy � εz

¢V � V1 � V0 � V0(εx � εy � εz)

V1 � V0(1 � εx � εy � εz)

V1 � V0(1 � εx � εy � εz � εxεy � εxεz � εyεz � εxεyεz)

V1 � V0(1 � εx)(1 � εy)(1 � εz)

� abc(1 � εx)(1 � εy)(1 � εz)

V1 � (a � aεx)(b � bεy)(c � cεz)

V0 � abc

y

x

z

O

cεz

aεx

bεy

a

b

c

Fig. 7-25 (Repeated)
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Chapter 7  Analysis of Stress and Strain

The preceding equations for volume changes apply to both tensile and
compressive strains, inasmuch as the strains εx, εy, and εz are algebraic
quantities (positive for elongation and negative for shortening). With this
sign convention, positive values for �V and e represent increases in vol-
ume, and negative values represent decreases.

Let us now return to materials that follow Hooke’s law and are sub-
jected only to plane stress (Fig. 7-24). In this case the strains εx, εy, and εz
are given by Eqs. (7-35a, b, and c). Substituting those relationships into
Eq. (7-48), we obtain the following expression for the unit volume change
in terms of stresses:

(7-49)

Note that this equation also applies to biaxial stress.
In the case of a prismatic bar in tension, that is, uniaxial stress, Eq. (7-49)

simplifies to

(7-50)

From this equation we see that the maximum possible value of Poisson’s
ratio for common materials is 0.5, because a larger value means that the
volume decreases when the material is in tension, which is contrary to
ordinary physical behavior.

Strain-Energy Density in Plane Stress
The strain-energy density u is the strain energy stored in a unit volume of
the material (see the discussions in Sections 2.7 and 3.9). For an element
in plane stress, we can obtain the strain-energy density by referring to the
elements pictured in Figs. 7-25 and 7-26. Because the normal and shear
strains occur independently, we can add the strain energies from these two
elements to obtain the total energy.

Let us begin by finding the strain energy associated with the normal
strains (Fig. 7-25). Since the stress acting on the x face of the element is σx
(see Fig. 7-24), we find that the force acting on the x face of the element
(Fig. 7-25) is equal to σxbc. Of course, as the loads are applied to the struc-
ture, this force increases gradually from zero to its maximum value. At the
same time, the x face of the element moves through the distance aεx.
Therefore, the work done by this force is

provided Hooke’s law holds for the material. Similarly, the force act-
ing on the y face does work equal to

The sum of these two terms gives the strain energy stored in the element:

abc
2

(σxεx � σyεy)

1
2

(σyac)(bεy)

σyac

1
2

(σxbc)(aεx)

e �
¢V
V0

�
1 � 2ν

E
(σx � σy)

e �
¢V
V0

�
σx

E
(1 � 2ν)

646

y

x

z

O

τxy

sx

sy

Fig. 7-24 (Repeated)
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O

cεz

aεx

bεy

a

b

c

Fig. 7-25 (Repeated)
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7.5 Hooke’s Law for Plane Stress 647

Thus, the strain-energy density (strain energy per unit volume) due to the
normal stresses and strains is

(7-51a)

The strain-energy density associated with the shear strains (Fig. 7-26)
was evaluated previously in Section 3.9 [see Eq. (d) of that section]:

(7-51b)

By combining the strain-energy densities for the normal and shear
strains, we obtain the following formula for the strain-energy density in
plane stress:

(7-52)

Substituting for the strains from Eqs. (7-35) and (7-36), we obtain the
strain-energy density in terms of stresses alone:

(7-53)

In a similar manner, we can substitute for the stresses from Eqs. (7-37) and
(7-38) and obtain the strain-energy density in terms of strains alone:

(7-54)

To obtain the strain-energy density in the special case of biaxial stress,
we simply drop the shear terms in Eqs. (7-52), (7-53), and (7-54).

For the special case of uniaxial stress, we substitute the following values

into Eqs. (7-53) and (7-54) and obtain, respectively,

(7-55a,b)

These equations agree with Eqs. (2-44a) and (2-44b) of Section 2.7.
Also, for pure shear we substitute

into Eqs. (7-53) and (7-54) and obtain

(7-56a,b)

These equations agree with Eqs. (3-55a) and (3-55b) of Section 3.9.

u �
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2
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Chapter 7  Analysis of Stress and Strain648

Example 7-7• • •
Strain gages A and B (oriented in the x and y directions, respectively) are
attached to a rectangular aluminum plate with a thickness of . The
plate is subjected to uniform normal stresses σx and σy, as shown in  
Fig. 7-27, and the gage readings for normal strains are (short-εx � �0.00075

t � 7 mm

ening, gage A) and (elongation, gage B). The modulus of elastic-εy � 0.00125
ity is , and Poisson’s ratio is . Find the stresses σx and σy andE � 73 GPa ν � 0.33
the change �t in the thickness of the plate. Also, find the unit volume change
(or dilatation) e and the strain-energy density u for the plate.

Solution
For a plate in biaxial stress, we can use Eqs. (7-41a) and (7-41b) to find the
normal stresses σx and σy in the x and y directions, respectively, based upon
the measured normal strains εx and εy:

The normal strain in the z direction is then computed from Eq. (7-40c) as

The change (i.e., here a decrease) in the thickness of the plate is then

We use Eq. (7-49) to find the dilatation or unit volume change e of the plate as

The positive sign for e means that the plate increases in volume (although the
increase is very small). Finally, we compute the strain-energy density of the
plate using Eq. (7-53) (deleting the shear term):

➥

➥

➥

➥

� 61.6 kPa

�
1

2(73 GPa)
[(�27.6 MPa)2 � (82.1 MPa)2 � 2(0.33)(�27.6 MPa)(82.1 MPa)]

u �
1

2E
(σx

2 � σy
2 � 2νσxσy)

e �
1 � 2ν

E
(σx � σy) � 2.538 	 10�4

¢t � εzt � [�2.464(10�4)](7 mm) � �1.725 	 10�3 mm

� �2.464 	 10�4

εz �
�ν
E

(σx � σy) �
�(0.33)
73 GPa

(�27.6 MPa � 82.1 MPa)

� 82.1 MPa

σy �
E

1 � ν 2
(εy � νεx) �

73 Gpa

1 � 0.332
[0.00125 � (0.33)(�0.00075)]

� �27.6 MPa

σx �
E

1 � ν 2
(εx � νεy ) �

73 GPa

1 � 0.332
[�0.00075 � (0.33)(0.00125)]

B A
O

y

x

σy

σx

Fig. 7-27
Example 7-7: Rectangular
 aluminum plate with strain
gages A and B
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7.6 Triaxial Stress 649

7.6 TRIAXIAL STRESS
An element of  material subjected to normal stresses σx, σy, and σz act-
ing in three mutually perpendicular directions is said to be in a state of
triaxial stress (Fig. 7-28a). Since there are no shear stresses on the x, y,
and z faces, the stresses σx, σy, and σz are the principal stresses in the
material.

If  an inclined plane parallel to the z axis is cut through the element
(Fig. 7-28b), the only stresses on the inclined face are the normal stress σ
and shear stress τ, both of which act parallel to the xy plane. These stresses
are analogous to the stresses and encountered in our earlier
discussions of plane stress (see, for instance, Fig. 7-2a). Because the
stresses σ and τ (Fig. 7-28b) are found from equations of force equilibrium
in the xy plane, they are independent of the normal stress σz. Therefore,
we can use the transformation equations of plane stress, as well as Mohr’s
circle for plane stress, when determining the stresses σ and τ in triaxial
stress. The same general conclusion holds for the normal and shear
stresses acting on inclined planes cut through the element parallel to the x
and y axes.

Maximum Shear Stresses
From our previous discussions of  plane stress, we know that the maxi-
mum shear stresses occur on planes oriented at 45� to the principal
planes. Therefore, for a material in triaxial stress (Fig. 7-28a), the max-
imum shear stresses occur on elements oriented at angles of  45� to the
x, y, and z axes. For example, consider an element obtained by a 45�
rotation about the z axis. The maximum positive and negative shear
stresses acting on this element are

(7-57)

Similarly, by rotating about the x and y axes through angles of 45�, we
obtain the following maximum shear stresses:

(7-58a,b)

The absolute maximum shear stress is the numerically largest of the
stresses determined from Eqs. (7-57, 7-58a and b). It is equal to one-half
the difference between the algebraically largest and algebraically smallest
of the three principal stresses.

The stresses acting on elements oriented at various angles to the x, y,
and z axes can be visualized with the aid of Mohr’s circles. For elements
oriented by rotations about the z axis, the corresponding circle is labeled
A in Fig. 7-29. Note that this circle is drawn for the case in which
and both σx and σy are tensile stresses.

In a similar manner, we can construct circles B and C for elements ori-
ented by rotations about the x and y axes, respectively. The radii of the cir-
cles represent the maximum shear stresses given by Eqs. (7-57, 7-58a and b),

σx 7 σy

(τmax)x � �
σy � σz

2
(τmax)y � �

σx � σz

2

(τmax)z � �
σx � σy

2

τx1y1
σx1

y

x

z

O
sxsx

sz

sz

sy

sy

(a)

sx

sz

sy

s
τ

(b)

u

Fig. 7-28
Element in triaxial stress

O

C

B

A

s

τ
sx

sy

sz

Fig. 7-29
Mohr’s circles for an element in
triaxial stress
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Chapter 7  Analysis of Stress and Strain

and the absolute maximum shear stress is equal to the radius of the largest
circle. The normal stresses acting on the planes of maximum shear stresses
have magnitudes given by the abscissas of the centers of the respective cir-
cles.

In the preceding discussion of triaxial stress we only considered
stresses acting on planes obtained by rotating about the x, y, and z axes.
Thus, every plane we considered is parallel to one of  the axes. For
instance, the inclined plane of  Fig. 7-28b is parallel to the z axis, and its
normal is parallel to the xy plane. Of course, we can also cut through the
element in skew directions, so that the resulting inclined planes are skew
to all three coordinate axes. The normal and shear stresses acting on such
planes can be obtained by a more complicated three-dimensional analy-
sis. However, the normal stresses acting on skew planes are intermediate
in value between the algebraically maximum and minimum principal
stresses, and the shear stresses on those planes are smaller (in absolute
value) than the absolute maximum shear stress obtained from Eqs. (7-57,
7-58a and b).

Hooke’s Law for Triaxial Stress
If  the material follows Hooke’s law, we can obtain the relationships
between the normal stresses and normal strains by using the same proce-
dure as for plane stress (see Section 7.5). The strains produced by the
stresses σx, σy, and σz acting independently are superimposed to obtain
the resultant strains. Thus, we readily arrive at the following equations for
the strains in triaxial stress:

(7-59a)

(7-59b)

(7-59c)

In these equations, the standard sign conventions are used; that is, tensile
stress σ and extensional strain ε are positive.

The preceding equations can be solved simultaneously for the stresses
in terms of the strains:

(7-60a)

(7-60b)

(7-60c)

Equations (7-59) and (7-60) represent Hooke’s law for triaxial stress.

σz �
E

(1 � ν)(1 � 2ν)
[(1 � ν)εz � ν(εx � εy)]

σy �
E

(1 � ν)(1 � 2ν)
[(1 � ν)εy � ν(εz � εx)]

σx �
E

(1 � ν)(1 � 2ν)
[(1 � ν)εx � ν(εy � εz)]

εz �
σz

E
�

ν
E

(σx � σy)

εy �
σy

E
�

ν
E

(σz � σx)

εx �
σx

E
�

ν
E

(σy � σz)
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7.6 Triaxial Stress 651

In the special case of  biaxial stress (Fig. 7-11b), we can obtain the
equations of  Hooke’s law by substituting into the preceding
equations. The resulting equations reduce to Eqs. (7-40) and (7-41) of
Section 7.5.

Unit Volume Change
The unit volume change (or dilatation) for an element in triaxial stress is
obtained in the same manner as for plane stress (see Section 7.5). If  the
element is subjected to strains εx, εy, and εz, we may use Eq. (7-48) for the
unit volume change:

(7-61)

This equation is valid for any material provided the strains are small.
If  Hooke’s law holds for the material, we can substitute for the strains

εx, εy, and εz from Eqs. (7-59a, b, and c) and obtain

(7-62)

Equations (7-61) and (7-62) give the unit volume change in triaxial stress
in terms of the strains and stresses, respectively.

Strain-Energy Density
The strain-energy density for an element in triaxial stress is obtained by
the same method used for plane stress. When stresses σx and σy act alone
(biaxial stress), the strain-energy density [from Eq. (7-52) with the shear
term discarded] is

When the element is in triaxial stress and subjected to stresses σx, σy,
and σz, the expression for strain-energy density becomes

(7-63a)

Substituting for the strains from Eqs. (7-59a, b, and c), we obtain the
strain-energy density in terms of the stresses:

(7-63b)

In a similar manner, but using Eqs. (7-60a, b, and c), we can express the
strain-energy density in terms of the strains:

(7-63c)

When calculating from these expressions, we must be sure to substitute the
stresses and strains with their proper algebraic signs.

σz � 0

2ν(εxεy � εxεz � εyεz)]

u �
E

2(1 � ν)(1 � 2ν)
[(1 � ν)(εx

2 � εy
2 � εz

2) �

u �
1

2E
(σx

2 � σy
2 � σz

2) �
ν
E

(σxσy � σxσz � σyσz)

u �
1
2

(σxεx � σyεy � σzεz)

u �
1
2

(σxεx � σyεy)

e �
1 � 2ν

E
(σx � σy � σz)

e � εx � εy � εz
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Chapter 7  Analysis of Stress and Strain

Spherical Stress
A special type of triaxial stress, called spherical stress, occurs whenever all
three normal stresses are equal (Fig. 7-30):

(7-64)

Under these stress conditions, any plane cut through the element will be
subjected to the same normal stress σ0 and will be free of shear stress.
Thus, we have equal normal stresses in every direction and no shear
stresses anywhere in the material. Every plane is a principal plane, and the
three Mohr’s circles shown in Fig. 7-29 reduce to a single point.

The normal strains in spherical stress are also the same in all direc-
tions, provided the material is homogeneous and isotropic. If  Hooke’s law
applies, the normal strains are

(7-65)

as obtained from Eqs. (7-59a, b, and c).
Since there are no shear strains, an element in the shape of a cube

changes in size but remains a cube. In general, any body subjected to
spherical stress will maintain its relative proportions but will expand or
contract in volume depending upon whether σ0 is tensile or compressive.

The expression for the unit volume change can be obtained from
Eq. (7-61) by substituting for the strains from Eq. (7-65). The result is

(7-66)

Equation (7-66) is usually expressed in more compact form by introducing
a new quantity K called the volume modulus of elasticity, or bulk modulus
of elasticity, which is defined as follows:

(7-67)

With this notation, the expression for the unit volume change becomes

(7-68)

and the volume modulus is

(7-69)

Thus, the volume modulus can be defined as the ratio of the spherical
stress to the volumetric strain, which is analogous to the definition of the
modulus E in uniaxial stress. Note that the preceding formulas for e and K
are based upon the assumptions that the strains are small and Hooke’s law
holds for the material.

From Eq. (7-61) for K, we see that if  Poisson’s ratio ν equals 1/3, the
moduli K and E are numerically equal. If  , then K has the value E/3,
and if  , K becomes infinite, which corresponds to a rigid material
having no change in volume (that is, the material is incompressible).

ν � 0.5
ν � 0

K �
σ0

e

e �
σ0

K

K �
E

3(1 � 2ν)

e � 3ε0 �
3σ0(1 � 2ν)

E

ε0 �
σ0

E
(1 � 2ν)

σx � σy � σz � σ0
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Fig. 7-30
Element in spherical stress
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7.7 Plane Strain 653

The preceding formulas for spherical stress were derived for an ele-
ment subjected to uniform tension in all directions, but of course the for-
mulas also apply to an element in uniform compression. In the case of
uniform compression, the stresses and strains have negative signs. Uniform
compression occurs when the material is subjected to uniform pressure in
all directions; for example, an object submerged in water or rock deep
within the earth. This state of stress is often called hydrostatic stress.

Although uniform compression is relatively common, a state of  uni-
form tension is difficult to achieve. It can be realized by suddenly and
uniformly heating the outer surface of  a solid metal sphere, so that the
outer layers are at a higher temperature than the interior. The tendency
of  the outer layers to expand produces uniform tension in all directions
at the center of  the sphere.

7.7 PLANE STRAIN
The strains at a point in a loaded structure vary according to the orien-
tation of the axes, in a manner similar to that for stresses. In this section
we will derive the transformation equations that relate the strains in
inclined directions to the strains in the reference directions. These transfor-
mation equations are widely used in laboratory and field investigations
involving measurements of strains.

Strains are customarily measured by strain gages; for example, gages are
placed in aircraft to measure structural behavior during flight, and gages are
placed in buildings to measure the effects of earthquakes. Since each gage
measures the strain in one particular direction, it is usually necessary to calcu-
late the strains in other directions by means of the transformation equations.

Plane Strain Versus Plane Stress
Let us begin by explaining what is meant by plane strain and how it relates
to plane stress. Consider a small element of material having sides of
lengths a, b, and c in the x, y, and z directions, respectively (Fig. 7-31a). If
the only deformations are those in the xy plane, then three strain compo-
nents may exist—the normal strain εx in the x direction (Fig. 7-31b), the
normal strain εy in the y direction (Fig. 7-31c), and the shear strain γxy
(Fig. 7-31d). An element of material subjected to these strains (and only
these strains) is said to be in a state of plane strain.

It follows that an element in plane strain has no normal strain εz in the
z direction and no shear strains γxz and γyz in the xz and yz planes, respec-
tively. Thus, plane strain is defined by the following conditions:

(7-70a,b,c)

The remaining strains (εx, εy, and γxy) may have nonzero values.
From the preceding definition, we see that plane strain occurs when

the front and rear faces of an element of material (Fig. 7-31a) are fully
restrained against displacement in the z direction—an idealized condition
that is seldom reached in actual structures. However, this does not mean
that the transformation equations of plane strain are not useful. It turns
out that they are extremely useful because they also apply to the strains in
plane stress, as explained in the following paragraphs.

εz � 0 γxz � 0 γyz � 0
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Chapter 7  Analysis of Stress and Strain654

*In the discussions of this chapter we are omitting the effects of temperature changes and prestrains, both
of which produce additional deformations that may alter some of our conclusions.

The definition of plane strain [Eqs. (7-70a, b, and c)] is analogous to
that for plane stress. In plane stress, the following stresses must be zero:

(7-71a,b,c)

whereas the remaining stresses (σx, σy, and τxy) may have nonzero values.
A comparison of the stresses and strains in plane stress and plane strain is
given in Fig. 7-32.

It should not be inferred from the similarities in the definitions of
plane stress and plane strain that both occur simultaneously. In general, an
element in plane stress will undergo a strain in the z direction (Fig. 7-32);
hence, it is not in plane strain. Also, an element in plane strain usually will
have stresses σz acting on it because of the requirement that ; there-
fore, it is not in plane stress. Thus, under ordinary conditions plane stress
and plane strain do not occur simultaneously.

An exception occurs when an element in plane stress is subjected to
equal and opposite normal stresses (that is, when ) and Hooke’s
law holds for the material. In this special case, there is no normal strain in
the z direction, as shown by Eq. (7-35c), and therefore the element is in a
state of plane strain as well as plane stress. Another special case, albeit a
hypothetical one, is when a material has Poisson’s ratio equal to zero

; then every plane stress element is also in plane strain because(ν � 0)

σx � �σy

εz � 0

σz � 0 τxz � 0 τyz � 0

Fig. 7-31
Strain components εx, εy, and 

γxy in the xy plane (plane strain)
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[Eq. (7-35c)].*εz � 0
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7.7 Plane Strain 655

Application of the Transformation Equations
The stress-transformation equations derived for plane stress in the xy
plane [Eqs. (7-4a) and (7-4b)] are valid even when a normal stress σz is
present. The explanation lies in the fact that the stress σz does not enter the
equations of  equilibrium used in deriving Eqs. (7-4a) and (7-4b).
Therefore, the transformation equations for plane stress can also be used for
the stresses in plane strain.

An analogous situation exists for plane strain. Although we will derive
the strain-transformation equations for the case of plane strain in the xy
plane, the equations are valid even when a strain εz exists. The reason is
simple enough—the strain εz does not affect the geometric relationships
used in the derivations. Therefore, the transformation equations for plane
strain can also be used for the strains in plane stress.

Finally, we should recall that the transformation equations for plane
stress were derived solely from equilibrium and therefore are valid for any
material, whether linearly elastic or not. The same conclusion applies to
the transformation equations for plane strain—since they are derived
solely from geometry, they are independent of the material properties.

Transformation Equations for Plane Strain
In the derivation of the transformation equations for plane strain, we will use
the coordinate axes shown in Fig. 7-33. We will assume that the normal
strains εx and εy and the shear strain γxy associated with the xy axes are known
(Fig. 7-31). The objectives of our analysis are to determine the normal strain

and the shear strain associated with the axes, which are rotatedεx1
γx1y1

x1y1

y

x

z

O

sx

sy

y

x

z

O

εx

sz = 0

sx, sy, and τxy may have
nonzero values

τxz = 0 τyz = 0

sx, sy, sz, and τxy may have
nonzero values

τxz = 0 τyz = 0

γxz = 0

εx, εy, εz, and gxy may have
nonzero values

γyz = 0

εx, εy, and γxy may have
nonzero values

εz = 0 γyz = 0γ xz = 0

εy

Stresses

Plane stress Plane strain

Strains

τxy    γxy

counterclockwise through an angle θ from the xy axes. (It is not necessary to
derive a separate equation for the normal strain because it can be obtainedεy1 O

y

x

y1

x1

u

u

Fig. 7-33
Axes x1 and y1 rotated through
an angle θ from the xy axes

Fig. 7-32
Comparison of plane stress and
plane strain

from the equation for by substituting for θ.)εx1
θ � 90°
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Chapter 7  Analysis of Stress and Strain656
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Fig. 7-34
Deformations of an element in
plane strain due to (a) normal
strain εx, (b) normal strain εy,

and (c) shear strain γxy

Normal strain . To determine the normal strain in the x1 direction,εx1
εx1

we consider a small element of material selected so that the x1 axis is along
a diagonal of the z face of the element and the x and y axes are along the sides
of the element (Fig. 7-34a). The figure shows a two-dimensional view of the
element, with the z axis toward the viewer. Of course, the element is actually
three dimensional, as in Fig. 7-31a, with a dimension in the z direction.

Consider first the strain εx in the x direction (Fig. 7-34a). This strain
produces an elongation in the x direction equal to εxdx, where dx is the
length of the corresponding side of the element. As a result of this elon-
gation, the diagonal of the element increases in length by an amount

(7-72a)

as shown in Fig. 7-34a.
Next, consider the strain εy in the y direction (Fig. 7-34b). This strain

produces an elongation in the y direction equal to εydy, where dy is the
length of the side of the element parallel to the y axis. As a result of this
elongation, the diagonal of the element increases in length by an amount

(7-72b)

which is shown in Fig. 7-34b.
Finally, consider the shear strain γxy in the xy plane (Fig. 7-34c). This

strain produces a distortion of the element such that the angle at the lower
left corner of the element decreases by an amount equal to the shear
strain. Consequently, the upper face of the element moves to the right
(with respect to the lower face) by an amount γxydy. This deformation
results in an increase in the length of the diagonal equal to

(7-72c)

as shown in Fig. 7-34c.

γxydy cos θ

εydy sin θ

εxdx cos θ
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7.7 Plane Strain 657

the axes. This strain is equal to the decrease in angle between lines inx1y1

The total increase �d in the length of the diagonal is the sum of the
preceding three expressions; thus,

(7-73)

The normal strain in the xl direction is equal to this increase in lengthεx1

¢d � εx dx cos θ � εy dy sin θ � γxy dy cos θ

divided by the initial length ds of the diagonal:

(7-74)

Observing that and , we obtain the follow-
ing equation for the normal strain:

(7-75)

Thus, we have obtained an expression for the normal strain in the x1
direction in terms of  the strains εx, εy, and γxy associated with the xy
axes.

As mentioned previously, the normal strain in the yl direction isεy1

εx1
�

¢d
ds

� εx

dx
ds

cos θ � εy

dy

ds
sin θ � γxy

dy

ds
cos θ

εx1
� εx cos2 θ � εy sin2 θ � γxy sin θ cos θ

dx/ds � cos θ dy/ds � sin θ

obtained from the preceding equation by substituting for θ.
Shear strain . Now we turn to the shear strain associated withγx1y1

γx1y1

θ � 90°

the material that were initially along the x1 and yl axes. To clarify this idea,
consider Fig. 7-35, which shows both the xy and axes, with the angle θ
between them. Let line Oa represent a line in the material that initially was

x1y1

along the xl axis (that is, along the diagonal of the element in Fig. 7-34). The
deformations caused by the strains εx, εy, and γxy (Fig. 7-34) cause line Oa
to rotate through a counterclockwise angle α from the xl axis to the position
shown in Fig. 7-35. Similarly, line Ob was originally along the yl axis, but
because of the deformations it rotates through a clockwise angle β. The
shear strain is the decrease in angle between the two lines that originallyγx1y1

O

y

b

a

x

y1

x1

u

α

β γx1y1
 = a + β

Fig. 7-35

Shear strain associated with
the axesx1y1

γx1y1

were at right angles; therefore,

(7-76)

Thus, in order to find the shear strain , we must determine the angles
α and β.

γx1y1

γx1y1
� α � β
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Chapter 7  Analysis of Stress and Strain658

The angle α can be found from the deformations pictured in Fig. 7-34
as follows. The strain εx (Fig. 7-34a) produces a clockwise rotation of
the diagonal of  the element. Let us denote this angle of  rotation as α1.
The angle α1 is equal to the distance divided by the length ds
of  the diagonal:

(7-77a)

Similarly, the strain εy produces a counterclockwise rotation of the diago-
nal through an angle α2 (Fig. 7-34b). This angle is equal to the distance

divided by ds:

(7-77b)

Finally, the strain γxy produces a clockwise rotation through an angle α3
(Fig. 7-34c) equal to the distance divided by ds:

(7-77c)

Therefore, the resultant counterclockwise rotation of the diagonal (Fig. 7-34),
equal to the angle α shown in Fig. 7-35, is

(7-78)

Again observing that and , we obtain

(7-79)

The rotation of line Ob (Fig. 7-35), which initially was at 90� to line
Oa, can be found by substituting for θ in the expression for α.
The resulting expression is counterclockwise when positive (because α is
counterclockwise when positive), hence it is equal to the negative of the
angle β (because β is positive when clockwise). Thus,

(7-80)

Adding α and β gives the shear strain [see Eq. (7-67)]:

(7-81)

To put the equation in a more useful form, we divide each term by 2:

(7-82)
γx1y1

2
� �(εx � εy) sin θ cos θ �

γxy

2
(cos2 θ � sin2 θ )

γx1y1
� �2(εx � εy) sin θ cos θ � γxy(cos2 θ � sin2 θ )

γx1y1

� �(εx � εy) sin θ cos θ � γxy cos2 θ

β � (εx � εy) sin (θ � 90°) cos (θ � 90°) � γxy sin2 (θ � 90°)

εy dy cos θ

α1 � εx

dx
ds

sin θ

εx dx sin θ

α2 � εy

dy

ds
cos θ

α3 � γxy

dy

ds
sin θ

γxy dy sin θ

θ � 90°

α � �(εx � εy) sin θ cos θ � γxy sin2 θ

dx/ds � cos θ dy/ds � sin θ

� �εx

dx
ds

sin θ � εy

dy

ds
cos θ � γxy

dy

ds
sin θ

α � �α1 � α2 � α3
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7.7 Plane Strain 659

We have now obtained an expression for the shear strain associatedγx1y1

Stresses Strains

σx εx

σy εy

τxy γxy /2

σx1
εx1

τx1y1
γx1y1

/2

to corresponds to , εx corresponds to σx, εy corresponds toσx1
, γx1y1

/2 τx1y1
σy, and corresponds to τxy. The corresponding variables in the twoγxy/2
sets of transformation equations are listed in Table 7-1.

The analogy between the transformation equations for plane stress
and those for plane strain shows that all of the observations made in
Sections 7.2, 7.3, and 7.4 concerning plane stress, principal stresses, maxi-
mum shear stresses, and Mohr’s circle have their counterparts in plane
strain. For instance, the sum of the normal strains in perpendicular direc-
tions is a constant [compare with Eq. (7-6)]:

(7-84)

This equality can be verified easily by substituting the expressions for
[from Eq. (7-83a)] and [from Eq. (7-83a) with θ replaced by 

Principal Strains
Principal strains exist on perpendicular planes with the principal angles θp
calculated from the following equation [compare with Eq. (7-11)]:

(7-85)

The principal strains can be calculated from the equation

(7-86)ε1,2 �
εx � εy

2
�

B
a εx � εy

2
b2

� a γxy

2
b2

tan 2θp �
γxy

εx � εy

εy1
θ � 90°].

εx1

εx1
� εy1

� εx � εy

with the axes in terms of the strains εx, εy, and γxy associated with the
xy axes.

Transformation equations for plane strain. The equations for plane
strain [Eqs. (7-75) and (7-82)] can be expressed in terms of the angle 2θ by
using the following trigonometric identities:

Thus, the transformation equations for plane strain become

(7-83a)

and

(7-83b)

These equations are the counterparts of Eqs. (7-4a) and (7-4b) for plane
stress.

When comparing the two sets of equations, note that correspondsεx1

γx1y1

2
� �

εx � εy

2
sin 2θ �

γxy

2
cos 2θ

εx1
�

εx � εy

2
�

εx � εy

2
cos 2θ �

γxy

2
sin 2θ

sin θ cos θ �
1
2

sin 2θ

cos2 θ �
1
2

(1 � cos 2θ) sin2 θ �
1
2

(1 � cos 2θ)

x1y1
Table 7-1

Corresponding Variables in the
Transformation Equations for
Plane Stress [Eqs. (7-4a and b)]
and Plane Strain [Eqs. (7-83a
and b)]
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Chapter 7  Analysis of Stress and Strain660

diameter from A, has coordinates εy and , representing the strains�γxy/2
associated with a pair of axes rotated through an angle .

The strains associated with axes rotated through an angle θ are given
by point D, which is located on the circle by measuring an angle 2θ coun-
terclockwise from radius CA. The principal strains are represented by
points P1 and P2, and the maximum shear strains by points S1 and S2. All
of these strains can be determined from the geometry of the circle or from
the transformation equations.

θ � 90°

which corresponds to Eq. (7-17) for the principal stresses. The two princi-
pal strains (in the xy plane) can be correlated with the two principal direc-
tions using the technique described in Section 7.3 for the principal stresses.
(This technique is illustrated later in Example 7-8.) Finally, note that in
plane strain the third principal strain is . Also, the shear strains are
zero on the principal planes.

Maximum Shear Strains
The maximum shear strains in the xy plane are associated with axes at 45�
to the directions of the principal strains. The algebraically maximum shear
strain (in the xy plane) is given by the following equation [compare with
Eq. (7-25)]:

(7-87)

The minimum shear strain has the same magnitude but is negative. In the
directions of maximum shear strain, the normal strains are

(7-88)

which is analogous to Eq. (7-27) for stresses. The maximum out-of-plane
shear strains, that is, the shear strains in the xz and yz planes, can be
obtained from equations analogous to Eq. (7-87).

An element in plane stress that is oriented to the principal directions
of stress (see Fig. 7-13b) has no shear stresses acting on its faces.
Therefore, the shear strain for this element is zero. It follows that theγx1y1

εaver �
εx � εy

2

γ max

2
�

B
a εx � εy

2
b2

� a γxy

2
b2

εz � 0

normal strains in this element are the principal strains. Thus, at a given
point in a stressed body, the principal strains and principal stresses occur in
the same directions.

Mohr’s Circle for Plane Strain
Mohr’s circle for plane strain is constructed in the same manner as the cir-
cle for plane stress, as illustrated in Fig. 7-36. Normal strain is plotted as
the abscissa (positive to the right) and one-half the shear strain is
plotted as the ordinate (positive downward). The center C of the circle has
an abscissa equal to εaver [Eq. (7-88)].

Point A, representing the strains associated with the x direction
, has coordinates εx and . Point B, at the opposite end of a(θ � 0) γxy/2

(γx1y1
/2)

εx1
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7.7 Plane Strain 661
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(a) 45° strain gages three-element rosette
(b) Three-element strain-gage rosettes
      prewired

Fig. 7-37
Three electrical-resistance strain
gages arranged as a 45� strain
rosette (magnified view).
(Courtesy of Micro-
Measurements Division of
Vishay Precision Group, Raleigh,
NC, USA)

Strain Measurements
An electrical-resistance strain gage is a device for measuring normal
strains on the surface of  a stressed object. These gages are quite small,
with lengths typically in the range from one-eighth to one-half  of  an inch.
The gages are bonded securely to the surface of  the object so that they
change in length in proportion to the strains in the object itself.

Each gage consists of  a fine metal grid that is stretched or short-
ened when the object is strained at the point where the gage is attached.
The grid is equivalent to a continuous wire that goes back and forth
from one end of  the grid to the other, thereby effectively increasing its
length (Fig. 7-37). The electrical resistance of  the wire is altered when it

Fig. 7-36
Mohr’s circle for plane strain
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Chapter 7  Analysis of Stress and Strain662

stretches or shortens—then this change in resistance is converted into
a measurement of  strain. The gages are extremely sensitive and can
measure strains as small as .

Since each gage measures the normal strain in only one direction,
and since the directions of  the principal stresses are usually unknown,
it is necessary to use three gages in combination, with each gage meas-
uring the strain in a different direction. From three such measure-
ments, it is possible to calculate the strains in any direction, as
illustrated in Example 7-9.

A group of three gages arranged in a particular pattern is called a
strain rosette. Because the rosette is mounted on the surface of the body,
where the material is in plane stress, we can use the transformation equa-
tions for plane strain to calculate the strains in various directions. (As
explained earlier in this section, the transformation equations for plane
strain can also be used for the strains in plane stress.)

Calculation of Stresses from the Strains
The strain equations presented in this section are derived solely from
geometry, as already pointed out. Therefore, the equations apply to any
material, whether linear or nonlinear, elastic or inelastic. However, if  it
is desired to determine the stresses from the strains, the material proper-
ties must be taken into account.

If  the material follows Hooke’s law, we can find the stresses using
the appropriate stress-strain equations from either Section 7.5 (for plane
stress) or Section 7.6 (for triaxial stress).

As a first example, suppose that the material is in plane stress and
that we know the strains εx, εy, and γxy, perhaps from strain-gage meas-
urements. Then we can use the stress-strain equations for plane stress
[Eqs. (7-37) and (7-38)] to obtain the stresses in the material.

Now consider a second example. Suppose we have determined the
three principal strains ε1, ε2, and ε3 for an element of  material (if  the
element is in plane strain, then ). Knowing these strains, we can
find the principal stresses using Hooke’s law for triaxial stress [see
Eqs. (7-60a, b, and c)]. Once the principal stresses are known, we can
find the stresses on inclined planes using the transformation equations
for plane stress (see the discussion at the beginning of  Section 7.6).

1 	 10�6

ε3 � 0
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7.7 Plane Strain 663

An element of material in plane strain undergoes the following strains:

These strains are shown highly exaggerated in Fig. 7-38a, which shows the
deformations of an element of unit dimensions. Since the edges of the ele-
ment have unit lengths, the changes in linear dimensions have the same
magnitudes as the normal strains εx and εy. The shear strain γxy is the decrease
in angle at the lower-left corner of the element.

Determine the following quantities: (a) the strains for an element ori-
ented at an angle , (b) the principal strains, and (c) the maximum
shear strains. (Consider only the in-plane strains, and show all results on
sketches of properly oriented elements.)

θ � 30°

εx � 340 	 10�6 εy � 110 	 10�6 γxy � 180 	 10�6

Example 7-8• • •

Continues ➥

y

1

110 × 10–6

180 × 10–6

340 × 10–6

1

(a)

x

up1
 = 19.0°

O

y
y1

x1

80 × 10–6

370 × 10–6

(c)

xO

u = 30°

y
y1

x190 × 10–6

110 × 10–6 360 × 10–6

(b)

xO

us2
 = 64.0°

y

y1

x1

225 × 10–6

290 × 10–6

225 × 10–6

(d)

x

O

Fig. 7-38
Example 7-8: Element of
 material in plane strain: 
(a) element oriented to the 
x and y axes, (b) element 
oriented at an angle ,
(c) principal strains, and 
(d) maximum shear strains
(Note: The edges of the 
elements have unit lengths.)

θ � 30°

Solution
(a) Element oriented at an angle . The strains for an element ori-
ented at an angle θ to the x axis can be found from the transformation
equations of Eqs. (7-83a) and (7-83b). As a preliminary matter, we make the
following calculations:

γxy

2
� 90 	 10�6

εx � εy

2
�

(340 � 110)10�6

2
� 115 	 10�6

εx � εy

2
�

(340 � 110)10�6

2
� 225 	 10�6

θ � 30°
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Chapter 7  Analysis of Stress and Strain664

Example 7-8 - Continued• • •
Now substituting into Eqs. (7-83a) and (7-83b), we get

Therefore, the shear strain is

The strain can be obtained from Eq. (7-84), as

The strains , and are shown in Fig. 7-38b for an element oriented

➥

➥

➥

εx1
, εy1

γx1 y1

εy1
� εx � εy � εx1

� (340 � 110 � 360)10�6 � 90 	 10�6

εy1

γx1y1
� �110 	 10�6

� �55 	 10�6

� �(115 	 10�6)(sin 60°) � (90 	 10�6)(cos 60°)

γx1y1

2
� �

εx � εy

2
sin 2θ �

γxy

2
cos 2θ

� 360 	 10�6

� (225 	 10�6) � (115 	 10�6)(cos 60°) � (90 	 10�6)(sin 60°)

εx1
�

εx � εy

2
�

εx � εy

2
cos 2θ �

γxy

2
sin 2θ

at . Note that the angle at the lower-left corner of the element
increases because is negative.
(b) Principal strains. The principal strains are readily determined from 
Eq. (7-86), as

Thus, the principal strains are

ε1 � 370 	 10�6 ε2 � 80 	 10�6

θ � 30°

� 225 	 10�6�146 	 10�6

� 225 	 10�6� 3(115 	 10�6)2 � (90 	 10�6)2

ε1,2 �
εx � εy

2
�

B
a εx � εy

2
b2

� a γxy

2
b2

γx1y1
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7.7 Plane Strain 665

in which ε1 denotes the algebraically larger principal strain and ε2 denotes
the algebraically smaller principal strain. (Recall that we are considering
only in-plane strains in this example.)

The angles to the principal directions can be obtained from Eq. (7-85):

The values of between 0 and 360� are 38.0� and 218.0�, and therefore2θp

tan 2θp �
γxy

εx � εy

�
180

340 � 110
� 0.7826

up1
 = 19.0°

y
y1

x1

80 × 10–6

370 × 10–6

(c)

xO

us2
 = 64.0°

y

y1

x1

225 × 10–6

290 × 10–6

225 × 10–6

(d)

x

O

Fig. 7-38c,d (Repeated)

the angles to the principal directions are

To determine the value of θp associated with each principal strain, we
substitute into the first transformation equation [Eq. (7-83a)]θp � 19.0°

θp � 19.0° and 109.0°

and solve for the strain:

This result shows that the larger principal strain ε1 is at the angle
The smaller strain ε2 acts at 90� from that directionθp1

� 19.0°.

� 370 	 10�6

� (225 	 10�6) � (115 	 10�6)(cos 38.0°) �(90 	 10�6)(sin 38.0°)

εx1
�

εx � εy

2
�

εx � εy

2
cos 2θ �

γxy

2
sin 2θ

Continues ➥

. Thus,

Note that .

➥

➥

ε1 � ε2 � εx � εy

ε2 � 80 	 10�6 and θp2
� 109.0°

ε1 � 370 	 10�6 and θp1
� 19.0°

(θp2
� 109.0°)
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Chapter 7  Analysis of Stress and Strain

Example 7-8 - Continued• • •

666

The principal strains are portrayed in Fig. 7-38c. There are, of course, no
shear strains on the principal planes.
(c) Maximum shear strain. The maximum shear strain is calculated from 
Eq. (7-87):

The element having the maximum shear strains is oriented at 45� to the prin-
cipal directions; therefore, and . By
substituting this value of into the second transformation equation
[Eq. (7-83b)], we can determine the sign of the shear strain associated with
this direction. The calculations are 

This result shows that an element oriented at an angle has the
maximum negative shear strain.

We can arrive at the same result by observing that the angle to the

➥

θs1

θs2
� 64.0°

� �146 	 10�6

� �(115 	 10�6)(sin 128.0°) � (90 	 10�6)(cos 128.0°)

γx1y1

2
� �

εx � εy

2
sin 2θ �

γxy

2
cos 2θ

2θs

2θs � 128.0°θs � 19.0° � 45° � 64.0°

γmax

2
�

B
a εx � εy

2
b2

� a γxy

2
b2

� 146 	 10�6 γmax � 290 	 10�6

direction of maximum positive shear strain is always 45� less than . Hence,

The shear strains corresponding to and are and
, respectively.

The normal strains on the element having the maximum and minimum
shear strains are

A sketch of the element having the maximum in-plane shear strains is shown
in Fig. 7-38d.

In this example, we solved for the strains by using the transformation
equations. However, all of the results can be obtained just as easily from
Mohr’s circle.

➥

➥

➥

εaver �
εx � εy

2
� 225 	 10�6

γmin � �290 	 10�6
γmax � 290 	 10�6θs2

θs1

θs2
� θs1

� 90° � 64.0°

θs1
� θp1

� 45° � 19.0° � 45° � �26.0°

θp1
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7.7 Plane Strain 667

A 45� strain rosette (also called a rectangular rosette) consists of three
electrical-resistance strain gages arranged to measure strains in two per-
pendicular directions and also at a 45� angle between them, as shown in
Fig. 7-39a. The rosette is bonded to the surface of the structure before it
is loaded. Gages A, B, and C measure the normal strains εa, εb, and εc in the
directions of lines Oa, Ob, and Oc, respectively.

Explain how to obtain the strains , and associated with anγx1y1
εx1

, εy1

Example 7-9• • •

(a)

y

c

b

C
B

A xa
O

45º

45º

(b)

y

x

y1

x1

O

u

FIG. 7-39
Example 7-9: (a) 45� strain
rosette, and (b) element 
oriented at an angle θ to the
xy axes

 element oriented at an angle θ to the xy axes (Fig. 7-39b).

Solution
At the surface of the stressed object, the material is in plane stress. Since the
strain-transformation equations [Eqs. (7-83a) and (7-83b)] apply to plane
stress as well as to plane strain, we can use those equations to determine the
strains in any desired direction.

Strains associated with the xy axes. We begin by determining the strains
associated with the xy axes. Because gages A and C are aligned with the x
and y axes, respectively, they give the strains εx and εy directly:

(7-89a,b)

To obtain the shear strain γxy, we use the transformation equation for nor-
mal strains [Eq. (7-83a)]:

For an angle , we know that (Fig. 7-39a); therefore, the pre-
ceding equation gives

Solving for γxy, we get

(7-90)

Thus, the strains εx, εy, and γxy are easily determined from the given strain-
gage readings.

Strains associated with the x1y1 axes. Knowing the strains εx , εy , and γxy ,
we can calculate the strains for an element oriented at any angle θ
(Fig. 7-39b) from the strain-transformation equations [Eqs. (7-83a) and 
(7-83b)] or from Mohr’s circle. We can also calculate the principal strains and
the maximum shear strains from Eqs. (7-86) and (7-87), respectively.

γxy � 2εb � εa � εc

εb �
εa � εc

2
�

εa � εc

2
(cos 90°) �

γxy

2
(sin 90°)

εx1
� εbθ � 45°

εx1
�

εx � εy

2
�

εx � εy

2
cos 2θ �

γxy

2
sin 2θ

εx � εa εy � εc
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668

CHAPTER SUMMARY & REVIEW

In Chapter 7, we investigated the state of stress at a point on a stressed body
and then displayed it on a stress element. In two dimensions, plane stress was
discussed and we derived transformation equations that gave different, but
equivalent, expressions of the state of normal and shear stresses at that point.
Principal normal stresses and maximum shear stress, and their orientations,
were seen to be the most important information for design. A graphical rep-
resentation of the transformation equations, Mohr’s circle, was found to be a
convenient way of exploring various representations of the state of stress at
a point, including those orientations of the stress element at which principal
stresses and maximum shear stress occur. Later, strains were introduced and
Hooke’s law for plane stress was derived (for homogeneous and isotropic
materials) and then specialized to obtain stress-strain relationships for biax-
ial stress, uniaxial stress, and pure shear. The stress state in three dimensions,
referred to as triaxial stress, was then introduced along with Hooke’s law for
triaxial stress. Spherical stress and hydrostatic stress were defined as special
cases of triaxial stress. Finally, plane strain was defined for use in experimen-
tal stress analysis and compared to plane stress. The major concepts pre-
sented in this chapter may be summarized as follows:

1. The stresses on inclined sections cut through a body, such as a beam,
may be larger than the stresses acting on a stress element aligned
with the cross section.

2. Stresses are tensors, not vectors, so we used equilibrium of a wedge
element to transform the stress components from one set of axes to
another. Since the transformation equations were derived solely
from equilibrium of an element, they are applicable to stresses in any
kind of material, whether linear, nonlinear, elastic, or inelastic. The
transformation equations for plane stress are

3. If  we use two elements with different orientations to display the state
of plane stress at the same point in a body, the stresses acting on the
faces of the two elements are different, but they still represent the
same intrinsic state of stress at that point.

4. From equilibrium, we showed that the shear stresses acting on all
four side faces of a stress element in plane stress are known if we
determine the shear stress acting on any one of those faces.

σy1
�

σx � σy

2
�

σx � σy

2
cos 2θ � τxy sin 2θ

τx1y1
� �

σx � σy

2
sin 2θ � τxy cos 2θ

σx1
�

σx � σy

2
�

σx � σy

2
cos 2θ � τxy sin 2θ
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669

5. The sum of the normal stresses acting on perpendicular faces of
plane-stress elements (at a given point in a stressed body) is constant
and independent of the angle θ :

6. The maximum and minimum normal stresses (called the principal
stresses σ1, σ2) can be found from the transformation equation for
normal stress as

We also can find the principal planes, at orientation θp, on which they
act. The shear stresses are zero on the principal planes, the planes of
maximum shear stress occur at 45� to the principal planes, and the max-
imum shear stress is equal to one-half the difference of the principal
stresses. Maximum shear stress can be computed from the normal and
shear stresses on the original element, or from the principal stresses as

7. The transformation equations for plane stress can be represented in
graphical form by a plot known as Mohr’s circle which displays the
relationship between normal and shear stresses acting on various
inclined planes at a point in a stressed body. It also is used for calcu-
lating principal stresses, maximum shear stresses, and the orienta-
tions of the elements on which they act.

8. Hooke’s law for plane stress provides the relationships between nor-
mal strains and stresses for homogeneous and isotropic materials
which follow Hooke’s law. These relationships contain three material
constants (E, G, and ). When the normal stresses in plane stress are
known, the normal strains in the x, y and z directions are

μ

εz � �
ν
E

(σx � σy)

εy �
1
E

(σy � νσx)

εx �
1
E

(σx � νσy)

τmax �
B
aσx � σy

2
b2

� τxy
2

τmax �
σ1 � σ2

2

σ1,2 �
σx � σy

2
�

B
aσx � σy

2
b2

� τxy
2

σx1
� σy1

� σx � σy
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670

These equations can be solved simultaneously to give the x and y
normal stresses in terms of the strains:

9. The unit volume change e, or the dilatation of a solid body, is defined
as the change in volume divided by the original volume and is equal
to the sum of the normal strains in three perpendicular directions:

10. The strain-energy density for plane stress, or the strain energy stored
in a unit volume of the material, is computed as one-half  of the sum
of the products of stress times corresponding strain, provided
Hooke’s law holds for the material.

11. A state of triaxial stress exists in an element if  it is subjected to nor-
mal stresses in three mutually perpendicular directions and there are
no shear stresses on the faces of the element; the stresses are seen to
be the principal stresses in the material. A special type of triaxial
stress (called spherical stress) occurs when all three normal stresses
are equal and tensile. If  all three stresses are equal and compressive,
the triaxial stress state is referred to as hydrostatic stress.

12. Finally, transformation equations for plane strain may be derived for
use in interpretation of experimental measurements made with
strain gages. Plane strains at any orientation can be represented in
graphical form using Mohr’s circle for plane strain. Plane stress and
plane strain are compared in Fig. 7-32, and under ordinary condi-
tions do not occur simultaneously. The transformation equations for
plane strain were derived solely from geometry and are independent
of the material properties. At a given point in a stressed body, the
principal strains and principal stresses occur in the same directions.
Lastly, the transformation equations for plane stress also can be used

u �
1
2

(σxεx � σyεy � σzεz)

e �
¢V
V0

� εx � εy � εz

σy �
E

1 � ν2 (εy � νεx)

σx �
E

1 � ν2 (εx � νεy)
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671

for the stresses in plane strain, and the transformation equations for
plane strain also can be used for the strains in plane stress. The trans-
formation equations for plane strain are

γx1y1

2
� �

εx � εy

2
sin 2θ �

γxy

2
cos 2θ

εx1
�

εx � εy

2
�

εx � εy

2
cos 2θ �

γxy

2
sin 2θ
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Plane Stress

7.2-1 The stresses on the bottom surface of a fuel tanker
(figure part a) are known to be , 

, and (figure part b).
Determine the stresses acting on an element oriented

at an angle from the x axis, where the angle θ is
positive when counterclockwise. Show these stresses on a
sketch of an element oriented at the angle θ.

θ � 52°

σy � 8 MPa τxy � 6.5 MPa
σx � 50 MPa

PROBLEMS CHAPTER 7
the vertical direction (see figure part b). Also, shear
stresses with a magnitude of 25 MPa act in the directions
shown.

Determine the stresses acting on an element oriented
at a counterclockwise angle of from the horizontal.
Show these stresses on a sketch of an element oriented at
this angle.

32°

672 Chapter 7  Analysis of Stress and Strain

PROB. 7.2-1 ((a) Can Stock Photo Inc./ Johan H)

PROB. 7.2-3 ((a) Can Stock Photo Inc./corepics; 
(b) Can Stock Photo Inc./ scanrail)

75 MPa

25 MPa

105 MPa

PROB. 7.2-2

7.2-2 Solve the preceding problem for an element in
plane stress on the bottom surface of  a fuel tanker (figure
part a); stresses are , , and 

.
Determine the stresses acting on an element oriented

at an angle from the x axis, where the angle θ is
positive when counterclockwise. Show these stresses on a
sketch of an element oriented at the angle θ.

θ � 40°

σx � 105 MPa σy � 75 MPa
τxy � 25 MPa

7.2-3 The stresses acting on element A on the web of a
train rail (see figure part a) are found to be 45 MPa tension
in the horizontal direction and 120 MPa compression in

7.2-4 Solve the preceding problem if  the stresses acting on
element A on the web of a train rail (see figure part a of
Prob. 7.2-3) are found to be 40 MPa in tension in the hor-
izontal direction and 160 MPa in compression in the verti-
cal direction. Also, shear stresses of magnitude 54 MPa act
in the directions shown in the figure.

Determine the stresses acting on an element oriented
at a counterclockwise angle of 52� from the horizontal.
Show these stresses on a sketch of an element oriented at
this angle.

120 MPa

45 MPa

25 MPaSide
View

(a) (b)

Cross
Section

B

A A

8 MPa

6.5 MPa

(a)
(b)

50 MPa
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7.2-7 The stresses acting on element B (see figure part a)
on the web of a wide-flange beam are found to be 100 MPa
in compression in the horizontal direction and 17 MPa in
compression in the vertical direction (see figure part b).
Also, shear stresses with a magnitude of 24 MPa act in the
directions shown.

Determine the stresses acting on an element oriented
at a counterclockwise angle of 36 from the horizontal.
Show these stresses on a sketch of an element oriented at
this angle.

°

673

A

54 MPa

160 MPa

40 MPa

PROB. 7.2-4 9.5 MPa

15.5 MPa

(a) (b)

42 MPa

PROB. 7.2-6 ((a) Daboost/Shutterstock)

PROB. 7.2-7 ((a) Can Stock Photo Inc./ rekemp)

Determine the stresses acting on an element oriented
at a clockwise angle of  40� from the horizontal. Show
these stresses on a sketch of  an element oriented at this
angle.

7.2-5 The stresses acting on element B on the web of a
train rail (see figure part a of Prob. 7.2-3) are found to be
40 MPa in compression in the horizontal direction and
16 MPa in compression in the vertical direction (see
 figure). Also, shear stresses of magnitude 17 MPa act in
the directions shown.

Determine the stresses acting on an element oriented
at a counterclockwise angle of 48 from the horizontal.
Show these stresses on a sketch of an element oriented at
this angle.

°

Problems Chapter 7

B
40 MPa

16 MPa

17 MPa

PROB. 7.2-5

7.2-6 An element in plane stress on the fuselage of an air-
plane (figure part a) is subjected to compressive stresses
with a magnitude of 42 MPa in the horizontal direction
and tensile stresses with a magnitude of 9.5 MPa in the
vertical direction (see figure part b). Also, shear stresses
with a magnitude of 15.5 MPa act in the directions shown.

B
24 MPa

17 MPa

100 MPa
Side
View

Cross
Section

(b) (a)

B
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Chapter 7  Analysis of Stress and Strain

7.2-11 A rectangular plate of  dimensions 
is formed by welding two triangular

plates (see  figure). The plate is subjected to a tensile stress
of 3.5 MPa in the long direction and a compressive stress
of 2.5 MPa in the short direction.

Determine the normal stress σw acting perpendicular
to the line of the weld and the shear stress τw acting paral-
lel to the weld. (Assume that the normal stress σw is posi-
tive when it acts in tension against the weld and the shear
stress τw is positive when it acts counterclockwise against
the weld.)

75 mm 	 125 mm

674

7.2-8 Solve the preceding problem if  the normal and shear
stresses acting on element B are 56 MPa, 17 MPa, and
27 MPa (in the directions shown in the figure) and the
angle is 40� (clockwise).

B
56 MPa

17 MPa

27 MPa

PROB. 7.2-8

y

xO

0.8 MPa

(a)

(b)

0.75 MPa

2.5 MPa

Seam

30°

PROB. 7.2-9

y

xO

560 kPa

300 kPa

2100 kPa

Seam

22.5°

PROB. 7.2-10

2.5 MPa

Weld
3.5 MPa75 mm

125 mm

PROB. 7.2-11

7.2-9 The polyethylene liner of  a settling pond is sub-
jected to stresses , , and

as shown by the plane-stress element in
the figure part a.

Determine the normal and shear stresses acting on a
seam oriented at an angle of 30� to the element, as shown
in the figure part b. Show these stresses on a sketch of an
element having its sides parallel and perpendicular to the
seam.

τxy � �0.8 MPa,
σx � 2.5 MPa σy � 0.75 MPa

7.2-10 Solve the preceding problem if  the normal and
shear stresses acting on the element are ,

, and , and the seam is ori-
ented at an angle of 22.5� to the element.
σy � 300 kPa τxy � �560 kPa

σx � 2100 kPa

7.2-12 Solve the preceding problem for a plate of dimen-
sions subjected to a compressive
stress of 2.5 MPa in the long direction and a tensile stress
of 12.0 MPa in the short direction (see figure).

100 mm 	 250 mm

12.0 MPa

Weld 2.5 MPa100 mm
250 mm

PROB. 7.2-12
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Problems Chapter 7

7.2-13 At a point on the surface of an elliptical exercise
machine the material is in biaxial stress with

and , as shown in the figure
part a. The figure part b shows an inclined plane aa cut
through the same point in the material but oriented at an
angle θ.

Determine the value of the angle θ between zero and
90� such that no normal stress acts on plane aa. Sketch a
stress element having plane aa as one of its sides and show
all stresses acting on the element.

σx � 9.7 Mpa σy � �6 MPa

675

7.2-15 An element in plane stress from the frame of a
 racing car is oriented at a known angle θ (see figure). On
this inclined element, the normal and shear stresses have
the magnitudes and directions shown in the figure.

Determine the normal and shear stresses acting on an
element whose sides are parallel to the xy axes, that is,
determine σx, σy, and τxy. Show the results on a sketch of
an element oriented at .θ � 0°

PROB. 7.2-13 ((a) Ali Ender Birer/Shutterstock)

PROB. 7.2-14

PROB. 7.2-15

7.2-14 Solve the preceding problem for 
and (see figure).σy � �20 MPa

σx � 11 MPa

a

a

u

(b)

y

x

a

a

O

20 MPa

11 MPa
u

y

xO

6 MPa

9.7 MPa

(a)

15 MPa
23 MPa

90 MPa

y

xO

u = 36°

z
y

x

PROB. 7.2-16

7.2-16 Solve the preceding problem for the element shown
in the figure.

7.2-17 A gusset plate on a truss bridge is in plane stress with
normal stresses σx and σy and shear stress τxy, as shown in the
figure. At counterclockwise angles and
from the x axis, the normal stress is 29 MPa in tension.

If  the stress σx equals 18 MPa in tension, what are the
stresses σy and τxy?

θ � 78°θ � 32°

PROB. 7.2-17 (Photo Courtesy of John A. Weeks III)

y

xO

τxy

sy

sx = 18 MPa

18 MPa

55 MPa

27 MPa

y

xO

u = 50°
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Chapter 7  Analysis of Stress and Strain

7.3-1 An element in plane stress is subjected to stresses
, , and (see the

figure for Prob. 7.2-1).
Determine the principal stresses and show them on a

sketch of a properly oriented element.

7.3-2 An element in plane stress is subjected to stresses
, , and (see

the figure for Prob. 7.2-2).
Determine the principal stresses and show them on a

sketch of a properly oriented element.

7.3-3 An element in plane stress is subjected to stresses
, , and (see

the figure for Prob. 7.2-3).
Determine the principal stresses and show them on a

sketch of a properly oriented element.

7.3-4 The stresses acting on element A in the web of a train
rail are found to be 40 MPa tension in the horizontal direc-
tion and 160 MPa compression in the vertical direction (see
figure). Also, shear stresses of magnitude 54 MPa act in the
directions shown (see the figure for Prob. 7.2-4).

Determine the principal stresses and show them on a
sketch of a properly oriented element.

7.3-5 The normal and shear stresses acting on element A
are 45 MPa, 119 MPa, and 20 MPa (see the figure for
Prob. 7.2-4).

Determine the maximum shear stresses and associ-
ated normal stresses and show them on a sketch of a prop-
erly oriented element.

7.3-6 An element in plane stress from the fuselage of an
airplane is subjected to compressive stresses of magnitude
35 MPa in the horizontal direction and tensile stresses of
magnitude 6.5 MPa in the vertical direction. Also, shear
stresses of magnitude 12.5 MPa act in the directions
shown (see the figure for Prob. 7.2-6).

Determine the maximum shear stresses and associ-
ated normal stresses and show them on a sketch of a prop-
erly oriented element.

7.3-7 The stresses acting on element B in the web of a
wide-flange beam are found to be �97 MPa compression
in the horizontal direction and �18 MPa compression in
the vertical direction. Also, shear stresses of  magnitude
�26 MPa act in the directions shown (see the figure for
Prob. 7.2-7).

Determine the maximum shear stresses and associ-
ated normal stresses and show them on a sketch of a prop-
erly oriented element.

τxy � 13 MPaσy � �14 MPaσx � �38 MPa

τxy � 25 MPaσy � 75 MPaσx � 105 MPa

τxy � 5 MPaσy � 8 MPaσx � 40 MPa

676

7.2-18 The surface of  an airplane wing is subjected to
plane stress with normal stresses σx and σy and shear
stress τxy, as shown in the figure. At a counterclockwise
angle from the x axis, the normal stress is
29 MPa in tension, and at an angle , it is 17 MPa
in compression.

If  the stress σx equals 105 MPa in tension, what are
the stresses σy and τxy?

θ � 46°
θ � 32°

PROB. 7.2-18 (Daboost/Shutterstock)

PROB. 7.2-19 (© Paul Rapson/Alamy)

7.2-19 At a point on the web of a girder on an overhead
bridge crane in a manufacturing facility, the stresses are
known to be , , and

(the sign convention for these stresses is
shown in Fig. 7-1). A stress element located at the same
point in the structure (but oriented at a counterclockwise
angle θ1 with respect to the x axis) is subjected to the
stresses shown in the figure (σb, τb, and 14 MPa).

Assuming that the angle θ1 is between zero and 90�,
calculate the normal stress σb, the shear stress τb, and the
angle θ1.

τxy � 21 MPa
σy � 12 MPaσx � �30 MPa

Principal Stresses and Maximum
Shear Stresses

When solving the problems for Section 7.3, consider
only the in-plane stresses (the stresses in the
xy plane).

14 MPa

O x

y

τb
sb

u1

y

xO

τxy

sy

sx = 105 MPa
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Problems Chapter 7

7.3-8 The normal and shear stresses acting on element B are
, , and (see

figure for Prob. 7.2-8).
Determine the maximum shear stresses and associ-

ated normal stresses and show them on a sketch of a prop-
erly oriented element.

7.3-9 A shear wall in a reinforced concrete building is sub-
jected to a vertical uniform load of intensity q and a hori-
zontal force H, as shown in the first part of the figure. (The
force H represents the effects of wind and earthquake
loads.) As a consequence of these loads, the stresses at
point A on the surface of the wall have the values shown in
the second part of the figure (compressive stress equal to
8 MPa and shear stress equal to 3 MPa).

(a) Determine the principal stresses and show them on
a sketch of a properly oriented element.

(b) Determine the maximum shear stresses and asso-
ciated normal stresses and show them on a sketch of a
properly oriented element.

τxy � 21 MPaσy � �13 MPaσx � �46 MPa

677

7.3-11 The stresses at a point along a beam supporting a
sign (see figure) are , , and

.
(a) Find the principal stresses. Show them on a sketch

of a properly oriented element.
(b) Find the maximum shear stresses and associated

normal stresses. Show them on a sketch of a properly ori-
ented element.

τxy � �6 MPa
σy � 8 MPaσx � 15 MPa

8 MPa

3 MPa

A

A

q

H

PROB. 7.3-9

y

xO

τxy

sx

sy

Tanya’s office

PROB. 7.3-11

PROBS. 7.3-12 through 7.3-16

PROB. 7.3-10 

7.3-10 A propeller shaft subjected to combined torsion
and axial thrust is designed to resist a shear stress of
57 MPa and a compressive stress of 105 MPa (see figure).

(a) Determine the principal stresses and show them on
a sketch of a properly oriented element.

(b) Determine the maximum shear stresses and asso-
ciated normal stresses and show them on a sketch of a
properly oriented element.

7.3-12 through 7.3-16 An element in plane stress (see
 figure) is subjected to stresses σx, σy, and τxy.

(a) Determine the principal stresses and show them on
a sketch of a properly oriented element.

(b) Determine the maximum shear stresses and asso-
ciated normal stresses and show them on a sketch of a
properly oriented element.

7.3-12

7.3-13

7.3-14

7.3-15

7.3-16 τxy � �58 MPaσy � 58 MPa,σx � �108 MPa,

τxy � 31 MPaσy � �76 MPa,σx � �23 MPa,

τxy � �39 MPaσy � �91 MPa,σx � 16.5 MPa,

τxy � 13 MPaσy � 7.5 MPa,σx � 100 MPa,

τxy � �460 kPaσy � 375 kPa,σx � 2150 kPa,

y

xO

τxy

sx

sy

105 MPa

57 MPa
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Chapter 7  Analysis of Stress and Strain

7.3-20 An element in plane stress on the surface of an
automobile drive shaft (see figure) is subjected to stresses
of and (see figure). It is
known that one of the principal stresses equals 41 MPa in
tension.

(a) Determine the stress σy.
(b) Determine the other principal stress and the orien-

tation of the principal planes, then show the principal
stresses on a sketch of a properly oriented element.

τxy � 39 MPaσx � �45 MPa

678

7.3-17 At a point on the web of a girder on a gantry
crane, the stresses acting on the x face of  a stress element
are σx � 43 MPa and τxy � 10 MPa (see figure).

What is the allowable range of values for the stress σy
if  the maximum shear stress is limited to ?τ0 � 15 MPa

PROB. 7.3-17 (ZCW/Shutterstock)

y

xO

39 MPa

sy

45 MPa

PROB. 7.3-20 (Courtesy of www.rietzusa.com)

y

xO
98 MPa

PROB. 7.4-1

PROB. 7.3-18 (Can Stock Photo Inc./busja)

PROB. 7.3-19 (Can Stock Photo Inc ./Aviafan)

7.3-18 The stresses acting on a stress element on the arm
of a power excavator (see figure) are and
τxy � 33 MPa (see figure).

What is the allowable range of values for the stress σy
if  the maximum shear stress is limited to ?τ0 � 37 MPa

σx � 52 MPa

7.3-19 The stresses at a point on the down tube of a bicy-
cle frame are and (see fig-
ure). It is known that one of the principal stresses equals
44 MPa in tension.

(a) Determine the stress σy.
(b) Determine the other principal stress and the orien-

tation of the principal planes, then show the principal
stresses on a sketch of a properly oriented element.

τxy � �13 MPaσx � 33 MPa

Mohr’s Circle

The problems for Section 7.4 are to be solved using
Mohr’s circle. Consider only the in-plane stresses (the
stresses in the xy plane).

7.4-1 An element in uniaxial stress is subjected to tensile
stresses , as shown in the figure. Using
Mohr’s circle, determine the following.

(a) The stresses acting on an element oriented at a
counterclockwise angle from the x axis.

(b) The maximum shear stresses and associated nor-
mal stresses.

Show all results on sketches of  properly oriented
elements.

θ � 29°

σx � 98 MPa

7.4-2 An element in uniaxial stress is subjected to tensile
stresses , as shown in the figure. Using
Mohr’s circle, determine the following.

(a) The stresses acting on an element oriented at an
angle from the x axis (minus means clockwise).

(b) The maximum shear stresses and associated nor-
mal stresses.

θ � �33°

σx � 57 MPa

y

xO

τxy = 33 MPa

sy

sx = 52 MPa

y

xO
33 MPa

sy

13 MPa

y

xO

τxy = 10 MPa

sy

sx = 43 MPa
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Problems Chapter 7

Show all results on sketches of  properly oriented
elements.

679

7.4-5 An element on the top surface of the fuel tanker in
Prob. 7.2-1 is in biaxial stress and is subjected to stresses

and , as shown in the fig-
ure. Using Mohr’s circle, determine the following.

(a) The stresses acting on an element oriented at a
counterclockwise angle from the x axis.

(b) The maximum shear stresses and associated nor-
mal stresses.

Show all results on sketches of  properly oriented
elements.

θ � 55°

σy � �12 MPaσx � 43 MPa
y

xO
57 MPa

PROB. 7.4-2

y

x
O

47 MPa

1
2

PROB. 7.4-3

y

xO

12 MPa

43 MPa

PROB. 7.4-5

y

xO

57 MPa

29 MPa

1

2.5

PROB. 7.4-6

y

xO

19 MPa

48 MPa

PROB. 7.4-4

7.4-3 An element on the gusset plate in Prob. 7.2-17 in uni-
axial stress is subjected to compressive stresses of magni-
tude 47 MPa, as shown in the figure. Using Mohr’s circle,
 determine the following.

(a) The stresses acting on an element oriented at a
slope of 1 on 2 (see figure).

(b) The maximum shear stresses and associated nor-
mal stresses.

Show all results on sketches of  properly oriented
elements.

7.4-4 An element on the top surface of the fuel tanker in
Prob. 7.2-1 is in biaxial stress and is subjected to stresses

and , as shown in the fig-
ure. Using Mohr’s circle, determine the following.

(a) The stresses acting on an element oriented at a
counterclockwise angle from the x axis.

(b) The maximum shear stresses and associated nor-
mal stresses.

Show all results on sketches of  properly oriented
elements.

θ � 25°

σy � 19 MPaσx � �48 MPa

7.4-6 An element in biaxial stress is subjected to stresses
and , as shown in the fig-

ure. Using Mohr’s circle, determine the following.
(a) The stresses acting on an element oriented at a

slope of 1 on 2.5 (see figure).
(b) The maximum shear stresses and associated nor-

mal stresses.
Show all results on sketches of properly oriented

 elements.

σy � 57 MPaσx � �29 MPa
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Chapter 7  Analysis of Stress and Strain

7.4-10 through 7.4-15 An element in plane stress is sub-
jected to stresses σx, σy, and τxy (see figure).

Using Mohr’s circle, determine the stresses acting on
an element oriented at an angle θ from the x axis. Show
these stresses on a sketch of an element oriented at the
angle θ. (Note: The angle θ is positive when counterclock-
wise and negative when clockwise.)

680

7.4-7 An element on the surface of a drive shaft is in pure
shear and is subjected to stresses , as shown
in the figure. Using Mohr’s circle, determine the following.

(a) The stresses acting on an element oriented at a
counterclockwise angle from the x axis.

(b) The principal stresses.
Show all results on sketches of  properly oriented

elements.

θ � 52°

τxy � 19 MPa

y

xO

19 MPa

PROB. 7.4-7

O

3

4

y

x

26 MPa

PROB. 7.4-9

PROB. 7.4-8 (iker canikligil/Shutterstock)

y

xO

τxy

sx

sy

PROBS. 7.4-10 through 7.4-15

7.4-8 The rotor shaft of a helicopter (see figure part a)
drives the rotor blades that provide the lifting force and is
subjected to a combination of torsion and axial loading
(see figure part b).

It is known that normal stress σy � 68 MPa and shear
stress . Using Mohr’s circle, determine
the following.

(a) The stresses acting on an element oriented at a
counterclockwise angle from the x axis

(b) Find the maximum tensile stress, maximum com-
pressive stress, and maximum shear stress in the shaft.

Show all results on sketches of  properly oriented
elements.

θ � 22.5°

τxy � �100 MPa

7.4-9 An element in pure shear is subjected to stresses
, as shown in the figure. Using Mohr’s cir-

cle, determine the following.
(a) The stresses acting on an element oriented at a

slope of 3 on 4 (see figure).
(b) The principal stresses.
Show all results on sketches of  properly oriented

elements.

τxy � 26 MPa

7.4-10

7.4-11

7.4-12

7.4-13

7.4-14

7.4-15
θ � 65°

τxy � �15 MPa,σy � 7 MPa,σx � �39 MPa,

θ � 35°
τxy � 29 MPa,σy � �9 MPa,σx � 33 MPa,

θ � 14°
τxy � 2.5 MPa,σy � �5 MPa,

θ � �33°
τxy � �29 MPa,σy � �186 MPa,σx � �47 MPa,

σx � �12 MPa,

θ � �51°
τxy � �23 MPa,σy � 84 MPa,σx � 24 MPa,

θ � 40°
τxy � 6 MPa,σy � 14 MPa,σx � 27 MPa,

y

x
O

100 MPa

68 MPa

(a)

(b)
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Problems Chapter 7

7.4-16 through 7.4-23 An element in plane stress is sub-
jected to stresses σx, σy, and τxy (see figure).

Using Mohr’s circle, determine (a) the principal
stresses, and (b) the maximum shear stresses and associ-
ated normal stresses. Show all results on sketches of prop-
erly oriented elements.

681

shown in the figure. Strain gages A and B, oriented in the
x and y directions, respectively, are attached to the plate.
The gage readings give normal strains 
(elongation) and (elongation).

Knowing that and ,  determine
the stresses σx and σy and the change �t in the thickness of
the plate.

E � 207 GPa ν � 0.3

εy � 0.00040
εx � 0.00065

y

xO

τxy

sx

sy

PROBS. 7.4-16 through 7.4-23

sy

sx

y

xO
B A

PROBS. 7.5-1 and 7.5-2

y

x

z

O
sx

τxy

sy

PROB. 7.5-3

7.4-16

7.4-17

7.4-18

7.4-19 

7.4-20

7.4-21

7.4-22

7.4-23

Hooke’s Law for Plane Stress

When solving the problems for Section 7.5, assume
that the material is linearly elastic with modulus of
elasticity E and Poisson’s ratio ν.

7.5-1 A rectangular steel plate with thickness
is subjected to uniform normal stresses σx and σy, as

τxy � �50 MPa

τxy � �14.1 MPaσy � 8.9 MPa,σx � �3.3 MPa,

τxy � 20 MPaσy � �15 MPa,σx � 5.5 MPa,

t � 16 mm

σx � 50 MPa, σy � 0 MPa, τxy � 9 MPa

σx � 0 MPa, σy � �23.4 MPa, τxy � �9.6 MPa

σx � 14 MPa, σy � 42 MPa, τxy � 19 MPa

σx � �29.5 MPa, σy � 29.5 MPa, τxy � 27 MPa

σx � �80 MPa, σy � �125 MPa,

τxy � �3750 kPaσy � 9100 kPa,σx � 2900 kPa, 7.5-2 Solve the preceding problem if  the thickness of the
steel plate is , the gage readings are

(elongation) and
(shortening), the modulus is , and Poisson’s
ratio is .

7.5-3 Assume that the normal strains εx and εy for an ele-
ment in plane stress (see figure) are measured with strain
gages.

(a) Obtain a formula for the normal strain εz in the z
direction in terms of εx, εy, and Poisson’s ratio ν.

(b) Obtain a formula for the dilatation e in terms of
εx, εy, and Poisson’s ratio ν.

ν � 0.30
E � 200 GPa

εx � 530 	 10�6 εy � �210 	 10�6

t � 12 mm
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Chapter 7  Analysis of Stress and Strain

7.5-9 A 100 mm cube of concrete
is compressed in biaxial stress by means of a framework
that is loaded as shown in the figure.

Assuming that each load F equals 110 kN, determine
the change �V in the volume of the cube and the strain
energy U stored in the cube.

ν � 0.2)(E � 31 GPa,

682

7.5-4 A cast-iron plate in biaxial stress is subjected to ten-
sile stresses and (see figure).
The corresponding strains in the plate are

and .

Determine Poisson’s ratio ν and the modulus of elas-
ticity E for the material.

εx � 240 	 10�6 εy � 85 	 10�6

σx � 31 MPa σy � 17 MPa

sy

sx

y

xO

PROBS. 7.5-4 through 7.5-7

P = 160 kN

P = 160 kN

PROB. 7.5-8

F

F

PROB. 7.5-9

7.5-5 Solve the preceding problem for a steel plate with

(tension), (com pression),

(elongation), and

(shortening).

7.5-6 A rectangular plate in biaxial stress (see figure) is
subjected to normal stresses (tension)
and (compression). The plate has dimen-
sions and is made of steel with

and .
(a) Determine the maximum in-plane shear strain γmax

in the plate.
(b) Determine the change �t in the thickness of the

plate.
(c) Determine the change �V in the volume of the

plate.

7.5-7 Solve the preceding problem for an aluminum plate
with (tension), (compres-
sion), dimensions ,

, and .

7.5-8 A brass cube of 48 mm on each edge is compressed
in two perpendicular directions by forces (see
figure).

(a) Calculate the change �V in the volume of the cube
and the strain energy U stored in the cube, assuming

and .
(b) Repeat part (a) if  the cube is made of an alumi-

mum alloy with and .

�310 	 10�6

E � 73 GPa ν � 0.33

E � 100 GPa ν � 0.34

P � 160 kN

E � 72 GPa ν � 0.33
500 mm 	 750 mm 	 12.5 mm

σx � 83 MPa σy � �21 MPa

E � 200 GPa ν � 0.30
400 	 550 	 20 mm

σy � �23 MPa
σx � 67 MPa

εy �εx � 450 	 10�6

σx � 80 MPa σy � �39 MPa

7.5-10 A square plate of  width b and thickness t is
loaded by normal forces Px and Py and by shear forces
V, as shown in the figure. These forces produce uni-
formly distributed stresses acting on the side faces of  the
plate.

(a) Calculate the change �V in the volume of the
plate and the strain energy U stored in the plate if  the
dimensions are and ; the plate
is made of magnesium with and ;
and the forces are , , and

.
(b) Find the maximum permissible thickness of the

plate when the strain energy U must be at least 62 J.
(Assume that all other numerical values in part (a) are
unchanged.)

(c) Find the minimum with b of the square plate of
thickness when the change in volume of the
plate cannot exceed 0.018% of the original volume.

t � 40 mm

V � 96 kN
Px � 420 kN Py � 210 kN

E � 41 GPa ν � 0.35
b � 600 mm t � 40 mm
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Problems Chapter 7

7.5-11 Solve the preceding problem for an aluminum plate
with , , , ,

, , and .
For part (b), assume that the required strain energy

stored is 72 J. In part (c), the change in volume cannot
exceed 0.05%.

7.5-12 A circle of diameter is etched on a
brass plate (see figure). The plate has dimensions of

. Forces are applied to the plate, pro-
ducing uniformly distributed normal stresses
and . Calculate the following quantities:
(a) the change in length �ac of diameter ac; (b) the change in
length �bd of diameter bd; (c) the change �t in the thickness
of the plate; (d) the change �V in the volume of the plate,
and (e) the strain energy U stored in the plate; (f) the maxi-
mum permissible thickness of the plate when strain energy U
must be at least 78.4 J; (g) the maximum permissible value of
normal stress σx when the change in volume of the plate can-
not exceed 0.015% of the original volume. (Assume

and .)E � 100 GPa ν � 0.34

σy � �17 MPa
σx � 59 MPa

400 	 400 	 20 mm

d � 200 mm

ν � 0.33
Px � 425 kN Py � 110 kN V � 80 kN

b � 250 mm t � 19 mm E � 73 GPa

683

Triaxial Stress

When solving the problems for Section 7.6, assume
that the material is linearly elastic with modulus of
elasticity E and Poisson’s ratio ν.

7.6-1 An element of  aluminum in the form of a rect -
angular parallelepiped (see figure) of  dimensions

, and is subjected
to triaxial stresses , , and

acting on the x, y, and z faces, 
respectively.

Determine the following quantities: (a) the maximum
shear stress τmax in the material; (b) the changes �a, �b,
and �c in the dimensions of the element; (c) the change �V
in the volume; (d) the strain energy U stored in the ele-
ment; (e) the maximum value of σx when the change in vol-
ume must be limited to 0.021% ; and (f) the required value
of σx when the strain energy must be 102 J. (Assume

and .)E � 72 GPa ν � 0.33

σz � �10 MPa
σx � 86 MPa σy � �34 MPa

b � 115 mm c � 90 mma � 140 mm,

Py

Py

PxPx

y

t

b

b

V

V

V

V

xO

PROBS. 7.5-10 and 7.5-11

sy

sx

sx

sy

yz

b

d

ca

x

PROB. 7.5-12

7.6-2 Solve the preceding problem if the element is steel
with dimensions

, and and the stresses
, , and .σx � �62 MPa σy � �45 MPa σz � �45 MPa

b � 150 mm c � 150 mm
(E � 200 GPa, ν � 0.30) a � 300 mm,

For part (e), find the maximum value of σx if  the
change in volume must be limited to . For part
(f), find the required value of σx if  the strain energy must
be 60 J.

�0.028%

y

x

z

a

b

c

O

PROBS. 7.6-1 and 7.6-2
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Chapter 7  Analysis of Stress and Strain

7.6-6 Solve the preceding problem if  the material is nylon.
(a) Find the bulk modulus K for the nylon if  the fol-

lowing stress and strain data is known: normal stresses are
, , and ,

and normal strains in the x and y directions are
(shortening) and

(shortening).
(b) If  the element is replaced by one of polyethylene,

find the modulus of elasticity E and Poisson’s ratio ν if  the
following data is given: bulk modulus ;
normal stresses are (compression)

(compression), and
(compression); and normal strain in the x direction is

(shortening).

7.6-7 A rubber cylinder R of length L and cross-sectional
area A is compressed inside a steel cylinder S by a force F
that applies a uniformly distributed pressure to the rubber
(see figure).

(a) Derive a formula for the lateral pressure p between
the rubber and the steel. (Disregard friction between the
rubber and the steel, and assume that the steel cylinder is
rigid when compared to the rubber.)

(b) Derive a formula for the shortening δ of the rub-
ber cylinder.

εx � �1480 	 10�6

σy � �2.1 MPa σz � �2.1 MPa
σx � �3.6 MPa

K � 2162 MPa

εx � �640 	 10�6 εy � �310 	 10�6

σx � �3.9 MPa σy � �3.2 MPa σz � �1.8 MPa

684

7.6-3 A cube of  cast iron with sides of  length
(see figure) is tested in a laboratory under

triaxial stress. Gages mounted on the testing machine
show that the compressive strains in the material are

and .
Determine the following quantities: (a) the normal

stresses σx, σy, and σz acting on the x, y, and z faces of the
cube; (b) the maximum shear stress τmax in the material; 
(c) the change �V in the volume of the cube; (d) the strain
energy U stored in the cube; (e) the maximum value of σx
when the change in volume must be limited to 0.028%; and
(f) the required value of εx when the strain energy must be
4.3 J. (Assume and .)E � 96 GPa ν � 0.25

εy � εz � �37.5 	 10�6εx � �225 	 10�6

a � 100 mm

y

x

z

a

a

a

O

PROBS. 7.6-3 and 7.6-4

y

x

z

O
sxsx

sz

sy

sy

sz

PROBS. 7.6-5 and 7.6-6

L
S

R

F

S

F

PROB. 7.6-7

7.6-4 Solve the preceding problem if  the cube is granite
with dimensions

and compressive strains and
. For part (e), find the maximum

value of σx when the change in volume must be limited to
0.11%. For part (f), find the required value of εx when the
strain energy must be 33 J.

7.6-5 An element of aluminum in subjected to triaxial
stress (see figure).

(a) Find the bulk modulus K for the aluminum if  the
following stress and strain data is known: normal stresses
are (tension), (compres-
sion), and (compression) and normal
strains in the x and y directions are
(elongation) and (shortening).

(b) If  the element is replaced by one of magnesium,
find the modulus of elasticity E and Poisson’s ratio ν if
the following data is given: bulk modulus ;
normal stresses are (tension),

(compression), and
(compression); and normal strain in the x direction is

(elongation).εx � 900 	 10�6

σz � �7.5 MPaσy � �12 MPa

K � 47 GPa
σx � 31 MPa

εy � �502.3 	 10�6

εx � 713.8 	 10�6

σz � �21 MPa
σx � 36 MPa σy � �33 MPa

εy � εz � 255 	 10�6
εx � 690 	 10�6

(E � 80 GPa, ν � 0.25) a � 89 mm

77742_07_ch07_p608-691.qxd:77742_07_ch07_p608-691.qxd  2/22/12  1:17 PM  Page 684

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems Chapter 7

7.6-8 A block R of rubber is confined between plane par-
allel walls of a steel block S (see figure). A uniformly dis-
tributed pressure p0 is applied to the top of the rubber
block by a force F.

(a) Derive a formula for the lateral pressure p between
the rubber and the steel. (Disregard friction between the
rubber and the steel, and assume that the steel block is
rigid when compared to the rubber.)

(b) Derive a formula for the dilatation e of the rubber.
(c) Derive a formula for the strain-energy density u of

the rubber.

685

Plane Strain

When solving the problems for Section 7.7, consider
only the in-plane strains (the strains in the xy plane)
unless stated otherwise. Use the transformation equa-
tions of plane strain except when Mohr’s circle is spec-
ified (Prob. 7.7-23 through 7.7-28).

7.7-1 A thin rectangular plate in biaxial stress is subjected
to stresses σx and σy, as shown in part a of the figure. The
width and height of the plate are and

, respectively. Measurements show that the
normal strains in the x and y directions are

and , respectively.
With reference to part b of the figure, which shows a

two-dimensional view of the plate, determine the following
quantities.

(a) The increase �d in the length of diagonal Od.
(b) The change �φ in the angle φ between diagonal Od

and the x axis.
(c) The change �ψ in the angle ψ between diagonal

Od and the y axis.

εx � 285 	 10�6 εy � �190 	 10�6

h � 63 mm
b � 190 mm

F
F

S
R

S

PROB. 7.6-8

sy

sx

y

b

h

xO

(a)

y

x

z

b

h

(b)

f

c

d

PROBS. 7.7-1 and 7.7-2

7.6-9 A solid spherical ball of  magnesium alloy
is lowered into the ocean to a

depth of 2400 m. The diameter of the ball is 225 mm.
(a) Determine the decrease �d in diameter, the

decrease �V in volume, and the strain energy U of the ball.
(b) At what depth will the volume change be equal to

0.0324% of the original volume?

7.6-10 A solid steel sphere is
subjected to hydrostatic pressure p such that its volume is
reduced by 0.4%.

(a) Calculate the pressure p.
(b) Calculate the volume modulus of elasticity K for

the steel.
(c) Calculate the strain energy U stored in the sphere

if  its diameter is .

7.6-11 A solid bronze sphere (volume modulus of elastic-
ity ) is suddenly heated around its outer sur-
face. The tendency of the heated part of the sphere to
expand produces uniform tension in all directions at the
center of the sphere.

If  the stress at the center is 83 MPa, what is the strain?
Also, calculate the unit volume change e and the strain-
energy density u at the center.

K � 100 GPa

d � 150 mm

(E � 210 GPa, ν � 0.3)

(E � 45 GPa, ν � 0.35)

7.7-2 Solve the preceding problem if  , and
, respectively. Measurements show that the

normal strains in the x and y directions are
, and , respectively.εx � 390 	 10�6 εy � �240 	 10�6

h � 70 mm
b � 180 mm
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Chapter 7  Analysis of Stress and Strain

7.7-6 Solve the preceding problem for the following data:

and 

7.7-7 The strains for an element of material in plane strain
(see figure) are as follows: ,

, and .
Determine the principal strains and maximum shear

strains, and show these strains on sketches of properly ori-
ented elements.

7.7-8 Solve the preceding problem for the following
strains: , , and

.

7.7-9 An element of material in plane strain (see figure) is
subjected to strains , ,
and .

Determine the following quantities: (a) the strains for
an element oriented at an angle , (b) the principal
strains, and (c) the maximum shear strains. Show the
results on sketches of properly oriented elements.

7.7-10 Solve the preceding problem for the following data:
, , 

and .

7.7-11 A brass plate with a modulus of  elasticity
and Poisson’s ratio is loaded in

biaxial stress by normal stresses σx and σy (see figure). A
strain gage is bonded to the plate at an angle .

If  the stress σx is 74 MPa and the strain measured by
the gage is , what is the maximum in-
plane shear stress and shear strain ?
What is the maximum shear strain in the xz
plane? What is the maximum shear strain in the
yz plane?

(γmax)yz

(γmax)xz

(τmax)xy (γmax)xy

ε � 390 	 10�6

φ � 35°

E � 110 GPa ν � 0.34

θ � 45°
εx � �1120 	10�6 εy � �430 	 10�6 γxy � 780 	 10�6,

θ � 75°

γxy � 420 	 10�6
εx � 480 	 10�6 εy � 70 	 10�6

γxy � �360 	 10�6
εx � 120 	 10�6 εy � �450 	 10�6

εy � 140 	 10�6 γxy � �350 	 10�6
εx � 480 	 10�6

θ � 40°.
εx � 190 	 10�6, εy � �230 	 10�6, γxy � 160 	 10�6,

686

7.7-3 A thin square plate in biaxial stress is subjected to
stresses σx and σy, as shown in part a of the figure. The
width of the plate is . Measurements show
that the normal strains in the x and y directions are

and , respectively.
With reference to part b of the figure, which shows a

two-dimensional view of the plate, determine the following
quantities.

(a) The increase �d in the length of diagonal Od.
(b) The change �φ in the angle φ between diagonal Od

and the x axis.
(c) The shear strain γ associated with diagonals Od

and cf (that is, find the decrease in angle ced).

εx � 427 	 10�6 εy � 113 	 10�6

b � 300 mm

sy

sx

y

b

b

xO

(a)

y

x

z b

b e

c d

f

(b)

f

PROBS. 7.7-3 and 7.7-4

εy

εx

gxy

y

xO 1

1

PROBS. 7.7-5 through 7.7-10

sy

sx

y

x

z

f

PROBS. 7.7-11 and 7.7-12

7.7-4 Solve the preceding problem if  ,
, and .

7.7-5 An element of material subjected to plane strain (see
figure) has strains of ,
and .

Calculate the strains for an element oriented at an
angle . Show these strains on a sketch of a prop-
erly oriented element.

θ � 35°

γxy � 150 	 10�6
εx � 280 	 10�6 εy � 420 	 10�6,

εx � 845 	 10�6 εy � 211 	 10�6
b � 225 mm
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Problems Chapter 7

7.7-12 Solve the preceding problem if the plate is made of
aluminum with and Poisson’s ratio .
The plate is loaded in biaxial stress with normal stress

, angle and the strain measured by
the gage is .

7.7-13 An element in plane stress is subjected to stresses
, , and

(see figure). The material is aluminum with modulus of
elasticity and Poisson’s ratio .

Determine the following quantities: (a) the strains for
an element oriented at an angle , (b) the principal
strains, and (c) the maximum shear strains. Show the
results on sketches of properly oriented elements.

θ � 30°

E � 69 GPa ν � 0.33

σx � �58 MPa σy � 7.5 MPa τxy � �12 MPa

ε � 925 	 10�6
σx � 79 MPa φ � 18°

E � 72 GPa ν � 0.33

687

7.7-16 A 45� strain rosette (see figure) mounted on the
surface of an automobile frame gives the following read-
ings: gage A, ; gage B, ; and
gage C, .

Determine the principal strains and maximum shear
strains, and show them on sketches of properly oriented
elements.

7.7-17 A solid circular bar with a diameter of
is subjected to an axial force P and a torque T (see figure).
Strain gages A and B mounted on the surface of the bar
give readings and .
The bar is made of  steel having and

.
(a) Determine the axial force P and the torque T.
(b) Determine the maximum shear strain γmax and the

maximum shear stress τmax in the bar.

ν � 0.29
E � 210 GPa

εA � 140 	 10�6 εB � �60 	 10�6

d � 32 mm

�160 	 10�6
310 	 10�6 180 	 10�6

y

xO

τxy

sy

sx

PROBS. 7.7-13 and 7.7-14

d

C

B

A

P

T

C

45°

PROB. 7.7-17

y

C
B

A x
O

45°

45°

PROBS. 7.7-15 and 7.7-16

7.7-14 Solve the preceding problem for the following data:
, , ,

and . The material is brass with
and .

7.7-15 During a test of an airplane wing, the strain gage
readings from a 45� rosette (see figure) are as follows: 
gage A, ; gage B, ; and gage C,

.
Determine the principal strains and maximum shear

strains, and show them on sketches of properly oriented
elements.

�80 	 10�6
520 	 10�6 360 	 10�6

ν � 0.34
θ � 50° E � 100 GPa

σx � �150 MPa σy � �210 MPa τxy � �16 MPa
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Chapter 7  Analysis of Stress and Strain

7.7-22 The strains on the surface of an experimental
device made of pure aluminum
and tested in a space shuttle were measured by means of
strain gages. The gages were oriented as shown in the fig-
ure, and the measured strains were ,

, and .
What is the stress σx in the x direction?

εb � 1496 	 10�6 εc � �39.44 	 10�6
εa � 1100 	 10�6

(E � 70 GPa, ν � 0.33)

688

7.7-19 Solve the preceding problem if  the cross-sectional
dimensions are and , the gage
angle is , the measured strains are

and , and the
material is a magnesium alloy with modulus
and Poisson’s ratio .

7.7-20 A 60� strain rosette, or delta rosette, consists of
three electrical-resistance strain gages arranged as shown
in the figure. Gage A measures the normal strain εa in the
direction of the x axis. Gages B and C measure the strains
εb and εc in the inclined directions shown.

Obtain the equations for the strains εx, εy, and γxy
associated with the xy axes.

ν � 0.35
E � 43 GPa

εA � 209 	 10�6 εB � �110 	 10�6
β � 75°

b � 38 mm h � 125 mm

y

CB

A

xO

60°60°

60°

PROB. 7.7-20

y

CB

A
xO

30°

PROB. 7.7-21

y

CB

A
xO 40°40°

PROB. 7.7-22

7.7-21 On the surface of  a structural component in a
space vehicle, the strains are monitored by means of
three strain gages arranged as shown in the figure.
During a certain maneuver, the following strains were
recorded: , , and

.
Determine the principal strains and principal

stresses in the material, which is a magnesium alloy for
which and . (Show the principal
strains and principal stresses on sketches of  properly
 oriented elements.)

E � 41 GPa ν � 0.35

εc � 200 	 10�6
εa � 1100 	 10�6 εb � 200 	 10�6

h

bP

C

C

B

A

b

b

a

h

PROBS. 7.7-18 and 7.7-19

7.7-18 A cantilever beam of rectangular cross section
(width , height ) is loaded by a
force P that acts at the mid-height of the beam and is
inclined at an angle α to the vertical (see figure). Two
strain gages are placed at point C, which also is at the mid-
height of the beam. Gage A measures the strain in the hor-
izontal direction, and gage B measures the strain at an
angle to the horizontal. The measured strains are

and .
Determine the force P and the angle α, assuming the

material is steel with and .E � 200 GPa ν � 1/3

εA � 145 	 10�6 εB � �165 	 10�6
β � 60°

b � 20 mm h � 175 mm

7.7-23 Solve Prob. 7.7-5 by using Mohr’s circle for plane
strain.

7.7-24 Solve Prob. 7.7-6 by using Mohr’s circle for plane
strain.
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Some Additional Review Problems: Chapter 7

7.7-25 Solve Prob. 7.7-7 by using Mohr’s circle for plane
strain.

7.7-26 Solve Prob. 7.7-8 by using Mohr’s circle for plane
strain.

689

7.7-27 Solve Prob. 7.7-9 by using Mohr’s circle for plane
strain.

7.7-28 Solve Prob. 7.7-10 by using Mohr’s circle for plane
strain.

SOME ADDITIONAL REVIEW PROBLEMS: CHAPTER 7

R-7.1 A rectangular plate is
subjected to compressive stress and ten-
sile stress . The ratio of the normal stress
acting perpendicular to the weld to the shear stress acting
along the weld is approximately:

(A) 0.27
(B) 0.54
(C) 0.85
(D) 1.22

σy � 15 MPa
σx � �4.5 MPa

(a � 120 mm, b � 160 mm) R-7.3 A rectangular plate in plane stress is subjected to
normal stresses , , and shear 

stress . The ratio of the magnitudes of the 

principal stresses is approximately:
(A) 0.8
(B) 1.5
(C) 2.1
(D) 2.9

(σ1/σ2)

τxy � 14 MPa

σx � 35 MPa σy � 26 MPa

σy

Wel
d σxa

b

y

xO

τxy

σy

σx

y

xO

τxy

σy

σx

100 MPa

45 MPa

R-7.2 A rectangular plate in plane stress is subjected to
normal stresses σx and σy and shear stress τxy. Stress σx is
known to be 15 MPa, but σy and τxy are unknown.
However, the normal stress is known to be 33 MPa at
counterclockwise angles of 35� and 75� from the x axis.
Based on this, the normal stress σy on the element in the
figure is approximately:

(A) 14 MPa
(B) 21 MPa
(C) 26 MPa
(D) 43 MPa

R-7.4 A drive shaft resists torsional shear stress of 45 MPa
and axial compressive stress of 100 MPa. The ratio of the
magnitudes of the principal stresses is approximately:

(A) 0.15
(B) 0.55
(C) 1.2
(D) 1.9

(σ1/σ2)
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Chapter 7  Analysis of Stress and Strain

R-7.8 A simply supported beam with rectan-
gular cross section supports
uniform load . The ratio of the magnitudes
of the principal stresses at a point from
the left support and distance up from the
bottom of the beam is approximately:

(A) 9
(B) 17
(C) 31
(D) 41

d � 100 mm
(σ1/σ2) a � 1.0 m

q � 25 kN/m
(b � 95 mm, h � 280 mm)

(L � 4.5 m)

690

R-7.7 A cantilever beam with rectangular cross section
supports load

at its free end. The ratio of the magnitudes of the principal
stresses at point A (at distance from the
free end and distance up from the bottom) is
approximately:

(A) 5
(B) 12
(C) 18
(D) 25

d � 200 mm
(σ1/σ2) c � 0.8 m

(b � 95 mm, h � 300 mm) P � 160 kN

100 MPa

45 MPa

y

xO

τxy

σy

σx

P

c

A

b d

h

R-7.5 A drive shaft resists torsional shear stress of 45 MPa
and axial compressive stress of 100 MPa. The maximum
shear stress is approximately:

(A) 42 MPa
(B) 67 MPa
(C) 71 MPa
(D) 93 MPa

R-7.6 A drive shaft resists torsional shear stress of
and axial compressive stress . 

One principal normal stress is known to be 38 MPa (ten-
sile). The stress σy is approximately:

(A) 23 MPa
(B) 35 MPa
(C) 62 MPa
(D) 75 MPa

τxy � 40 MPa σx � �70 MPa

h

b

q

a

L
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C H A P T E R8
Applications of Plane Stress
(Pressure Vessels, Beams, 
and Combined Loadings)

Airships such as this 
blimp rely on internal
pressure to maintain 

their shape using a gas
lighter than air for 

buoyant lift. (Courtesy 
of Christian Michel,

www.modernairships.info)
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I CHAPTER OVERVIEW
Chapter 8 deals with a number of applications of
plane stress, a topic discussed in detail in Sections 7.2
through 7.5 of the previous chapter. Plane stress is a
common stress condition that exists in all ordinary
structures, including buildings, machines, vehicles,
and aircraft. First, thin-wall shell theory is presented
describing the behavior of spherical (Section 8.2) and
cylindrical (Section 8.3) pressure vessels under inter-
nal pressure and having walls whose thickness t is
small compared with radius r of the cross section
(i.e., ). We will determine the stresses and
strains in the walls of these structures due to the
internal pressures from the compressed gases or liq-
uids. Only positive internal pressure (not the effects
of external loads, reactions, the weight of the con-
tents, and the weight of the structure) is considered.
Linear-elastic behavior is assumed, and the formulas
for membrane stresses in spherical tanks and hoop
and axial stresses in cylindrical tanks are only valid
in regions of the tank away from stress concentra-

tions caused by openings and support brackets or
legs. Next, the variation in principal stresses and
maximum shear stresses in beams is investigated
(Section 8.4), building upon the discussions of
stresses in beams in Chapter 5. The variation in these
stress quantities across the beam can be displayed
using either stress trajectories or stress contours.
Stress trajectories give the directions of the principal
stresses, while stress contours connect points of
equal principal stress at points throughout the beam.
Finally, stresses at points of interest in structures
under combined loadings (axial, shear, torsion, bend-
ing, and possibly internal pressure) are assessed
(Section 8.5). Our objective is to determine the max-
imum normal and shear stresses at various points in
these structures. Linear-elastic behavior is assumed
so that superposition can be used to combine normal
and shear stresses due to various loadings, all of
which contribute to the state of plane stress at that
point.

r/t 7 10

8.1 Introduction 694
8.2 Spherical Pressure Vessels 694
8.3 Cylindrical Pressure Vessels 700
8.4 Maximum Stresses in Beams 707

8.5 Combined Loadings 716
Chapter Summary & Review 734
Problems 736

Chapter 8 is organized as follows:
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Chapter 8  Applications of Plane Stress

8.1 INTRODUCTION
We will now investigate some practical examples of structures and compo-
nents in states of plane stress or strain, building upon the concepts pre-
sented in Chapter 7. First, stresses and strains in the walls of thin pressure
vessels are examined. Next, the variations in stresses at various points of
interest in beams will be considered. Finally, structures acted upon by
combined loadings will be evaluated to find the maximum normal and
shear stresses which govern their design.

8.2 SPHERICAL PRESSURE VESSELS
Pressure vessels are closed structures containing liquids or gases under
pressure. Familiar examples include tanks, pipes, and pressurized cab-
ins in aircraft and space vehicles. When pressure vessels have walls that
are thin in comparison to their overall dimensions, they are included
within a more general category known as shell structures. Other exam-
ples of  shell structures are roof  domes, airplane wings, and submarine
hulls.

In this section we consider thin-walled pressure vessels of  spherical
shape, like the compressed-air tank shown in Fig. 8-1. The term thin-
walled is not precise, but as a general rule, pressure vessels are consid-
ered to be thin-walled when the ratio of  radius r to wall thickness t
(Fig. 8-2) is greater than 10. When this condition is met, we can deter-
mine the stresses in the walls with reasonable accuracy using statics
alone.

We assume in the following discussions that the internal pressure p
(Fig. 8-2) exceeds the pressure acting on the outside of the shell. Otherwise,
the vessel may collapse inward due to buckling.

A sphere is the theoretically ideal shape for a vessel that resists inter-
nal pressure. We only need to contemplate the familiar soap bubble to rec-
ognize that a sphere is the “natural” shape for this purpose. To determine
the stresses in a spherical vessel, let us cut through the sphere on a vertical
diametral plane (Fig. 8-3a) and isolate half  of the shell and its fluid
 contents as a single free body (Fig. 8-3b). Acting on this free body are the
tensile stresses σ in the wall of the vessel and the fluid pressure p. This
pressure acts horizontally against the plane circular area of fluid remain-
ing inside the hemisphere. Since the pressure is uniform, the resultant pres-
sure force P (Fig. 8-3b) is

(8-1)

where r is the inner radius of the sphere.
Note that the pressure p is not the absolute pressure inside the vessel

but is the net internal pressure, or the gage pressure. Gage pressure is the
internal pressure above the pressure acting on the outside of the vessel. If
the internal and external pressures are the same, no stresses are developed
in the wall of the vessel—only the excess of internal pressure over external
pressure has any effect on these stresses.

Because of  the symmetry of  the vessel and its loading (Fig. 8-3b), the
tensile stress σ is uniform around the circumference. Furthermore, since

P � p (πr2)

694

Thin-walled spherical pressure
vessel used for storage of

propane in this oil refinery
(Wayne Eastep/Getty Images)

Fig. 8-1 
Spherical pressure vessel

Fig. 8-2 
Cross section of spherical

 pressure vessel showing inner
radius r, wall thickness t, and

internal pressure p

Welded seam

p

t
r
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the wall is thin, we can assume with good accuracy that the stress is uni-
formly distributed across the thickness t. The accuracy of  this approxima-
tion increases as the shell becomes thinner and decreases as it becomes
thicker.

The resultant of the tensile stresses σ in the wall is a horizontal force
equal to the stress σ times the area over which it acts, or

where t is the thickness of the wall and rm is its mean radius:

(8-2)

Thus, equilibrium of forces in the horizontal direction (Fig. 8-3b) gives

(8-3)

from which we obtain the tensile stresses in the wall of the vessel:

(8-4)

Since our analysis is valid only for thin shells, we can disregard the
small difference between the two radii appearing in Eq. (8-4) and replace r
by rm or replace rm by r. While either choice is satisfactory for this approx-
imate analysis, it turns out that the stresses are closer to the theoretically
exact stresses if  we use the inner radius r instead of the mean radius rm.
Therefore, we will adopt the following formula for calculating the tensile
stresses in the wall of a spherical shell:

(8-5)σ �
pr

2t

gFhoriz � 0: σ (2πrmt) � p(πr2) � 0

σ �
pr2

2rmt

rm � r �
t
2

σ12πrmt2
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Fig. 8-3
Tensile stresses σ in the wall of a
spherical pressure vessel
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Fig. 8-4 
Stresses in a spherical pressure
vessel at (a) the outer surface,

and (b) the inner surface

As is evident from the symmetry of  a spherical shell, we obtain the same
equation for the tensile stresses when we cut a plane through the center
of  the sphere in any direction whatsoever. Thus, we reach the following
conclusion: The wall of a pressurized spherical vessel is subjected to uni-
form tensile stresses σ in all directions. This stress condition is repre-
sented in Fig. 8-3c by the small stress element with stresses σ acting in
mutually perpendicular directions.

Stresses that act tangentially to the curved surface of a shell, such as
the stresses σ shown in Fig. 8-3c, are known as membrane stresses. The
name arises from the fact that these are the only stresses that exist in true
membranes, such as soap films.

Stresses at the Outer Surface
The outer surface of  a spherical pressure vessel is usually free of  any
loads. Therefore, the element shown in Fig. 8-3c is in biaxial stress. To
aid in analyzing the stresses acting on this element, we show it again in
Fig. 8-4a, where a set of  coordinate axes is oriented parallel to the
sides of  the element. The x and y axes are tangential to the surface of  the
sphere, and the z axis is perpendicular to the surface. Thus, the  normal
stresses σx and σy are the same as the membrane stresses σ, and the nor-
mal stress σz is zero. No shear stresses act on the sides of  this  element.

If  we analyze the element of  Fig. 8-4a by using the transformation
equations for plane stress [see Fig. 7-1 and Eqs. (7-4a) and (7-4b) of
Section 7.2], we find

as expected. In other words, when we consider elements obtained by
rotating the axes about the z axis, the normal stresses remain constant
and there are no shear stresses. Every plane is a principal plane and
every direction is a principal direction. Thus, the principal stresses for
the element are

(8-6a,b)

The stresses σ1 and σ2 lie in the xy plane and the stress σ3 acts in the 
z direction.

To obtain the maximum shear stresses, we must consider out-of-plane
rotations, that is, rotations about the x and y axes (because all in-plane
shear stresses are zero). Elements oriented by making 45� rotations about
the x and y axes have maximum shear stresses equal to σ /2 and normal
stresses equal to σ /2. Therefore,

(8-7)

These stresses are the largest shear stresses in the element.

Stresses at the Inner Surface
At the inner surface of  the wall of  a spherical vessel, a stress element
(Fig. 8-4b) has the same membrane stresses σx and σy as does an element

τmax �
σ
2

�
pr

4t

σ1 � σ2 �
pr

2t
σ3 � 0

σx1
� σ and τx1y1

� 0

y

xO

sy = s

sy = s

sx = ssx = s

(a)

z

(b)

y

xO

sy = s

sy = s

sz = –p

sx = ssx = s

z
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8.2 Spherical Pressure Vessels 697

at the outer surface (Fig. 8-4a). In addition, a compressive stress σz equal
to the pressure p acts in the z direction (Fig. 8-4b). This compressive
stress decreases from p at the inner surface of  the sphere to zero at the
outer surface.

The element shown in Fig. 8-4b is in triaxial stress with principal
stresses

(8-8a,b)

The in-plane shear stresses are zero, but the maximum out-of-plane shear
stress (obtained by a 45� rotation about either the x or y axis) is

(8-9)

When the vessel is thin-walled and the ratio r/t is large, we can disre-
gard the number 1 in comparison with the term r/2t. In other words,
the principal stress σ3 in the z direction is small when compared with
the principal stresses σ1 and σ2. Consequently, we can consider the
stress state at the inner surface to be the same as at the outer surface
(biaxial stress). This approximation is consistent with the approximate
nature of thin-shell theory, and therefore we will use Eqs. (8-5), 
(8-6a,b), and (8-7) to obtain the stresses in the wall of  a spherical
pressure vessel.

General Comments
Pressure vessels usually have openings in their walls (to serve as inlets
and outlets for the fluid contents) as well as fittings and supports that
exert forces on the shell (Fig. 8-1). These features result in nonuniformi-
ties in the stress distribution, or stress concentrations, that cannot be
analyzed by the elementary formulas given here. Instead, more advanced
methods of  analysis are needed. Other factors that affect the design of
pressure vessels include corrosion, accidental impacts, and temperature
changes.

Some of the limitations of thin-shell theory as applied to pressure ves-
sels are listed here:

1. The wall thickness must be small in comparison to the other dimen-
sions (the ratio r/t should be 10 or more).

2. The internal pressure must exceed the external pressure (to avoid
inward buckling).

3. The analysis presented in this section is based only on the effects
of  internal pressure (the effects of  external loads, reactions, the
weight of  the contents, and the weight of  the structure are not
considered).

4. The formulas derived in this section are valid throughout the wall of
the vessel except near points of stress concentrations.

The following example illustrates how the principal stresses and max-
imum shear stresses are used in the analysis of a spherical shell.

τmax �
σ � p

2
�

pr

4t
�

p

2
�

p

2
a r

2t
� 1b

σ1 � σ2 �
pr

2t
σ3 � �p
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Example 8-1• • •
A compressed-air tank having an inner diameter of 5.5 m and a wall 
thickness of 45 mm is formed by welding two steel hemispheres 
(Fig. 8-5).

(a) If the allowable tensile stress in the steel is 93 MPa, what is the maximum
permissible air pressure pa in the tank?

(b) If the allowable shear stress in the steel is 42 MPa, what is the maximum
permissible pressure pb?

(c) If the normal strain at the outer surface of the tank is not to exceed
0.0003, what is the maximum permissible pressure pc? (Assume that
Hooke’s law is valid and that the modulus of elasticity for the steel is

and Poisson’s ratio is 0.28.)
(d) Tests on the welded seam show that failure occurs when the tensile load

on the welds exceeds 7.5 MN per meter of weld. If the required factor of
safety against failure of the weld is 2.5, what is the maximum permissi-
ble pressure pd?

(e) Considering the four preceding factors, what is the allowable pressure
in the tank?

Solution
(a) Allowable pressure based upon the tensile stress in the steel. The maxi-

mum tensile stress in the wall of the tank is given by the formula
[see Eq. (8-5)]. Solving this equation for the pressure in terms

of the allowable stress, we get

Thus, the maximum allowable pressure based upon tension in the wall
of the tank is . (Note that in a calculation of this kind, we
round downward, not upward.)

(b) Allowable pressure based upon the shear stress in the steel. The maxi-
mum shear stress in the wall of the tank is given by Eq. (8-7), from which
we get the following equation for the pressure:

Therefore, the allowable pressure based upon shear is .

(c) Allowable pressure based upon the normal strain in the steel. 
The normal strain is obtained from Hooke’s law for biaxial stress 
[Eq. (7-40a)]:

(a)

Substituting (see Fig. 8-4a), we obtain

(8-10)

➥

➥

εx �
σ
E

(1 � ν) �
pr

2tE
(1 � ν)

σx � σy � σ � pr/2t

εx �
1
E

(σx � νσy)

pb � 2.75 MPa

pb �
4tτallow

r
�

4(45 mm)(42 MPa)
2.75 m

� 2.75 MPa

pa � 3.04 MPa

pa �
2tσallow

r
�

2(45 mm)(93 MPa)
2.75 m

� 3.04 MPa

σ � pr/2t

pallow

210 GPa

Fig. 8-5 
Example 8-1: Spherical pressure
vessel (Attachments and 
supports are shown in photo.)

Weld
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Spherical tanks at oil refinery 
(© Kevin Burke/Corbis)
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This equation can be solved for the pressure pc:

Thus, the allowable pressure based upon the normal strain in the wall is
.

(d) Allowable pressure based upon the tension in the welded seam. The
allowable tensile load on the welded seam is equal to the failure load
divided by the factor of safety:

The corresponding allowable tensile stress is equal to the allowable load
on a one-meter length of weld divided by the cross-sectional area of a
one-meter length of weld:

Finally, we solve for the internal pressure by using Eq. (8-5):

This result gives the allowable pressure based upon tension in the welded
seam.

(e) Allowable pressure. Comparing the preceding results for pa, pb, pc, and
pd, we see that tension in the welded seam governs and the allowable
pressure in the tank is

This example illustrates how various stresses and strains enter into the
design of a spherical pressure vessel.

Note: When the internal pressure is at its maximum allowable value
(2.18 MPa), the tensile stresses in the shell are

Thus, at the inner surface of the shell (Fig. 8-4b), the ratio of the princi-
pal stress in the z direction (2.18 MPa) to the in-plane principal stresses
(66.6 MPa) is only 0.033. Therefore, our earlier assumption that we can
disregard the principal stress σ3 in the z direction and consider the entire
shell to be in biaxial stress is justified.

➥

➥

➥

σ �
pr

2t
�

2.18 MPa (2.75 m)
2(45 mm)

� 66.6 MPa

pc �
2tEεallow

r(1 � ν)
�

2(45 mm)(210 GPa)(0.0003)
2.75 m(1 � 0.28)

� 2.86 MPa

pc � 2.86 MPa

Tallow �
Tfailure

n
�

7.5 MN/m
2.5

� 3 MN/m

pallow � 2.18 MPa

pd �
2tσallow

r
�

2(45 mm)(66.67 MPa)
2.75 m

� 2.18 MPa

σallow �
Tallow(1.0 m)

(1.0 m)(t)
�

3
MN
m

(1 m)

(1 m)(45 mm)
� 66.667 MPa
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Fig. 8-6
Cylindrical pressure vessels with

circular cross sections

Cylindrical storage tanks in a
petrochemical plant (Perov

Stanislav/Shutterstock)

Fig. 8-7 
Stresses in a circular cylindrical

pressure vessel 
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8.3 CYLINDRICAL PRESSURE VESSELS
Cylindrical pressure vessels with a circular cross section (Fig. 8-6) are
found in industrial settings (compressed air tanks and rocket motors), in
homes (fire extinguishers and spray cans), and in the countryside
(propane tanks and grain silos). Pressurized pipes, such as water- supply
pipes and penstocks, are also classified as cylindrical pressure vessels.

We begin our analysis of cylindrical vessels by determining the normal
stresses in a thin-walled circular tank AB subjected to internal pressure
(Fig. 8-7a). A stress element with its faces parallel and perpendicular to the
axis of the tank is shown on the wall of the tank. The normal stresses σ1 and
σ2 acting on the side faces of this element are the membrane stresses in the
wall. No shear stresses act on these faces because of the symmetry of the ves-
sel and its loading. Therefore, the stresses σ1 and σ2 are principal stresses.

Because of their directions, the stress σ1 is called the circumferential
stress or the hoop stress, and the stress σ2 is called the longitudinal stress or
the axial stress. Each of these stresses can be calculated from equilibrium
by using appropriate free-body diagrams.

Circumferential Stress
To determine the circumferential stress σ1, we make two cuts (mn and pq)
perpendicular to the longitudinal axis and distance b apart (Fig. 8-7a).
Then we make a third cut in a vertical plane through the longi tudinal axis
of the tank, resulting in the free body shown in Fig. 8-7b. This free body
consists not only of the half-circular piece of the tank but also of the fluid
contained within the cuts. Acting on the longitudinal cut (plane mpqn) are
the circumferential stresses σ1 and the internal pressure p.

Stresses and pressures also act on the left-hand and right-hand faces
of the free body. However, these stresses and pressures are not shown in
the figure because they do not enter the equation of equilibrium that we
will use. As in our analysis of a spherical vessel, we will disregard the
weight of the tank and its contents.

Chapter 8  Applications of Plane Stress
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The circumferential stresses σ1 acting in the wall of the vessel have a
resultant equal to , where t is the thickness of the wall. Also, the
resultant force P1 of the internal pressure is equal to 2pbr, where r is the inner
radius of the cylinder. Hence, we have the following equation of equilibrium:

From this equation we obtain the following formula for the circumferential
stress in a pressurized cylinder:

(8-11)

This stress is uniformly distributed over the thickness of the wall, provided
the thickness is small compared to the radius.

Longitudinal Stress
The longitudinal stress σ2 is obtained from the equilibrium of a free body
of the part of the vessel to the left of cross section mn (Fig. 8-7c). Again,
the free body includes not only part of the tank but also its contents. The
stresses σ2 act longitudinally and have a resultant force equal to .
Note that we are using the inner radius of the shell in place of the mean
radius, as explained in Section 8.2.

The resultant force P2 of the internal pressure is a force equal to
Thus, the equation of equilibrium for the free body is

Solving this equation for σ2, we obtain the following formula for the lon-
gitudinal stress in a cylindrical pressure vessel:

(8-12)

This stress is equal to the membrane stress in a spherical vessel [Eq. (8-5)].
Comparing Eqs. (8-11) and (8-12), we see that the circumferential

stress in a cylindrical vessel is equal to twice the longitudinal stress:

(8-13)

From this result we note that a longitudinal welded seam in a pressurized
tank must be twice as strong as a circumferential seam.

Stresses at the Outer Surface
The principal stresses σ1 and σ2 at the outer surface of  a cylindrical ves-
sel are shown on the stress element of  Fig. 8-8a. Since the third principal
stress (acting in the z direction) is zero, the element is in biaxial stress.

The maximum in-plane shear stresses occur on planes that are rotated
45� about the z axis; these stresses are

(8-14)

The maximum out-of-plane shear stresses are obtained by 45� rotations
about the x and y axes, respectively; thus,

(8-15a,b)(τmax)x �
σ1

2
�

pr

2t
(τmax)y �

σ2

2
�

pr

4t

(τmax)z �
σ1 � σ2

2
�

σ1

4
�

pr

4t

σ1 � 2σ2

σ2 �
pr

2t

σ2(2πrt) � pπr2 � 0

pπr2.

σ2(2πrt)

σ1(2bt)

σ1 �
pr

t

σ1(2bt) � 2pbr � 0
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702

Comparing the preceding results, we see that the absolute maximum shear
stress is

(8-16)

This stress occurs on a plane that has been rotated 45� about the x axis.

Stresses at the Inner Surface
The stress conditions at the inner surface of the wall of the vessel are
shown in Fig. 8-8b. The principal stresses are

(8-17a,b,c)

The three maximum shear stresses, obtained by 45� rotations about the x, y,
and z axes, are

(8-18a)

(8-18b)

(8-18c)

The first of these three stresses is the largest. However, as explained in the dis-
cussion of shear stresses in a spherical shell, we may disregard the additional
term p/2 in Eqs. (8-18a and b) when the shell is thin-walled. Equations (8-18a,
b, and c) then become the same as Eqs. (8-15) and (8-14), respectively.

Therefore, in all of  our examples and problems pertaining to cylin-
drical pressure vessels, we will disregard the presence of the compressive
stress in the z direction. (This compressive stress varies from p at the
inner surface to zero at the outer surface.) With this approximation, the
stresses at the inner surface become the same as the stresses at the outer
surface (biaxial stress). As explained in the discussion of  spherical pres-
sure vessels, this procedure is satisfactory when we consider the numer-
ous other approximations in this theory.

General Comments
The preceding formulas for stresses in a circular cylinder are valid in parts
of the cylinder away from any discontinuities that cause stress concentra-
tions, as discussed previously for spherical shells. An obvious discontinuity
exists at the ends of the cylinder where the heads are attached, because the
geometry of the structure changes abruptly. Other stress concentrations
occur at openings, at points of support, and wherever objects or fittings are
attached to the cylinder. The stresses at such points cannot be determined
solely from equilibrium equations; instead, more advanced methods of
analysis (such as shell theory and finite-element analysis) must be used.

Some of the limitations of the elementary theory for thin-walled shells
are listed in Section 8.2.

(τmax)y �
σ2 � σ3

2
�

pr

4t
�

p
2

(τmax)x �
σ1 � σ3

2
�

pr
2t

�
p
2

(τmax)z �
σ1 � σ2

2
�

pr

4t

σ1 �
pr

t
σ2 �

pr

2t
σ3 � �p

τmax �
σ1

2
�

pr

2t

Chapter 8  Applications of Plane Stress

Fig. 8-8 
Stresses in a circular cylindrical
pressure vessel at (a) the outer

surface, and (b) the inner surface
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A cylindrical pressure vessel is constructed from a long, narrow steel plate by
wrapping the plate around a mandrel and then welding along the edges of
the plate to make a helical joint (Fig. 8-9). The helical weld makes an angle

with the longitudinal axis. The vessel has inner radius and
wall thickness . The material is steel with modulus
and Poisson’s ratio . The internal pressure p is 800 kPa.

Calculate the following quantities for the cylindrical part of the vessel:
(a) the circumferential and longitudinal stresses σ1 and σ2, respectively; 
(b) the maximum in-plane and out-of-plane shear stresses; (c) the circumfer-
ential and longitudinal strains ε1 and ε2, respectively; and (d) the normal
stress σw and shear stress τw acting perpendicular and parallel, respectively,
to the welded seam.

Solution
(a) Circumferential and longitudinal stresses. The circumferential and longi-

tudinal stresses σ1 and σ2, respectively, are pictured in Fig. 8-10a, where
they are shown acting on a stress element at point A on the wall of the
vessel. The magnitudes of the stresses can be calculated from Eqs. (8-11)
and (8-12):

The stress element at point A is shown again in Fig. 8-10b, where the
x axis is in the longitudinal direction of the cylinder and the y axis is in

σ1 �
pr

t
�

(800 kPa)(1.8 m)
20 mm

� 72 MPa σ2 �
pr

2t
�

σ1

2
� 36 MPa ➥

ν � 0.30
t � 20 mm E � 200 GPa

α � 55° r � 1.8 m

Example 8-2• • •

Continues ➥

Fig. 8-9 
Example 8-2: Cylindrical  pressure
vessel with a helical weld

Helical weld

a

Fig. 8-10
Solution to Example 8-2

y

xO

B

x1

y1

y

xO

A

(b)

(a)

(c)

60.2 MPa

16.9 MPa

47.8 MPa

u = 35°

sy = s1 = 72 MPa

u = 35°
s1

s2

sx = s2 = 36 MPa

B
x

u
A
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Cylindrical pressure vessel on
simple supports (Perov Stanislav/
Shutterstock)
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• • •
the circumferential direction. Since there is no stress in the z direction

, the element is in biaxial stress.
Note that the ratio of the internal pressure (800 kPa) to the smaller

in-plane principal stress (36 MPa) is 0.022. Therefore, our assumption
that we may disregard any stresses in the z direction and consider all ele-
ments in the cylindrical shell, even those at the inner surface, to be in
biaxial stress is justified.

(b) Maximum shear stresses. The largest in-plane shear stress is obtained
from Eq. (8-14):

Because we are disregarding the normal stress in the z direction, the
largest out-of-plane shear stress is obtained from Eq. (8-15a):

This last stress is the absolute maximum shear stress in the wall of the vessel.

(c) Circumferential and longitudinal strains. Since the largest stresses are
well below the yield stress of steel (see Table H-3, Appendix H), we may
assume that Hooke’s law applies to the wall of the vessel. Then we can
obtain the strains in the x and y directions (Fig. 8-10b) from Eqs. (7-40a)
and (7-40b) for biaxial stress:

(a,b)

We note that the strain εx is the same as the principal strain ε2 in the
longitudinal direction and that the strain εy is the same as the principal
strain ε1 in the circumferential direction. Also, the stress σx is the same
as the stress σ2, and the stress σy is the same as the stress σ1. Therefore,
the preceding two equations can be written in the following forms:

(8-19a)

(8-19b)

Substituting numerical values, we find

These are the longitudinal and circumferential strains in the cylinder.

(σ3 � 0)

ε1 �
σ1

2E
(2 � ν ) �

(72 MPa)(2 � 0.30)
2(200 GPa)

� 306 � 10�6 ➥

➥

➥

➥

ε2 �
σ2

E
(1 � 2ν) �

(36 MPa)[1 � 2(0.30)]
200 GPa

� 72 � 10�6

ε1 �
σ1

2E
(2 � ν ) �

pr

2tE
(2 � ν)

ε2 �
σ2

E
(1 � 2ν) �

pr

2tE
(1 � 2ν)

εx �
1
E
1σx � νσy2 εy �

1
E
1σy � νσx2

τmax �
σ1

2
�

pr

2t
� 36 MPa

(τmax)z �
σ1 � σ2

2
�

σ1

4
�

pr

4t
� 18 MPa

Example 8-2 - Continued
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y

xO

B

x1

y1

(c)

60.2 MPa

16.9 MPa

47.8 MPa

u = 35°
Pa

7058.3 Cylindrical Pressure Vessels

(d) Normal and shear stresses acting on the welded seam. The stress element
at point B in the wall of the cylinder (Fig. 8-10a) is oriented so that its sides
are parallel and perpendicular to the weld. The angle θ for the element is

as shown in Fig. 8-10c. Either the stress-transformation equations or
Mohr’s circle may be used to obtain the normal and shear stresses acting
on the side faces of this element.

Stress-transformation equations. The normal stress and the shear
stress acting on the x1 face of the element (Fig. 8-10c) are obtained 
from Eqs. (7-4a) and (7-4b), which are repeated here:

(8-20a)

(8-20b)

Substituting , , and , we obtain

(8-21a,b)

These equations give the normal and shear stresses acting on an
inclined plane oriented at an angle θ with the longitudinal axis of the
cylinder.

Substituting and into Eqs. (8-21a and b),
we obtain

These stresses are shown on the stress element of Fig. 8-10c.
To complete the stress element, we can calculate the normal

stress acting on the y1 face of the element from the sum of the nor-
mal stresses on perpendicular faces [Eq. (7-6)]:

(8-22)

Substituting numerical values, we get

as shown in Fig. 8-10c.
From the figure, we see that the normal and shear stresses acting

perpendicular and parallel, respectively, to the welded seam are

σw � 47.8 MPa τw � 16.9 MPa ➥

σy1
� σ1 � σ2 � σx1

� 72 MPa � 36 MPa � 47.8 MPa � 60.2 MPa

σ1 � σ2 � σx1
� σy1

σy1

σx1
� 47.8 MPa τx1y1

� 16.9 MPa

pr/4t � 18 MPa θ � 35°

σx1
�

pr

4t
(3 � cos 2θ ) τx1y1

�
pr

4t
sin 2θ

σx � σ2 � pr/2t σy � σ1 � pr/t τxy � 0

τx1y1
� �

σx � σy

2
sin 2θ � τxy cos 2θ

σx1
�

σx � σy

2
�

σx � σy

2
cos 2θ � τxy sin 2θ

θ � 90° � α � 35°

τx1y1

σx1

Continues ➥

Fig. 8-10c (Repeated)
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Mohr’s circle. The Mohr’s circle construction for the biaxial stress ele-
ment of Fig. 8-10b is shown in Fig. 8-11. Point A represents the stress

on the x face of the element, and point B repre-
sents the stress on the y face . The center C of 
the circle is at a stress of 54 MPa, and the radius of the circle is

A counterclockwise angle (measured on the circle from point A)
locates point D, which corresponds to the stresses on the x1 face 
of the element. The coordinates of point D (from the geometry of the
 circle) are

These results are the same as those found earlier from the stress-trans-
formation equations.

Note: When seen in a side view, a helix follows the shape of a sine
curve (Fig. 8-12). The pitch of the helix is

(8-23)

where d is the diameter of the circular cylinder and θ is the angle
between a normal to the helix and a longitudinal line. The width of the
flat plate that wraps into the cylindrical shape is

(8-24)

Thus, if the diameter of the cylinder and the angle θ are given, both the
pitch and the plate width are established. For practical reasons, the
angle θ is usually in the range from 20� to 35�.

σx1
� 54 MPa � R cos 70° � 54 MPa � (18 MPa)(cos 70°) � 47.8 MPa

w � πd sin θ

p � πd tan θ

τx1y1
� R sin 70° � (18 MPa)(sin 70°) � 16.9 MPa

σ2 � 36 MPa (θ � 0)
σ1 � 72 MPa (θ � 90°)

(θ � 35°)
2θ � 70°

R �
72 MPa � 36 MPa

2
� 18 MPa

Example 8-2 - Continued• • •

Fig. 8-11
Mohr’s circle for the biaxial
stress element of Fig. 8-10b
(Note: All stresses on the circle
have units of MPa.)

B(u = 90°)

D(u = 35°)

2u = 70°
(u = 0)

R = 18

A
O

C

36

54

72

sx1

τx1y1

Fig. 8-12 
Side view of a helix

p

u d

706 Chapter 8  Applications of Plane Stress

77742_08_ch08_p692-753.qxd:77742_08_ch08_p692-753.qxd  2/22/12  5:23 PM  Page 706

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8.4 MAXIMUM STRESSES IN BEAMS
The stress analysis of a beam usually begins by finding the normal and
shear stresses acting on cross sections. For instance, when Hooke’s law
holds, we can obtain the normal and shear stresses from the flexure and
shear formulas [Eqs. (5-14) and (5-41), respectively, of Chapter 5]:

(8-25a,b)

In the flexure formula, σ is the normal stress acting on the cross section,
M is the bending moment, y is the distance from the neutral axis, and I is
the moment of inertia of the cross-sectional area with respect to the neu-
tral axis. (The sign conventions for M and y in the flexure formula are
shown in Figs. 5-9 and 5-10 of Chapter 5.)

In the case of the shear formula, τ is the shear stress at any point in
the cross section, V is the shear force, Q is the first moment of the cross-
sectional area outside of the point in the cross section where the stress is
being found, and b is the width of the cross section. (The shear formula is
usually written without regard to signs because the directions of the shear
stresses are apparent from the directions of the loads.)

The normal stresses obtained from the flexure formula have their
maximum values at the farthest distances from the neutral axis, whereas
the shear stresses obtained from the shear formula usually have their
highest values at the neutral axis. The normal stresses are calculated at the
cross section of maximum bending moment, and the shear stresses are
calculated at the cross section of  maximum shear force. In most
 circumstances, these are the only stresses that are needed for design
 purposes.

However, to obtain a more complete picture of the stresses in a beam,
we need to determine the principal stresses and maximum shear stresses at
various points in the beam. We will begin by discussing the stresses in a
rectangular beam.

Beams of Rectangular Cross Section
We can gain an understanding of  how the stresses in a beam vary by con-
sidering the simple beam of rectangular cross section shown in Fig. 8-13a.
For the purposes of  this discussion, we choose a cross section to the left
of  the load and then select five points (A, B, C, D, and E) on the side of
the beam. Points A and E are at the top and bottom of the beam, respec-
tively, point C is at the midheight of  the beam, and points B and D are in
between.

If  Hooke’s law applies, the normal and shear stresses at each of these
five points can be readily calculated from the flexure and shear formulas.
Since these stresses act on the cross section, we can picture them on stress
elements having vertical and horizontal faces, as shown in Fig. 8-13b. Note
that all elements are in plane stress, because there are no stresses acting
perpendicular to the plane of the figure.

At point A the normal stress is compressive and there are no shear
stresses. Similarly, at point E the normal stress is tensile and again there
are no shear stresses. Thus, the elements at these locations are in uniaxial
stress. At the neutral axis (point C) the element is in pure shear. At the

σ � �
My

I
τ �

VQ

Ib

7078.4 Maximum Stresses in Beams
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Fig. 8-13 
Stresses in a beam of rectangular

cross section: (a) simple beam
with points A, B, C, D, and E on

the side of the beam; (b) normal
and shear stresses acting on

stress elements at points A, B, C,
D, and E; (c) principal stresses;

and (d) maximum shear stresses

A A A

B B B

C C C

D D D

E E E

(b) (c) (d)

(a)

A

E D

DC

B

708

other two locations (points B and D), both normal and shear stresses act
on the stress elements.

To find the principal stresses and maximum shear stresses at each point,
we may use either the transformation equations of plane stress or Mohr’s
circle. The directions of the principal stresses are shown in Fig. 8-13c, and
the directions of the maximum shear stresses are shown in Fig. 8-13d. (Note
that we are considering only the in-plane stresses.)

Now let us examine the principal stresses in more detail. From the
sketches in Fig. 8-13c, we can observe how the principal stresses change as we
go from top to bottom of the beam. Let us begin with the compressive
 principal stress. At point A the compressive stress acts in the horizontal direc-
tion and the other principal stress is zero. As we move toward the neutral axis

Chapter 8  Applications of Plane Stress
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(b)

(a)

Fig. 8-14 
Principal-stress trajectories for
beams of rectangular cross 
section: (a) cantilever beam, and
(b) simple beam (Solid lines 
represent tensile principal
stresses and dashed lines 
represent compressive principal
stresses.)

the compressive principal stress becomes inclined, and at the neutral axis
(point C) it acts at 45� to the horizontal. At point D the compressive princi-
pal stress is further inclined from the horizontal, and at the bottom of the
beam its direction becomes vertical (except that its magnitude is now zero).

Thus, the direction and magnitude of the compressive principal stress
vary continuously from top to bottom of the beam. If the chosen cross
 section is located in a region of large bending moment, the largest compres-
sive principal stress occurs at the top of the beam (point A), and the small-
est compressive principal stress (zero) occurs at the bottom of the beam
(point E). If the cross section is located in a region of small bending
moment and large shear force, then the largest compressive principal stress
is at the neutral axis.

Analogous comments apply to the tensile principal stress, which also
varies in both magnitude and direction as we move from point A to point
E. At point A the tensile stress is zero and at point E it has its maximum
value. (Graphs showing how the principal stresses vary in magnitude for a
particular beam and particular cross section are given later in Fig. 8-19 of
Example 8-3.)

The maximum shear stresses (Fig. 8-13d) at the top and bottom of
the beam occur on 45� planes (because the elements are in uniaxial
stress). At the neutral axis, the maximum shear stresses occur on hori-
zontal and vertical planes (because the element is in pure shear). At all
points, the maximum shear stresses occur on planes oriented at 45� to the
principal planes. In regions of  high bending moment, the largest shear
stresses occur at the top and bottom of  the beam; in regions of  low bend-
ing moment and high shear force, the largest shear stresses occur at the
neutral axis.

By investigating the stresses at many cross sections of the beam, we can
determine how the principal stresses vary throughout the beam. Then we
can construct two systems of orthogonal curves, called stress trajectories,
that give the directions of the principal stresses. Examples of stress trajec-
tories for rectangular beams are shown in Fig. 8-14. Part (a) of the figure
shows a cantilever beam with a load acting at the free end, and part (b)

7098.4 Maximum Stresses in Beams
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Fig. 8-15 
Stress contours for a cantilever

beam (tensile principal 
stresses only)

*Stress trajectories were originated by the German engineer Karl Culmann (1821–1881); see Ref. 8-1.

710

shows a simple beam with a uniform load. Solid lines are used for tensile
principal stresses and dashed lines for compressive principal stresses. The
curves for tensile and compressive principal stresses always intersect at right
angles, and every trajectory crosses the longitudinal axis at 45�. At the top
and bottom surfaces of the beam, where the shear stress is zero, the trajec-
tories are either horizontal or vertical.*

Another type of curve that may be plotted from the principal stresses
is a stress contour, which is a curve connecting points of equal principal
stress. Stress contours for a cantilever beam of rectangular cross section
are shown in Fig. 8-15 (for tensile principal stresses only). The contour of
largest stress is at the upper left part of the figure. As we move downward
in the figure, the tensile stresses represented by the contours become
smaller and smaller. The contour line of zero tensile stress is at the lower
edge of the beam. Thus, the largest tensile stress occurs at the support,
where the bending moment has its largest value.

Note that stress trajectories (Fig. 8-14) give the directions of  the
principal stresses but give no information about the magnitudes of  the
stresses. In general, the magnitudes of  the principal stresses vary as we
move along a trajectory. In contrast, the magnitudes of  the principal
stresses are constant as we move along a stress contour (Fig. 8-15), but
the contours give no information about the directions of  the stresses. In
particular, the principal stresses are neither parallel nor perpendicular to
a stress contour.

The stress trajectories and contours of  Figs. 8-14 and 8-15 were
plotted from the flexure and shear formulas [Eqs. (8-25a and b)]. Stress
concentrations near the supports and near the concentrated loads, as
well as the direct compressive stresses caused by the uniform load bear-
ing on the top of  the beam (Fig. 8-14b), were disregarded in plotting
these figures.

Wide-Flange Beams
Beams having other cross-sectional shapes, such as wide-flange beams,
can be analyzed for the principal stresses in a manner similar to that
described previously for rectangular beams. For instance, consider the
simply supported wide-flange beam shown in Fig. 8-16a. Proceeding as
for a rectangular beam, we identify points A, B, C, D, and E from top to
bottom of the beam (Fig. 8-16b). Points B and D are in the web where it
meets the flange, and point C is at the neutral axis. We can think of  these
points as being located either on the side of  the beam (Figs. 8-16b and c)
or inside the beam along a vertical axis of  symmetry (Fig. 8-16d). The
stresses determined from the flexure and shear formulas are the same at
both sets of  points.

Chapter 8  Applications of Plane Stress
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Fig. 8-16 
Stresses in a wide-flange beam

A B C D E

(f)(e) (g) (h) (i)

(a)

A

E

D

A

E

A

E
D

C
B

D
C
B

(b) (c)

A

E

D
C
B

(d)

Fig. 8-13b (Repeated)

A

B

C

D

E

(b)

Stress elements at points A, B, C, D, and E (as seen in a side view
of  the beam) are shown in parts (e) through (i) of  Fig. 8-16. These ele-
ments have the same general appearance as those for a rectangular
beam (Fig. 8-13b).

The largest principal stresses usually occur at the top and bottom of
the beam (points A and E) where the stresses obtained from the flexure
formula have their largest values. However, depending upon the relative
magnitudes of the bending moment and shear force, the largest stresses
sometimes occur in the web where it meets the flange (points B and D).
The explanation lies in the fact that the normal stresses at points B and D
are only slightly smaller than those at points A and E, whereas the shear
stresses (which are zero at points A and E) may be significant at points B
and D because of the thin web. (Note: Fig. 5-38 in Chapter 5 shows how
the shear stresses vary in the web of a wide-flange beam.)

The maximum shear stresses acting on a cross section of a wide-flange
beam always occur at the neutral axis, as shown by the shear formula of
Eq. (8-25b). However, the maximum shear stresses acting on inclined
planes usually occur either at the top and bottom of the beam (points A
and E) or in the web where it meets the flange (points B and D) because of
the presence of normal stresses.

When analyzing a wide-flange beam for the maximum stresses,
remember that high stresses may exist near supports, points of loading, fil-
lets, and holes. Such stress concentrations are confined to the region very
close to the discontinuity and cannot be calculated by elementary beam
formulas.

The following example illustrates the procedure for determining
the principal stresses and maximum shear stresses at a selected cross
section in a rectangular beam. The procedures for a wide-flange beam
are similar.

7118.4 Maximum Stresses in Beams

77742_08_ch08_p692-753.qxd:77742_08_ch08_p692-753.qxd  2/22/12  5:23 PM  Page 711

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Example 8-3• • •
A simple beam AB with span length supports a concentrated
load acting at distance from the right-hand support
(Fig. 8-17). The beam is made of steel and has a rectangular cross section
of width and height .

Investigate the principal stresses and maximum shear stresses at cross
section mn, located at distance from end A of the beam.
(Consider only the in-plane stresses.)

x � 230 mm

b � 50 mm h � 150 mm

P � 48 kN c � 0.6 m
L � 1.8 m

Fig. 8-17 
Example 8-3: Beam of 
rectangular cross section

Fig. 8-18 
Example 8-3: Plane-stress
 element at cross section mn
of the beam of Fig. 8-17 

L = 1.8 m

P = 48 kN

b = 50 mm

h = 150 mm
BA

O

y

zx
m

y

n

c = 0.6 m
x = 230 mm

RA = = 16 kNP
3

—

y

x
O

τxy sx

Solution
We begin by using the flexure and shear formulas to calculate the stresses
acting on cross section mn. Once those stresses are known, we can deter-
mine the principal stresses and maximum shear stresses from the equations
of plane stress. Finally, we can plot graphs of these stresses to show how
they vary over the height of the beam.

As a preliminary matter, we note that the reaction of the beam at sup-
port A is , and therefore the bending moment and shear
force at section mn are

Normal stresses on cross section mn. These stresses are found from the
flexure formula [Eq. (8-25a)], as follows:

(a)

in which y has units of millimeters (mm) and σx has units of Newtons per
square meter (Pa). The stresses calculated from Eq. (a) are positive when in
 tension and negative when in compression. For instance, note that a  positive
value of y (upper half of the beam) gives a negative stress, as expected.

A stress element cut from the side of the beam at cross section mn
(Fig. 8-25) is shown in Fig. 8-18. For reference purposes, a set of xy axes is
associated with the element. The normal stress σx and the shear stress τxy
are shown acting on the element in their positive directions. (Note that
in this example there is no normal stress σy acting on the element.)

Shear stresses on cross section mn. The shear stresses are given by the
shear formula [Eq. (8-25b)] in which the first moment Q for a rectangular
cross section is

(8-26)Q � bah
2

� yb ay �
h/2 � y

2
b �

b
2
ah2

4
� y2b

σx � �
My

I
� �

12My

bh3
� �

12(3680 kN # mm)y

(50 mm)(150 mm)
� �271.7 � 103y

M � RAx � (16 kN)(230 mm) � 3680 kN # mm V � RA � 16 kN

RA � P/3 � 16 kN
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Continues ➥

Thus, the shear formula becomes

(8-27)

The shear stresses τxy acting on the x face of the stress element (Fig. 8-18) are
positive upward, whereas the actual shear stresses τ [Eq. (8-27)] act down-
ward. Therefore, the shear stresses τxy are given by

(8-28)

Substituting numerical values into this equation gives

(b)

in which y has units of millimeters (mm) and τxy has units of Newtons per
square meter (Pa).

Calculation of stresses. For the purpose of calculating the stresses at
cross section mn, let us divide the height of the beam into six equal inter-
vals and label the corresponding points from A to G, as shown in the side
view of the beam (Fig. 8-19a). The y coordinates of these points are listed in
column 2 of Table 8-1 and the corresponding stresses σx and τxy [calculated
from Eqs. (a) and (b), respectively] are listed in columns 3 and 4. These
stresses are plotted in Figs. 8-19b and c. The normal stresses vary linearly
from a compressive stress of at the top of the beam (point A)
to a tensile stress of 19.63 MPa at the bottom of the beam (point G). The
shear stresses have a parabolic distribution with the maximum stress at the
neutral axis (point D).

Principal stresses and maximum shear stresses. The principal stresses at
each of the seven points A through G may be determined from Eq. (7-17):

(8-29)

Since there is no normal stress in the y direction (Fig. 8-18), this equation
simplifies to

(8-30)

Also, the maximum shear stresses [from Eq. (7-25)] are

(8-31)τmax �
C
aσx � σy

2
b2

� τxy
2

σ1,2 �
σx

2
�

C
aσx

2
b2

� τxy
2

σ1,2 �
σx � σy

2
�

C
aσx � σy

2
b2

� τxy
2

�19.63 MPa

τxy � �
6(16 kN)

(50 mm)(150 mm)3
a (150 mm)2

4
� y2b � �569(5625 � y2)

τxy � �
6V

bh3
ah2

4
� y2b

τ �
VQ
lb

�
12V

(bh3)(b)
ab

2
b ah2

4
� y2b �

6V

bh3
ah2

4
� y2b
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Example 8-3 - Continued• • •
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Fig. 8-19 
Example 8-3: Stresses in
the beam of Fig. 8-17 (a)
Points A, B, C, D, E, F, and G at
cross section mn; (b) normal
stresses σx acting on cross
 section mn; (c) shear stresses
τxy acting on cross section mn; 
(d) principal tensile stresses σ1;
(e) principal compressive
stresses σ2; and (f) maximum
shear stresses τmax (Note: All
stresses have units of MPa.)

Table 8-1 
Stresses at Cross Section mn in
the Beam of Fig. 8-17

(1) (2) (3) (4) (5) (6) (7)

Point
y

(mm)
σx

(MPa)
τxy

(MPa)
σ1

(MPa)
σ2

(MPa)
τmax

(MPa)

A 75 �19.63 0 0 �19.63 9.82

B 50 �13.1 �1.78 0.24 �13.3 6.80

C 25 �6.54 �2.85 1.07 �7.61 4.34

D 0 0 �3.21 3.21 �3.21 3.21

E �25 6.54 �2.85 7.61 �1.07 4.34

F �50 13.1 �1.78 13.3 �0.24 6.80

G �75 19.63 0 19.63 0 9.82
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which simplifies to

(8-32)

Thus, by substituting the values of σx and τxy (from Table 8-1) into Eqs. (8-30)
and (8-32), we can calculate the principal stresses σ1 and σ2 and the maxi-
mum shear stress τmax. These quantities are listed in the last three columns
of Table 8-1 and are plotted in Figs. 8-19d, e, and f.

The tensile principal stresses σ1 increase from zero at the top of the
beam to a maximum of 19.63 MPa at the bottom (Fig. 8-19d). The directions
of the stresses also change, varying from vertical at the top to horizontal at
the bottom. At midheight, the stress σ1 acts on a 45� plane. Similar com-
ments apply to the compressive principal stress σ2, except in reverse. For
instance, the stress is largest at the top of the beam and zero at the bottom
(Fig. 8-19e).

The maximum shear stresses at cross section mn occur on 45� planes at
the top and bottom of the beam. These stresses are equal to one-half of the
normal stresses σx at the same points. At the neutral axis, where the normal
stress σx is zero, the maximum shear stresses occur on the horizontal and
vertical planes.

Note 1: If we consider other cross sections of the beam, the maximum
normal and shear stresses will be different from those shown in Fig. 8-19.
For instance, at a cross section between section mn and the concentrated
load (Fig. 8-17), the normal stresses σx are larger than shown in Fig. 8-19b
because the bending moment is larger. However, the shear stresses τxy are
the same as those shown in Fig. 8-19c because the shear force doesn’t
change in that region of the beam. Consequently, the principal stresses 
σ1 and σ2 and maximum shear stresses τmax will vary in the same general
manner as shown in Figs. 8-19d, e, and f but with different numerical  values.

The largest tensile stress anywhere in the beam is the normal stress at
the bottom of the beam at the cross section of maximum bending moment.
This stress is

The largest compressive stress has the same numerical value and occurs at
the top of the beam at the same cross section.

The largest shear stress τxy acting on a cross section of the beam occurs
to the right of the load P (Fig. 8-17) because the shear force is larger in that
region of the beam . Therefore, the largest value of τxy,
which occurs at the neutral axis, is

The largest shear stress anywhere in the beam occurs on 45� planes at either
the top or bottom of the beam at the cross section of maximum bending
moment:

Note 2: In the practical design of ordinary beams, the principal stresses
and maximum shear stresses are rarely calculated. Instead, the tensile and
compressive stresses to be used in design are calculated from the flexure for-
mula at the cross section of maximum bending moment, and the shear stress
to be used in design is calculated from the shear formula at the cross section
of maximum shear force.

τmax �
102.4 MPa

2
� 51.2 MPa

1τxy2max � 6.4 MPa

(V � RB � 32 kN)

1σtens2max � 102.4 MPa

τmax �
C
aσx

2
b2

� τxy
2
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Fig. 8-20 
Examples of structures subjected

to combined loadings: 
(a) wide-flange beam supported

by a cable (combined bending
and axial load), (b) cylindrical

pressure vessel supported as a
beam, and (c) shaft in combined

torsion and bending

(a)

Cable

Beam

(b)

Pressure vessel

(c)

B
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8.5 COMBINED LOADINGS
In previous chapters we analyzed structural members subjected to a single
type of loading. For instance, we analyzed axially loaded bars in Chapters 1
and 2, shafts in torsion in Chapter 3, and beams in bending in Chapters 4,
5, and 6. We also analyzed pressure vessels earlier in this chapter. For each
type of loading, we developed methods for finding stresses, strains, and
deformations.

However, in many structures the members are required to resist more
than one kind of loading. For example, a beam may be subjected to the simul-
taneous action of bending moments and axial forces (Fig. 8-20a), a pressure
vessel may be supported so that it also functions as a beam (Fig. 8-20b), or a
shaft in torsion may carry a bending load (Fig. 8-20c). Known as combined
loadings, situations similar to those shown in Fig. 8-20 occur in a great variety
of machines, buildings, vehicles, tools, equipment, and many other kinds of
structures.

A structural member subjected to combined loadings can often be
analyzed by superimposing the stresses and strains caused by each load
acting separately. However, superposition of both stresses and strains is
permissible only under certain conditions, as explained in earlier chapters.
One requirement is that the stresses and strains must be linear functions of
the applied loads, which in turn requires that the material follow Hooke’s
law and the displacements remain small.

A second requirement is that there must be no interaction between the
various loads, that is, the stresses and strains due to one load must not be
affected by the presence of the other loads. Most ordinary structures sat-
isfy these two conditions, and therefore the use of superposition is very
common in engineering work.

Method of Analysis
While there are many ways to analyze a structure subjected to more than
one type of load, the procedure usually includes the following steps:

1. Select a point in the structure where the stresses and strains are to be
determined. (The point is usually selected at a cross section where
the stresses are large, such as at a cross section where the bending
moment has its maximum value.)

2. For each load on the structure, determine the stress resultants at the
cross section containing the selected point. (The possible stress
resultants are an axial force, a twisting moment, a bending moment,
and a shear force.)

3. Calculate the normal and shear stresses at the selected point due
to each of  the stress resultants. Also, if  the structure is a pressure
vessel, determine the stresses due to the internal pressure. (The
stresses are found from the stress formulas derived previously;
for instance, , , , , and

.)
4. Combine the individual stresses to obtain the resultant stresses at the

selected point. In other words, obtain the stresses σx, σy, and τxy act-
ing on a stress element at the point. (Note that in this chapter we are
dealing only with elements in plane stress.)

σ � pr/t
σ � P/A τ � Tρ /IP σ � My/I τ � VQ/Ib

Chapter 8  Applications of Plane Stress
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Fig. 8-21 
Cantilever bar subjected to 
combined torsion and bending:
(a) loads acting on the bar, 
(b) stress resultants at a cross
section, and (c) stresses at 
points A and B

5. Determine the principal stresses and maximum shear stresses at the
selected point, using either the stress-transformation equations or
Mohr’s circle. If  required, determine the stresses acting on other
inclined planes.

6. Determine the strains at the point with the aid of Hooke’s law for
plane stress.

7. Select additional points and repeat the process. Continue until
enough stress and strain information is available to satisfy the pur-
poses of the analysis.

Illustration of the Method
To illustrate the procedure for analyzing a member subjected to combined
loadings, we will discuss in general terms the stresses in the cantilever bar
of circular cross section shown in Fig. 8-21a. This bar is subjected to two
types of load—a torque T and a vertical load P, both acting at the free end
of the bar.

Let us begin by arbitrarily selecting two points A and B for investiga-
tion (Fig. 8-21a). Point A is located at the top of the bar and point B is
located on the side. Both points are located at the same cross section.

The stress resultants acting at the cross section (Fig. 8-21b) are a twist-
ing moment equal to the torque T, a bending moment M equal to the load P
times the distance b from the free end of the bar to the cross section, and a
shear force V equal to the load P.

The stresses acting at points A and B are shown in Fig. 8-21c. The
twisting moment T produces torsional shear stresses

(8-33)

in which r is the radius of the bar and is the polar moment of 
inertia of the cross-sectional area. The stress acts horizontally to the left
at point A and vertically downward at point B, as shown in the figure.

The bending moment M produces a tensile stress at point A:

(8-34)

in which is the moment of inertia about the neutral axis.
However, the bending moment produces no stress at point B, because B is
located on the neutral axis.

The shear force V produces no shear stress at the top of the bar (point A),
but at point B the shear stress is as follows [see Eq. (5-46) in Chapter 5]:

(8-35)

in which is the cross-sectional area.
The stresses σA and τ1 acting at point A (Fig. 8-21c) are shown acting

on a stress element in Fig. 8-22a. This element is cut from the top of the bar
at point A. A two-dimensional view of the element, obtained by looking ver-
tically downward on the element, is shown in Fig. 8-22b. For the purpose of
determining the principal stresses and maximum shear stresses, we construct

τ1

A � πr2

τ2 �
4V
3A

�
4V

3πr2

I � πr4/4

σA �
Mr
I

�
4M
πr3

IP � πr4/2

τ1 �
Tr
IP

�
2T
πr3
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b
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Fig. 8-22 
Stress element at point A

Fig. 8-23 
Stress element at point B

(a)

τ1
sA

A

A

y

x
O

τ1

sA

(b)

τ1 + τ2

(a)

B

B

y

x
O

τ1 + τ2

(b)
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x and y axes through the element. The x axis is parallel to the longitudinal
axis of the circular bar (Fig. 8-21a) and the y axis is horizontal. Note that
the element is in plane stress with , , and .

A stress element at point B (also in plane stress) is shown in Fig. 8-23a.
The only stresses acting on this element are the shear stresses, equal to

(see Fig. 8-21c). A two-dimensional view of the stress element is
shown in Fig. 8-23b, with the x axis parallel to the longitudinal axis of the
bar and the y axis in the vertical direction. The stresses acting on the ele-
ment are and .

Now that we have determined the stresses acting at points A and B and
constructed the corresponding stress elements, we can use the transformation
equations of plane stress (Sections 7.2 and 7.3) or Mohr’s circle (Section 7.4)
to determine principal stresses, maximum shear stresses, and stresses acting
in inclined directions. We can also use Hooke’s law (Section 7.5) to determine
the strains at points A and B.

The procedure described previously for analyzing the stresses at points
A and B (Fig. 8-21a) can be used at other points in the bar. Of particular
interest are the points where the stresses calculated from the flexure and
shear formulas have maximum or minimum values, called critical points. For
instance, the normal stresses due to bending are largest at the cross section
of maximum bending moment, which is at the support. Therefore, points C
and D at the top and bottom of the beam at the fixed end (Fig. 8-21a) are
critical points where the stresses should be calculated. Another critical point
is point B itself, because the shear stresses are a maximum at this point.
(Note that in this example the shear stresses do not change if point B is
moved along the bar in the longitudinal direction.)

As a final step, the principal stresses and maximum shear stresses at
the critical points can be compared with one another in order to determine
the absolute maximum normal and shear stresses in the bar.

This example illustrates the general procedure for determining the
stresses produced by combined loadings. Note that no new theories are
involved—only applications of previously derived formulas and concepts.
Since the variety of practical situations seems to be endless, we will not
derive general formulas for calculating the maximum stresses. Instead, we
will treat each structure as a special case.

Selection of Critical Points
If  the objective of the analysis is to determine the largest stresses anywhere
in the structure, then the critical points should be selected at cross sections
where the stress resultants have their largest values. Furthermore, within
those cross sections, the points should be selected where either the normal
stresses or the shear stresses have their largest values. By using good judg-
ment in the selection of the points, we often can be reasonably certain of
obtaining the absolute maximum stresses in the structure.

However, it is sometimes difficult to recognize in advance where the
maximum stresses in the member are to be found. Then it may be necessary
to investigate the stresses at a large number of points, perhaps even using
trial-and-error in the selection of points. Other strategies may also prove
fruitful—such as deriving equations specific to the problem at hand or
making simplifying assumptions to facilitate an otherwise difficult analysis.

The following examples illustrate the methods used to calculate
stresses in structures subjected to combined loadings.

σx � σy � 0 τxy � �(τ1 � τ2)

τ1 � τ2

σx � σA σy � 0 τxy � �τ1

Chapter 8  Applications of Plane Stress
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The hollow pipe casing for a production oil well (see Fig. 8-24) is 200 mm in
outer diameter and 18 mm in thickness. The internal pressure due to gas and
oil is 15 MPa. At some point above the blowout preventer, the compressive
force in the pipe (due to the weight of the pipe) is 175 kN, and the torque
is . Determine the maximum tensile, compressive, and shear
stresses in the pipe casing.

14 kN # m

Example 8-4• • •

Continues ➥

Fig. 8-24 
Example 8-4: Production 
oil well casing (combined 
torsion and axial force and
internal pressure) (Courtesy 
of EMNRD)

Solution
The stresses in the well casing are produced by the combined action of the
axial force P, the torque T, and internal pressure p (Fig. 8-24b). Therefore,
the stresses at any point on the surface of the shaft at some depth consist
of circumferential stress σx, longitudinal stress σy, and shear stresses τxy, as
shown on the stress element on the surface of the casing in Fig. 8-24b. Note
that the y-axis is parallel to the longitudinal axis of the casing.
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Example 8-4 - Continued• • •

The circumferential stress σx is due to the internal pressure of oil and
gas and is computed using Eq. (8-11) as

The longitudinal stress σy is caused by the axial compressive force P (due to
self-weight) and is divided by casing cross sectional area A. The lon -
gitudinal tensile stress σL is due to internal pressure [see Eq. (8-12) to find
σL, which is non-zero when the well is capped and not operational]. Here
we assume that oil and gas are flowing, so σL is zero and σy is computed as

The shear stress τxy is obtained from the torsion formula [see Eq. (3-13) of
Section 3.3]:

The shear stress is positive in accordance with the sign convention
 established in Section 1.7.

Knowing the stresses σx, σy, and τxy, we now can obtain the principal
stresses and maximum shear stresses by the methods described in Section 7.3.
The principal stresses are obtained from Eq. (7-17):

Substituting , , and , we get

These are the maximum tensile and compressive stresses in the drill casing.
The maximum in-plane shear stresses from Eq. (7-25) are

Because the principal stresses σ1 and σ2 have opposite signs, the maximum
in-plane shear stresses are larger than the maximum out-of-plane shear
stresses [see Eqs. (7-28a, b, and c) and the accompanying discussion].
Therefore, the maximum shear stress in the drill casing is 52.7 MPa.

τmax �
C
aσx � σy

2
b2

� τxy
2 � 52.7 MPa ➥

σ1,2 � 33.2 MPa�52.7 MPa or σ1 � 85.9 MPa σ2 � �19.5 MPa ➥

σx � 83.3 MPa σy � �17 MPa τxy � 16.3 MPa

σ1,2 �
σx � σy

2
�

C
aσx � σy

2
b2

� τxy
2

τxy �
Tr
Ip

�
(14 kN # m) � (100 mm)

8.606(10�5) m4
� 16.3 MPa

σy �
�P
A

�
�(175 kN)

π cr2 � (r � t)2 d
� �17 MPa

σx �
pr

t
�

[15 MPa � (100 mm)]
18 mm

� 83.3 MPa
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• • •
The cylindrical pressure vessel from Example 8-2 (see photo) is now placed
on simple supports and is acted on by uniformly distributed load

, which includes the weight of the tank and its contents. The
6-m-long tank has an inner radius of and a wall thickness of

. The material is steel with a modulus of and the
internal pressure .

In Example 8-2, we investigated the longitudinal and circumferential
stresses and strains, as well as the maximum in-plane and out-of-plane shear
stresses. Now, we will investigate the effect of distributed load q to find states
of stress at element locations A and B (see Fig. 8-25) due to the combined
effects of internal pressure and transverse shear and bending moment
(shear-force and bending-moment diagrams are given in Figs. 8-25c and d).
Element A is on the outer surface of the vessel, just to the right of the left-hand
support; element B is located on the bottom surface of the tank at the midspan.

p � 720 kPa
t � 19 mm E � 200 GPa

r � 1.2 m
q � 150 kN/m

Example 8-5

A

qL/2
qL/2

0
B

(a)

Fig. 8-25
Example 8-5: Cylindrical
 pressure vessel subjected to
combined internal pressure p
and transverse load q

Continues ➥
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Example 8-5 - Continued• • •
Solution
The stresses in the wall of the pressure vessel are caused by the combined
action of internal pressure and transverse shear and bending.

At point A, we isolate a stress element similar to that shown in 
Fig. 8-26a. The x axis is parallel to the longitudinal axis of the pressure
vessel, and the y axis is circumferential. There are shear stresses acting on
element A due to load q (we assume we are a sufficient distance from the
support so that any stress concentration effects are negligible). The
stresses are computed as

where σL is the longitudinal stress and σr is the circumferential (or radial)
stress due to internal pressure p. There are no normal stresses due to bend-
ing moment because the longitudinal axis of the vessel lies in the neutral
plane for bending. Next we compute shear stress τxy using Eq. (5-48), where,
from the shear diagram, . We have

Shear stress τxy is negative (downward on the positive face of the element)
in accordance with the sign convention established in Section 1.7.

Principal stresses and maximum shear stresses at point A. The principal
stresses are obtained from Eq. (7-17), which is repeated here:

so

The principal stresses are shown on an element rotated through
in Fig. 8-26b.

The maximum in-plane shear stress is computed using Eq. (7-28c):

➥

➥

� �3.74MPa

τxy �
�4
3

c 3
10
a150

kN
m
b(6 m)d

π [(1.219 m)2 �(1.2 m)2]
c(1.2 m)2� 1.2 m (1.219 m)�(1.219 m)2

(1.2 m)2 � (1.219 m)2
d

τmax �
σ1 � σ2

2
� 12 MPa

θp � 9.11°

σ2 � 34.1 MPa � 11.96 MPa � 22.1 MPa

σ1 � 34.1 MPa � 11.96 MPa � 46.1 MPa

σ1,2 �
σx � σy

2
�

C
aσx � σy

2
b2

� τxy
2

x

τxy �
�4
3

V
A
a r1

2 � r1r2 � r2
2

r1
2 � r2

2
b

V � 3qL/10

σy � σr �
pr

t
�

720 kPa (1.2 m)
(19 mm)

� 45.5 MPa

σx � σL �
pr

2t
�

720 kPa(1.2 m)
2(19 mm)

� 22.7 MPa

Fig. 8-26
Stresses in a cylindrical
 pressure vessel for solution 
to Example 8-5
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but the maximum out-of-plane shear stress controls using Eqs. (7-28b): 

Because the principal stresses have the same signs, we knew in advance
that one of the out-of-plane shear stresses would be the largest shear stress
(see the discussion following Eqs. (7-28a, b, and c).

At point B, the stress element is located on the bottom surface of the
vessel and (as we look up at it from the bottom of the tank) is oriented as
shown in Fig. 8-26c. The x axis is parallel to the longitudinal axis of the pres-
sure vessel, and the y axis is circumferential. There are no shear stresses act-
ing on element B due to load q, because element B is on the bottom free
surface, but normal tensile stress is maximum due to bending. The stresses
are computed as

where Iz for the vessel is

so

Because there are no shear stresses acting at B, normal stresses σx and σy
are the principal normal stresses, (i.e., and ). The maximum σx � σ2 σy � σ1

σy � σr �
pr

t
�

720 kPa(1.2 m)
(19 mm)

� 45.5 MPa ➥

➥

➥τmax �
σ1

2
� 23.1 MPa

σx � 22.74 MPa � 1.558 MPa � 24.3 MPa

�
720 kPa(1.2 m)

2(19 mm)
�

c150
kN
m

(6 m)2

40
d(1.219 m)

0.10562 m4

σx �
pr

2t
�

aqL2

40
b (r � t)

Iz

Iz �
π
4
c(r � t)4 � r4 d � 0.10562 m4

σx � σL �
Mr
Iz

in-plane and out-of-plane shear stresses can be found from Eqs. (7-28a, b
and c).

The maximum in-plane shear stress is computed using Eq. (7-28c) as

but the maximum out-of-plane shear stress controls using Eq. (7-28b) for

τmax �
σ1 � σ2

2
� 10.6 MPa

➥τmax �
σ1

2
� 23 MPa

7238.5 Combined Loadings
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Example 8-6 • • •
A sign with dimensions of is supported by a hollow circular
pole having an outer diameter of 220 mm and an inner diameter of 180 mm
(Fig. 8-27). The sign is offset 0.5 m from the centerline of the pole, and its
lower edge is 6.0 m above the ground.

(a) Determine the principal stresses and maximum shear stresses at points A and
B at the base of the pole due to a wind pressure of 2.0 kPa against the sign.

(b) Compare the circular pole stresses at the base and twist at the top to
stresses and twist of a square tube with the same height, same wall
thickness, and same cross-sectional area.

Solution
(a) Circular pole: Stress resultants. The wind pressure against the sign pro-

duces a resultant force W that acts at the midpoint of the sign (Fig. 8-28a)
and is equal to the pressure p times the area A over which it acts:

The line of action of this force is at height above the ground
and at distance from the centerline of the pole.

The wind force acting on the sign is statically equivalent to a lateral
force W and a torque T acting on the pole (Fig. 8-28b). The torque is
equal to the force W times the distance b:

T � Wb � (4.8 kN)(1.5 m) � 7.2 kN # m

b � 1.5 m
h � 6.6 m

W � pA � (2.0 kPa)(2.0 m � 1.2 m) � 4.8 kN

2.0 m � 1.2 mFig. 8-27
Example 8-6: Wind pressure
against a sign (combined
bending, torsion, and shear  
of the pole)

A B

0.5 m

1.2 m

6.0 m

2.0 m

A

BC

180 mm

220 mm

Chris’
Bookstore

Fig. 8-28
Solution to Example 8-6

724 Chapter 8  Applications of Plane Stress

(b)(a)

(d)

(c)

sA

t1

τ2

h = 6.6 m

h = 6.6 mW

b = 1.5 m
W = 4.8 kN

T = 7.2 kN ⋅ m

B
A

T

M

V

C

B
A

C

τ1

τ1
y

y

x
O

B
τxy = τ1 + τ2

x
O

A
τxy = τ1

sy = sA

(f)(e)
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The stress resultants at the base of the pole (Fig. 8-28c) consist of a
bending moment M, a torque T, and a shear force V. Their magnitudes are

Examination of these stress resultants shows that maximum bending
stresses occur at point A and maximum shear stresses at point B.
Therefore, A and B are critical points where the stresses should be deter-
mined. (Another critical point is diametrically opposite point A, as
explained in the Note at the end of part (a) of this example.)

Stresses at points A and B. The bending moment M produces a ten-
sile stress σA at point A (Fig. 8-28d) but no stress at point B (which is
located on the neutral axis). The stress σA is obtained from the flexure
formula:

in which d2 is the outer diameter (220 mm) and I is the moment of iner-
tia of the cross section. The moment of inertia is

in which d1 is the inner diameter. Therefore, the stress σA is

The torque T produces shear stresses τ1 at points A and B (Fig. 8-28d).
We can calculate these stresses from the torsion formula:

in which IP is the polar moment of inertia:

Thus,

Finally, we calculate the shear stresses at points A and B due to the
shear force V. The shear stress at point A is zero, and the shear stress at
point B (denoted τ2 in Fig. 8-28d) is obtained from the shear formula for
a circular tube [Eq. (5-48) of Section 5.9]

(a)

M � Wh � (4.8 kN)(6.6 m) � 31.68 kN # m

σA �
Md2

2I
�

(31.68 kN # m)(220 mm)

2(63.46 � 10�6 m4)
� 54.91 MPa

I �
π

64
1d2

4 � d1
42 �

π
64
c(220 mm)4 � (180 mm)4 d � 63.46 � 10�6 m4

σA �
M(d2/2)

I

T � 7.2 kN # m V � W � 4.8 kN

τ2 �
4V
3A
a r2

2 � r2r1 � r1
2

r2
2 � r1

2
b

τ1 �
Td2

2IP
�

(7.2 kN # m)(220 mm)

2(126.92 � 10�6 m4)
� 6.24 MPa

IP �
π

32
1d2

4 � d1
42 � 2I � 126.92 � 10�6 m4

τ1 �
T(d2/2)

IP

Continues ➥

7258.5 Combined Loadings
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Example 8-6 - Continued• • •
in which r2 and r1 are the outer and inner radii, respectively, and A is the
cross-sectional area:

Substituting numerical values into Eq. (a), we obtain

The stresses acting on the cross section at points A and B now have been
calculated.

Stress elements. The next step is to show these stresses on stress ele-
ments (Figs. 8-28e and f). For both elements, the y axis is parallel to the
longitudinal axis of the pole and the x axis is horizontal. At point A, the
stresses acting on the element are

At point B, the stresses are

Since there are no normal stresses acting on the element, point B is in
pure shear.

Now that all stresses acting on the stress elements (Figs. 8-28e and f)
are known, we can use the equations given in Section 7.3 to determine
the principal stresses and maximum shear stresses.

Principal stresses and maximum shear stresses at point A. The prin-
cipal stresses are obtained from Eq. (7-17), which is repeated here:

(b)

Substituting , , and , we get

or

The maximum in-plane shear stresses may be obtained from Eq. (7-25):

(c)

This term was evaluated previously, so we see immediately that

➥

➥

τmax � 28.2 MPa

τmax �
C
aσx � σy

2
b2

� τxy
2

σ1 � 55.7 MPa σ2 � �0.7 MPa

σ1,2 � 27.5 MPa � 28.2 MPa

τxy � 6.24 MPaσy � 54.91 MPaσx � 0

σ1,2 �
σx � σy

2
�

C
aσx � σy

2
b2

� τ xy
2

σx � σy � 0 τxy � τ1 � τ2 � 6.24 MPa � 0.76 MPa � 7.00 MPa

σx � 0 σy � σA � 54.91 MPa τxy � τ1 � 6.24 MPa

τ2 � 0.76 MPa

A � π (r2
2 � r1

2) � 12,570 mm2

r2 �
d2

2
� 110 mm r1 �

d1

2
� 90 mm

726 Chapter 8  Applications of Plane Stress
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Because the principal stresses σ1 and σ2 have opposite signs, the maxi-
mum in-plane shear stresses are larger than the maximum out-of-plane
shear stresses [see Eqs. (7-28a, b, and c)] and the accompanying discus-
sion. Therefore, the maximum shear stress at point A is 28.2 MPa.

Principal stresses and maximum shear stresses at point B. The
stresses at this point are , , and . Since theσx � 0 σy � 0 τxy � 7.0 MPa

Continues ➥

element is in pure shear, the principal stresses are

and the maximum in-plane shear stress is

The maximum out-of-plane shear stresses are half this value.
Note: If the largest stresses anywhere in the pole are needed, then

we must also determine the stresses at the critical point diametrically
opposite point A, because at that point the compressive stress due to
bending has its largest value. The principal stresses at that point are

and the maximum shear stress is 28.2 MPa. Therefore, the largest tensile
stress in the pole is 55.7 MPa, the largest compressive stress is
and the largest shear stress is 28.2 MPa. (Keep in mind that only the effects
of the wind pressure are considered in this analysis. Other loads, such as
the weight of the structure, also produce stresses at the base of the pole.)

(b) Square tube. The square tube has the same height ( to the
center of pressure on the sign), same wall thickness , and
same cross-sectional area as that of the circular pole.
We thus can compute tube dimension b (along the median line of the
tube, see Fig. 8-29a) as

The torsion constant J of the tube [see Eq. (3-94)] and the area Am
enclosed by the median line of the tube are

(We assume that the formulas for thin-walled tubes in Section 3.11 apply
here and we will disregard the effects of stress concentrations at the cor-
ners of the tube).

For normal and transverse shear stress calculations, we will also
need the moment of inertia with respect to the neutral axis of the
cross section for use in the flexure formula, from Eq. (5-14), and the first
moment of the area with respect to the neutral axis for use in the
shear formula from Eq. (5-41). These properties are computed as

Stresses at A and B on tube. The normal tensile stress at A (see Fig. 8-29b)
is computed using the flexure formula with , giving

➥

➥

σA �
M(b � t)

2Itube

� 53.38 MPa

M � 31.68 kN # m

� 3.723 � 10�4 m3

Qtube � (b � t)ab � t
2
b ab � t

4
b � (b � t)ab � t

2
b ab � t

4
b

Itube �
1

12
c(b � t)4 � (b � t)4 d � 5.256 � 10�5m4

Qtube

Itube

J � b3t � 7.758 � 10�5 m4 Am � b2 � 2.469 � 104 mm2

(b � t)2 � (b � t)2 � 12,570 mm2 so b � 157.125 mm

(A � 12,570 mm2)
(t � 20 mm)
h � 6.6 m

�55.7 MPa,

σ1 � 0.7 MPa σ2 � �55.7 MPa

τmax � 7.0 MPa

σ1 � 7.0 MPa σ2 � �7.0 MPa

Fig. 8-29
Square tube for Example 8-6

(a)

t

b

b + t

b – t

(b)

t

b

Stress
elements at
A and B

7278.5 Combined Loadings
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Example 8-6 - Continued• • •
The normal stress at B is zero, because it is located on the neutral axis.
The transverse shear stress at A is zero, and the shear stress at B is
obtained from the shear formula as

The torque produces shear stress at both A and B. Using
Eq. (3-81), shear stress τ1 is

The resulting stress states at locations A and B on the square tube in 
Fig. 8-29b are the same as that shown in Figs. 8-28e and f, where

Principal stresses and maximum in-plane shear stress at point A.
Repeating the calculations for the square tube using Eq. (b), we have

Principal stresses and maximum in-plane shear stress at point B. The
stress element at point B is in pure shear, so the principal stresses and
maximum in-plane shear stress are

These stresses at A and B on the square tube are comparable to those for
the circular pole. As a final comparison, we will look at the twist dis-
placement on each pole at the level of the sign center of pressure

. The twist rotation for the circular pole is computed using
Eq. (3-17) (assuming that for steel)

and that for the square tube is computed using Eq. (3-73)

The twist rotation for the circular pole is 39% lower than that of the
square tube. (See Example 3-16 for more discussion of square and circu-
lar tube stresses and twist rotations.) Both circular and square tube sign
posts also displace in the direction of the wind force, but calculation of
bending displacements must be delayed until beam deflections are dis-
cussed in Chapter 9.

τmax � τxy � 8.1 MPa

σ2 � �τxy � �8.1 MPa

σ1 � τxy � 8.1 MPa

➥

➥

➥

τ1 �
T

2tAm

� 7.29 MPa

T � 7.2 kN # m

τ2 �
VQtube

Itube(2t)
� 0.85 MPa

φt �
Th
GJ

� 7.656 � 10�3 radians

φc �
Th
GIp

� 4.68 � 10�3 radians

G � 80 GPa
(h � 6.6 m)

τmax �
C
aσx � σy

2
b2

� τxy
2 � 27.9 MPa

� �1.2 MPaσ2 �
σx � σy

2
�

C
aσx � σy

2
b2

� τxy
2

σ1 �
σx � σy

2
�

C
aσx � σy

2
b2

� τxy
2 � 54.6 MPa

τxy � τ1 � τ2 � 8.14 MPa

σx � 0 σy � σA � 53.38 MPa

728 Chapter 8  Applications of Plane Stress
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• • •
A tubular post of square cross section supports a horizontal platform
(Fig. 8-30). The tube has outer dimension and wall thickness

. The platform has dimensions and sup-
ports a uniformly distributed load of 140 kPa acting over its upper sur-
face. The resultant of this distributed load is a vertical force P1:

This force acts at the midpoint of the platform, which is at distance
from the longitudinal axis of the post. A second load  acts
 horizontally on the post at height above the base.

Determine the principal stresses and maximum shear stresses at points
A and B at the base of the post due to the loads P1 and P2.

Solution
Stress resultants. The force P1 acting on the platform (Fig. 8-30) is statically
equivalent to a force P1 and a moment acting at the centroid of
the cross section of the post (Fig. 8-31a). The load P2 is also shown in this
 figure.

The stress resultants at the base of the post due to the loads P1 and P2
and the moment M1 are shown in Fig. 8-31b. These stress resultants are the
following:

1. An axial compressive force 

2. A bending moment M1 produced by the force P1:

3. A shear force 

4. A bending moment M2 produced by the force P2:

Examination of these stress resultants (Fig. 8-31b) shows that both M1 and
M2 produce maximum compressive stresses at point A and the shear force
produces maximum shear stresses at point B. Therefore, A and B are critical
points where the stresses should be determined. (Another critical point is
diagonally opposite point A, as explained in the Note at the end of this
example.)

Stresses at points A and B.
(1) The axial force P1 (Fig. 8-31b) produces uniform compressive stresses

throughout the post. These stresses are

in which A is the cross-sectional area of the post:

� 4(13 mm)(150 mm � 13 mm) � 7124 mm2

P2 � 3.6 kN

A � b2 � (b � 2t)2 � 4t(b � t)

σP1
�

P1

A

M2 � P2h � (3.6 kN)(1.3 m) � 4.68 kN # m

P2 � 3.6 kN

M1 � P1d � (14.7 kN)(225 mm) � 3307.5 N # m

P1 � 14.7 kN

M1 � P1d

h � 1.3 m

d � 225 mm

P1 � (140 kPa)(175 mm � 600 mm) � 14.7 kN

175 mm � 600 mmt � 13 mm
b � 150 mm

Example 8-7

Continues ➥

Fig. 8-30
Example 8-7: Loads on a post
(combined axial load, bending,
and shear)

A

B

t = 13 mm

t = 13 mm

b = 150 mm

P2 = 3.6 kN

P1 = 14.7 kNd = 225 mm

= 75 mmb
2

= 75 mmb
2

A B

h = 1.3 m

bb

7298.5 Combined Loadings
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Example 8-7 - Continued• • •

M1 = P1d

P1

A B

h

P2

(a)

A
B

P1

P2

M1 = P1d

(b)

A
B

sP1

(c)

sP1

τP2

sM1
sM1

sM2

M2 = P2h

Fig. 8-31
Solution to Example 8-7

730 Chapter 8  Applications of Plane Stress

y

x
O

B

τP2
 = 1.12 MPa

sB = sP1
 + sM1

 = 13.1 MPa

(e)

y

x
O

A

sA = sP1
 + sM1

 + sM2
 = 28.7 MPa

(d)
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Therefore, the axial compressive stress is

The stress is shown acting at points A and B in Fig. 8-31c.
(2) The bending moment M1 (Fig. 8-31b) produces compressive stresses

at points A and B (Fig. 8-31c). These stresses are obtained from the flexure
formula:

in which I is the moment of inertia of the cross-sectional area:

Thus, the stress is

(3) The shear force P2 (Fig. 8-31b) produces a shear stress at point B but
not at point A. From the discussion of shear stresses in the webs of beams
with flanges (Section 5.10), we know that an approximate value of the
shear stress can be obtained by dividing the shear force by the web area
[see Eq. (5-55) in Section 5.10]. Thus, the shear stress produced at point B
by the force P2 is

The stress acts at point B in the direction shown in Fig. 8-31c.
If desired, we can calculate the shear stress from the more accurateτP2

σP1
�

P1

A
�

14.7 kN

7124 mm2
� 2.06 MPa

τP2

τP2
�

P2

Aweb

�
P2

2t(b � 2t)
�

3.6 kN
2(13 mm)(150 mm � 26 mm)

� 1.12 MPa

σM1
�

M1b

2I
�

(3307.5 N # m)(150 mm)

2(22.49 � 10�6 m4)
� 11.03 MPa

σM1

I �
b4

12
�

(b � 2t)4

12
�

1
12

[(150 mm)4 � (124 mm)4] � 22.49 � 10�6 m4

σM1
�

M1(b/2)

I
�

M1b

2I

σM1

σP1

Continues ➥

formula of Eq. (5-53a) in Section 5.10. The result of that calculation is
, which shows that the shear stress obtained from theτP2

� 1.13 MPa
approximate formula is satisfactory.

(4) The bending moment M2 (Fig. 8-31b) produces a compressive stress
at point A but no stress at point B. The stress at A is

This stress is also shown in Fig. 8-31c.

σM2
�

M2(b/2)

I
�

M2b

2I
�

(4.68 kN # m)(150 mm)

2(22.49 � 10�6 m4)
� 15.61 MPa

7318.5 Combined Loadings
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Example 8-7 - Continued• • •
Stress elements. The next step is to show the stresses acting on stress ele-

ments at points A and B (Figs. 8-31d and e). Each element is oriented so that
the y axis is vertical (that is, parallel to the longitudinal axis of the post) and
the x axis is horizontal. At point A the only stress is a compressive stress σA
in the y direction (Fig. 8-31d):

Thus, this element is in uniaxial stress.
At point B, the compressive stress in the y direction (Fig. 8-31e) is

and the shear stress is

The shear stress acts leftward on the top face of the element and downward
on the x face of the element.

Principal stresses and maximum shear stresses at point A. Using the
standard notation for an element in plane stress (Fig. 8-32), we write the
stresses for element A (Fig. 8-31d) as follows:

Since the element is in uniaxial stress, the principal stresses are

and the maximum in-plane shear stress [Eq. (7-26)] is

The maximum out-of-plane shear stress [Eq. (7-28a)] has the same magnitude.
Principal stresses and maximum shear stresses at point B. Again using

the standard notation for plane stress (Fig. 8-32), we see that the stresses at
point B (Fig. 8-31e) are

➥

➥

σx � 0 σy � �σB � �13.1 MPa τxy � �τP2
� �1.12 MPa

σA � σP1
� σM1

� σM2

� 2.06 MPa � 11.03 MPa � 15.61 MPa � 28.7 MPa (compression)

σB � σP1
� σM1

� 2.06 MPa � 11.03 MPa � 13.1 MPa (compression)

τmax �
σ1 � σ2

2
�

�28.7 MPa
2

� 14.4 MPa

σ1 � 0 σ2 � �28.7 MPa

σx � 0 σy � �σA � �28.7 MPa τxy � 0

τP2
� 1.12 MPa

y

x
O

τxy

sx

sy

Fig. 8-32
Notation for an element 
in plane stress

732 Chapter 8  Applications of Plane Stress
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To obtain the principal stresses, we use Eq. (7-17), which is repeated here:

(a)

Substituting for σx, σy, and τxy, we get

or

The maximum in-plane shear stresses may be obtained from Eq. (7-25):

(b)

This term was evaluated previously, so we see immediately that

Because the principal stresses σ1 and σ2 have opposite signs, the maximum
in-plane shear stresses are larger than the maximum out-of-plane shear
stresses [see Eqs. (7-28a, b, and c) and the accompanying discussion].
Therefore, the maximum shear stress at point B is 6.65 MPa.

Note: If the largest stresses anywhere at the base of the post are
needed, then we must also determine the stresses at the critical point diag-
onally opposite point A (Fig. 8-31c), because at that point each bending
moment produces the maximum tensile stress. Thus, the tensile stress acting
at that point is

The stresses acting on a stress element at that point (see Fig. 8-32) are

and therefore the principal stresses and maximum shear stress are

Thus, the largest tensile stress anywhere at the base of the post is 24.58 MPa,
the largest compressive stress is 28.7 MPa, and the largest shear stress is
14.4 MPa. (Keep in mind that only the effects of the loads P1 and P2 are con-
sidered in this analysis. Other loads, such as the weight of the structure, also
produce stresses at the base of the post.)

➥

➥

σ1,2 �
σx � σy

2
�

C
aσx � σy

2
b2

� τxy
2

σ1 � 0.1 MPa σ2 � �13.2 MPa

σ1,2 � �6.55 MPa � 6.65 MPa

τmax �
C
aσx � σy

2
b2

� τxy
2

τmax � 6.65 MPa

σx � 0 σy � 24.58 MPa τxy � 0

σy � �σP1
� σM1

� σM2
� �2.06 MPa � 11.03 MPa � 15.61 MPa � 24.58 MPa

σ1 � 24.58 MPa σ2 � 0 τmax � 12.3 MPa

7338.5 Combined Loadings
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734

CHAPTER SUMMARY & REVIEW

In Chapter 8, we investigated some practical examples of structures in
states of plane stress, building upon the material presented in Sections 7.2
through 7.5 in the previous chapter. First, we considered the stresses in
thin-walled spherical and cylindrical vessels, such as storage tanks contain-
ing compressed gases or liquids. Then we investigated the distribution of
principal stresses and maximum shear stresses in beams and plotted either
stress trajectories or stress contours to display the variation of these
stresses over the length of the beam. Finally, we evaluated the maximum
normal and shear stresses at various points in structures or components
acted upon by combined loadings. The major concepts and findings pre-
sented in this chapter are as follows:

1. Plane stress is a common stress condition that exists in all ordinary
structures, such as in the walls of pressure vessels, in the webs and/or
flanges of beams of various shapes, and in a wide variety of struc-
tures subject to the combined effects of axial, shear, and bending
loads, as well as internal pressure.

2. The wall of a pressurized thin-walled spherical vessel is in a state of
plane stress—specifically, biaxial stress—with uniform tensile
stresses known as membrane stresses σ acting in all directions. The
tensile stresses σ in the wall of a spherical shell may be calculated as

Only the excess of internal pressure over external pressure, or gage
pressure, has any effect on these stresses. Additional important con-
siderations for more detailed analysis or design of spherical vessels
include: stress concentrations around openings, effects of external
loads and self  weight (including contents), and influence of corro-
sion, impacts, and temperature changes.

3. The walls of thin-walled cylindrical pressure vessels with circular
cross sections are also in a state of biaxial stress. The circumferential
stress σ1 is referred to as the hoop stress, and the stress parallel to the
axis of the tank is called the longitudinal stress or the axial stress σ2.
The circumferential stress is equal to twice the longitudinal stress.
Both are principal stresses. The formulas for σ1 and σ2 are

The formulas were derived using elementary theory for thin-walled
shells and are only valid in parts of the cylinder away from any
 discontinuities that cause stress concentrations.

σ1 �
pr

t
σ2 �

pr

2t

σ �
pr

2t
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4. If  Hooke’s law applies, the flexure and shear formulas (Chapter 5)
are used to find normal and shear stresses at points of interest along
a beam. By investigating the stresses at many cross sections of the
beam for a given loading, we can find the variation in principal
stresses throughout the beam and then construct two systems of
orthogonal curves (called stress trajectories) that give the directions
of the principal stresses. We can also construct curves connecting
points of equal principal stress, known as stress contours.

5. Stress trajectories give the directions of the principal stresses but give
no information about the magnitudes of the stresses. In contrast, the
magnitudes of the principal stresses are constant along a stress con-
tour, but the contours give no information about the directions of
the stresses.

6. In the practical design of  ordinary beams, the principal stresses and
maximum shear stresses are rarely calculated. Instead, the tensile
and compressive stresses to be used in design are calculated from
the flexure formula at the cross section of maximum bending
moment

and the shear stress to be used in design is calculated from the shear
 formula at the cross section of maximum shear force

7. A structural member subjected to combined loadings often can be
analyzed by superimposing the stresses and strains caused by each
load acting separately. However, the stresses and strains must be lin-
ear functions of the applied loads, which in turn requires that the
material follow Hooke’s law and the displacements remain small.
There must be no interaction between the various loads, that is, the
stresses and strains due to one load must not be affected by the pres-
ence of the other loads.

8. A detailed approach for analysis of critical points in a structure or
component subjected to more than one type of load is presented in
Section 8.5.

τ �
VQ

Ib

σ � �
My

I

735
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736 Chapter 8  Applications of Plane Stress

Spherical Pressure Vessels
When solving the problems for Section 8.2, assume that the
given radius or diameter is an inside dimension and that all
internal pressures are gage pressures.

8.2-1 A large spherical tank (see figure) contains gas at a
pressure of 3.5 MPa. The tank is 20 m in diameter and is
constructed of high-strength steel having a yield stress in
tension of 550 MPa.

(a) Determine the required thickness of the wall of
the tank if  a factor of safety of 3.5 with respect to yielding
is required.

(b) If  the tank wall thickness is 100 mm, what is the
maximum permissible internal pressure?

8.2-4 A rubber ball (see figure) is inflated to a pressure of
65 kPa. At that pressure the diameter of the ball is 240 mm
and the wall thickness is 1.25 mm. The rubber has modulus
of elasticity and Poisson’s ratio .

(a) Determine the maximum stress and strain in the
ball.

(b) If  the strain must be limited to 0.425, find the
 minimum required wall thickness of the ball.

E � 3.7 MPa ν � 0.48

PROBLEMS CHAPTER 8

8.2-2 Solve the preceding problem if the internal pressure is
3.85 MPa, the diameter is 20 m, the yield stress is 590 MPa,
and the factor of safety is 3.0.

(a) Determine the required thickness to the nearest
millimeter.

(b) If  the tank wall thickness is 85 mm, what is the
maximum permissible internal pressure?

8.2-3 A hemispherical window (or viewport) in a decom-
pression chamber (see figure) is subjected to an internal air
pressure of 575 kPa. The port is attached to the wall of the
chamber by 14 bolts.

(a) Find the tensile force F in each bolt and the tensile
stress σ in the viewport if  the radius of the hemisphere is
190 mm and its thickness is 32 mm.

(b) If the yield stress for each of the 14 bolts is 345 MPa
and the factor of safety is 3.0, find the required bolt diameter.

(c) If  the stress in the viewport is limited to 1.85 MPa,
find the required radius of the hemisphere.

8.2-5 (a) Solve part (a) of the preceding problem if  the
pressure is 100 kPa, the diameter is 250 mm, the wall thick-
ness is 1.5 mm, the modulus of elasticity is 3.5 MPa, and
Poisson’s ratio is 0.45.

(b) If  the strain must be limited to 0.85, find the max-
imum acceptable inflation pressure.

PROBS. 8.2-1 and 8.2-2

PROB. 8.2-3

PROB. 8.2-4

8.2-6 A spherical steel pressure vessel (diameter 500 mm,
thickness 10 mm) is coated with brittle lacquer that cracks
when the strain reaches (see figure).

(a) What internal pressure p will cause the lacquer to
develop cracks? (Assume and .)

(b) If  the strain is measured at , what is
the internal pressure at that point?

125 � 10�6
E � 205 GPa ν � 0.30

150 � 10�6

PROB. 8.2-5
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8.2-7 A spherical tank of diameter 1.2 m and wall thick-
ness 50 mm contains compressed air at a pressure of
17 MPa. The tank is constructed of two hemispheres
joined by a welded seam (see figure).

(a) What is the tensile load f (N per mm of length of
weld) carried by the weld?

(b) What is the maximum shear stress τmax in the wall
of the tank?

(c) What is the maximum normal strain ε in the wall?
(For steel, assume and .)E � 210 GPa ν � 0.29

the modulus of elasticity is 210 GPa, Poisson’s ratio is 0.28,
and the normal strain must not exceed For
part (b) assume that the tank thickness is 8 mm and the meas-
ured normal strain is .

8.2-11 A hollow pressurized sphere having radius
and wall thickness is lowered into a lake

(see  figure). The compressed air in the tank is at a pressure of
140 kPa (gage pressure when the tank is out of the water).

At what depth D0 will the wall of the tank be sub-
jected to a compressive stress of 700 kPa?

150 mm t � 13 mm
r �

990 � 10�6

1190 � 10�6.
Cracks in
coating

Weld

8.2-8 Solve the preceding problem for the following data:
diameter 1.0 m, thickness 48 mm, pressure 22 MPa, mod-
ulus 210 GPa, and Poisson’s ratio 0.29.

8.2-9 A spherical stainless-steel tank having a diameter of
500 mm is used to store propane gas at a pressure of
30 MPa. The properties of the steel are as follows: yield
stress in tension, 950 MPa; yield stress in shear, 450 MPa;
modulus of elasticity, ; and Poisson’s ratio, 0.28.
The desired factor of safety with respect to yielding is 2.8.
Also, the normal strain must not exceed .

(a) Determine the minimum permissible thickness tmin
of the tank.

(b) If  the tank thickness is 7 mm and normal strain is
measured at , what is the internal pressure in
the tank at that point?

8.2-10 Solve the preceding problem if the diameter is 480 mm,
the pressure is 20 MPa, the yield stress in tension is 975 MPa,
the yield stress in shear is 460 MPa, the factor of safety is 2.75,

1000 � 10�6

1250 � 10�6

210 GPa

PROB. 8.2-6

PROBS. 8.2-7 and 8.2-8

D0

PROB. 8.2-11

737Problems Chapter 8

Cylindrical Pressure Vessels
When solving the problems for Section 8.3, assume that the
given radius or diameter is an inside dimension and that all
internal pressures are gage pressures.

8.3-1 A scuba tank (see figure) is being designed for an
internal pressure of 12 MPa with a factor of safety of 2.0
with respect to yielding. The yield stress of the steel is
300 MPa in tension and 140 MPa in shear.

(a) If  the diameter of the tank is 150 mm, what is the
minimum required wall thickness?

(b) If  the wall thickness is 6 mm, what is the maxi-
mum acceptable internal pressure?

PROB. 8.3-1
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Chapter 8  Applications of Plane Stress

normal and shear stresses are 110 MPa and 60 MPa,
respectively, what is the required thickness of the vessel?

738

8.3-2 A tall standpipe with an open top (see figure) has
diameter and wall thickness .

(a) What height h of water will produce a circumfer-
ential stress of 12 MPa in the wall of the standpipe?

(b) What is the axial stress in the wall of the tank due
to the water pressure?

d � 2.2 m t � 20 mm

d

h

PROB. 8.3-2

FF

PROB. 8.3-4

12 FL OZ (355 mL)

PROB. 8.3-5

A

Cylindrical tank

Pressure relief
valve

PROB. 8.3-6

Longitudinal seam

PROB. 8.3-3

8.3-3 An inflatable structure used by a traveling circus has
the shape of a half-circular cylinder with closed ends (see
figure). The fabric and plastic structure is inflated by a
small blower and has a radius of 12 m when fully inflated.
A longitudinal seam runs the entire length of the “ridge”
of the structure.

If  the longitudinal seam along the ridge tears open
when it is subjected to a tensile load of 100 N/mm of seam,
what is the factor of safety n against tearing when the
internal pressure is 3.5 kPa and the structure is fully
inflated?

8.3-4 A thin-walled cylindrical pressure vessel of radius r
is subjected simultaneously to internal gas pressure p and
a compressive force F acting at the ends (see figure).

(a) What should be the magnitude of the force F in
order to produce pure shear in the wall of the cylinder?

(b) If  force , internal pressure
, inner , and allowablep � 12 MPa diameter � 200 mm

F � 190 kN

8.3-5 A strain gage is installed in the longitudinal direc-
tion on the surface of an aluminum beverage can (see
 figure). The radius-to-thickness ratio of the can is 200.
When the lid of the can is popped open, the strain changes
by .

(a) What was the internal pressure p in the can?
(Assume and .)

(b) What is the change in strain in the radial direction
when the lid is opened?

E � 70 GPa ν � 0.33

ε0 � 170 � 10�6

8.3-6 A circular cylindrical steel tank (see figure) contains
a volatile fuel under pressure. A strain gage at point A
records the longitudinal strain in the tank and transmits
this information to a control room. The ultimate shear
stress in the wall of the tank is 98 MPa, and a factor of
safety of 2.8 is required.

(a) At what value of the strain should the operators
take action to reduce the pressure in the tank? (Data for
the steel are as follows: modulus of  elasticity

and Poisson’s ratio .)
(b) What is the associated strain in the radial  direction?

E � 210 GPa ν � 0.30
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Problems Chapter 8

8.3-7 A cylinder filled with oil is under pressure from a
piston, as shown in the figure. The diameter d of the pis-
ton is 48 mm and the compressive force F is 16 kN. The
maximum allowable shear stress in the wall of the
cylinder is 42 MPa.

What is the minimum permissible thickness tmin of the
cylinder wall? (See figure.)

τallow

739

(c) Determine the tensile stress σw acting perpendicu-
lar to the welded joints.

(d) Determine the maximum shear stress τh in the
heads of the tank.

(e) Determine the maximum shear stress τc in the
cylindrical part of the tank.

PROB. 8.3-9

Cylinder

F

Piston

p

PROBS. 8.3-7 and 8.3-8

Welded seams

PROBS. 8.3-10 and 8.3-11

Helical weld

a

PROBS. 8.3-12 and 8.3-13

8.3-8 Solve the preceding problem if  ,
, and .

8.3-9 A standpipe in a water-supply system (see figure) is
3.8 m in diameter and 150 mm thick. Two horizontal pipes
carry water out of the standpipe; each is 0.6 m in diameter
and 25 mm thick. When the system is shut down and water
fills the pipes but is not moving, the hoop stress at the bot-
tom of the standpipe is 900 kPa.

(a) What is the height h of the water in the standpipe?
(b) If  the bottoms of the pipes are at the same eleva-

tion as the bottom of the standpipe, what is the hoop stress
in the pipes?

F � 42 kN τallow � 40 MPa
d � 90 mm

8.3-10 A cylindrical tank with hemispherical heads is con-
structed of steel sections that are welded circumferentially
(see figure). The tank diameter is 1.25 m, the wall thickness
is 22 mm, and the internal pressure is 1750 kPa.

(a) Determine the maximum tensile stress σh in the
heads of the tank.

(b) Determine the maximum tensile stress σc in the
cylindrical part of the tank.

8.3-11 A cylindrical tank with diameter is
subjected to internal gas pressure . The tank is
constructed of steel sections that are welded circumferen-
tially (see figure). The heads of the tank are hemispherical.
The allowable tensile and shear stresses are 60 MPa and
24 MPa, respectively. Also, the allowable tensile stress per-
pendicular to a weld is 40 MPa.

Determine the minimum required thickness tmin of 
(a) the cylindrical part of the tank, and (b) the hemispher-
ical heads.

8.3-12 A pressurized steel tank is constructed with a heli-
cal weld that makes an angle with the longitudi-
nal axis (see figure). The tank has radius , wall
thickness , and internal pressure
Also, the steel has modulus of elasticity and
Poisson’s ratio .

Determine the following quantities for the cylindrical
part of the tank.

(a) The circumferential and longitudinal stresses.
(b) The maximum in-plane and out-of-plane shear

stresses.
(c) The circumferential and longitudinal strains.
(d) The normal and shear stresses acting on planes

parallel and perpendicular to the weld (show these stresses
on a properly oriented stress element).

ν � 0.30
E � 200 GPa

t � 18 mm p � 2.8 MPa.
r � 0.6 m

α � 55°

p � 2 MPa
d � 300 mm
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Chapter 8  Applications of Plane Stress740

8.3-13 Solve the preceding problem for a welded tank
with , , , , 

, and .

Maximum Stresses in Beams
When solving the problems for Section 8.4, consider only the
in-plane stresses and disregard the weights of the beams.

8.4-1 A cantilever beam with a rectangular
cross section supports an
upward load at its free end.

(a) Find the state of stress on a 

plane-stress element at L/2 which is up from
the bottom of the beam. Find the principal normal stresses
and maximum shear stress. Show these stresses on sketches
of properly oriented elements.

(b) Repeat part (a) if  axial compressive centroidal
load is added at B.N � 180 kN

d � 200 mm

(σx, σy, τxy in MPa)
P � 160 kN

(b � 90 mm, h � 300 mm)
(L � 2 m)

200 GPa v � 0.30
α � 75° r � 450 mm t � 15 mm p � 1.4 MPa

E �

8.4-4 An overhanging beam ABC has a guided support at
A, a rectangular cross section, and supports an upward
uniform load over AB and a downward concen-
trated load P at the free end C (see figure). The span length
from A to B is L, and the length of the overhang is L/2.
The cross section has a width of b and a height h. Point D
is located midway between the supports at a distance d
from the top face of the beam.

Knowing that the maximum tensile stress (principal
stress) at point D is determine the magni-
tude of the load P. Data for the beam are as follows:

and L � 1.75 m, b � 50 mm, h � 220 mm, d � 55 mm.

σ1 � 38 MPa,

q � P/L

8.4-2 Solve the preceding problem for the following data:
, , , ,
, and .

8.4-3 A simple beam with a rectangular cross section
(width, 90 mm; height, 300 mm) carries a trapezoidally dis-
tributed load of 20 kN/m at A and 15 kN/m at B on a span
of 4.2 m (see figure).

Find the principal stresses σ1 and σ2 and the maximum
shear stress τmax at a cross section 0.6 m from the left-hand
support at each of the following locations: (a) the neutral
axis, (b) 50 mm above the neutral axis, and (c) the top of the
beam. (Disregard the direct compressive stresses produced
by the uniform load bearing against the top of the beam.)

h � 300 mm d � 200 mm
P � 160 kN N � 200 kN L � 2 m b � 95 mm

L/2 L/2

A

P

B

y

x

b

d h

Stress element at L/2

PROBS. 8.4-1 and 8.4-2

300 mm

90 mm

BA

20 kN/m
15 kN/m

0.6 m

4.2 m

PROB. 8.4-3

8.4-5 Solve the preceding problem if  the stress and
dimensions are as follows: , ,

, , and .

8.4-6 A beam of wide-flange cross section (see figure) has
the following dimensions: , ,

, and . The beam is simply sup-
ported with span length . A concentrated load

acts at the midpoint of the span.
At a cross section located 1.0 m from the left-hand

support, determine the principal stresses σ1 and σ2 and the
maximum shear stress τmax at each of the following loca-
tions: (a) the top of the beam, (b) the top of the web, and
(c) the neutral axis.

b � 60 mm h � 250 mm d � 65 mm
σ1 � 18 MPa L � 2 m

P � 120 kN
L � 3.0 m

h � 300 mm h1 � 260 mm
b � 120 mm t � 10 mm

B

q = P/L
P

h

b

D

d
C

A

L
2
L
2

— L
2
L
2

— L
2
L
2

—

PROBS. 8.4-4 and 8.4-5

h1 h

t

b

PROBS. 8.4-6 and 8.4-7
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Problems Chapter 8 741

8.4-10 A cantilever beam of T-section is loaded by an
inclined force of magnitude 6.5 kN (see figure). The line of
action of the force is inclined at an angle of 60� to the hor-
izontal and intersects the top of the beam at the end cross
section. The beam is 2.5 m long and the cross section has
the dimensions shown.

Determine the principal stresses σ1 and σ2 and the
maximum shear stress τmax at points A and B in the web of
the beam near the support.

8.4-7 A beam of wide-flange cross section (see figure) has
the following dimensions: , ,

, and . The beam is simply sup-
ported with span length and supports a uniform
load .

Calculate the principal stresses σ1 and σ2 and the
maximum shear stress τmax at a cross section located 0.6 m
from the left-hand support at each of the following loca-
tions: (a) the bottom of the beam, (b) the bottom of the
web, and (c) the neutral axis.

8.4-8 An IPN 240 standard beam (see Table E-2,
Appendix E) is simply supported with a span length of
2.5 m (see figure). The beam supports a concentrated load
of 100 kN at 0.9 m from support B.

At a cross section located 0.7 m from the left-hand
support, determine the principal stresses σ1 and σ2 and the
maximum shear stress τmax at each of the following loca-
tions: (a) the top of the beam, (b) the top of the web, and
(c) the neutral axis.

b � 120 mm t � 10 mm
h � 300 mm h1 � 260 mm

L � 3.0 m
q � 80 kN/m

D

100 kN

BA

0.9 m
2.5 m

0.9 m0.7 m

IPN 240

PROB. 8.4-8

D

20 kN 20 kN

IPN 220

0.5 m 0.5 m
3 m

1 m1 m

PROB. 8.4-9

2.5 m
80

mm
80

mm

160 mm

25 mm

C

60°

6.5 kNA

B

25 mm

z

y

PROB. 8.4-10

8.4-9 An IPN 220 standard beam (see Table E-2, Appendix E)
is simply supported with a span length of 3 m (see figure).
The beam supports two anti-symmetrically placed concen-
trated loads of 20 kN each.

At a cross section located 0.5 m from the right-hand
support, determine the principal stresses σ1 and σ2 and the
maximum shear stress τmax at each of the following loca-
tions: (a) the top of the beam, (b) the top of the web, and
(c) the neutral axis.

D

q

B C

Cd

A 3L

4.5qL2
2qL2

3.875qL9.875qL

Pin connection
(moment release)

4L3L

h

PROBS. 8.4-11 and 8.4-12

8.4-11 Beam ABCD has a sliding support at A, roller sup-
ports at C and D, and a pin connection at B (see figure).
Assume that the beam has a rectangular cross section

. Uniform load q acts on
ABC and a concentrated moment is applied at D. Let load
variable , and assume that dimension vari-
able . First, use statics to confirm the reaction
moment at A and the reaction forces at C and D, as given
in the figure. Then find the ratio of the magnitudes of the
principal stresses just left of support C at a distance

up from the bottom.

8.4-12 Solve the preceding problem using the following
numerical data: , , ,

and .q � 14 kN/m L � 1.2 m
b � 90 mm h � 280 mm d � 210 mm

d � 250 mm
(σ1/σ2)

L � 1.25 m
q � 25 kN/m

(b � 100 mm, h � 400 mm)
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Chapter 8  Applications of Plane Stress

8.5-4 A pressurized cylindrical tank with flat ends is
loaded by torques T and tensile forces P (see figure). The
tank has radius of  and wall thickness

. The internal pressure and the
torque .

(a) What is the maximum permissible value of the
forces P if  the allowable tensile stress in the wall of the
cylinder is 80 MPa?

(b) If  forces , what is the maximum
acceptable internal pressure in the tank?

P � 114 kN

T � 850 N # m
t � 6.5 mm p � 7.25 MPa

r � 125 mm

742

Combined Loadings
The problems for Section 8.5 are to be solved assuming that
the structures behave linearly elastically and that the stresses
caused by two or more loads may be superimposed to obtain
the resultant stresses acting at a point. Consider both 
in-plane and out-of-plane shear stresses unless otherwise
specified.

8.5-1 A cylindrical tank having diameter is
subjected to internal gas pressure and an
external tensile load (see figure).

Determine the minimum thickness t of the wall of the
tank based upon an allowable shear stress of 20 MPa.

T � 4.5 kN
p � 4 MPa

d � 60 mm

TT

PROB. 8.5-1

F F

PROB. 8.5-2

T

T

PROB. 8.5-3

T
T PP

PROB. 8.5-4

z0

x0

y0

T

T

MM

PROB. 8.5-5

8.5-2 A cylindrical tank subjected to internal pressure p is
simultaneously compressed by an axial force
(see figure). The cylinder has diameter and
wall thickness .

Calculate the maximum allowable internal pressure
pmax based upon an allowable shear stress in the wall of the
tank of 60 MPa.

t � 4 mm
d � 100 mm

F � 72 kN

8.5-6 The torsional pendulum shown in the figure consists
of a horizontal circular disk of mass suspended
by a vertical steel wire of length 
and diameter .

Calculate the maximum permissible angle of rotation
φmax of the disk (that is, the maximum amplitude of tor-
sional vibrations) so that the stresses in the wire do not
exceed 100 MPa in tension or 50 MPa in shear.

L � 2 m
d � 4 mm

(G � 80 GPa)
M � 60 kg

8.5-5 A cylindrical pressure vessel with flat ends is subjected
to a torque T and a bending moment M (see figure). The
outer radius is 300 mm and the wall thickness is 25 mm. The
loads are as follows: , ,
and the internal pressure .

Determine the maximum tensile stress σt, maximum
compressive stress σc, and maximum shear stress τmax in
the wall of the cylinder.

p � 6.25 MPa
T � 90 kN # m M � 100 kN # m

8.5-3 A cylindrical pressure vessel having radius
and wall thickness is subjected to

internal pressure . In addition, a torque
acts at each end of the cylinder (see figure).

(a) Determine the maximum tensile stress σmax and the
maximum in-plane shear stress τmax in the wall of the cylinder.

(b) If  the allowable in-plane shear stress is 30 MPa,
what is the maximum allowable torque T?

(c) If  and allowable in-plane shear
and allowable normal stresses are 30 MPa and 76 MPa,
respectively, what is the minimum required wall thickness?

T � 200 kN # m

T � 120 kN # m
p � 2.5 MPa

r � 300 mm t � 15 mm
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Problems Chapter 8

8.5-7 The hollow drill pipe for an oil well (see figure) is
150 mm in outer diameter and 15 mm in thickness. Just
above the bit, the compressive force in the pipe (due to the
weight of  the pipe) is 265 kN and the torque (due to
drilling) is 19 kN m.

Determine the maximum tensile, compressive, and
shear stresses in the drill pipe.

#

743

8.5-9 A segment of a generator shaft of hollow circular
cross section is subjected to a torque (see
figure). The outer and inner diameters of the shaft are 
200 mm and 160 mm, respectively.

What is the maximum permissible compressive load P
that can be applied to the shaft if  the allowable in-plane
shear stress is ?

8.5-10 A post having a hollow, circular cross section supports
a load acting at the end of an arm that is

long (see figure). The height of the post is
, and its section modulus is .

Assume that the outer radius of the post is ,
and the inner radius is .

(a) Calculate the maximum tensile stress σmax and
maximum in-plane shear stress τmax at point A on the outer
surface of the post along the x axis due to the load P. Load
P acts at B along line BC.

(b) If  the maximum tensile stress and maximum
inplane shear stress at point A are limited to 90 MPa and
38 MPa, respectively, what is the largest permissible value
of the load P?

r1 � 117 mm
r2 � 123 mm

L � 9 m S � 2.65 � 105 mm3
b � 1.5 m

P � 3.2 kN

τallow � 45 MPa

T � 25 kN # m

M = 60 kg

d = 4 mm

L = 2 m

fmax

PROB. 8.5-6

PROB. 8.5-7

P

T

T

P

PROBS. 8.5-8 and 8.5-9

8.5-8 A segment of a generator shaft is subjected to a
torque T and an axial force P, as shown in the figure. The
shaft is hollow (outer diameter and inner
diameter ) and delivers 1800 kW at 4.0 Hz.

If  the compressive force , what are the
maximum tensile, compressive, and shear stresses in the
shaft?

P � 540 kN
d1 � 250 mm

d2 � 300 mm

A

C

P

B

(–3.2 m, 2.5 m, 0)

z

y

x

1.5 m

9 m

PROB. 8.5-10
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Chapter 8  Applications of Plane Stress

8.5-13 A bracket ABCD having a hollow circular cross sec-
tion consists of a vertical arm AB , a horizon-
tal arm BC parallel to the x0 axis, and a horizontal arm CD
parallel to the z0 axis (see figure). The arms BC and CD have
lengths and , respectively. The
outer and inner diameters of the bracket are
and An inclined load acts at
point D along line DH. Determine the maximum tensile,
compressive, and shear stresses in the vertical arm.

d1 � 170 mm P � 10 kN
d2 � 190 mm

b1 � 1.1 m b2 � 0.67 m

(L � 1.85 m)

744

8.5-11 A sign is supported by a pole of hollow circular
cross section, as shown in the figure. The outer and inner
diameters of the pole are 250 mm and 200 mm, respec-
tively. The pole is 12 m high and weighs 18 kN. The sign
has dimensions and weighs 2.2 kN. Note that
its center of gravity is 1.125 m from the axis of the pole.
The wind pressure against the sign is 1.5 kPa.

(a) Determine the stresses acting on a stress element at
point A, which is on the outer surface of the pole at the
“front” of the pole, that is, the part of the pole nearest to
the viewer.

(b) Determine the maximum tensile, compressive, and
shear stresses at point A.

2 m � 1 m

2 m

1 m

12 m

250 mm

200 mm

Section X–X
A

A

X X

Hilda’s Office

PROB. 8.5-11

B

A

C

B
A

C

XX

Rose’s
Editing Co.

Section X–X

Pipe

110 mm

2.0 m

1.05 m
to c.g.

1.0 m

3.0 m

PROB. 8.5-12

z0

y0

A x0

B

L

C

H

D

P

b1

b2

PROB. 8.5-13
8.5-12 A sign is supported by a pipe (see figure) having
outer diameter 110 mm and inner diameter 90 mm. The
dimensions of the sign are , and its lower
edge is 3.0 m above the base. Note that the center of grav-
ity of the sign is 1.05 m from the axis of the pipe. The wind
pressure against the sign is 1.5 kPa.

Determine the maximum in-plane shear stresses due
to the wind pressure on the sign at points A, B, and C,
located on the outer surface at the base of the pipe.

2.0 m � 1.0 m 8.5-14 A gondola on a ski lift is supported by two bent
arms, as shown in the figure. Each arm is offset by the dis-
tance from the line of action of the weight
force W. The allowable stresses in the arms are 100 MPa in
tension and 50 MPa in shear.

If  the loaded gondola weighs 12 kN, what is the min-
inum diameter d of the arms?

b � 180 mm
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Problems Chapter 8

8.5-15 Determine the maximum tensile, compressive, and
shear stresses at points A and B on the bicycle pedal crank
shown in the figure.

The pedal and crank are in a horizontal plane and
points A and B are located on the top of the crank. The load

acts in the vertical direction and the distances
(in the horizontal plane) between the line of action of the
load and points A and B are , ,
and . Assume that the crank has a solid circu-
lar cross section with diameter d � 15 mm.

b2 � 60 mm
b3 � 24 mm

b1 � 125 mm

P � 750 N

745

8.5-17 An L-shaped bracket lying in a horizontal plane
supports a load (see figure). The bracket has
a hollow rectangular cross section with thickness

and outer dimensions and
. The centerline lengths of  the arms are

and 
Considering only the load P, calculate the maximum

tensile stress σt, maximum compressive stress σc, and max-
imum shear stress τmax at point A, which is located on the
top of the bracket at the support.

b1 � 500 mm b2 � 750 mm.

b � 50 mm
h � 90 mm
t � 4 mm

P � 600 kN

b

d

W

W

PROB. 8.5-14

b1

b2

b3

b3

�

P = 750 N

P

A
B

d = 15 mm

Crank

Top view

b2 = 60 mm

b3 = 24 mm
b3

A

b1 = 125 mm

B

PROB. 8.5-15

d

B

(a) (b)

O

R

A

d

B

O

R

A

PROB. 8.5-16

P = 600 N

A

b1 = 500 mm

b2 = 750 mm

h = 90 mm

b = 50 mm

t = 4 mm

PROB. 8.5-17

8.5-16 A semicircular bar AB lying in a horizontal plane
is supported at B (see figure part a). The bar has centerline
radius R and weight q per unit of length (total weight of
the bar equals πqR). The cross section of the bar is circu-
lar with diameter d.

(a) Obtain formulas for the maximum tensile stress σt,
maximum compressive stress σc, and maximum in-plane
shear stress τmax at the top of the bar at the support due to
the weight of the bar.

(b) Repeat part (a) if  the bar is a quarter-circular seg-
ment (see figure part b) but has the same total weight as
the semicircular bar.
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Chapter 8  Applications of Plane Stress

8.5-20 A crank arm consists of a solid segment of length
b1 and diameter d, a segment of length b2, and a segment
of length b3, as shown in the figure. Two loads P act as
shown: one parallel to and another parallel to .
Each load P equals 1.2 kN. The crankshaft dimensions are

, , and . The diam-
eter of the upper shaft is .

(a) Determine the maximum tensile, compressive, and
shear stresses at point A, which is located on the surface of
the shaft at the z axis.

(b) Determine the maximum tensile, compressive, and
shear stresses at point B, which is located on the surface of
the shaft at the y axis.

d � 22 mm
b1 � 75 mm b2 � 125 mm b3 � 35 mm

�x �y

746

8.5-19 An arm ABC lying in a horizontal plane and sup-
ported at A (see figure) is made of two identical solid steel
bars AB and BC welded together at a right angle. Each bar
is 0.6 m long.

(a) Knowing that the maximum tensile stress (princi-
pal stress) at the top of the bar at support A due solely to
the weights of the bars is 7.2 MPa, determine the diameter
d of the bars.

(b) If the allowable tensile stress is 10 MPa and each bar
has diameter , what is the maximum downward
load P that can be applied at C (in addition to self-weight)?

d � 50 mm

A

B

C

z

y

x

PROB. 8.5-19

In (–x)
direction

In (–y)
direction

A

B

y

z

P
P

x

b1

b2

b3

PROB. 8.5-20

8.5-21 A moveable steel stand supports an automobile
engine weighing as shown in the figure part a.
The stand is constructed of -
thick steel tubing. Once in position, the stand is restrained by
pin supports at B and C. Of interest are stresses at point A at
the base of the vertical post; point A has coordinates

. Neglect the weight of
the stand.

(a) Initially, the engine weight acts in the direction
through point Q, which has coordinates (600 mm, 0, 32 mm).
Find the maximum tensile, compressive, and shear stresses at
point A.

(b) Repeat part (a) assuming now that, during repair,
the engine is rotated about its own longitudinal axis (which
is parallel to the x axis) so that W acts through Q� (with coor-
dinates (600 mm, 150 mm, 32 mm)) and force 
is applied parallel to the y axis at distance .d � 0.75 m

Fy � 900 N

�z

(x � 32 mm, y � 0, z � 32 mm)

64 mm � 64 mm � 3 mm
W � 3.4 kN

8.5-18 A horizontal bracket ABC consists of two perpen-
dicular arms AB of length 0.75 m, and BC of length of
0.5 m. The bracket has a solid circular cross section with
diameter equal to 65 mm. The bracket is inserted in a fric-
tionless sleeve at A (which is slightly larger in diameter) so
is free to rotate about the z0 axis at A, and is supported by
a pin at C. Moments are applied at point C as follows:

in the x direction and
acts in the direction.

Considering only the moments M1 and M2, calculate
the maximum tensile stress σt, the maximum compressive
stress σc, and the maximum in-plane shear stress τmax at
point p, which is located at support A on the side of the
bracket at midheight.

(�z)
M1 � 1.5 kN # m M2 � 1.0 kN # m

z0

B

C M2

M1 O

y0

x0

p

65 mm

Cross section at A

0.5 m

0.75 m
Frictionless sleeve
embedded in 
support

A

x0

y0

p

PROB. 8.5-18
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Problems Chapter 8

8.5-22 A mountain bike rider going uphill applies force
to each end of the handlebars ABCD, made of

aluminum alloy 7075-T6, by pulling on the handlebar
extenders (DF on right handlebar segment). Consider the
right half  of the handlebar assembly only (assume the bars
are fixed at the fork at A). Segments AB and CD are pris-
matic with lengths L1 and L3 and with outer diameters and
thicknesses d01, t01 and d03, t03, respectively, as shown.
Segment BC of length L2, however, is tapered, and outer
diameter and thickness vary linearly between dimensions
at B and C. Consider shear, torsion, and bending effects
only for segment AD; assume DF is rigid.

Find maximum tensile, compressive, and shear
stresses adjacent to support A. Show where each maximum
stress value occurs.

P � 65 N

747

x

D

B

C

y

A

Q

D

C
O

B

Q'

y

600 mm

32 mm

300 mm

430 mm 430 mm

150 mm

(b) Top view

64 mm � 64 mm � 3 mm

Dz

Cz

Cy

Cx

600 mm

430 mm

900 mm

(a)

Q

x

d = 0.75 m

W

z

Fy

A

PROB. 8.5-21

(a)

Handlebar extension

d03 = 22 mm
t03 = 2.95 mm

d01 = 32 mm
t01 = 3.15 mm

L2 = 30 mmL1 = 50 mm

A C

B

F

x

y

D

L3 = 220 mm

(b) Section D–F

d03

Handlebar
extension

45°

Handlebar

P

F

y

z

D

d = 100 mm

PROB. 8.5-22
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Chapter 8  Applications of Plane Stress

8.5-24 The mountain bike from Prob. 1.2-26 is shown in
the figure. To account for impact, crashes, and other load-
ing uncertainties, a design load is used to
design the seat post. The length of the seat post is

.
(a) Find the required diameter of the seat post if it is to

be constructed using an aluminum alloy with the ultimate
stress and a factor of safety of 2.8.
Consider only axial and flexural normal stresses in your
design.

(b) Repeat part (a) if  a titanium alloy is used instead.
Assume the ultimate stress and a factor of
safety of 2.5.

σU � 900 MPa

σU � 550 MPa

L � 254 mm

P � 5000 N

748

8.5-23 Determine the maximum tensile, compressive, and
shear stresses acting on the cross section of the tube at
point A of the hitch bicycle rack shown in the figure.

The rack is made up of steel tubing
which is 3 mm thick. Assume that the weight of each of
four bicycles is distributed evenly between the two support
arms so that the rack can be represented as a cantilever
beam (ABCDEF) in the xy plane. The overall weight of the
rack alone is directed through C, and the
weight of each bicycle is .B � 135 N

W � 270 N

50 mm � 50 mm

HB

V

P

V

N
N

M

L

M

15.3°

PROB. 8.5-24
(hamurishi/Shutterstock)

Bike loads B

at each tie-down point

Fixed
support

50 mm � 50 mm � 3 mm steel tube

MAZ Ay

Ax

B
2
—

B
2
—

F
E

A

B

y

x
A

B

C

E F

W

D

C

D

50 mm

50 mm

3 mm

430 mm

150 mm

840 mm

175 mm

3 @ 100 mm

50 mm

4 loads, each B

PROB. 8.5-23

8.5-25 A plumber’s valve wrench is used to replace valves
in plumbing fixtures. A simplified model of  the wrench
(see figure part a) consists of  pipe AB (length L, outer
diameter d2, inner diameter d1) which is fixed at A and
has holes of  diameter db on either side of  the pipe at B. A
solid, cylindrical bar CBD (length a, diameter db) is
inserted into the holes at B and only one force
is applied in the direction at C to loosen the fixture
valve at A (see figure part c). Let

. , , ,
.

Find the state of plane stress on the top of the pipe near
A (at coordinates , , ), and show all
stresses on a plane stress element (see figure part b).
Compute the principal stresses and maximum shear stress,
and show on properly rotated stress  elements.

x � 0 y � 0 z � d2/2

d1 � 25 mm
db � 6 mm

ν � 0.30,
L � 100 mm a � 115 mm d2 � 32 mm

G � 81 GPa,
�z

F � 245 N
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Problems Chapter 8

8.5-26 A compound beam ABCD has a cable with force P
anchored at C. The cable passes over a pulley at D and
force P acts in the direction. There is a moment release
just left of B. Neglect the self-weight of the beam and cable.
Cable force and dimension variable

. The beam has a rectangular cross section
.(b � 20 mm, h � 50 mm)

L � 0.25 m
P � 450 N

�x

749

(a) Calculate the maximum normal stresses and max-
imum in-plane shear stress on the bottom surface of the
beam at support A.

(b) Repeat part (a) for a plane stress element located
at midheight of the beam at A.

(c) If  the maximum tensile stress and maximum in-
plane shear stress at point A are limited to 90 MPa and 
42 MPa, respectively, what is the largest permissible value
of the cable force P?

3L6L

4L

B

P
Pulley

Cable

D

A

C
h

b
Moment release
(just left of B)

PROB. 8.5-26

6b

2b

2b

Plane stress
element on
surface

y

z

A B

C

H (8b, –5b, 3b)

x

D

P

PROB. 8.5-27

8.5-27 A steel hanger bracket ABCD has a solid, circular
cross section with a diameter of . The dimen-
sion variable is (see figure). Load

is applied at D along a line DH; the coordi-
nates of point H are (8b, , 3b). Find normal and shear
stresses on a plane stress element on the surface of the
bracket at A. Then find the principal stresses and maxi-
mum shear stress. Show each stress state on properly
rotated elements.

�5b

b � 150 mm
P � 5.5 kN

d � 50 mm

a/2

d2

a/2

a/2

a/2

d1
B

F

db

D

X

Z

Y

C

C

D

B

Bar

Pipe

Bar

View of end cross section at x = L

View looking
down on stress
element on top
of pipe at A

(c)

(a)

Pipe

F

(b)

y

Y

x
X

O

 ys

 xs

txy

AL

PROB. 8.5-25
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Chapter 8  Applications of Plane Stress

R-8.4 A thin-walled cylindrical tank with a diameter of 2.0
m and wall thickness of 18 mm is open at the top. The
height h of water in the
tank at which the circumferential stress reaches 10 MPa in
the tank wall is approximately:

(A) 14 m
(B) 18 m
(C) 20 m
(D) 24 m

(weight density � 9.81 kN/m3)

750

R-8.1 A thin-walled spherical tank with a diameter of
1.5 m and wall thickness of 65 mm has an internal pressure
of 20 MPa. The maximum shear stress in the wall of the
tank is approximately:

(A) 58 MPa
(B) 67 MPa
(C) 115 MPa
(D) 127 MPa

SOME ADDITIONAL REVIEW PROBLEMS: CHAPTER 8

R-8.5 The pressure relief  valve is opened on a thin-walled
cylindrical tank, with the radius-to-wall thickness ratio of
128, thereby decreasing the longitudinal strain by

. Assume and . The
original internal pressure in the tank was approximately:

(A) 370 kPa
(B) 450 kPa
(C) 500 kPa
(D) 590 kPa

150 � 10�6 E � 73 GPa ν � 0.33

R-8.3 A thin-walled cylindrical tank with a diameter of
200 mm as shown in the above figure has an internal pres-
sure of 11 MPa. The yield stress in tension is 250 MPa, the
yield stress in shear is 140 MPa, and the factor of safety is
2.5. The minimum permissible thickness of the tank is
approximately:

(A) 8.2 mm
(B) 9.1 mm
(C) 9.8 mm
(D) 11.0 mm

R-8.2 A thin-walled spherical tank has a diameter of
0.75 m and an internal pressure of 20 MPa. The yield
stress in tension is 920 MPa, the yield stress in shear is
475 MPa, and the factor of safety is 2.5. The modulus of
elasticity is 210 GPa, Poisson’s ratio is 0.28, and maximum
normal strain is . The minimum permissible
thickness of the tank is approximately:

(A) 8.6 mm
(B) 9.9 mm
(C) 10.5 mm
(D) 11.1 mm

1220 � 10�6

Weld

Weld

d

h

Strain gage
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Some Additional Review Problems: Chapter 8

R-8.8 A cylindrical tank is assembled by welding steel sec-
tions circumferentially. Tank diameter is 1.5 m, thickness is
20 mm, and internal pressure is 2.0 MPa. The maximum
tensile stress perpendicular to the welds is approximately:

(A) 22 MPa
(B) 29 MPa
(C) 33 MPa
(D) 37 MPa

751

R-8.11 A cylindrical tank is assembled by welding steel
sections in a helical pattern with angle . Tank
diameter is 1.6 m, thickness is 20 mm, and internal pres-
sure is 2.75 MPa. Modulus and Poisson’s
ratio . The circumferential strain in the wall of
the tank is approximately:

(A)
(B)
(C)
(D) 4.5 � 10�4

3.9 � 10�4
3.2 � 10�4
1.9 � 10�4

ν � 0.28
E � 210 GPa

α � 50°

R-8.10 A cylindrical tank is assembled by welding steel
sections circumferentially. Tank diameter is 1.5 m, thick-
ness is 20 mm, and internal pressure is 2.0 MPa. The max-
imum shear stress in the cylindrical part of the tank is
approximately:

(A) 17 MPa
(B) 26 MPa
(C) 34 MPa
(D) 38 MPa

R-8.9 A cylindrical tank is assembled by welding steel sec-
tions circumferentially. Tank diameter is 1.5 m, thickness is
20 mm, and internal pressure is 2.0 MPa. The maximum
shear stress in the heads is approximately:

(A) 19 MPa
(B) 23 MPa
(C) 33 MPa
(D) 35 MPa

R-8.7 A cylindrical tank is assembled by welding steel
 sections circumferentially. Tank diameter is 1.5 m, thick-
ness is 20 mm, and internal pressure is 2.0 MPa. The
maximum tensile stress in the cylindrical part of  the tank
is approximately:

(A) 45 MPa
(B) 57 MPa
(C) 62 MPa
(D) 75 MPa

R-8.6 A cylindrical tank is assembled by welding steel sec-
tions circumferentially. Tank diameter is 1.5 m, thickness is
20 mm, and internal pressure is 2.0 MPa. The maximum
stress in the heads of the tank is approximately:

(A) 38 MPa
(B) 45 MPa
(C) 50 MPa
(D) 59 MPa

Welded seams

Welded seams

Welded seams

Welded seams

Welded seams

Helical weld

α
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R-8.15 A thin-walled cylindrical tank, under internal pres-
sure p, is compressed by a force . Cylinder
diameter is and wall thickness .
Allowable normal stress is 110 MPa and allowable shear
stress is 60 MPa. The maximum allowable internal pres-
sure pmax is approximately:

(A) 5 MPa
(B) 10 MPa
(C) 13 MPa
(D) 17 MPa

t � 5.5 mmd � 90 mm
F � 75 kN

Chapter 8  Applications of Plane Stress

R-8.14 A segment of  a drive shaft
is subjected to a torque .

The allowable shear stress in the shaft is 45 MPa. The max-
imum permissible compressive load P is approximately:

(A) 200 kN
(B) 286 kN
(C) 328 kN
(D) 442 kN

d1 � 160 mm) T � 30 kN # m
(d2 � 200 mm,

752

R-8.13 A cylindrical tank is assembled by welding steel
sections in a helical pattern with angle . Tank
diameter is 1.6 m, thickness is 20 mm, and internal pres-
sure is 2.75 MPa. Modulus and Poisson’s
ratio . The normal stress acting perpendicular to
the weld is approximately:

(A) 39 MPa
(B) 48 MPa
(C) 78 MPa
(D) 84 MPa

ν � 0.28
E � 210 GPa

α � 50°

Helical weld

α

P

T

T

P

F F

R-8.12 A cylindrical tank is assembled by welding steel
sections in a helical pattern with angle . Tank
diameter is 1.6 m, thickness is 20 mm, and internal pres-
sure is 2.75 MPa. Modulus and Poisson’s
ratio . The longitudinal strain in the the wall of
the tank is approximately:

(A)
(B)
(C)
(D) 4.3 � 10�4

3.1 � 10�4
2.4 � 10�4
1.2 � 10�4

ν � 0.28
E � 210 GPa

α � 50°

Helical weld

α
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C H A P T E R9
Deflections of Beams

Deflection of beams is an
important consideration

in their initial design;
deflections also must be

monitored during
 construction. (Glen
Jones/Shutterstock)
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I CHAPTER OVERVIEW
In Chapter 9, methods for calculation of beam
deflections are presented. Beam deflections, in addi-
tion to beam stresses and strains discussed in
Chapters 5 and 6, are an essential consideration in
their analysis and design. A beam may be strong
enough to carry a range of static or dynamic load-
ings (see the discussion in Sections 1.8 and 5.6), but
if it deflects too much or vibrates under applied
loadings, it fails to meet the “serviceability” require-
ments which are an important element of its overall
design. Chapter 9 covers a range of methods that
can be used to compute either deflections (both
translations and rotations) at specific points along
the beam or the deflected shape of the entire beam.
The beam may be prismatic or nonprismatic
(Section 9.7), acted on by concentrated or distrib-
uted loads (or both), or the “loading” may be a
 difference in temperature between the top and

 bottom of the beam (Section 9.11). In general, the
beam is assumed to behave in a linearly elastic
 manner and is restricted to small displacements
(i.e., small compared to its own length). First, meth-
ods based on integration of the differential equation
of the elastic curve are discussed (Sections 9.2
through 9.4). Beam deflection results for a wide
range of loadings acting on either cantilever or sim-
ple beams are summarized in Appendix G and are
available for use in the method of superposition
(Section 9.5). Next, a method based on the area
of the bending moment diagram is described
(Section 9.6). The concepts of work and strain
energy are presented (Section 9.8) followed by an
application of these principles to computation of
beam deflections known as Castigliano’s theorem.
Finally, the specialized topic of beam deflections
due to impact is discussed (Section 9.10).

9.1 Introduction 756
9.2 Differential Equations of the Deflection 

Curve 756
9.3 Deflections by Integration of the 

Bending-Moment Equation 761
9.4 Deflections by Integration of the Shear-Force

and Load Equations 772
9.5 Method of Superposition 778
9.6 Moment-Area Method 786

9.7 Nonprismatic Beams 795
9.8 Strain Energy of Bending 800

* 9.9 Castigliano’s Theorem 805
*9.10 Deflections Produced by Impact 817
*9.11 Temperature Effects 819

Chapter Summary & Review 824
Problems 826

*Advanced topics

Chapter 9 is organized as follows:
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Chapter 9  Deflections of Beams

9.1 INTRODUCTION
When a beam with a straight longitudinal axis is loaded by lateral forces,
the axis is deformed into a curve, called the deflection curve of the beam.
In Chapter 5, we used the curvature of the bent beam to determine the
normal strains and stresses in the beam. However, we did not develop a
method for finding the deflection curve itself. In this chapter, we will
determine the equation of the deflection curve and also find deflections at
specific points along the axis of the beam.

The calculation of deflections is an important part of structural analy-
sis and design. For example, finding deflections is an essential ingredient
in the analysis of statically indeterminate structures (Chapter 10).
Deflections are also important in dynamic analyses, as when investigating
the vibrations of aircraft or the response of buildings to earthquakes.

Deflections are sometimes calculated in order to verify that they are
within tolerable limits. For instance, specifications for the design of build-
ings usually place upper limits on the deflections. Large deflections in
buildings are unsightly (and even unnerving) and can cause cracks in ceil-
ings and walls. In the design of machines and aircraft, specifications may
limit deflections in order to prevent undesirable vibrations.

9.2 DIFFERENTIAL EQUATIONS OF THE
DEFLECTION CURVE
Most procedures for finding beam deflections are based on the differential
equations of the deflection curve and their associated relationships.
Consequently, we will begin by deriving the basic equation for the deflec-
tion curve of a beam.

For discussion purposes, consider a cantilever beam with a concen-
trated load acting upward at the free end (Fig. 9-1a). Under the action of
this load, the axis of the beam deforms into a curve, as shown in Fig. 9-1b.
The reference axes have their origin at the fixed end of the beam, with the
x axis directed to the right and the y axis directed upward. The z axis is
directed outward from the figure (toward the viewer).

As in our previous discussions of beam bending in Chapter 5, we
assume that the xy plane is a plane of symmetry of the beam, and we
assume that all loads act in this plane (the plane of bending).

The deflection v is the displacement in the y direction of any point on
the axis of the beam (Fig. 9-1b). Because the y axis is positive upward, the
deflections are also positive when upward.*

To obtain the equation of the deflection curve, we must express the
deflection v as a function of the coordinate x. Therefore, let us now con-
sider the deflection curve in more detail. The deflection v at any point m1
on the deflection curve is shown in Fig. 9-2a. Point m1 is located at dis-
tance x from the origin (measured along the x axis). A second point m2,
located at distance from the origin, is also shown. The deflectionx � dx

756

*As mentioned in Section 5.1, the traditional symbols for displacements in the x, y, and z directions are u, v,
and w, respectively. The advantage of this notation is that it emphasizes the distinction between a coordi-
nate and a displacement.

(a)

(b)

y

x

A

P

A

B

B

v

Fig. 9-1 
Deflection curve of a cantilever

beam
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9.2 Differential Equations of the Deflection Curve 757

at this second point is , where dv is the increment in deflection as
we move along the curve from m1 to m2.

When the beam is bent, there is not only a deflection at each point
along the axis but also a rotation. The angle of rotation θ of the axis of the
beam is the angle between the x axis and the tangent to the deflection
curve, as shown for point m1 in the enlarged view of Fig. 9-2b. For our
choice of axes (x positive to the right and y positive upward), the angle of
rotation is positive when counterclockwise. (Other names for the angle of
rotation are angle of inclination and angle of slope.)

The angle of rotation at point m2 is , where dθ is the increase in
angle as we move from point m1 to point m2. It follows that if we construct
lines normal to the tangents (Figs. 9-2a and b), the angle between these
 normals is dθ. Also, as discussed earlier in Section 5.3, the point of inter-
section of these normals is the center of curvature O� (Fig. 9-2a) and the dis-
tance from O� to the curve is the radius of curvature ρ. From Fig. 9-2a we
see that

(9-1)

in which dθ is in radians and ds is the distance along the deflection curve
between points m1 and m2. Therefore, the curvature κ (equal to the recip-
rocal of the radius of curvature) is given by the equation

(9-2)

The sign convention for curvature is pictured in Fig. 9-3, which is repeated
from Fig. 5-6 of Section 5.3. Note that curvature is positive when the
angle of rotation increases as we move along the beam in the positive x
direction.

The slope of the deflection curve is the first derivative dv/dx of the
expression for the deflection v. In geometric terms, the slope is the incre-
ment dv in the deflection (as we go from point m1 to point m2 in Fig. 9-2)
divided by the increment dx in the distance along the x axis. Since dv and

κ �
1
ρ

�
dθ
ds

ρdθ � ds

θ � dθ

v � dv

Fig. 9-2 
Deflection curve of a beam

y

x
A B

v � dv

du

O ′

x dx

ds
v

m1

m2

r

du

m1

m2

ds

u

u � du

dxx
x

v

(a) (b)

v � dv
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Chapter 9  Deflections of Beams

dx are infinitesimally small, the slope dv/dx is equal to the tangent of the
angle of rotation θ (Fig. 9-2b). Thus,

(9-3a,b)

In a similar manner, we also obtain the following relationships:

(9-4a,b)

Note that when the x and y axes have the directions shown in Fig. 9-2a,
the slope dv/dx is positive when the tangent to the curve slopes upward to
the right.

Equations (9-2) through (9-4) are based only upon geometric consid-
erations, and therefore they are valid for beams of any material.
Furthermore, there are no restrictions on the magnitudes of the slopes and
deflections.

Beams with Small Angles of Rotation
The structures encountered in everyday life, such as buildings, automo-
biles, aircraft, and ships, undergo relatively small changes in shape while
in service. The changes are so small as to be unnoticed by a casual
observer. Consequently, the deflection curves of most beams and columns
have very small angles of rotation, very small deflections, and very small
curvatures. Under these conditions we can make some mathematical
approximations that greatly simplify beam analysis.

Consider, for instance, the deflection curve shown in Fig. 9-2. If the
angle of rotation θ is a very small quantity (and hence the deflection curve
is nearly horizontal), we see immediately that the distance ds along
the deflection curve is practically the same as the increment dx along the
x axis. This same conclusion can be obtained directly from Eq. (9-4a).
Since when the angle θ is small, Eq. (9-4a) gives

(9-5)

With this approximation, the curvature becomes [see Eq. (9-2)]

(9-6)

Also, since tan when θ is small, we can make the following approx-
imation to Eq. (9-3a):

(9-7)

Thus, if the rotations of a beam are small, we can assume that the angle
of rotation θ and the slope dv/dx are equal. (Note that the angle of rota-
tion must be measured in radians.)

Taking the derivative of θ with respect to x in Eq. (9-7), we get

(9-8)dθ
dx

�
d2v
dx2

θ L tan θ �
dv
dx

θ L θ

κ �
1
ρ

�
dθ
dx

ds L dx

cos L 1

cos θ �
dx
ds

sin θ �
dv
ds

dv
dx

� tan θ θ � arctan
dv
dx
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Fig. 9-3 
Sign convention for curvature

y

x

Positive
curvature

O

(a)

�

y

x

Negative
curvature

O
(b)

�
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9.2 Differential Equations of the Deflection Curve 759

Combining this equation with Eq. (9-6), we obtain a relation between the
curvature of a beam and its deflection:

(9-9)

This equation is valid for a beam of any material, provided the rotations
are small quantities.

If the material of a beam is linearly elastic and follows Hooke’s law,
the curvature [from Eq. (5-13), Chapter 5] is

(9-10)

in which M is the bending moment and EI is the flexural rigidity of the
beam. Equation (9-10) shows that a positive bending moment produces
positive curvature and a negative bending moment produces negative cur-
vature, as shown earlier in Fig. 5-10.

Combining Eq. (9-9) with Eq. (9-10) yields the basic differential
 equation of the deflection curve of a beam:

(9-11)

This equation can be integrated in each particular case to find the deflec-
tion v, provided the bending moment M and flexural rigidity EI are
known as functions of x.

As a reminder, the sign conventions to be used with the preceding
equations are repeated here: (1) The x and y axes are positive to the right
and upward, respectively; (2) the deflection v is positive upward; (3) the
slope dv/dx and angle of rotation θ are positive when counterclockwise
with respect to the positive x axis; (4) the curvature κ is positive when the
beam is bent concave upward; and (5) the bending moment M is positive
when it produces compression in the upper part of the beam.

Additional equations can be obtained from the relations between
bending moment M, shear force V, and intensity q of distributed load. In
Chapter 4 we derived the following equations between M, V, and q [see
Eqs. (4-4) and (4-6)]:

(9-12a,b)

The sign conventions for these quantities are shown in Fig. 9-4. By differ-
entiating Eq. (9-11) with respect to x and then substituting the preceding
equations for shear force and load, we can obtain the additional equa-
tions. In so doing, we will consider two cases, nonprismatic beams and
prismatic beams.

Nonprismatic Beams
In the case of a nonprismatic beam, the flexural rigidity EI is variable, and
therefore we write Eq. (9-11) in the form

(9-13a)EIx

d2v
dx2 � M

dV
dx

� �q
dM
dx

� V

d2v
dx2 �

M
EI

κ �
1
ρ

�
M
EI

κ �
1
ρ

�
d2v
dx2

Fig. 9-4 
Sign conventions for bending
moment M, shear force V, and
intensity q of distributed load

�M

�V

�q �q

�V

�M
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Chapter 9  Deflections of Beams

where the subscript x is inserted as a reminder that the flexural rigidity
may vary with x. Differentiating both sides of this equation and using
Eqs. (9-12a) and (9-12b), we obtain

(9-13b)

(9-13c)

The deflection of a nonprismatic beam can be found by solving (either
analytically or numerically) any one of the three preceding differential
equations. The choice usually depends upon which equation provides the
most efficient solution.

Prismatic Beams
In the case of a prismatic beam (constant EI), the differential equations
become

(9-14a,b,c)

To simplify the writing of these and other equations, primes are often used
to denote differentiation:

(9-15)

Using this notation, we can express the differential equations for a pris-
matic beam in the following forms:

(9-16a,b,c)

We will refer to these equations as the bending-moment equation, the shear-
force equation, and the load equation, respectively.

In the next two sections we will use the preceding equations to find
deflections of beams. The general procedure consists of integrating the
equations and then evaluating the constants of integration from boundary
and other conditions pertaining to the beam.

When deriving the differential equations [Eqs. (9-13), (9-14), and
(9-16)], we assumed that the material followed Hooke’s law and that the
slopes of the deflection curve were very small. We also assumed that
any shear deformations were negligible; consequently, we considered
only the deformations due to pure bending. All of these assumptions
are satisfied by most beams in common use.

Exact Expression for Curvature
If the deflection curve of a beam has large slopes, we cannot use the
approximations given by Eqs. (9-5) and (9-7). Instead, we must resort to
the exact expressions for curvature and angle of rotation [see Eqs. (9-2)
and (9-3b)]. Combining those expressions, we get

(9-17)κ �
1
ρ

�
dθ
ds

�
d(arctan v�)

dx
dx
ds

EIv– � M EIv‡ � V EIv � �q

v� K

dv
dx

v– K

d2v
dx2 v‡ K

d3v
dx3 v K

d 4v
dx4

EI
d2v
dx2 � M EI

d3v
dx3 � V EI

d 4v
dx4 � �q

d2

dx2 aEIx

d2v
dx2 b �

dV
dx

� �q

d
dx
aEIx

d2v
dx2 b �

dM
dx

� V
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9.3 Deflections by Integration of the Bending-Moment Equation 761

From Fig. 9-2 we see that

(9-18a,b)

Dividing both sides of Eq. (9-18b) by dx gives

(9-18c,d)

Also, differentiation of the arctangent function (see Appendix C) gives

(9-18e)

Substitution of expressions Eqs. (9-18d and e) into the equation for
 curvature from Eq. (9-17) yields

(9-19)

Comparing this equation with Eq. (9-9), we see that the assumption of
small rotations is equivalent to disregarding in comparison to one.
Equation (9-19) should be used for the curvature whenever the slopes
are large.*

9.3 DEFLECTIONS BY INTEGRATION OF
THE BENDING-MOMENT EQUATION
We are now ready to solve the differential equations of the deflection
curve and obtain deflections of beams. The first equation we will use is the
bending-moment equation [Eq. (9-16a)]. Since this equation is of second
order, two integrations are required. The first integration produces the
slope , and the second produces the deflection v.

We begin the analysis by writing the equation (or equations) for the
bending moments in the beam. Since only statically determinate beams are
considered in this chapter, we can obtain the bending moments from free-
body diagrams and equations of equilibrium, using the procedures
described in Chapter 4. In some cases a single bending-moment expression
holds for the entire length of the beam, as illustrated in Examples 9-1 and
9-2. In other cases the bending moment changes abruptly at one or more
points along the axis of the beam. Then we must write separate bending-
moment expressions for each region of the beam between points where
changes occur, as illustrated in Example 9-3.

ds
dx

� c1 � a dv
dx
b2 d1/2

� [1 � (v�)2]1/2 or
dx
ds

�
1

[1 � (v�)2]1/2

v� � dv/dx

(v�)2

κ �
1
ρ

�
v–

[1 � (v�)2]3/2

d
dx

(arctan v�) �
v–

1 � (v�)2

ds2 � dx2 � dv2 or ds � [dx2 � dv2]1/2

*The basic relationship stating that the curvature of a beam is proportional to the bending moment 
[Eq. (9-10)] was first obtained by Jacob Bernoulli, although he obtained an incorrect value for the constant of
proportionality. The relationship was used later by Euler, who solved the differential equation of the deflec-
tion curve for both large deflections [using Eq. (9-19)] and small deflections [using Eq. (9-11)]. For the history
of deflection curves, see Ref. 9-1.

Fig. 9-5 
Boundary conditions at simple

supports

A B

A B

vA = 0 vB = 0
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Chapter 9  Deflections of Beams762

Regardless of the number of bending-moment expressions, the gen-
eral procedure for solving the differential equations is as follows. For each
region of the beam, we substitute the expression for M into the differen-
tial equation and integrate to obtain the slope v�. Each such integration
produces one constant of integration. Next, we integrate each slope equa-
tion to obtain the corresponding deflection v. Again, each integration pro-
duces a new constant. Thus, there are two constants of integration for
each region of the beam. These constants are evaluated from known con-
ditions pertaining to the slopes and deflections. The conditions fall into
three categories: (1) boundary conditions, (2) continuity conditions, and
(3) symmetry conditions.

Boundary conditions pertain to the deflections and slopes at the sup-
ports of a beam. For example, at a simple support (either a pin or a
roller) the deflection is zero (Fig. 9-5), and at a fixed support both the
deflection and the slope are zero (Fig. 9-6). Each such boundary condi-
tion supplies one equation that can be used to evaluate the constants of
integration.

Continuity conditions occur at points where the regions of integration
meet, such as at point C in the beam of Fig. 9-7. The deflection curve of
this beam is physically continuous at point C, and therefore the deflection
at point C as determined for the left-hand part of the beam must be equal
to the deflection at point C as determined for the right-hand part.
Similarly, the slopes found for each part of the beam must be equal at
point C. Each of these continuity conditions supplies an equation for eval-
uating the constants of integration.

Symmetry conditions may also be available. For instance, if a simple
beam supports a uniform load throughout its length, we know in
advance that the slope of the deflection curve at the midpoint must be
zero. This condition supplies an additional equation, as illustrated in
Example 9-1.

Each boundary, continuity, and symmetry condition leads to an
equation containing one or more of the constants of integration. Since
the number of independent conditions always matches the number of
constants of integration, we can always solve these equations for the
constants. (The boundary and continuity conditions alone are always
sufficient to determine the constants. Any symmetry conditions pro-
vide additional equations, but they are not independent of the other
equations. The choice of which conditions to use is a matter of con-
venience.)

Once the constants are evaluated, they can be substituted back into
the expressions for slopes and deflections, thus yielding the final equations
of the deflection curve. These equations can then be used to obtain
the deflections and angles of rotation at particular points along the axis of
the beam.

The preceding method for finding deflections is sometimes called the
method of successive integrations. The following examples illustrate the
method in detail.

Note: When sketching deflection curves, such as those shown in the
following examples and in Figs. 9-5, 9-6, and 9-7, we greatly exaggerate
the deflections for clarity. However, it should always be kept in mind that
the actual deflections are very small quantities.

Fig. 9-6 
Boundary conditions at a fixed

support

A

A

B

B

vA = 0

v′A = 0

Fig. 9-7 
Continuity conditions at point C

A BC

C

A B

(v)AC = (v)CB

(v′)AC = (v′)CB

At point C:
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9.3 Deflections by Integration of the Bending-Moment Equation 763

Determine the equation of the deflection curve for a simple beam AB
 supporting a uniform load of intensity q acting throughout the span of the
beam (Fig. 9-8a).

Also, determine the maximum deflection at the midpoint of the δ max

Example 9-1• • •

A B

q

(a)

(b)

dmax

y

x
A B

uA uB

L

—L
2

—L
2

Fig. 9-8
Example 9-1: Deflections of a
simple beam with a uniform
load

Solution
Bending moment in the beam. The bending moment at a cross section dis-
tance x from the left-hand support is obtained from the free-body diagram
of Fig. 9-9. Since the reaction at the support is qL/2, the equation for the
bending moment is

(9-20)

Differential equation of the deflection curve. By substituting the
expression for the bending moment [Eq. (9-20)] into the differential equa-
tion [Eq. (9-16a)], we obtain

(9-21)

This equation can now be integrated to obtain the slope and deflection of
the beam.

Slope of the beam. Multiplying both sides of the differential equation
by dx, we get the following equation:

EIv– dx �
qLx

2
dx �

qx2

2
dx

EIv– �
qLx

2
�

qx2

2

M �
qL

2
(x) � qxa x

2
b �

qLx

2
�

qx2

2

Continues ➥

Fig. 9-9
Example 9-1: Free-body
 diagram used in determining
the bending moment M

A

x

M

V

q

qL
—
2

beam and the angles of rotation θA and θB at the supports (Fig. 9-8b). (Note:
The beam has length L and constant flexural rigidity EI.)
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Chapter 9  Deflections of Beams764

Integrating each term, we obtain

or

(a)

in which C1 is a constant of integration.
To evaluate the constant C1, we observe from the symmetry of the

beam and its load that the slope of the deflection curve at midspan is equal
to zero. Thus, we have the following symmetry condition:

This condition may be expressed more succinctly as

Applying this condition to Eq. (a) gives

The equation for the slope of the beam [Eq. (a)] then becomes

(b)

or

(9-22)

As expected, the slope is negative (i.e., clockwise) at the left-hand end of the
beam , positive at the right-hand end , and equal to zero
at the midpoint .

Deflection of the beam. The deflection is obtained by integrating the
equation for the slope. Thus, upon multiplying both sides of Eq. (b) by dx
and integrating, we obtain

(c)

The constant of integration C2 may be evaluated from the condition that
the deflection of the beam at the left-hand support is equal to zero; that is,

when , or

Applying this condition to Eq. (c) yields ; hence, the equation for the
deflection curve is

(d)EIv �
qLx3

12
�

qx4

24
�

qL3x

24

➥

C2 � 0

v (0) � 0

v � 0 x � 0

EIv �
qLx3

12
�

qx3

24
�

qL3x

24
� C2

(x � L/2)
(x � 0) ( x � L)

v¿ a L
2
b � 0

v¿ � 0 when x �
L
2

EIv� �
qLx2

4
�

qx3

6
� C1

EI
L

v– dx �
L

qLx

2
dx �

L

qx2

2
dx

0 �
qL

4
a L

2
b2

�
q

6
a L

2
b3

� C1 or C1 � �
qL3

24

EIv� �
qLx2

4
�

qx3

6
�

qL3

24

v¿ � �
q

24EI
(L3 � 6Lx2 � 4x3)

Example 9-1 - Continued• • •
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9.3 Deflections by Integration of the Bending-Moment Equation 765

or

(9-23)

This equation gives the deflection at any point along the axis of the beam.
Note that the deflection is zero at both ends of the beam ( and

) and negative elsewhere (recall that downward deflections are
 negative).

Maximum deflection. From symmetry we know that the maximum
deflection occurs at the midpoint of the span (Fig. 9-8b). Thus, setting x
equal to L/2 in Eq. (9-23), we obtain

in which the negative sign means that the deflection is downward (as
expected). Since represents the magnitude of this deflection, we
obtain

(9-24)

Angles of rotation. The maximum angles of rotation occur at the sup-
ports of the beam. At the left-hand end of the beam, the angle θA, which is
a clockwise angle (Fig. 9-8b), is equal to the negative of the slope v�. Thus,
by substituting into Eq. (9-22), we find

(9-25)

In a similar manner, we can obtain the angle of rotation θB at the right-hand
end of the beam. Since θB is a counterclockwise angle, it is equal to the slope
at the end:

(9-26)

Because the beam and loading are symmetric about the midpoint, the
angles of rotation at the ends are equal.

This example illustrates the process of setting up and solving the dif-
ferential equation of the deflection curve. It also illustrates the process of
finding slopes and deflections at selected points along the axis of a beam.

Note: Now that we have derived formulas for the maximum deflection
and maximum angles of rotation [see Eqs. (9-24), (9-25), and (9-26)], we can
evaluate those quantities numerically and observe that the deflections and
angles are indeed small, as the theory requires.

Consider a steel beam on simple supports with a span length .
The cross section is rectangular with width and height

. The intensity of uniform load is , which is rela-
tively large because it produces a stress in the beam of 178 MPa. (Thus, the
deflections and slopes are larger than would normally be expected.)

Substituting into Eq. (9-24), and using 210 GPa, we find that the
maximum deflection is 4.7 mm, which is only 1/500 of the span
length. Also, from Eq. (9-25), we find that the maximum angle of rotation is

radians, or 0.43�, which is a very small angle.
Thus, our assumption that the slopes and deflections are small is validated.

➥

➥

➥

➥v � �
qx

24EI
(L3 � 2Lx 2 � x 3)

θA � �v¿(0) �
qL3

24EI

x � 0

δ max � ` va L
2
b ` �

5qL4

384EI

δmax

v a L
2
b � �

5qL4

384EI

x � L
x � 0

θB � v¿(L) �
qL3

24EI

θA � 0.0075

δmax �
E �

q � 100 kN/mh � 150 mm
b � 75 mm

L � 2 m
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Chapter 9  Deflections of Beams766

Determine the equation of the deflection curve for a cantilever beam AB
subjected to a uniform load of intensity q (Fig. 9-10a).

Also, determine the angle of rotation θB and the deflection δB at the
free end (Fig. 9-10b). (Note: The beam has length L and constant flexural
rigidity EI.)

Example 9-2 • • •

A
B

q

y

x

(a)

(b)

A B

dB

uB

L

Fig. 9-10
Example 9-2: Deflections of 
a cantilever beam with a
 uniform load

Solution
Bending moment in the beam. The bending moment at distance x from the
fixed support is obtained from the free-body diagram of Fig. 9-11. Note
that the vertical reaction at the support is equal to qL and the moment
reaction is equal to . Consequently, the expression for the bending
moment M is

(9-27)

Differential equation of the deflection curve. When the preceding 
expression for the bending moment is substituted into the differential
equation [Eq. (9-16a)], we obtain

(9-28)

We now integrate both sides of this equation to obtain the slopes and
deflections.

Slope of the beam. The first integration of Eq. (9-28) gives the follow-
ing equation for the slope:

(a)EIv� � �
qL2x

2
�

qLx2

2
�

qx3

6
� C1

EIv– � �
qL2

2
� qLx �

qx2

2

M � �
qL2

2
� qLx �

qx2

2

qL2/2
Fig. 9-11
Example 9-2: Free-body
 diagram used in determining
the bending moment M

A

x

M

V

q

qL

qL2
—
2
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9.3 Deflections by Integration of the Bending-Moment Equation 767

The constant of integration Cl can be found from the boundary condition
that the slope of the beam is zero at the support; thus, we have the follow-
ing condition:

When this condition is applied to Eq. (a) we get . Therefore, Eq. (a)
becomes

(b)

and the slope is

(9-29)

As expected, the slope obtained from this equation is zero at the support
and negative (i.e., clockwise) throughout the length of the beam.

Deflection of the beam. Integration of the slope equation [Eq. (b)] yields

(c)

The constant C2 is found from the boundary condition that the deflection of
the beam is zero at the support:

When this condition is applied to Eq. (c), we see immediately that .
Therefore, the equation for the deflection v is

(9-30)

As expected, the deflection obtained from this equation is zero at the sup-
port and negative (that is, downward) elsewhere.

Angle of rotation at the free end of the beam. The clockwise angle of
rotation θB at end B of the beam (Fig. 9-10b) is equal to the negative of the
slope at that point. Thus, using Eq. (9-29), we get

(9-31)

This angle is the maximum angle of rotation for the beam.
Deflection at the free end of the beam. Since the deflection δB is down-

ward (Fig. 9-10b), it is equal to the negative of the deflection obtained from
Eq. (9-30):

(9-32)

This deflection is the maximum deflection of the beam.

➥

➥

➥

➥

(x � 0)

(x � 0)

v¿ � �
qx

6EI
(3L2 � 3Lx � x2)

EIv� � �
qL2x

2
�

qLx2

2
�

qx 3

6

C1 � 0

v¿(0) � 0

EIv � �
qL2x 2

4
�

qLx 3

6
�

qx 4

24
� C2

v(0) � 0

C2 � 0

v � �
qx 2

24EI
(6L2 � 4Lx � x 2 )

δB � �v(L) �
qL4

8EI

θB � �v¿(L) �
qL3

6EI
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Chapter 9  Deflections of Beams768

A simple beam AB supports a concentrated load P acting at distances a and
b from the left-hand and right-hand supports, respectively (Fig. 9-12a).

Determine the equations of the deflection curve, the angles of rota-
tion θA and θB at the supports, the maximum deflection , and theδmax

Example 9-3• • •

A

P

B

A

y

xC D B

(a)

(b)

dmax

uB

dC

uA

L

a b

—

x1

L
2

Fig. 9-12
Example 9-3: Deflections 
of a simple beam with a 
concentrated load

Solution
Bending moments in the beam. In this example the bending moments are
expressed by two equations, one for each part of the beam. Using the free-
body diagrams of Fig. 9-13, we arrive at the following equations:

(9-33a)

(9-33b)

Differential equations of the deflection curve. The differential equations
for the two parts of the beam are obtained by substituting the bending-
moment expressions [Eqs. (9-33a and b)] into Eq. (9-16a). The results are

(9-34a)

(9-34b)

Slopes and deflections of the beam. The first integrations of the two
differential equations yield the following expressions for the slopes:

(a)

(b)EIv� �
Pbx2

2L
�

P(x � a)2

2
� C2 (a … x … L)

EIv� �
Pbx2

2L
� C1 (0 … x … a)

EIv¿¿ �
Pbx

L
� P(x � a) (a … x … L)

EIv¿¿ �
Pbx

L
(0 … x … a)

M �
Pbx

L
(0 … x … a)

M �
Pbx

L
� P(x � a) (a … x … L)

Fig. 9-13
Example 9-3: Free-body
 diagrams used in determining
the bending moments 
A M

V
x

x � a

(a)

Pb
L
 —

(b)

Pb
L
 —

A

P

x

x � a

M

V

a

deflection δC at the midpoint C of the beam (Fig. 9-12b). (Note: The beam
has length L and constant flexural rigidity EI.)
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9.3 Deflections by Integration of the Bending-Moment Equation 769

in which C1 and C2 are constants of integration. A second pair of integra-
tions gives the deflections:

(c)

(d)

These equations contain two additional constants of integration, making a
total of four constants to be evaluated.

Constants of integration. The four constants of integration can be
found from the following four conditions:

1. At , the slopes v� for the two parts of the beam are the same.
2. At , the deflections v for the two parts of the beam are the same.
3. At , the deflection v is zero.
4. At , the deflection v is zero.

The first two conditions are continuity conditions based upon the fact
that the axis of the beam is a continuous curve. Conditions (3) and (4) are
boundary conditions that must be satisfied at the supports.

Condition (1) means that the slopes determined from Eqs. (a) and (b)
must be equal when ; therefore,

Condition (2) means that the deflections found from Eqs. (c) and (d) must be
equal when ; therefore,

Inasmuch as , this equation gives .

Next, we apply condition (3) to Eq. (c) and obtain ; therefore,

(e)

Finally, we apply condition (4) to Eq. (d) and obtain

Therefore,

(f)

Equations of the deflection curve. We now substitute the constants of
integration [Eqs. (e) and (f)] into the equations for the deflections [Eqs. (c)
and (d)] and obtain the deflection equations for the two parts of the beam.
The resulting equations, after a slight rearrangement, are

(9-35a)

(9-35b)➥

➥

x � a

v � �
Pbx
6LEI

(L2 � b2 � x2) �
P(x � a)3

6EI
(a … x … L)

v � �
Pbx
6LEI

(L2 � b2 � x2) (0 … x … a)

C1 � C2 � �
Pb(L2 � b2)

6L

PbL2

6
�

Pb3

6
� C2L � 0

C3 � C4 � 0

C3 � 0

C3 � C4C1 � C2

Pba3

6L
� C1a � C3 �

Pba3

6L
� C2a � C4

x � a

Pba2

2L
� C1 �

Pba2

2L
� C2 or C1 � C2

x � L
x � 0
x � a
x � a

EIv �
Pbx3

6L
�

P(x � a)3

6
� C2x � C4 (a … x … L)

EIv �
Pbx3

6L
� C1x � C3 (0 … x … a)

Continues ➥
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Chapter 9  Deflections of Beams770

The first of these equations gives the deflection curve for the part of the
beam to the left of the load P, and the second gives the deflection curve for
the part of the beam to the right of the load.

The slopes for the two parts of the beam can be found either by sub-
stituting the values of Cl and C2 into Eqs. (a) and (b) or by taking the first
derivatives of the deflection equations [Eqs. (9-35a and b)]. The resulting
equations are

(9-36a)

(9-36b)

The deflection and slope at any point along the axis of the beam can be cal-
culated from Eqs. (9-35) and (9-36).

Angles of rotation at the supports. To obtain the angles of rotation θA and
θB at the ends of the beam (Fig. 9-12b), we substitute into Eq. (9-36a)
and into Eq. (9-36b):

(9-37a)

(9-37b)

Note that the angle θA is clockwise and the angle θB is counterclockwise, as
shown in Fig. 9-12b.

The angles of rotation are functions of the position of the load and
reach their largest values when the load is located near the midpoint of the
beam. In the case of the angle of rotation θA, the maximum value of the
angle is

(9-38)

and occurs when (or ). This value of b is
obtained by taking the derivative of θA with respect to b [using the first
of the two expressions for θA in Eq. (9-37a)] and then setting it equal to
zero.

Maximum deflection of the beam. The maximum deflection occurs
at point D (Fig. 9-12b) where the deflection curve has a horizontal tangent.
If the load is to the right of the midpoint, that is, if , point D is in the
part of the beam to the left of the load. We can locate this point by equat-
ing the slope v� from Eq. (9-36a) to zero and solving for the distance x, which
we now denote as x1. In this manner we obtain the following formula for x1:

(9-39)

From this equation we see that as the load P moves from the middle of the
beam to the right-hand end , the distance x1 varies from
L/2 to . Thus, the maximum deflection occurs at a point very

b � L/13 � 0.577L

L/13 � 0.577L
(b � L/2) (b � 0)

x1 �
C

L2 � b2

3
(a Ú b)

a 7 b

δmax

a � 0.423L

➥

➥

➥

➥

(θA)max �
PL213
27EI

θB � v¿(L) �
Pb(2L2 � 3bL � b2)

6LEI
�

Pab(L � a)

6LEI

θA � �v�(0) �
Pb(L2 � b2)

6LEI
�

Pab(L � b)

6LEI

x � L
x � 0

v¿ � �
Pb

6LEI
(L2 � b2 � 3x2) �

P(x � a)2

2EI
(a … x … L)

v¿ � �
Pb

6LEI
(L2 � b2 � 3x2) (0 … x … a)

Example 9-3 - Continued• • •

Fig. 9-12b (Repeated)

A

y

xC D B

dmax

uB

dC

uA

—

x1

L
2
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9.3 Deflections by Integration of the Bending-Moment Equation 771

close to the midpoint of the beam, and this point is always between the
midpoint of the beam and the load.

The maximum deflection is found by substituting x1 [from 
Eq. (9-39)] into the deflection equation [Eq. (9-35a)] and then inserting
a minus sign:

(9-40)

The minus sign is needed because the maximum deflection is downward
(Fig. 9-12b) whereas the deflection v is positive upward.

The maximum deflection of the beam depends on the position of the
load P, that is, on the distance b. The maximum value of the maximum
deflection (the “max-max” deflection) occurs when and the load
is at the midpoint of the beam. This maximum deflection is equal to

.
Deflection at the midpoint of the beam. The deflection δC at the mid-

point C when the load is acting to the right of the midpoint (Fig. 9-12b) is
obtained by substituting into Eq. (9-35a), as

(9-41)

Because the maximum deflection always occurs near the midpoint of the
beam, Eq. (9-41) yields a close approximation to the maximum deflec-
tion. In the most unfavorable case (when b approaches zero), the differ-
ence between the maximum deflection and the deflection at the
midpoint is less than 3% of the maximum deflection, as demonstrated in
Prob. 9.3-7.

Special case (load at the midpoint of the beam). An important special case
occurs when the load P acts at the midpoint of the beam . Then
we obtain the following results from Eqs. (9-36a), (9-35a), (9-37), and (9-40),
respectively:

(9-42)

(9-43)

(9-44)

(9-45)

Since the deflection curve is symmetric about the midpoint of the beam, the
equations for v� and v are given only for the left-hand half of the beam in
Eqs. (9-42) and (9-43). If needed, the equations for the right-hand half can
be obtained from Eqs. (9-36b) and (9-35b) by substituting .

➥

➥

δmax

δmax � �(v)x�x1
�

Pb(L2 � b2)3/2

913 LEI
(a Ú b)

a � b � L/2

δmax � δC �
PL3

48EI

θA � θB �
PL2

16EI

v � �
Px

48EI
(3L2 � 4x2) a0 … x …

L
2
b

v� � �
P

16EI
(L2 � 4x2) a0 … x …

L
2
b

(a � b � L/2)

δC � �va L
2
b �

Pb(3L2 � 4b2)

48EI
(a Ú b)

x � L/2

PL3/48EI

b � L/2

77742_09_ch09_p754-847.qxd:77742_09_ch09_p754-847.qxd  2/22/12  2:54 PM  Page 771

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9.4 DEFLECTIONS BY INTEGRATION 
OF THE SHEAR-FORCE AND LOAD
EQUATIONS
The equations of the deflection curve in terms of the shear force V and
the load q [Eqs. (9-16b and c), respectively] may also be integrated to
obtain slopes and deflections. Since the loads are usually known quanti-
ties, whereas the bending moments must be determined from free-body
diagrams and equations of equilibrium, many analysts prefer to start
with the load equation. For this same reason, most computer programs
for finding deflections begin with the load equation and then perform
numerical integrations to obtain the shear forces, bending moments,
slopes, and deflections.

The procedure for solving either the load equation or the shear-force
equation is similar to that for solving the bending-moment equation,
except that more integrations are required. For instance, if we begin with
the load equation, four integrations are needed in order to arrive at the
deflections. Thus, four constants of integration are introduced for each
load equation that is integrated. As before, these constants are found from
boundary, continuity, and symmetry conditions. However, these condi-
tions now include conditions on the shear forces and bending moments as
well as conditions on the slopes and deflections.

Conditions on the shear forces are equivalent to conditions on the
third derivative (because ). In a similar manner, conditions on
the bending moments are equivalent to conditions on the second deriv-
ative (because ). When the shear-force and bending-moment
conditions are added to those for the slopes and deflections, we always
have enough independent conditions to solve for the constants of inte-
gration.

The following examples illustrate the techniques of analysis in detail.
The first example begins with the load equation and the second begins
with the shear-force equation.

EIv– � M

EIv‡ � V

Chapter 9  Deflections of Beams772
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9.4 Deflections by Integration of the Shear-Force and Load Equations 773

Determine the equation of the deflection curve for a cantilever beam 
AB supporting a triangularly distributed load of maximum intensity q0
(Fig. 9-14a).

Also, determine the deflection δB and angle of rotation θB at the free
end (Fig. 9-14b). Use the fourth-order differential equation of the deflection
curve (the load equation). (Note: The beam has length L and constant flex-
ural rigidity EI.)

Example 9-4• • •

A B

q0

x

(a)

(b)

y

y

x
A B

uB

dB

L

Fig. 9-14
Example 9-4: Deflections of 
a cantilever beam with a 
triangular load

Solution
Differential equation of the deflection curve. The intensity of the distrib-
uted load is given by the following equation (see Fig. 9-14a):

(9-46)

Consequently, the fourth-order differential equation [Eq. (9-16c)] becomes

(a)

Shear force in the beam. The first integration of Eq. (a) gives

(b)

The right-hand side of this equation represents the shear force V [see Eq. (9-16b)].
Because the shear force is zero at , we have the following boundary
 condition:

Using this condition with Eq. (b), we get . Therefore, Eq. (b) simplifies to

(c)

EIv � �q � �
q0(L � x)

L

q �
q0(L � x)

L

EIv‡ �
q0

2L
(L � x)2

C1 � 0

v‡(L) � 0

x � L

EIv‡ �
q0

2L
(L � x)2 � C1

Continues ➥
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Chapter 9  Deflections of Beams774

and the shear force in the beam is

(9-47)

Bending moment in the beam. Integrating a second time, we obtain
the following equation from Eq. (c):

(d)

This equation is equal to the bending moment M [see Eq. (9-16a)]. Since the
bending moment is zero at the free end of the beam, we have the follow-
ing boundary condition:

Applying this condition to Eq. (d), we obtain , and therefore the
bending moment is

(9-48)

Slope and deflection of the beam. The third and fourth integrations yield

(e)

(f)

The boundary conditions at the fixed support, where both the slope and
deflection equal to zero, are

Applying these conditions to Eqs. (e) and (f), respectively, we find

Substituting these expressions for the constants into Eqs. (e) and (f), we
obtain the following equations for the slope and deflection of the beam:

(9-49)

(9-50)

Angle of rotation and deflection at the free end of the beam. The angle
of rotation θB and deflection δB at the free end of the beam (Fig. 9-14b) are
obtained from Eqs. (9-49) and (9-50), respectively, by substituting . The
results are

(9-51a,b)

Thus, we have determined the required slopes and deflections of the beam
by solving the fourth-order differential equation of the deflection curve.

➥

➥

➥

θB � �v�(L) �
q0L

3

24EI
δB � �v(L) �

q0L
4

30EI

x � L

v � �
q0x

2

120LEI
(10L3 � 10L2x � 5Lx2 � x3)

v� � �
q0x

24LEI
(4L3 � 6L2x � 4Lx2 � x3)

C3 � �
q0L

3

24
C4 �

q0L
4

120

v¿(0) � 0 v(0) � 0

EIv � �
q0

120L
(L � x)5 � C3x � C4

EIv� �
q0

24L
(L � x)4 � C3

M � EIv– � �
q0

6L
(L � x)3

C2 � 0

v–(L) � 0

EIv– � �
q0

6L
(L � x)3 � C2

V � EIv‡ �
q0

2L
(L � x)2

Example 9-4 - Continued• • •

Cantilever portion of roof
 structure (Courtesy of the
National Information Service 
for Earthquake Engineering
EERC, University of California,
Berkeley.)

77742_09_ch09_p754-847.qxd:77742_09_ch09_p754-847.qxd  2/22/12  2:54 PM  Page 774

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9.4 Deflections by Integration of the Shear-Force and Load Equations 775

A simple beam AB with an overhang BC supports a concentrated load P at the
end of the overhang (Fig. 9-15a). The main span of the beam has length L and
the overhang has length L/2.

Determine the equations of the deflection curve and the deflection δC
at the end of the overhang (Fig. 9-15b). Use the third-order differential
equation of the deflection curve (the shear-force equation). (Note: The
beam has constant flexural rigidity EI.)

Example 9-5• • •

Fig. 9-15
Example 9-5: Deflections of a
beam with an overhang

Solution
Differential equations of the deflection curve. Because reactive forces act at
supports A and B, we must write separate differential equations for parts AB
and BC of the beam. Therefore, we begin by finding the shear forces in each
part of the beam.

The downward reaction at support A is equal to P/2, and the upward
reaction at support B is equal to 3P/2 (see Fig. 9-15a). It follows that the
shear forces in parts AB and BC are

(9-52a)

(9-52b)

in which x is measured from end A of the beam (Fig. 9-16b).
The third-order differential equations for the beam now become [see

Eq. (9-16b)]:

(a)

(b)

Bending moments in the beam. Integration of the preceding two equa-
tions yields the bending-moment equations:

(c)

(d)M � EIv– � Px � C2 aL … x …

3L
2
b

M � EIv– � �
Px
2

� C1 (0 … x … L)

EIv‡ � P aL 6 x 6

3L
2
b

EIv‡ � �
P
2

(0 6 x 6 L)

V � P aL 6 x 6

3L
2
b

V � �
P
2

(0 6 x 6 L)

Continues ➥

A C

P

3P

B

2
—P

2
—

(a)

L —L
2

A

y

B C
x

(b)

dC
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Chapter 9  Deflections of Beams776

The bending moments at points A and C are zero; hence, we have the fol-
lowing boundary conditions:

Using these conditions with Eqs. (c) and (d), we get

Therefore, the bending moments are

(9-53a)

(9-53b)

These equations can be verified by determining the bending moments from
free-body diagrams and equations of equilibrium.

Slopes and deflections of the beam. The next integrations yield the
slopes:

The only condition on the slopes is the continuity condition at support B.
According to this condition, the slope at point B as found for part AB of the
beam is equal to the slope at the same point as found for part BC of the
beam. Therefore, we substitute into each of the two preceding equa-
tions for the slopes and obtain

This equation eliminates one constant of integration because we can
express C4 in terms of C3:

(e)

The third and last integrations give

(f)

(g)EIv � �
Px2(9L � 2x)

12
� C4x � C6 aL … x …

3L
2
b

EIv � �
Px3

12
� C3 x � C5 (0 … x … L)

C4 � C3 �
3PL2

4

�
PL2

4
� C3 � �PL2 � C4

x � L

EIv� � �
Px(3L � x)

2
� C4 aL … x …

3L
2
b

EIv� � �
Px2

4
� C3 (0 … x … L)

M � EIv– � �
P(3L � 2x)

2
aL … x …

3L
2
b

M � EIv– � �
Px
2

(0 … x … L)

C1 � 0 C2 � �
3PL
2

v–(0) � 0 v– a3L
2
b � 0

Example 9-5 - Continued• • •

Bridge girder with overhang
during transport to the 
construction site (Tom
Brakefield/Getty Images)
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9.4 Deflections by Integration of the Shear-Force and Load Equations 777

For part AB of the beam (Fig. 9-15a), we have two boundary conditions on
the deflections, namely, the deflection is zero at points A and B:

Applying these conditions to Eq. (f), we obtain

(h,i)

Substituting the preceding expression for C3 in Eq. (e), we get

( j)

For part BC of the beam, the deflection is zero at point B. Therefore, the
boundary condition is

Applying this condition to Eq. (g), and also substituting Eq. (j) for C4, we get

(k)

All constants of integration have now been evaluated.
The deflection equations are obtained by substituting the constants of

integration [Eqs. (h), (i), (j), and (k)] into Eqs. (f) and (g). The results are

(9-54a)

(9-54b)

Note that the deflection is always positive (upward) in part AB of the beam 
[Eq. (9-54a)] and always negative (downward) in the overhang BC [Eq. (9-54b)].

Deflection at the end of the overhang. We can find the deflection δC at
the end of the overhang (Fig. 9-15b) by substituting in Eq. (9-54b):

(9-55)

Thus, we have determined the required deflections of the overhanging
beam [Eqs. (9-54) and (9-55)] by solving the third-order differential equation
of the deflection curve.

v �
Px

12EI
(L2 � x2) (0 … x … L)

v � �
P

12EI
(3L3 � 10L2x � 9Lx2 � 2x3) aL … x …

3L
2
b

➥

➥

➥

δC � �va3L
2
b �

PL3

8EI

x � 3L/2

C6 � �
PL3

4

v(L) � 0

C4 �
5PL2

6

C5 � 0 C3 �
PL2

12

v(0) � 0 and v(L) � 0

Fig. 9-15 (Repeated)
A C

P

3P

B

2
—P

2
—

(a)

L —L
2

A

y

B C
x

(b)

dC
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Chapter 9  Deflections of Beams

9.5 METHOD OF SUPERPOSITION
The method of superposition is a practical and commonly used technique
for obtaining deflections and angles of rotation of beams. The underlying
concept is quite simple and may be stated as follows:

Under suitable conditions, the deflection of a beam produced by several
different loads acting simultaneously can be found by superposing the deflec-
tions produced by the same loads acting separately.

For instance, if v1 represents the deflection at a particular point on the
axis of a beam due to a load q1, and if v2 represents the deflection at that
same point due to a different load q2, then the deflection at that point due
to loads q1 and q2 acting simultaneously is . (The loads q1 and q2
are independent loads and each may act anywhere along the axis of the
beam.)

The justification for superposing deflections lies in the nature of the
differential equations of the deflection curve [Eqs. (9-16a, b, and c)].
These equations are linear differential equations, because all terms con-
taining the deflection v and its derivatives are raised to the first power.
Therefore, the solutions of these equations for several loading conditions
may be added algebraically, or superposed. (The conditions for superpo-
sition to be valid are described later in the subsection “Principle of
Superposition.”)

As an illustration of the superposition method, consider the simple
beam ACB shown in Fig. 9-16a. This beam supports two loads: (1) a uni-
form load of intensity q acting throughout the span, and (2) a concen-
trated load P acting at the midpoint. Suppose we wish to find the
deflection δC at the midpoint and the angles of rotation θA and θB at the
ends (Fig. 9-16b). Using the method of superposition, we obtain the
effects of each load acting separately and then combine the results.

For the uniform load acting alone, the deflection at the midpoint and
the angles of rotation are obtained from the formulas of Example 9-1 [see
Eqs. (9-24), (9-25), and (9-26)]:

in which EI is the flexural rigidity of the beam and L is its length.
For the load P acting alone, the corresponding quantities are

obtained from the formulas of Example 9-3 [see Eqs. (9-44) and (9-45)]:

The deflection and angles of rotation due to the combined loading  
(Fig. 9-16a) are obtained by summation:

(9-56a)

(9-56b)θA � θB � (θA)1 � (θA)2 �
qL3

24EI
�

PL2

16EI

δC � (δC)1 � (δC)2 �
5qL4

384EI
�

PL3

48EI

(δC)2 �
PL3

48EI
(θA)2 � (θB)2 �

PL2

16EI

(δC)1 �
5qL4

384EI
(θA)1 � (θB)1 �

qL3

24EI

v1 � v2

778
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2
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C
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q
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(b)

A B
x

y

uA uB
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L
2
—

L
2
— L

2
—

Fig. 9-16
Simple beam with two loads
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9.5 Method of Superposition 779

The deflections and angles of rotation at other points on the beam axis
can be found by this same procedure. However, the method of superposi-
tion is not limited to finding deflections and angles of rotation at single
points. The method may also be used to obtain general equations for the
slopes and deflections of beams subjected to more than one load.

Tables of Beam Deflections
The method of superposition is useful only when formulas for deflections
and slopes are readily available. To provide convenient access to such for-
mulas, tables for both cantilever and simple beams are given in Appendix G
at the back of the book. Similar tables can be found in engineering hand-
books. Using these tables and the method of superposition, we can find
deflections and angles of rotation for many different loading conditions, as
illustrated in the examples at the end of this section.

Distributed Loads
Sometimes we encounter a distributed load that is not included in a table
of beam deflections. In such cases, superposition may still be useful. We
can consider an element of the distributed load as though it were a con-
centrated load, and then we can find the required deflection by integrat-
ing throughout the region of the beam where the load is applied.

To illustrate this process of integration, consider a simple beam ACB
with a triangular load acting on the left-hand half (Fig. 9-17a). We wish
to obtain the deflection δC at the midpoint C and the angle of rotation θA
at the left-hand support (Fig. 9-17c).

We begin by visualizing an element qdx of the distributed load as a
concentrated load (Fig. 9-17b). Note that the load acts to the left of the
midpoint of the beam. The deflection at the midpoint due to this con-
centrated load is obtained from Case 5 of Table G-2, Appendix G. The
formula given there for the midpoint deflection (for the case in which

) is

In our example (Fig. 9-17b), we substitute qdx for P and x for a:

(9-57)

This expression gives the deflection at point C due to the element qdx of
the load.

Next, we note that the intensity of the uniform load (Figs. 9-17a
and b) is

(9-58)

where q0 is the maximum intensity of the load. With this substitution for
q, the formula for the deflection [Eq. (9-57)] becomes

q0x
2

24LEI
(3L2 � 4x2)dx

q �
2q0x

L

(qdx)(x)

48EI
(3L2 � 4x2)

Pa
48EI

(3L2 � 4a2)

a … b

A B
C

(a)

(c)

dC

y

y

x
A BC

uA

A B
x

x

C

(b)

dx

q dx

q0

L
2
— L

2
—

L
2
— L

2
—

Fig. 9-17
Simple beam with a  
triangular load

77742_09_ch09_p754-847.qxd:77742_09_ch09_p754-847.qxd  2/22/12  2:55 PM  Page 779

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 9  Deflections of Beams

Finally, we integrate throughout the region of the load to obtain the
deflection δC at the midpoint of the beam due to the entire triangular load:

(9-59)

By a similar procedure, we can calculate the angle of rotation θA at the
left-hand end of the beam (Fig. 9-17c). The expression for this angle due
to a concentrated load P (see Case 5 of Table G-2) is

Replacing P with , a with x, and b with , we obtain

Finally, we integrate throughout the region of the load:

(9-60)

This is the angle of rotation produced by the triangular load.
This example illustrates how we can use superposition and integration

to find deflections and angles of rotation produced by distributed loads of
almost any kind. If the integration cannot be performed easily by analyt-
ical means, numerical methods can be used.

Principle of Superposition
The method of superposition for finding beam deflections is an example of
a more general concept known in mechanics as the principle of superposition.
This principle is valid whenever the quantity to be determined is a linear
function of the applied loads. When that is the case, the desired quantity
may be found due to each load acting separately, and then these results may
be superposed to obtain the desired quantity due to all loads acting simul-
taneously. In ordinary structures, the principle is usually valid for stresses,
strains, bending moments, and many other quantities besides deflections.

In the particular case of beam deflections, the principle of super posi-
tion is valid under the following conditions: (1) Hooke’s law holds for the
material, (2) the deflections and rotations are small, and (3) the presence
of the deflections does not alter the actions of the applied loads. These
requirements ensure that the differential equations of the deflection curve
are linear.

The following examples provide additional illustrations in which the
principle of superposition is used to calculate deflections and angles of
rotation of beams.

θA �
3

L/2

0

q0

3L2EI
(L � x)(2L � x)x2dx �

41q0L
3

2880EI

2q0x
2(L � x)(L � L � x)

6L2EI
dx or

q0

3L2EI
(L � x)(2L � x)x2dx

L � x2q0xdx/L

Pab(L � b)

6LEI

�
q0

24LEI 3

L/2

0
(3L2 � 4x2)x2dx �

q0L
4

240EI

δC �
3

L/2

0

q0x
2

24LEI
(3L2 � 4x2)dx
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9.5 Method of Superposition 781

A cantilever beam AB supports a uniform load of intensity q acting over
part of the span and a concentrated load P acting at the free end 
(Fig. 9-18a).

Determine the deflection δB and angle of rotation θB at end B of the
beam (Fig. 9-18b). (Note: The beam has length L and constant flexural
rigidity EI.)

Example 9-6• • •

Fig. 9-18
Example 9-6: Cantilever beam
with a uniform load and a
 concentrated load

Solution
We can obtain the deflection and angle of rotation at end B of the beam
by combining the effects of the loads acting separately. If the uniform load
acts alone, the deflection and angle of rotation (obtained from Case 2 of
Table G-1, Appendix G) are

If the load P acts alone, the corresponding quantities (from Case 4, 
Table G-1) are

Therefore, the deflection and angle of rotation due to the combined load-
ing (Fig. 9-18a) are

(9-61)

(9-62)

Thus, we have found the required quantities by using tabulated formulas
and the method of superposition.

➥

➥

θB � (θB)1 � (θB)2 �
qa3

6EI
�

PL2

2EI

δB � (δB)1 � (δB)2 �
qa3

24EI
(4L � a) �

PL3

3EI

(δB)2 �
PL3

3EI
(θB)2 �

PL2

2EI

(δB)1 �
qa3

24EI
(4L � a) (θB )1 �

qa3

6EI

A
B

P
q

y

x

(a)

(b)

A B

dB

uB

L

a b
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Chapter 9  Deflections of Beams782

A cantilever beam AB with a uniform load of intensity q acting on the right-
hand half of the beam is shown in Fig. 9-19a.

Obtain formulas for the deflection δB and angle of rotation θB at the
free end (Fig. 9-19c). (Note: The beam has length L and constant flexural
rigidity EI.)

Example 9-7 • • •

A B

q

A B

x

q dx

(a)

(b)

dx

x

y

y

x

(c)

A B

B

B

L
2
— L

2
—

Fig. 9-19
Example 9-7: Cantilever beam
with a uniform load acting on
the right-hand half of the
beam

Solution
In this example we will determine the deflection and angle of rotation by
treating an element of the uniform load as a concentrated load and then
integrating (see Fig. 9-19b). The element of load has magnitude qdx and is
located at distance x from the support. The resulting differential deflection
dδB and differential angle of rotation dθB at the free end are found from the
corresponding formulas in Case 5 of Table G-1, Appendix G, by replacing P
with qdx and a with x; thus,

By integrating over the loaded region, we get

(9-63)

(9-64)

Note: These same results can be obtained by using the formulas in Case 3
of Table G-1 and substituting .

➥

➥

a � b � L/2

θB �
L

dθB �
q

2EI 3

L

L/2
x2dx �

7qL3

48EI

δB �
L

dδB �
q

6EI 3

L

L/2
x2(3L � x) dx �

41qL4

384EI

dδB �
(qdx)(x2)(3L � x)

6EI
dθB �

(qdx)(x2)

2EI
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9.5 Method of Superposition 783

A compound beam ABC has a roller support at A, an internal hinge (i.e.,
moment release) at B, and a fixed support at C (Fig. 9-20a). Segment AB has
length a and segment BC has length b. A concentrated load P acts at dis-
tance 2a/3 from support A and a uniform load of intensity q acts between
points B and C.

Determine the deflection δB at the hinge and the angle of rotation θA
at support A (Fig. 9-20d). (Note: The beam has constant flexural rigidity EI.)

Solution
For purposes of analysis, we will consider the compound beam to consist of
two individual beams: (1) a simple beam AB of length a, and (2) a cantilever
beam BC of length b. The two beams are linked together by a pin connec-
tion at B.

If we separate beam AB from the rest of the structure (Fig. 9-20b), we
see that there is a vertical force F at end B equal to 2P/3. This same force acts
downward at end B of the cantilever (Fig. 9-20c). Consequently, the can-
tilever beam BC is subjected to two loads: a uniform load and a concen-
trated load. The deflection at the end of this cantilever (which is the same
as the deflection δB of the hinge) is readily found from Cases 1 and 4 of
Table G-1, Appendix G:

or, since ,

(9-65)

The angle of rotation θA at support A (Fig. 9-20d) consists of two parts:
(1) an angle BAB� produced by the downward displacement of the hinge,
and (2) an additional angle of rotation produced by the bending of beam
AB (or beam AB�) as a simple beam. The angle BAB� is

The angle of rotation at the end of a simple beam with a concentrated
load is obtained from Case 5 of Table G-2. The formula given there is

in which L is the length of the simple beam, a is the distance from the left-
hand support to the load, and b is the distance from the right-hand support
to the load. Thus, in the notation of our example (Fig. 9-20a), the angle of
rotation is

Combining the two angles, we obtain the total angle of rotation at support A:

(9-66)

This example illustrates how the method of superposition can be adapted
to handle a seemingly complex situation in a relatively simple manner.

➥

➥

4Pa2

81EI

θA � (θA)1 � (θA)2 �
qb4

8aEI
�

2Pb3

9aEI
�

4Pa2

81EI

(θA)2 �

Pa2a
3
b aa

3
b aa �

a

3
b

6aEI
�

Pab(L � b)

6LEI

(θA)1 �
δB

a
�

qb4

8aEI
�

2Pb3

9aEI

δB �
qb4

8EI
�

2Pb3

9EI

F � 2P/3

δB �
qb4

8EI
�

Fb3

3EI

Example 9-8• • •

Fig. 9-20
Example 9-8: Compound beam
with a hinge
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P q
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Chapter 9  Deflections of Beams784

A simple beam AB of span length L has an overhang BC of length a (Fig. 9-21a).
The beam supports a uniform load of intensity q throughout its length.

Obtain a formula for the deflection δC at the end of the overhang
(Fig. 9-21c). (Note: The beam has constant flexural rigidity EI.)

Example 9-9• • •

Fig. 9-21 
Example 9-9: Simple beam with
an overhang

A
B

qa2
—
2

q

y

A
B C

q

MB = 

P = qa

(a)

(c)

Point of inflection

(b)

dC

d1

d2

uBD BA C x

L a

L

Solution
We can find the deflection of point C by imagining the overhang BC
(Fig. 9-21a) to be a cantilever beam subjected to two actions. The first
action is the rotation of the support of the cantilever through an angle
θB, which is the angle of rotation of beam ABC at support B (Fig. 9-21c).
(We assume that a clockwise angle θB is positive.) This angle of rotation
causes a rigid-body rotation of the overhang BC, resulting in a down-
ward displacement δ1 of point C.

The second action is the bending of BC as a cantilever beam supporting
a uniform load. This bending produces an additional downward displace-
ment δ2 (Fig. 9-21c). The superposition of these two dis placements gives the
total displacement δC at point C.

Deflection δ1. Let us begin by finding the deflection δ1 caused by the
angle of rotation θB at point B. To find this angle, we observe that part AB
of the beam is in the same condition as a simple beam (Fig. 9-21b) subjected
to the following loads: (1) a uniform load of intensity q, (2) a couple MB

Beam with overhang loaded by
gravity uniform load
(Courtesy of the National
Information Service for
Earthquake Engineering EERC,
University of California,
Berkeley.)
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9.5 Method of Superposition 785

(equal to qa2/2), and (3) a vertical load P (equal to qa). Only the loads q and
MB produce angles of rotation at end B of this simple beam. These angles are
found from Cases 1 and 7 of Table G-2, Appendix G. Thus, the angle θB is

(9-67)

in which a clockwise angle is positive, as shown in Fig. 9-21c.
The downward deflection δ1 of point C, due solely to the angle of rota-

tion θB, is equal to the length of the overhang times the angle (Fig. 9-21c):

(a)

Deflection δ2. Bending of the overhang BC produces an additional
downward deflection δ2 at point C. This deflection is equal to the deflection
of a cantilever beam of length a subjected to a uniform load of intensity q
(see Case 1 of Table G-1):

(b)

Deflection δC. The total downward deflection of point C is the algebraic
sum of δ1 and δ2:

or

(9-68)

From the preceding equation we see that the deflection δC may be
upward or downward, depending upon the relative magnitudes of the
lengths L and a. If a is relatively large, the last term in the equation (the
three-term expression in parentheses) is positive and the deflection δC is
downward. If a is relatively small, the last term is negative and the deflec-
tion is upward. The deflection is zero when the last term is equal to zero:

or

(c)

From this result, we see that if a is greater than 0.4343L, the deflection of
point C is downward; if a is less than 0.4343L, the deflection is upward.

Deflection curve. The shape of the deflection curve for the beam in this
example is shown in Fig. 9-21c for the case where a is large enough

to produce a downward deflection at C and small enough
to ensure that the reaction at A is upward. Under these conditions

the beam has a positive bending moment between support A and a point
such as D. The deflection curve in region AD is concave upward (positive cur-
vature). From D to C, the bending moment is negative, and therefore the
deflection curve is concave downward (negative curvature).

Point of inflection. At point D the curvature of the deflection curve is
zero because the bending moment is zero. A point such as D where the cur-
vature and bending moment change signs is called a point of inflection (or
point of contraflexure). The bending moment M and the second derivative

always vanish at an inflection point.
However, a point where M and equal zero is not necessarily an

inflection point because it is possible for those quantities to be zero with-
out changing signs at that point; for example, they could have maximum or
minimum values.

➥

d 2v/dx 2
d2v/dx2

(a 6 L)
(a 7 0.4343L)

a �
L(113 � 1)

6
� 0.4343L

3a2 � aL � L2 � 0

δC �
qa

24EI
(a � L)(3a3 � aL � L2)

δC � δ1 � δ 2 �
qaL(4a2 � L2)

24EI
�

qa4

8EI
�

qa

24EI
[L(4a2 � L2 ) � 3a3]

δ2 �
qa4

8EI

δ1 � aθB �
qaL(4a2 � L2)

24EI

θB � �
qL3

24EI
�

MBL

3EI
� �

qL3

24EI
�

qa2L

6EI
�

qL(4a2 � L2)

24EI

77742_09_ch09_p754-847.qxd:77742_09_ch09_p754-847.qxd  2/22/12  2:56 PM  Page 785

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 9  Deflections of Beams

9.6 MOMENT-AREA METHOD
In this section we will describe another method for finding deflections and
angles of rotation of beams. Because the method is based upon two theo-
rems related to the area of the bending-moment diagram, it is called the
moment-area method.

The assumptions used in deriving the two theorems are the same as
those used in deriving the differential equations of the deflection curve.
Therefore, the moment-area method is valid only for linearly elastic
beams with small slopes.

First Moment-Area Theorem
To derive the first theorem, consider a segment AB of the deflection curve
of a beam in a region where the curvature is positive (Fig. 9-22). Of course,
the deflections and slopes shown in the figure are highly exaggerated for
clarity. At point A the tangent AA� to the deflection curve is at an angle θA
to the x axis, and at point B the tangent BB� is at an angle θB. These two
tangents meet at point C.

The angle between the tangents, denoted , is equal to the difference
between θB and θA:

(9-69)θB/A � θB � θA

θB/A

786

Fig. 9-22 
Derivation of the first moment-
area theorem

x

y

O

x

dxx

O

M
—
EI

A
A′

B ′

C

du

du

uA

uB/A

uB

B

r

m1

p1

p2

m2
ds

Thus, the angle may be described as the angle to the tangent at B
measured relative to, or with respect to, the tangent at A. Note that the
angles θA and θB, which are the angles of rotation of the beam axis at
points A and B, respectively, are also equal to the slopes at those points,
because in reality the slopes and angles are very small quantities.

θB/A
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9.6 Moment-Area Method 787

Next, consider two points m1 and m2 on the deflected axis of the beam
(Fig. 9-22). These points are a small distance ds apart. The tangents to the
deflection curve at these points are shown in the figure as lines and

. The normals to these tangents intersect at the center of curvature
(not shown in the figure).

The angle dθ between the normals (Fig. 9-22) is given by the follow-
ing equation:

(9-70a)

in which ρ is the radius of curvature and dθ is measured in radians
[see Eq. (9-2)]. Because the normals and the tangents ( and ) are
perpendicular, it follows that the angle between the tangents is also equal
to dθ.

For a beam with small angles of rotation, we can replace ds with dx,
as explained in Section 9.2. Thus,

(9-70b)

Also, from Eq. (9-10) we know that

(9-71)

and therefore

(9-72)

in which M is the bending moment and EI is the flexural rigidity of the
beam.

The quantity Mdx/EI has a simple geometric interpretation. To see
this, refer to Fig. 9-22 where we have drawn the M/EI diagram directly
below the beam. At any point along the x axis, the height of this diagram
is equal to the bending moment M at that point divided by the flexural
rigidity EI at that point. Thus, the M/EI diagram has the same shape as
the bending-moment diagram whenever EI is constant. The term
Mdx/EI is the area of the shaded strip of width dx within the M/EI dia-
gram. (Note that since the curvature of the deflection curve in Fig. 9-22
is positive, the bending moment M and the area of the M/EI diagram are
also positive.)

Let us now integrate dθ from Eq. (9-72) between points A and B of
the deflection curve:

(9-73)
L

B

A

dθ �
L

B

A

Mdx
EI

dθ �
M dx

EI

1
ρ

�
M
EI

dθ �
dx
ρ

m1p1

m1p1 m2 p2

dθ �
ds
ρ

m2 p2

77742_09_ch09_p754-847.qxd:77742_09_ch09_p754-847.qxd  2/22/12  2:56 PM  Page 787

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 9  Deflections of Beams788

algebraically larger than the angle θA. Also, note that point B must
be to the right of point A; that is, it must be further along the axis of
the beam as we move in the x direction.

3. The bending moment M is positive according to our usual sign con-
vention; that is, M is positive when it produces compression in the
upper part of the beam.

4. The area of the M/EI diagram is given a positive or negative sign
according to whether the bending moment is positive or negative. If
part of the bending-moment diagram is positive and part is negative,
then the corresponding parts of the M/EI diagram are given those
same signs.

The preceding sign conventions for θA, θB, and are often ignored
in practice because (as explained later) the directions of the angles of rota-
tion are usually obvious from an inspection of the beam and its loading.
When this is the case, we can simplify the calculations by ignoring signs
and using only absolute values when applying the first moment-area
 theorem.

Second Moment-Area Theorem
Now we turn to the second theorem, which is related primarily to deflec-
tions rather than to angles of rotation. Consider again the deflection curve
between points A and B (Fig. 9-23). We draw the tangent at point A and

θB /A

When evaluated, the integral on the left-hand side becomes ,
which is equal to the angle between the tangents at B and A from
Eq. (9-69).

The integral on the right-hand side of Eq. (9-73) is equal to the
area of the M/EI diagram between points A and B. (Note that the area
of the M/EI diagram is an algebraic quantity and may be positive or
negative, depending upon whether the bending moment is positive or
negative.)

Now we can write Eq. (9-73) as

(9-74)

This equation may be stated as a theorem:

First moment-area theorem: The angle between the tangents to the
deflection curve at two points A and B is equal to the area of the M/EI
diagram between those points.

The sign conventions used in deriving the preceding theorem are as
follows:

1. The angles θA and θB are positive when counterclockwise.

2. The angle between the tangents is positive when the angle θB is θB /A

θB /A

� Area of the M/EI diagram between points A and B

θB/A �
L

B

A

Mdx
EI

θB � θA
θB/A
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9.6 Moment-Area Method 789

Fig. 9-23 
Derivation of the second
moment-area theorem
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B1

m2

x

x1

dt tB/A

To determine the tangential deviation, we again select two points m1
and m2 a small distance apart on the deflection curve (Fig. 9-23). The
angle between the tangents at these two points is dθ, and the segment on
line BB1 between these tangents is dt. Since the angles between the tan-
gents and the x axis are actually very small, we see that the vertical
 distance dt is equal to , where x1 is the horizontal distance from
point B to the small element . Since [Eq. (9-72)], we
obtain

(9-75)

The distance dt represents the contribution made by the bending of ele-
ment to the tangential deviation . The expression may
be interpreted geometrically as the first moment of the area of the shaded
strip of width dx within the M/EI diagram. This first moment is evaluated
with respect to a vertical line through point B.

Integrating Eq. (9-75) between points A and B, we get

(9-76)
L

B

A
dt �

L

B

A
x1

Mdx
EI

m1m2 tB/A x1Mdx/EI

dt � x1dθ � x1

Mdx
EI

m1m2 dθ � M dx/EI
x1 dθ

note that its intersection with a vertical line through point B is at point B1.
The vertical distance between points B and B1 is denoted in the figure.
This distance is referred to as the tangential deviation of B with respect to
A. More precisely, the distance tB/A is the vertical deviation of point B on
the deflection curve from the tangent at point A. The tangential deviation
is positive when point B is above the tangent at A.

tB/A

77742_09_ch09_p754-847.qxd:77742_09_ch09_p754-847.qxd  2/22/12  2:56 PM  Page 789

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 9  Deflections of Beams

The integral on the left-hand side is equal to , that is, it is equal to the
deviation of point B from the tangent at A. The integral on the right-hand
side represents the first moment with respect to point B of the area of the
M/EI diagram between A and B. Therefore, we can write Eq. (9-76) as

(9-77)

This equation represents the second theorem:

Second moment-area theorem: The tangential deviation of point B
from the tangent at point A is equal to the first moment of the area of the
M/EI diagram between A and B, evaluated with respect to B.

If the bending moment is positive, then the first moment of the M/EI
diagram is also positive, provided point B is to the right of point A. Under
these conditions the tangential deviation is positive and point B is
above the tangent at A (as shown in Fig. 9-23). If, as we move from A to
B in the x direction, the area of the M/EI diagram is negative, then the first
moment is also negative and the tangential deviation is negative, which
means that point B is below the tangent at A.

The first moment of the area of the M/EI diagram can be obtained by
taking the product of the area of the diagram and the distance from
point B to the centroid C of the area (Fig. 9-23). This procedure is usually
more convenient than integrating, because the M/EI diagram usually con-
sists of familiar geometric figures such as rectangles, triangles, and para-
bolic segments. The areas and centroidal distances of such figures are
tabulated in Appendix D.

As a method of analysis, the moment-area method is feasible only for
relatively simple kinds of beams. Therefore, it is usually obvious whether
the beam deflects upward or downward and whether an angle of rotation
is clockwise or counterclockwise. Consequently, it is seldom necessary to
follow the formal (and somewhat awkward) sign conventions described
previously for the tangential deviation. Instead, we can determine the
directions by inspection and use only absolute values when applying the
moment-area theorems.

xq

tB/A

tB/A

between points A and B, evaluated with respect to B
� First moment of the area of the M/EI diagram

tB/A �
L

B

A
x1

Mdx
EI

tB/A
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9.6 Moment-Area Method 791

Determine the angle of rotation θB and deflection δB at the free end B of a
cantilever beam AB supporting a concentrated load P (Fig. 9-24). (Note: The
beam has length L and constant flexural rigidity EI.)

Solution
By inspection of the beam and its loading, we know that the angle of rota-
tion θB is clockwise and the deflection δB is downward (Fig. 9-24).
Therefore, we can use absolute values when applying the moment-area
theorems.

M/EI diagram. The bending-moment diagram is triangular in shape
with the moment at the support equal to –PL. Since the flexural rigidity EI is
constant, the M/EI diagram has the same shape as the bending-moment dia-
gram, as shown in the last part of Fig. 9-24.

Angle of rotation. From the first moment-area theorem, we know that
the angle between the tangents at points B and A is equal to the area
of the M/EI diagram between those points. This area, which we will denote
as A1, is determined as follows:

Note that we are using only the absolute value of the area.
The relative angle of rotation between points A and B (from the first

 theorem) is

Since the tangent to the deflection curve at support A is horizontal
we obtain

(9-78)

This result agrees with the formula for θB given in Case 4 of Table G-1,
Appendix G.

Deflection. The deflection δB at the free end can be obtained from the
second moment-area theorem. In this case, the tangential deviation of
point B from the tangent at A is equal to the deflection δB itself (see
Fig. 9-24). The first moment of the area of the M/EI diagram, evaluated with
respect to point B, is

Note again that we are disregarding signs and using only absolute values.
From the second moment-area theorem, we know that the deflection

δB is equal to the first moment Q1. Therefore,

(9-79)

This result also appears in Case 4 of Table G-1.

δB �
PL3

3EI

Q1 � A1xq � aPL2

2EI
b a2L

3
b �

PL3

3EI

➥

➥

tB/A

θB �
PL2

2EI

(θA � 0),

θB /A � θB � θA � A1 �
PL2

2EI

A1 �
1
2

(L)aPL
EI
b �

PL2

2EI

θB/A

Example 9-10• • •

Fig. 9-24 
Example 9-10: Cantilever beam
with a concentrated load
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Chapter 9  Deflections of Beams792

Find the angle of rotation θB and deflection δB at the free end B of a can-
tilever beam ACB supporting a uniform load of intensity q acting over the
right-hand half of the beam (Fig. 9-25). (Note: The beam has length L and
constant flexural rigidity EI.)

Solution
The deflection and angle of rotation at end B of the beam have the direc-
tions shown in Fig. 9-25. Since we know these directions in advance, we can
write the moment-area expressions using only absolute values.

M/EI diagram. The bending-moment diagram consists of a parabolic
curve in the region of the uniform load and a straight line in the left-hand
half of the beam. Since EI is constant, the M/EI diagram has the same shape
(see the last part of Fig. 9-25). The values of M/EI at points A and C are

and , respectively.
Angle of rotation. For the purpose of evaluating the area of the M/EI

diagram, it is convenient to divide the diagram into three parts: (1) a para-
bolic spandrel of area A1, (2) a rectangle of area A2, and (3) a triangle of
area A3. These areas are

According to the first moment-area theorem, the angle between the tan-
gents at points A and B is equal to the area of the M/EI diagram between
those points. Since the angle at A is zero, it follows that the angle of rota-
tion θB is equal to the area of the diagram; thus,

(9-80)

Deflection. The deflection δB is the tangential deviation of point B with
respect to a tangent at point A (Fig. 9-25). Therefore, from the second
moment-area theorem, δB is equal to the first moment of the M/EI diagram,
evaluated with respect to point B:

(a)

in which , , and , are the distances from point B to the centroids of the
respective areas. These distances are

Substituting into Eq. (g), we find

(9-81)

This example illustrates how the area and first moment of a complex
M/EI diagram can be determined by dividing the area into parts having
known properties. The results of this analysis [Eqs. (9-80) and (9-81)] can be
verified by using the formulas of Case 3, Table G-1, Appendix G, and substi-
tuting .

xq3xq2xq1

xq1 �
3
4
a L

2
b �

3L
8

xq2 �
L
2

�
L
4

�
3L
4

xq3 �
L
2

�
2
3
a L

2
b �

5L
6

δB � A1xq1 � A2xq2 � A3xq3

➥

a � b � L/2

δB �
qL3

48EI
a3L

8
b �

qL3

16EI
a3L

4
b �

qL3

16EI
a5L

6
b �

41qL4

384EI
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7qL3

48EI
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1
2
a L

2
b a3qL2

8EI
�

qL2

8EI
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16EI
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1
3
a L

2
b aqL2

8EI
b �

qL3

48EI
A2 �

L
2
aqL2

8EI
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qL3

16EI

�qL2/8EI�3qL2/8EI

Example 9-11• • •

Fig. 9-25
Example 9-11: Cantilever beam
supporting a uniform load on
the right-hand half of the
beam
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9.6 Moment-Area Method 793

A simple beam ADB supports a concentrated load P acting at the position
shown in Fig. 9-26. Determine the angle of rotation θA at support A and the
deflection δD under the load P. (Note: The beam has length L and constant
flexural rigidity EI.)

Solution
The deflection curve, showing the angle of rotation θA and the deflection
δD, is sketched in the second part of Fig. 9-26. Because we can determine the
directions of θA and δD by inspection, we can write the moment-area expres-
sions using only absolute values.

M/EI diagram. The bending-moment diagram is triangular, with the
maximum moment (equal to Pab/L) occurring under the load. Since EI is con-
stant, the M/EI diagram has the same shape as the moment diagram (see the
third part of Fig. 9-26).

Angle of rotation at support A. To find this angle, we construct the tan-
gent AB1 at support A. We then note that the distance BB1 is the tangential

Example 9-12• • •

Continues ➥

Fig. 9-26 
Example 9-12: Simple beam
with a concentrated load
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Chapter 9  Deflections of Beams794

deviation of point B from the tangent at A. We can calculate this dis-
tance by evaluating the first moment of the area of the M/EI diagram with
respect to point B and then applying the second moment-area theorem.

The area of the entire M/EI diagram is

The centroid C1 of this area is at distance 1 from point B (see Fig. 9-26). This
distance, obtained from Case 3 of Appendix D, is

Therefore, the tangential deviation is

The angle θA is equal to the tangential deviation divided by the length of
the beam:

(9-82)

Thus, the angle of rotation at support A has been found.
Deflection under the load. As shown in the second part of Fig. 9-26, the

deflection δD under the load P is equal to the distance DD1 minus the dis-
tance D2D1. The distance DD1 is equal to the angle of rotation θA times the
distance a; thus,

(a)

The distance D2D1 is the tangential deviation at point D ; that is, it
is the deviation of point D from the tangent at A. This distance can be found
from the second moment-area theorem by taking the first moment of the
area of the M/EI diagram between points A and D with respect to D (see the
last part of Fig. 9-26). The area of this part of the M/EI diagram is

and its centroidal distance from point D is

Thus, the first moment of this area with respect to point D is

(b)

The deflection at point D is

Upon substituting from Eqs. (a) and (b), we find

(9-83)

The preceding formulas for θA and δD in Eqs. (9-82) and (9-83) can be veri-
fied by using the formulas of Case 5, Table G-2, Appendix G.

δD �
Pa2b
6LEI

(L � b) �
Pa3b
6LEI

�
Pa2b2

3LEI

δD � DD1 � D2D1 � DD1 � tD /A

tD/A � A2 xq2 � aPa2b
2LEI

b aa
3
b �

Pa3b
6LEI

xq2 �
a
3

tB/A � A1xq1 �
Pab
2EI
aL � b

3
b �

Pab
6EI

(L � b)

xq1 �
L � b

3

aPab
LEI
b �

Pab
2EI

A1 �
1
2

(L)

➥

➥

A2 �
1
2

(a)aPab
LEI
b �

Pa2b
2LEI

tD /A

DD1 � aθA �
Pa2b
6LEI

(L � b)

θA �
tB/A

L
�

Pab
6LEI

(L � b)

xq

tB/A
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9.7 Nonprismatic Beams 795

9.7 NONPRISMATIC BEAMS
The methods presented in the preceding sections for finding deflections
of prismatic beams can also be used to find deflections of beams having
varying moments of inertia. Two examples of nonprismatic beams are
shown in Fig. 9-27. The first beam has two different moments of iner-
tia, and the second is a tapered beam having continuously varying
moments of inertia. In both cases the objective is to save material by
increasing the moment of inertia in regions where the bending moment
is largest.

Although no new concepts are involved, the analysis of a nonpris-
matic beam is more complex than the analysis of a beam with constant
moment of inertia. Some of the procedures that can be used are illustrated
in the examples that follow (Examples 9-13 and 9-14).

In the first example (a simple beam having two different moments
of inertia), the deflections are found by solving the differential equation
of the deflection curve. In the second example (a cantilever beam hav-
ing two different moments of inertia), the method of superposition
is used.

These two examples, as well as the problems for this section, involve
relatively simple and idealized beams. When more complex beams (such
as tapered beams) are encountered, numerical methods of analysis are
usually required. (Computer programs for the numerical calculation of
beam deflections are readily available.)

Nonprismatic beams with
cutouts in their webs
(Malcolm Fife/Getty Images)

Fig. 9-27 
Beams with varying moments of
inertia (see also Fig. 5-23)
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Chapter 9  Deflections of Beams796

A beam ABCDE on simple supports is constructed from a wide-flange beam
by welding cover plates over the middle half of the beam (Fig. 9-28a). The
effect of the cover plates is to double the moment of inertia (Fig. 9-28b).
A concentrated load P acts at the midpoint C of the beam.

Determine the equations of the deflection curve, the angle of rotation
θA at the left-hand support, and the deflection δC at the midpoint (Fig. 9-28c).

Solution
Differential equations of the deflection curve. In this example we will deter-
mine the slopes and deflections of the beam by integrating the bending-
moment equation, that is, the second-order differential equation of the
deflection curve [Eq. (9-16a)]. Since the reaction at each support is P/2, the
bending moment throughout the left-hand half of the beam is

(a)

Therefore, the differential equations for the left-hand half of the beam are

(b)

(c)

Each of these equations can be integrated twice to obtain expressions for
the slopes and deflections in their respective regions. These integrations
produce four constants of integration that can be found from the following
four conditions:

1. Boundary condition: At support , the deflection is zero

2. Symmetry condition: At point , the slope is zero .

3. Continuity condition: At point , the slope obtained from

part AB of the beam is equal to the slope obtained from part BC of

the beam.
4. Continuity condition: At point , the deflection obtained

from part AB of the beam is equal to the deflection obtained from
part BC of the beam.

Slopes of the beam. Integrating each of the differential equations of
Eqs. (b) and (c), we obtain the following equations for the slopes in the left-
hand half of the beam:

(d)

(e)

Applying the symmetry condition (2) to Eq. (e), we obtain the constant C2:
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M �
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Example 9-13• • •

Fig. 9-28 
Example 9-13: Simple beam
with two different moments of
inertia
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9.7 Nonprismatic Beams 797

Continues ➥

Therefore, the slope of the beam between points B and C [from Eq. (e)] is

(9-84)

From this equation we can find the slope of the deflection curve at point B
where the moment of inertia changes from I to 2I:

(f)

Because the deflection curve is continuous at point B, we can use the conti-
nuity condition (3) and equate the slope at point B as obtained from Eq. (d)
to the slope at the same point given by Eq. (f). In this manner we find the
constant C1:

Therefore, the slope between points A and B [see Eq. (d)] is

(9-85)

At support A, where , the angle of rotation (Fig. 9-28c) is

(9-86)

Deflections of the beam. Integrating the equations for the slopes
[Eqs. (9-85) and (9-84)], we get

(g)

(h)

Applying the boundary condition at the support (condition 1) to Eq. (g),
we get . Therefore, the deflection between points A and B [from
Eq. (g)] is

(9-87)
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Chapter 9  Deflections of Beams798

From this equation we can find the deflection at point B:

(i)

Since the deflection curve is continuous at point B, we can use the continu-
ity condition (4) and equate the deflection at point B as obtained from
Eq. (h) to the deflection given by Eq. (i):

from which

Therefore, the deflection between points B and C [from Eq. (h)] is

(9-88)

Thus, we have obtained the equations of the deflection curve for the left-
hand half of the beam. (The deflections in the right-hand half of the beam
can be obtained from symmetry.)

Finally, we obtain the deflection at the midpoint C by substituting
into Eq. (9-88):

(9-89)

All required quantities have now been found, and the analysis of the non-
prismatic beam is completed.

Notes: Using the differential equation for finding deflections is practi-
cal only if the number of equations to be solved is limited to one or two and
only if the integrations are easily performed, as in this example. In the case
of a tapered beam (Fig. 9-27), it may be difficult to solve the differential
equation analytically because the moment of inertia is a continuous func-
tion of x. In such a case, the differential equation has variable coefficients
instead of constant coefficients, and numerical methods of solution are
needed.

When a beam has abrupt changes in cross-sectional dimensions, as
in this example, there are stress concentrations at the points where
changes occur. However, because the stress concentrations affect only a
small region of the beam, they have no noticeable effect on the
 deflections.
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9.7 Nonprismatic Beams 799

A cantilever beam ACB having length L and two different moments of
 inertia I and 2I supports a concentrated load P at the free end A (Figs. 9-29a
and b).

Determine the deflection δA at the free end.

Solution
In this example we will use the method of superposition to determine the
deflection δA at the end of the beam. We begin by recognizing that the
deflection consists of two parts: the deflection due to bending of part AC of
the beam and the deflection due to bending of part CB. We can determine
these deflections separately and then superpose them to obtain the total
deflection.

Deflection due to bending of part AC of the beam. Imagine that the
beam is held rigidly at point C, so that the beam neither deflects nor rotates
at that point (Fig. 9-29c). We can easily calculate the deflection δ1 of point
A in this beam. Since the beam has length L/2 and moment of inertia I, its
deflection (see Case 4 of Table G-1, Appendix G) is

(a)

Deflection due to bending of part CB of the beam. Part CB of the beam
also behaves as a cantilever beam (Fig. 9-29d) and contributes to the deflec-
tion of point A. The end of this cantilever is subjected to a concentrated
load P and a moment PL/2. Therefore, the deflection δC and angle of
 rotation θC at the free end (Fig. 9-29d) are as follows (see Cases 4 and 6 of
Table G-1):

This deflection and angle of rotation make an additional contribution δ2 to
the deflection at end A (Fig. 9-29e). We again visualize part AC as a can-
tilever beam, but now its support (at point C ) moves downward by the
amount δC and rotates counterclockwise through the angle θC (Fig. 9-29e).
These rigid-body displacements produce a downward displacement at end
A equal to

(b)

Total deflection. The total deflection δA at the free end A of the origi-
nal cantilever beam (Fig. 9-29f) is equal to the sum of the deflections δ1
and δ2:

(9-90)

This example illustrates one of the many ways that the principle of super-
position may be used to find beam deflections.
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Fig. 9-29 
Example 9-14: Cantilever beam
with two different moments of
inertia
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Chapter 9  Deflections of Beams

9.8 STRAIN ENERGY OF BENDING
The general concepts pertaining to strain energy were explained previ-
ously in our discussions of bars subjected to axial loads and shafts sub-
jected to torsion (Sections 2.7 and 3.9, respectively). In this section, we will
apply the same concepts to beams. Since we will be using the equations for
curvature and deflection derived earlier in this chapter, our discussion of
strain energy applies only to beams that behave in a linearly elastic man-
ner. This requirement means that the material must follow Hooke’s law
and the deflections and rotations must be small.

Let us begin with a simple beam AB in pure bending under the action
of two couples, each having a moment M (Fig. 9-30a). The deflection
curve (Fig. 9-30b) is a nearly flat circular arc of constant curvature

[see Eq. (9-10)]. The angle θ subtended by this arc equals L/ρ,
where L is the length of the beam and ρ is the radius of curvature.
Therefore,

(9-91)

This linear relationship between the moments M and the angle θ is shown
graphically by line OA in Fig. 9-31. As the bending couples gradually
increase in magnitude from zero to their maximum values, they perform
work W represented by the shaded area below line OA. This work, equal
to the strain energy θ stored in the beam, is

(9-92)

This equation is analogous to Eq. (2-37) for the strain energy of an axially
loaded bar.

By combining Eqs. (9-91) and (9-92), we can express the strain energy
stored in a beam in pure bending in either of the following forms:

(9-93a,b)

The first of these equations expresses the strain energy in terms of the
applied moments M, and the second equation expresses it in terms of the
angle θ. The equations are similar in form to those for strain energy in an
axially loaded bar [Eqs. (2-37a and b)].

If the bending moment in a beam varies along its length (nonuniform
bending), then we may obtain the strain energy by applying Eqs. (9-93a
and b) to an element of the beam (Fig. 9-32) and integrating along the
length of the beam. The length of the element itself is dx and the angle dθ
between its side faces can be obtained from Eqs. (9-6) and (9-9) as

(9-94a)

Therefore, the strain energy dU of the element is given by either of the fol-
lowing equations [see Eqs. (9-93a and b)]:

(9-94b,c)

dU �
M2dx

2EI
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EI(dθ)2

2dx
�

EI
2dx
ad2v

dx2 dxb2

�
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dx2 b
2
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dθ � κ dx �
d2v
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U �
M2L
2EI

U �
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2L

W � U �
Mθ

2
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L
ρ

� κL �
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Fig. 9-30 
Beam in pure bending by cou-

ples of moment M
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9.8 Strain Energy of Bending 801

By integrating the preceding equations throughout the length of a beam,
we can express the strain energy stored in a beam in either of the follow-
ing forms:

(9-95a,b)

Note that M is the bending moment in the beam and may vary as a func-
tion of x. We use the first equation when the bending moment is known,
and the second equation when the equation of the deflection curve is
known. (Examples 9-15 and 9-16 illustrate the use of these equations.)

In the derivation of Eqs. (9-95a and b), we considered only the effects
of the bending moments. If shear forces are also present, additional strain
energy will be stored in the beam. However, the strain energy of shear is
relatively small (in comparison with the strain energy of bending) for
beams in which the lengths are much greater than the depths (say,

). Therefore, in most beams the strain energy of shear may safely
be disregarded.

Deflections Caused by a Single Load
If a beam supports a single load, either a concentrated load P or a couple
M0, the corresponding deflection δ or angle of rotation θ, respectively, can
be determined from the strain energy of the beam.

In the case of a beam supporting a concentrated load, the correspon-
ding deflection δ is the deflection of the beam axis at the point where the
load is applied. The deflection must be measured along the line of action
of the load and is positive in the direction of the load.

In the case of a beam supporting a couple as a load, the corresponding
angle of rotation θ is the angle of rotation of the beam axis at the point
where the couple is applied.

Since the strain energy of a beam is equal to the work done by the
load, and since δ and θ correspond to P and M0, respectively, we obtain
the following equations:

(9-96a,b)

The first equation applies to a beam loaded only by a force P, and the sec-
ond equation applies to a beam loaded only by a couple M0. It follows
from Eqs. (9-96a and b) that

(9-97a,b)

As explained in Section 2.7, this method for finding deflections and
angles of rotation is extremely limited in its application because only one
deflection (or one angle) can be found. Furthermore, the only deflection
(or angle) that can be found is the one corresponding to the load (or cou-
ple). However, the method occasionally is useful and is illustrated later in
Example 9-16.

δ �
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2
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2
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Fig. 9-32 
Side view of an element of a
beam subjected to bending
moments M
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Chapter 9  Deflections of Beams802

A simple beam AB of length L supports a uniform load of intensity q (Fig. 9-33).
(a) Evaluate the strain energy of the beam from the bending moment in the
beam. (b) Evaluate the strain energy of the beam from the equation of the
deflection curve. (Note: The beam has constant flexural rigidity EI.)

Solution
(a) Strain energy from the bending moment. The reaction of the beam at

support A is qL/2, and therefore the expression for the bending moment
in the beam is

(a)

The strain energy of the beam [from Eq. (9-95a)] is

(b)

from which we get

(9-98)

Note that the load q appears to the second power, which is consistent
with the fact that strain energy is always positive. Furthermore, Eq. (9-98)
shows that strain energy is not a linear function of the loads, even
though the beam itself behaves in a linearly elastic manner.

(b) Strain energy from the deflection curve. The equation of the deflection
curve for a simple beam with a uniform load is given in Case 1 of
Table G-2, Appendix G, as 

(c)

Taking two derivatives of this equation, we get

Substituting the latter expression into the equation for strain energy
[Eq. (9-95b)], we obtain

(d)

Since the final integral in this equation is the same as the final integral
in Eq. (b), we get the same result as before [Eq. (9-98)].
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Example 9-15• • •

Fig. 9-33 
Example 9-15: Strain energy of
a beam
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9.8 Strain Energy of Bending 803

Example 9-16• • •

Continues ➥

A cantilever beam AB (Fig. 9-34) is subjected to three different loading con-
ditions: (a) a concentrated load P at its free end, (b) a couple M0 at its free
end, and (c) both loads acting simultaneously.

For each loading condition, determine the strain energy of the beam.
Also, determine the vertical deflection δA at end A of the beam due to the
load P acting alone (Fig. 9-34a), and determine the angle of rotation θA at
end A due to the moment M0 acting alone (Fig. 9-34b). (Note: The beam has
constant flexural rigidity EI.)

Solution
(a) Beam with concentrated load P (Fig. 9-34a). The bending moment in the

beam at distance x from the free end is . Substituting this
expression for M into Eq. (9-95a), we get the following expression for
the strain energy of the beam:

(9-99)

To obtain the vertical deflection δA under the load P, we equate the
work done by the load to the strain energy:

from which

The deflection δA is the only deflection we can find by this procedure,
because it is the only deflection that corresponds to the load P.

(b) Beam with moment M0 (Fig. 9-34b). In this case the bending
moment is constant and equal to . Therefore, the strain energy
[from Eq. (9-95a)] is

(9-100)➥

➥

➥

U �
L

L

0

M 2dx
2EI

�
L

L

0

(�M0)
2 dx

2EI
�

M0
2L

2EI

�M0

δA �
PL3

3EI

W � U or
PδA

2
�

P 2L3

6EI

U �
L

L

0

M2dx
2EI

�
L

L

0

(�Px)2dx
2EI

�
P 2L3

6EI

M � �Px

Fig. 9-34 
Example 9-16: Strain energy of
a beam
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Chapter 9  Deflections of Beams804

The work W done by the couple M0 during loading of the beam is
where θA is the angle of rotation at end A. Therefore,

and

The angle of rotation has the same sense as the moment (counterclock-
wise in this example).

(c) Beam with both loads acting simultaneously (Fig. 9-34c). When both
loads act on the beam, the bending moment in the beam is

Therefore, the strain energy is

(9-101)

The first term in this result gives the strain energy due to P acting alone 
[Eq. (9-99)], and the last term gives the strain energy due to M0 alone 
[Eq. (9-100)]. However, when both loads act simultaneously, an additional
term appears in the expression for strain energy.

Therefore, we conclude that the strain energy in a structure due to
two or more loads acting simultaneously cannot be obtained by adding
the strain energies due to the loads acting separately. The reason is that
strain energy is a quadratic function of the loads, not a linear function.
Therefore, the principle of superposition does not apply to strain
energy.

We also observe that we cannot calculate a deflection for a beam
with two or more loads by equating the work done by the loads to the
strain energy. For instance, if we equate work and energy for the beam of
Fig. 9-34c, we get

(a)

in which and represent the deflection and angle of rotation at end
A of the beam with two loads acting simultaneously (Fig. 9-34c). Although
the work done by the two loads is indeed equal to the strain energy, and
Eq. (a) is quite correct, we cannot solve for either or because there
are two unknowns and only one equation.

➥
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Example 9-16 - Continued• • •
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9.9 Castigliano’s Theorem 805

*9.9 CASTIGLIANO’S THEOREM
Castigliano’s theorem provides a means for finding the deflections of a
structure from the strain energy of the structure. To illustrate what we
mean by that statement, consider a cantilever beam with a concentrated
load P acting at the free end (Fig. 9-35a). The strain energy of this beam
is obtained from Eq. (9-99) of Example 9-16:

(9-102a)

Now take the derivative of this expression with respect to the load P:

(9-102b)

We immediately recognize this result as the deflection δA at the free end A
of the beam (see Fig. 9-35b). Note especially that the deflection δA corre-
sponds to the load P itself. (Recall that a deflection corresponding to a
concentrated load is the deflection at the point where the concentrated
load is applied. Furthermore, the deflection is in the direction of the load.)
Thus, Eq. (9-102b) shows that the derivative of the strain energy with
respect to the load is equal to the deflection corresponding to the load.
Castigliano’s theorem is a generalized statement of this observation, and
we will now derive it in more general terms.

Derivation of Castigliano’s Theorem
Let us consider a beam subjected to any number of loads, say n loads

(Fig. 9-36a). The deflections of the beam correspon-
ding to the various loads are denoted , as shown in
Fig. 9-36b. As in our earlier discussions of deflections and strain energy,
we assume that the principle of superposition is applicable to the beam
and its loads.

Now we will determine the strain energy of this beam. When the loads
are applied to the beam, they gradually increase in magnitude from zero
to their maximum values. At the same time, each load moves through its
corresponding displacement and does work. The total work W done by
the loads is equal to the strain energy U stored in the beam:

(9-103)

Note that W (and hence U ) is a function of the loads act-
ing on the beam.

Next, let us suppose that one of the loads, say the ith load, is increased
slightly by the amount dPi while the other loads are held constant. This
increase in load will cause a small increase dU in the strain energy of the
beam. This increase in strain energy may be expressed as the rate of
change of U with respect to Pi times the small increase in Pi. Thus, the
increase in strain energy is

(9-104)dU �
0U
0Pi

dPi

P1, P2, Á , Pn

W � U

δ1, δ2, . . . , δi , . . . , δn
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Fig. 9-35 
Beam supporting a single load P
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Chapter 9  Deflections of Beams

where is the rate of change of U with respect to Pi. (Since U is a
function of all the loads, the derivative with respect to any one of the loads
is a partial derivative.) The final strain energy of the beam is

(9-105)

in which U is the strain energy referred to in Eq. (9-103).
Because the principle of superposition holds for this beam, the total

strain energy is independent of the order in which the loads are applied.
That is, the final displacements of the beam (and the work done by the
loads in reaching those displacements) are the same regardless of the order
in which the loads are applied. In arriving at the strain energy given by
Eq. (9-105), we first applied the n loads , and then we
applied the load dPi. However, we can reverse the order of application and
apply the load dPi first, followed by the loads . The final
amount of strain energy is the same in either case.

When the load dPi is applied first, it produces strain energy equal to
one-half the product of the load dPi and its corresponding displacement
dδ i. Thus, the amount of strain energy due to the load dPi is

(9-106a)

When the loads are applied, they produce the same dis-
placements as before ( ) and do the same amount of work as
before [Eq. (9-103)]. However, during the application of these loads, the
force dPi automatically moves through the displacement δi. In so doing, it
produces additional work equal to the product of the force and the dis-
tance through which it moves. (Note that the work does not have a factor
1/2, because the force dPi acts at full value throughout this displacement.)
Thus, the additional work, equal to the additional strain energy, is

(9-106b)

Therefore, the final strain energy for the second loading sequence is

(9-106c)

Equating this expression for the final strain energy to the earlier expression
[Eq. (9-105)], which was obtained for the first loading sequence, we get

(9-106d)

We can discard the first term because it contains the product of two dif-
ferentials and is infinitesimally small compared to the other terms. We
then obtain the following relationship:

(9-107)δi �
0U
0Pi

dPi dδi

2
� U � dPi δi � U �

0U
0Pi

dPi

dPi dδi

2
� U � dPiδi

dPi δi

δ1, δ2, Á , δn

P1, P2, Á , Pn

dPi dδi

2

P1, P2, Á , Pn

P1, P2, Á , Pn
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0U
0Pi

dPi

0U/0Pi
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9.9 Castigliano’s Theorem 807

This equation is known as Castigliano’s theorem.*
Although we derived Castigliano’s theorem by using a beam as an

illustration, we could have used any other type of structure (for example,
a truss) and any other kinds of loads (for example, loads in the form of
couples). The important requirements are that the structure be linearly
elastic and that the principle of superposition be applicable. Also, note
that the strain energy must be expressed as a function of the loads (and
not as a function of the displacements), a condition which is implied in the
theorem itself, since the partial derivative is taken with respect to a load.
With these limitations in mind, we can state Castigliano’s theorem in gen-
eral terms as follows:

The partial derivative of the strain energy of a structure with respect
to any load is equal to the displacement corresponding to that load.

The strain energy of a linearly elastic structure is a quadratic function
of the loads [for instance, see Eq. (9-102a)], and therefore, the partial
derivatives and the displacements [Eq. (9-107)] are linear functions of the
loads (as expected).

When using the terms load and corresponding displacement in connec-
tion with Castigliano’s theorem, it is understood that these terms are used
in a generalized sense. The load Pi and corresponding displacement δi may
be a force and a corresponding translation, or a couple and a correspon-
ding rotation, or some other set of corresponding quantities.

Application of Castigliano’s Theorem
As an application of Castigliano’s theorem, let us consider a cantilever
beam AB carrying a concentrated load P and a couple of moment M0
 acting at the free end (Fig. 9-37a). We wish to determine the vertical
deflection δA and angle of rotation θA at the end of the beam (Fig. 9-37b).
Note that δA is the deflection corresponding to the load P, and θA is the
angle of rotation corresponding to the moment M0.

The first step in the analysis is to determine the strain energy of the
beam. For that purpose, we write the equation for the bending moment as 

(9-108)

in which x is the distance from the free end (Fig. 9-37a). The strain energy
is found by substituting this expression for M into Eq. (9-95a):

(9-109)

in which L is the length of the beam and EI is its flexural rigidity. Note
that the strain energy is a quadratic function of the loads P and M0.
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0
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L

0
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*Castigliano’s theorem, one of the most famous theorems in structural analysis, was discovered by Carlos
Alberto Pio Castigliano (1847–1884), an Italian engineer (Ref. 9-2). The theorem quoted here [Eq. (9-107)] is
actually the second of two theorems presented by Castigliano and is properly called Castigliano’s second
 theorem. The first theorem is the reverse of the second theorem, in the sense that it gives the loads on a
structure in terms of the partial derivatives of the strain energy with respect to the displacements.

Fig. 9-37
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 theorem to a beam
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Chapter 9  Deflections of Beams808

To obtain the vertical deflection δA at the end of the beam, we use
Castigliano’s theorem [Eq. (9-107)] and take the partial derivative of the
strain energy with respect to P:

(9-110)

This expression for the deflection can be verified by comparing it with the
formulas of Cases 4 and 6 of Table G-1, Appendix G.

In a similar manner, we can find the angle of rotation θA at the end of
the beam by taking the partial derivative with respect to M0:

(9-111)

This equation can also be verified by comparing with the formulas of
Cases 4 and 6 of Table G-1.

Use of a Fictitious Load
The only displacements that can be found from Castigliano’s theorem are
those that correspond to loads acting on the structure. If we wish to cal-
culate a displacement at a point on a structure where there is no load, then
a fictitious load corresponding to the desired displacement must be applied
to the structure. We can then determine the displacement by evaluating
the strain energy and taking the partial derivative with respect to the
 fictitious load. The result is the displacement produced by the actual loads
and the fictitious load acting simultaneously. By setting the fictitious
load equal to zero, we obtain the displacement produced only by the
actual loads.

To illustrate this concept, suppose we wish to find the vertical deflec-
tion δC at the midpoint C of the cantilever beam shown in Fig. 9-38a.
Since the deflection δC is downward (Fig. 9-38b), the load corresponding
to that deflection is a downward vertical force acting at the same point.
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Fig. 9-38 
Beam supporting loads P and M0

A

BC

B

(a)

(b)

dC

A
M0

P

L
2
— L

2
—

77742_09_ch09_p754-847.qxd:77742_09_ch09_p754-847.qxd  2/22/12  3:02 PM  Page 808

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9.9 Castigliano’s Theorem 809

Therefore, we must supply a fictitious load Q acting at point C in the
downward direction (Fig. 9-39a). Then we can use Castigliano’s theorem
to determine the deflection (δC)0 at the midpoint of this beam (Fig. 9-39b).
From that deflection, we can obtain the deflection δC in the beam of
Fig. 9-38 by setting Q equal to zero.

We begin by finding the bending moments in the beam of Fig. 9-39a:

(9-112a)

(9-112b)

Next, we determine the strain energy of the beam by applying Eq. (9-95a)
to each half of the beam. For the left-hand half of the beam (from point
A to point C), the strain energy is

(9-113a)

For the right-hand half, the strain energy is

(9-113b)

which requires a very lengthy process of integration. Adding the strain
energies for the two parts of the beam, we obtain the strain energy for the
entire beam (Fig. 9-39a):

(9-114)

The deflection at the midpoint of the beam shown in Fig. 9-39a can now
be obtained from Castigliano’s theorem:

(9-115)

This equation gives the deflection at point C produced by all three loads act-
ing on the beam. To obtain the deflection produced by the loads P and M0
only, we set the load Q equal to zero in the preceding equation. The result
is the deflection at the midpoint C for the beam with two loads (Fig. 9-38a):

(9-116)

Thus, the deflection in the original beam has been obtained.

δC �
5PL3

48EI
�

M0L
2

8EI

AδC B0 �
0U
0Q

�
5PL3

48EI
�

M0L
2

8EI
�

QL3

24EI

=

P2L3

6EI
�

PM0L
2

2EI
�

5PQL3

48EI
�

M0
2L

2EI
�

M0QL2

8EI
�

Q2L3

48EI

U � UAC � UCB

�
7P2L3

48EI
�

3PM0L
2

8EI
�

5PQL3

48EI
�

M0
2L

4EI
�

M0Q
2

8EI
�

Q2L3

48EI

UCB �
L

L

L/2

M2dx
2EI

�
1

2EI L

L

L/2
c�Px � M0 � Qax �

L
2
b d2dx

�
P2L3

48EI
�

PM0L
2

8EI
�

M0
2L

4EI

UAC �
L

L/2

0

M2 dx
2EI

�
1

2EI L

L/2

0
(�Px � M0)

2dx

M � �Px � M0 � Qax �
L
2
b aL

2
… x … Lb

M � �Px � M0 a0 … x …

L
2
b

Fig. 9-39 
Beam with a fictitious load Q
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Chapter 9  Deflections of Beams

This method is sometimes called the dummy-load method, because of
the introduction of a fictitious, or dummy, load.

Differentiation Under the Integral Sign
As we saw in the preceding example, the use of Castigliano’s theorem for
determining beam deflections may lead to lengthy integrations, especially
when more than two loads act on the beam. The reason is clear—finding
the strain energy requires the integration of the square of the bending
moment [Eq. (9-95a)]. For instance, if the bending moment expression has
three terms, its square may have as many as six terms, each of which must
be integrated.

After the integrations are completed and the strain energy has been
determined, we differentiate the strain energy to obtain the deflections.
However, we can bypass the step of finding the strain energy by differen-
tiating before integrating. This procedure does not eliminate the integra-
tions, but it does make them much simpler.

To derive this method, we begin with the equation for the strain
energy [Eq. (9-95a)] and apply Castigliano’s theorem [Eq. (9-107)]:

(9-117)

Following the rules of calculus, we can differentiate the integral by differ-
entiating under the integral sign:

(9-118)

We will refer to this equation as the modified Castigliano’s theorem.
When using the modified theorem, we integrate the product of the

bending moment and its derivative. By contrast, when using the stan-
dard Castigliano’s theorem [see Eq. (9-117)], we integrate the square of
the bending moment. Since the derivative is a shorter expression than
the moment itself, this new procedure is much simpler. To show this,
we will now solve the preceding examples using the modified theorem
[Eq. (9-118)].

Let us begin with the beam shown in Fig. 9-37 and recall that we wish
to find the deflection and angle of rotation at the free end. The bending
moment and its derivatives [see Eq. (9-108)] are

From Eq. (9-118) we obtain the deflection δA and angle of rotation θA:

(9-119a)

(9-119b)
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9.9 Castigliano’s Theorem 811

These equations agree with the earlier results in Eqs. (9-110) and (9-111).
However, the calculations are shorter than those performed earlier,
because we did not have to integrate the square of the bending moment
[see Eq. (9-109)].

The advantages of differentiating under the integral sign are even more
apparent when there are more than two loads acting on the structure, as in the
example of Fig. 9-38. In that example, we wished to determine the deflection
δC at the midpoint C of the beam due to the loads P and M0. To do so, we
added a fictitious load Q at the midpoint (Fig. 9-39). We then proceeded to
find the deflection (δC)0 at the midpoint of the beam when all three loads (P,
M0, and Q) were acting. Finally, we set to obtain the deflection δC due
to P and M0 alone. The solution was time-consuming, because the integra-
tions were extremely long. However, if we use the modified theorem and
 differentiate first, the calculations are much shorter.

With all three loads acting (Fig. 9-39), the bending moments and their
derivatives are as follows [see Eqs. (9-112) and (9-113)]:

Therefore, the deflection , from Eq. (9-118), is

Since Q is a fictitious load, and since we have already taken the partial
derivatives, we can set Q equal to zero before integrating and obtain the
deflection δC due to the two loads P and M0 as 

which agrees with the earlier result in Eq. (9-116). Again, the integrations
are greatly simplified by differentiating under the integral sign and using
the modified theorem.

The partial derivative that appears under the integral sign in Eq. (9-118)
has a simple physical interpretation. It represents the rate of change of the
bending moment M with respect to the load Pi, that is, it is equal to the
bending moment M produced by a load Pi of unit value. This observation
leads to a method of finding deflections known as the unit-load method.
Castigliano’s theorem also leads to a method of structural analysis known
as the flexibility method. Both the unit-load method and the flexibility
method are widely used in structural analysis and are described in textbooks
on that subject.

The following examples provide additional illustrations of the use of
Castigliano’s theorem for finding deflections of beams. However, it
should be remembered that the theorem is not limited to finding beam
deflections—it applies to any kind of linearly elastic structure for which
the principle of superposition is valid.
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Chapter 9  Deflections of Beams812

A simple beam AB supports a uniform load of intensity and a
concentrated load (Fig. 9-40). The load P acts at the midpoint C
of the beam. The beam has length , modulus of elasticity

, and moment of inertia .
Determine the downward deflection δC at the midpoint of the beam by

the following methods: (1) Obtain the strain energy of the beam and use
Castigliano’s theorem, and (2) use the modified form of Castigliano’s theo-
rem (differentiation under the integral sign).

Solution
Method (1). Because the beam and its loading are symmetrical about the
midpoint, the strain energy for the entire beam is equal to twice the strain
energy for the left-hand half of the beam. Therefore, we need to analyze
only the left-hand half of the beam.

The reaction at the left-hand support A (Figs. 9-40 and 9-41) is

and therefore, the bending moment M is

(a)

in which x is measured from support A.
The strain energy of the entire beam [from Eq. (9-95a)] is
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Example 9-17• • •

Fig. 9-40 
Example 9-17: Simple beam
with two loads

Fig. 9-41 
Example 9-17: Free-body
 diagram for determining the
bending moment M in the 
left-hand half of the beam
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9.9 Castigliano’s Theorem 813

After squaring the term in parentheses and performing a lengthy integra-
tion, we find

Since the deflection at the midpoint C (Fig. 9-40) corresponds to the load P,
we can find the deflection by using Castigliano’s theorem [Eq. (9-107)]:

(b)

Method (2). By using the modified form of Castigliano’s theorem
[Eq. (9-118)], we avoid the lengthy integration for finding the strain
energy. The bending moment in the left-hand half of the beam has
already been determined [see Eq. (a)], and its partial derivative with
respect to the load P is

Therefore, the modified Castigliano’s theorem becomes

(c)

which agrees with the earlier result [Eq. (b)], but requires a much simpler
integration.

Numerical solution. Now that we have an expression for the deflection
at point C, we can substitute numerical values, as follows:

Note: Numerical values cannot be substituted until after the partial deriva-
tive is obtained. If numerical values are substituted prematurely, either in
the expression for the bending moment or the expression for the strain
energy, it may be impossible to take the derivative.
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Chapter 9  Deflections of Beams814

A simple beam with an overhang supports a uniform load of intensity q on
span AB and a concentrated load P at end C of the overhang (Fig. 9-42).

Determine the deflection δC and angle of rotation θC at point C. (Use
the modified form of Castigliano’s theorem.)

Example 9-18• • •
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Solution
Deflection δC at the end of the overhang (Fig. 9-42b). Since the load P cor-
responds to this deflection, we do not need to supply a fictitious load.
Instead, we can begin immediately to find the bending moments through-
out the length of the beam. The reaction at support A is

as shown in Fig. 9-43. Therefore, the bending moment in span AB is

where x1 is measured from support A (Fig. 9-43). The bending moment in
the overhang is

where x2 is measured from point C (Fig. 9-43).
Next, we determine the partial derivatives with respect to the load P :
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Fig. 9-42 
Example 9-18: Beam with 
an overhang

Fig. 9-43 
Reaction at support A and
coordinates x1 and x2 for the
beam of Example 9-18
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9.9 Castigliano’s Theorem 815

Now we are ready to use the modified form of Castigliano’s theorem
[Eq. (9-118)] to obtain the deflection at point C:

Substituting the expressions for the bending moments and partial deriva-
tives, we get

By performing the integrations and combining terms, we obtain the deflection:

(9-119c)

Since the load P acts downward, the deflection δC is also positive downward.
In other words, if the preceding equation produces a positive result, the
deflection is downward. If the result is negative, the deflection is upward.

Comparing the two terms in Eq. (9-119c), we see that the deflection at
the end of the overhang is downward when and upward when

.
Angle of rotation θC at the end of the overhang (Fig. 9-42b). Since

there is no load on the original beam (Fig. 9-42a) corresponding to this
angle of rotation, we must supply a fictitious load. Therefore, we place a
couple of moment MC at point C (Fig. 9-44). Note that the couple MC acts
at the point on the beam where the angle of rotation is to be deter-
mined. Furthermore, it has the same clockwise direction as the angle of
rotation (Fig. 9-42).

We now follow the same steps as when determining the deflection at
C. First, we note that the reaction at support A (Fig. 9-44) is

Consequently, the bending moment in span AB becomes
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Fig. 9-44 
Fictitious moment MC acting
on the beam of Example 9-18 A
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Chapter 9  Deflections of Beams816

Also, the bending moment in the overhang becomes

The partial derivatives are taken with respect to the moment MC , which
is the load corresponding to the angle of rotation. Therefore,

Now we use the modified form of Castigliano’s theorem [Eq. (9-118)] to
obtain the angle of rotation at point C:

Substituting the expressions for the bending moments and partial deriva-
tives, we obtain

Since MC is a fictitious load, and since we have already taken the partial
derivatives, we can set MC equal to zero at this stage of the calculations and
simplify the integrations:

After carrying out the integrations and combining terms, we obtain

(9-120)

If this equation produces a positive result, the angle of rotation is clockwise.
If the result is negative, the angle is counterclockwise.

Comparing the two terms in Eq. (9-120), we see that the angle of rota-
tion is clockwise when and counterclockwise when .

If numerical data are available, it is now a routine matter to substitute
numerical values into Eqs. (9-119c) and (9-120) and calculate the deflection
and angle of rotation at the end of the overhang.
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Example 9-18 - Continued• • •
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9.10 Deflections Produced by Impact 817

*9.10 DEFLECTIONS PRODUCED 
BY IMPACT
In this section we will discuss the impact of an object falling onto a beam
(Fig. 9-45a). We will determine the dynamic deflection of the beam by
equating the potential energy lost by the falling mass to the strain energy
acquired by the beam. This approximate method was described in detail
in Section 2.8 for a mass striking an axially loaded bar; consequently,
Section 2.8 should be fully understood before  proceeding.

Most of the assumptions described in Section 2.8 apply to beams as
well as to axially loaded bars. Some of these assumptions are as follows:
(1) The falling weight sticks to the beam and moves with it, (2) no energy
losses occur, (3) the beam behaves in a linearly elastic manner, (4) the
deflected shape of the beam is the same under a dynamic load as under a
static load, and (5) the potential energy of the beam due to its change in
position is relatively small and may be disregarded. In general, these
assumptions are reasonable if the mass of the falling object is very large
compared to the mass of the beam. Otherwise, this approximate analysis
is not valid and a more advanced analysis is required.

As an example, we will consider the simple beam AB shown in Fig. 9-45.
The beam is struck at its midpoint by a falling body of mass M and weight W.
Based upon the preceding idealizations, we may assume that all of the poten-
tial energy lost by the body during its fall is transformed into elastic strain
energy that is stored in the beam. Since the distance through which the body
falls is , where h is the initial height above the beam (Fig. 9-45a) and

is the maximum dynamic deflection of the beam (Fig. 9-45b), the
 potential energy lost is

(9-121)Potential energy � W(h � δmax)

δmax

h � δmax

Fig. 9-45 
Deflection of a beam struck by a
falling body
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Chapter 9  Deflections of Beams

The strain energy acquired by the beam can be determined from the
deflection curve by using Eq. (9-95b), which is repeated here:

(9-122)

The deflection curve for a simple beam subjected to a concentrated load
acting at the midpoint (see Case 4 of Table G-2, Appendix G) is

(9-123)

Also, the maximum deflection of the beam is

(9-124)

Eliminating the load P between Eqs. (9-123) and (9-124), we get the equa-
tion of the deflection curve in terms of the maximum deflection:

(9-125)

Taking two derivatives, we find

(9-126)

Finally, we substitute the second derivative into Eq. (9-122) and obtain
the following expression for the strain energy of the beam in terms of the
maximum deflection:

(9-127)

Equating the potential energy lost by the falling mass in Eq. (9-121)
to the strain energy acquired by the beam in Eq. (9-127), we get

(9-128)W(h � δmax) �
24EIδ2

max

L3

U � 2
L

L/2

0

EI
2
a d2v

dx2 b
2

dx � EI
L

L/2

0
a24δmaxx

L3 b2

dx �
24EIδ 2

max

L3

d2v
dx2 �

24δmaxx

L3

v � �
δmax x

L3 (3L2 � 4x2) a0 … x …

L
2
b

δmax �
PL3

48EI

v � �
Px

48EI
(3L2 � 4x2) a0 … x …

L
2
b

U �
L

EI
2
a d2v

dx2 b
2

dx
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9.11 Temperature Effects 819

This equation is quadratic in δmax and can be solved for its positive root:

(9-129)

We see that the maximum dynamic deflection increases if either the weight
of the falling object or the height of fall is increased, and it decreases if the
stiffness EI/L3 of the beam is increased.

To simplify the preceding equation, we will denote the static deflection
of the beam due to the weight W as δst:

(9-130)

Then Eq. (9-129) for the maximum dynamic deflection becomes

(9-131)

This equation shows that the dynamic deflection is always larger than the
static deflection.

If the height h equals zero, which means that the load is applied sud-
denly but without any free fall, the dynamic deflection is twice the static
deflection. If h is very large compared to the deflection, then the term
containing h in Eq. (9-131) predominates, and the equation can be sim-
plified to

(9-132)

These observations are analogous to those discussed previously in
Section 2.8 for impact on a bar in tension or compression.

The deflection calculated from Eq. (9-131) generally represents
an upper limit, because we assumed there were no energy losses during
impact. Several other factors also tend to reduce the deflection, including
localized deformation of the contact surfaces, the tendency of the falling
mass to bounce upward, and inertia effects of the mass of the beam. Thus,
we see that the phenomenon of impact is quite complex, and if a more
accurate analysis is needed, books and articles devoted specifically to that
subject must be consulted.

*9.11 TEMPERATURE EFFECTS
In the preceding sections of this chapter we considered the deflections of
beams due to lateral loads. In this section, we will consider the deflections
caused by nonuniform temperature changes. As a preliminary matter, recall
that the effects of uniform temperature changes have already been

δmax

δmax � 12hδst

δmax � δst � (δ st
2 � 2hδst)

1/2

δst �
WL3

48EI

δmax �
WL3

48EI
� c aWL3

48EI
b2

� 2haWL3

48EI
b d1/2
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Chapter 9  Deflections of Beams

described in Section 2.5, where it was shown that a uniform temperature
increase causes an unconstrained bar or beam to have its length increased
by the amount

(9-133)

In this equation, α is the coefficient of thermal expansion, ΔT is the uni-
form increase in temperature, and L is the length of the bar [see Fig. 2-20
and Eq. (2-20) in Chapter 2].

If a beam is supported in such a manner that longitudinal expansion
is free to occur, as is the case for all of the statically determinate beams
considered in this chapter, then a uniform temperature change will not
produce any stresses in the beam. Also, there will be no lateral deflections
of such a beam, because there is no tendency for the beam to bend.

The behavior of a beam is quite different if the temperature is not con-
stant across its height. For example, assume that a simple beam, initially
straight and at a uniform temperature T0, has its temperature changed to T1
on its upper surface and T2 on its lower surface, as pictured in Fig. 9-46a. If
we assume that the variation in temperature is linear between the top and
bottom of the beam, then the average temperature of the beam is

(9-134)

and occurs at midheight. Any difference between this average temperature
and the initial temperature T0 results in a change in length of the beam,
given by Eq. (9-96), as follows:

(9-135)

In addition, the temperature differential between the bottom
and top of the beam produces a curvature of the axis of the beam, with the
accompanying lateral deflections (Fig. 9-46b).

To investigate the deflections due to a temperature differential, con-
sider an element of length dx cut out from the beam (Figs. 9-46a and c).
The changes in length of the element at the bottom and top are

and , respectively. If T2 is greater than T1,
the sides of the element will rotate with respect to each other through an
angle dθ, as shown in Fig. 9-46c. The angle dθ is related to the changes in
dimension by the following equation, obtained from the geometry of the
figure:

from which we get

(9-136)

in which h is the height of the beam.

dθ
dx

�
α(T2 � T1)

h

hdθ � α(T2 � T0)dx � α(T1 � T0)dx

α(T2 � T0)dx α(T1 � T0)dx

T2 � T1

δT � α(Taver � T0)L � αaT1 � T2

2
� T0bL

Taver �
T1 � T2

2

δT � α(¢T )L

820
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9.11 Temperature Effects 821

dxx

x

y

T2

T1

(a)

h

L

(b)

T2 T1�

(c)
T2

T1

du

dx
h—
2
h—
2

Fig. 9-46 
Temperature effects in a beam

We have already seen that the quantity dθ /dx represents the curvature
of the deflection curve of the beam [see Eq. (9-6)]. Since the curvature is
equal to [Eq. (9-9)], we may write the following differential equa-
tion of the deflection curve:

(9-137)

Note that when T2 is greater than T1, the curvature is positive and the
beam is bent concave upward, as shown in Fig. 9-46b. The quantity

in Eq. (9-100) is the counterpart of the quantity M/EI,
which appears in the basic differential equation [Eq. (9-7)].

We can solve Eq. (9-100) by the same integration techniques
described earlier for the effects of bending moments (see Section 9.3). We
can integrate the differential equation to obtain dv/dx and v, and we can
use boundary or other conditions to evaluate the constants of integration.
In this manner we can obtain the equations for the slopes and deflections
of the beam, as illustrated by Probs. 9.11-1 through 9.11-5 at the end of
this chapter.

If the beam is able to change in length and deflect freely, there will be
no stresses associated with the temperature changes described in this sec-
tion. However, if the beam is restrained against longitudinal expansion or
lateral deflection, or if the temperature changes do not vary linearly from
top to bottom of the beam, internal temperature stresses will develop. The
determination of such stresses requires the use of more advanced methods
of analysis. Statically indeterminate beams subject to temperature effects
will be studied in Section 10.5.

α(T2 � T1)/h

d2v
dx2 �

α (T2 � T1)

h

d2v/dx2
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Example 9-19• • •

Chapter 9  Deflections of Beams822

Continues ➥

An overhanging beam ABC of height h has a pin support at A and a roller
support at B. The beam is heated to a temperature T1 on the top and T2
on the bottom (see Fig. 9-47). Determine the equation of the deflection
curve of the beam, the angle of rotation θC at end C, and the deflection δC
at end C.

Fig. 9-47
Example 9-19: Simple beam
with overhang and tempera-
ture change x

y

A

L

B CT1

T2

T1

T2

a

h

Solution
We investigated the displacement of this beam at selected points due to a
 concentrated load at C in Example 9-5, under a uniform load q in Example 9-9,
and with uniform load q on AB and load P at C in Example 9-18. Now we will
consider the effect of a temperature differential on the deflection
v(x) of the beam using Eq. (9-137).

(9-137, repeated)

Integrating, we obtain two constants of integration, C1 and C2, which must
be determined using two independent bounday conditions:

(a)

(b)

The boundary conditions are and . So which gives

And , which leads to (c)

(d)

Substituting C1 and C2 into Eq. (b) results in the equation of the elastic curve
of the beam due to temperature differential as(T2 � T1)

C2 � 0.
v(0) � 0,

C1 �
1
L
c�αL2

2h
(T2 � T1) d � � cLα (T2 � T1)

2h
d

v(L) � 0

v(0) � 0 v (L) � 0

v (x) �
α
h

(T2 � T1)
x2

2
� C1x � C2

d
dx

v(x) �
α
h

(T2 � T1)x � C1

d 2

dx2
v(x) �

α
h

(T2 � T1)

(T2 � T1)
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9.11 Temperature Effects 823

(e)

If in Eq. (e), we get an expression for the deflection of the beam
at C:

(f)

We have assumed linear elastic behavior here and in earlier examples, so
(if desired) the principle of superposition can be used to find the total
deflection at C due to simultaneous application of all loads considered in
Examples 9-5, 9-9, and 9-18 and for the temperature differential studied
here.

Numerical example. If beam ABC is a steel wide flange HE 700B [see
Table E-1(a)], with a length of and with an overhang , we
can compare the deflection at C due to self-weight (see Example 9-9; let

to the deflection at C due to temperature differential
Celsius. From Table H-4, the coefficient of thermal

expansion for structural steel is . The modulus for steel is
210 GPa.

From Eq. (9-68), the deflection at C due to self weight is

α � 12 	 10�6/°C
(T2 � T1) � 3°

v(x) �
αx(T2 � T1)(x � L)

2h

δC � v(L � a) �
α (L � a)(T2 � T1)(L � a � L)

2h
�

α (T2 � T1)a(L � a)

2h

x � L � a

q � 2.36 kN/m)

a � L/2L � 9.0 m

(g)δCq
�

qa

24EIz
(a � L)(3a2 � aL � L2)

� 0.224 mm

�

a2.36
kN
m
b (4.5 m)

24(210 GPa)(256900 cm4)
(4.5 m � 9 m)[3(4.5 m)2 � 4.5 m(9 m) � (9 m)2]

where and .

The deflection at C due to a temperature differential of only 3� Celsius
is from Eq. (f):

(h)

The deflection at C due to a temperature differential is seven times that due
to self-weight.

L � 9.0 m

�
[12(10�6)/°C](3°C)(4.5 m)(9 m � 4.5 m)

2(700 mm)
� 1.562 mm

δCT �
α(T2 � T1)a(L � a)

2h

a � 4.5 m
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824

CHAPTER SUMMARY & REVIEW

In Chapter 9, we investigated the linear elastic, small displacement
behavior of beams of different types, with different support conditions,
acted upon by a wide variety of loadings including impact and tempera-
ture effects. We studied methods based on integration of the second-,
third- or fourth-order differential equations of the deflection curve. We
computed displacements (both translations and rotations) at specific
points along the beam and also found the equation describing the
deflected shape of the entire beam. Using solutions for a number of stan-
dard cases (tabulated in Appendix G), we used the powerful principle of
superposition to solve more complicated beams and loadings by combin-
ing the simpler standard solutions. We also considered a method for cal-
culating displacements of beams based on the area of the moment
diagram. Finally, we studied an energy-based method for computing
beam displacements. The major concepts presented in this chapter may
be summarized as follows:

1. By combining expressions for linear curvature and
the moment curvature relation , we obtained the ordi-
nary differential equation of the deflection curve for a beam, which is
valid only for linear elastic behavior.

2. The differential equation of the deflection curve may be differenti-
ated once to obtain a third-order equation relating shear force V and
first derivative of moment, dM/dx, or twice to obtain a fourth-order
equation relating intensity of distributed load q and first derivative
of shear, dV/dx.

The choice of second-, third-, or fourth-order differential equations
depends on which is most efficient for a particular beam support
case and applied loading.

3. We must write expressions for either moment (M), shear (V), or load
intensity (q) for each separate region of the beam (e.g., whenever q,

EI
d 4v
dx4 � �q

EI
d3v
dx3 � V

EI
d2v
dx2 � M

(κ � M/EI)
(κ � d2v/dx2)
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V, M, or EI vary) and then apply boundary, continuity, or symmetry
conditions, as appropriate, to solve for unknown constants of inte-
gration which arise as we apply the method of successive integra-
tions; the beam deflection equation, v(x), may be evaluated at a
particular value of x to find the translational displacement at that
point; evaluation of dv/dx at that same point provides the slope of
the deflection equation.

4. The method of superposition may be used to solve for displacements
and rotations for more complicated beams and loadings; the actual
beam first must be broken down into the sum of a number of  simpler
cases whose solutions already are known (see Appendix G); super-
position is only applicable to beams undergoing small displacements
and behaving in a linear elastic manner.

5. The moment-area method is an alternative approach for finding
beam displacements; it is based on two theorems which are related
to the area of the bending moment diagram.

6. Equating the strain energy of bending (U) to the work (W) of a
concentrated load or moment, and then taking a partial derivative
with respect to a particular load (P, M), provides still another
method for computing beam deflections and rotations; this
method is known as Castigliano’s Theorem; however, the method
has limited application because loads may not be applied at loca-
tions where deflections and rotations are of interest; in this case, a
fictitious load must be applied at the point where displacements
are to be computed.

7. By equating the potential energy of a falling mass to strain energy
acquired by the beam, deflections due to impact may be approxi-
mated.

8. Finally, if a beam experiences a temperature change which is not
constant across its height (i.e., a temperature differential,

, over height h), it produces a curvature of the axis of the
beam:

This equation can be integrated to obtain the equation of the deflec-
tion curve using successive integration as described above.

κ � dθ/dx � d2v/dx2 � α(T2 � T1)/h

T2 � T1

825
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Differential Equations of the
Deflection Curve
The beams described in the problems for Section 9.2 have
constant flexural rigidity EI.

9.2-1 The deflection curve for a simple beam AB (see fig-
ure) is given by the following equation:

Describe the load acting on the beam.

v � �
q0x

360LEI
(7L4 � 10L2x2 � 3x4)

PROBLEMS CHAPTER 9
9.2-4 The deflection curve for a cantilever beam AB (see
figure) is given by the following equation:

(a) Describe the load acting on the beam.
(b) Determine the reactions RA and MA at the support.

Deflection Formulas
Problems 9.3-1 through 9.3-7 require the calculation of
deflections using the formulas derived in Examples 9-1, 9-2,
and 9-3. All beams have constant flexural rigidity EI.

9.3-1 A wide-flange beam (HE 220B) supports a uniform
load on a simple span of length (see  figure).

Calculate the maximum deflection δmax at the mid-
point and the angles of rotation θ at the supports if

and . Use the formulas of
Example 9-1.

E � 210 GPaq � 26 kN/m

L � 4.25 m

v � �
q0x

2

360L2EI
(45L4 � 40L3x � 15L2x2 � x4)

826 Chapter 9  Deflections of Beams

y

xA B

L

PROBS. 9.2-1 and 9.2-2

L

A B
x

y

PROBS. 9.2-3 and 9.2-4

L

h

q

PROBS. 9.3-1, 9.3-2, and 9.3-3

9.3-2 A uniformly loaded steel wide-flange beam with
simple supports (see figure) has a downward deflection of
10 mm at the midpoint and angles of rotation equal to 
0.01 radians at the ends.

Calculate the height h of the beam if the maximum
bending stress is 90 MPa and the modulus of elasticity is
200 GPa. (Hint: Use the formulas of Example 9-1.)

9.3-3 What is the span length L of a uniformly loaded sim-
ple beam of wide-flange cross section (see figure) if the
maximum bending stress is 84 MPa, the maximum deflec-
tion is 2.5 mm, the height of the beam is 300 mm, and the
modulus of elasticity is ? (Use the formulas of
Example 9-1.)

210 GPa

9.2-2 The deflection curve for a simple beam AB (see fig-
ure) is given by the following equation:

(a) Describe the load acting on the beam.
(b) Determine the reactions RA and RB at the supports.
(c) Determine the maximum bending moment .

9.2-3 The deflection curve for a cantilever beam AB (see
figure) is given by the following equation:

Describe the load acting on the beam.

v � �
q0x

2

120LEI
(10L3 � 10L2x � 5Lx2 � x3)

M max

v � �
q0L

4

π4EI
sin

πx
L
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9.3-7 Obtain a formula for the ratio of the deflec-
tion at the midpoint to the maximum deflection for a sim-
ple beam supporting a concentrated load P (see figure).

From the formula, plot a graph of versus the
ratio a/L that defines the position of the load

. What conclusion do you draw from the
graph? (Use the formulas of Example 9-3.)
(0.5 6 a/L 6 1)

δC /δ max

δC /δ max

827

9.3-4 Calculate the maximum deflection δmax of a uni-
formly loaded simple beam (see figure on the next page) if
the span length , the intensity of the uniform
load , and the maximum bending stress

.
The cross section of the beam is square, and the mate-

rial is aluminum having modulus of elasticity
. (Use the formulas of Example 9-1.)E � 70 GPa

σ � 60 MPa
q � 2.0 kN/m

L � 2.0 m

Problems Chapter 9

q = 2.0 kN/m

L = 2.0 m

PROB. 9.3-4

L

h

q

PROB. 9.3-5

t

L

q

b

PROB. 9.3-6

9.3-6 A gold-alloy microbeam attached to a silicon wafer
behaves like a cantilever beam subjected to a uniform load
(see figure). The beam has length and rec-
tangular cross section of width and thickness

. The total load on the beam is 17.2 μN. If the
deflection at the end of the beam is 2.46 μm, what is the
modulus of elasticity Eg of the gold alloy? (Use the formu-
las of Example 9-2.)

t � 0.88 μm
b � 4.0 μm

L � 27.5 μm

Deflections by Integration of the
Bending-Moment Equation
Problems 9.3-8 through 9.3-17 are to be solved by integrat-
ing the second-order differential equation of the deflection
curve (the bending-moment equation). The origin of coordi-
nates is at the left-hand end of each beam, and all beams
have constant flexural rigidity EI.

9.3-8 Derive the equation of the deflection curve for a
cantilever beam AB supporting a load P at the free end
(see figure). Also, determine the deflection δB and angle of
rotation θB at the free end. (Note: Use the second-order
differential equation of the deflection curve.)

9.3-5 A cantilever beam with a uniform load (see figure)
has a height h equal to 1/10 of the length L. The beam is a
steel wide-flange section with and an
allowable bending stress of 130 MPa in both tension and
compression. Calculate the ratio δ /L of the deflection at
the free end to the length, assuming that the beam carries
the maximum allowable load. (Use the formulas of
Example 9-2.)

E � 208 GPa
a b

L

A B

P

PROB. 9.3-7

x

y

BA

P

L

PROB. 9.3-8
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Chapter 9  Deflections of Beams

9.3-12 The beam shown in the figure has a guided support
at A and a spring support at B. The guided support per-
mits vertical movement but no rotation. Derive the equa-
tion of the deflection curve and determine the deflection δB
at end B due to the uniform load of intensity q. (Note: Use
the second-order differential equation of the deflection
curve.)

828

9.3-9 Derive the equation of the deflection curve for a
simple beam AB loaded by a couple M0 at the left-hand
support (see figure). Also, determine the maximum deflec-
tion δmax. (Note: Use the second-order differential equa-
tion of the deflection curve.)

y

xA
M0

B

L

PROB. 9.3-9

BA

q0

x

y

L

PROB. 9.3-10

BA

y

x

m

L

PROB. 9.3-11

RB = kdB

MA

k = 48EI/L3
A B

q
y

x
L

PROB. 9.3-12

y

xA B

M0

a b

L

PROB. 9.3-13

A B

q

y

x

L

a b

PROB. 9.3-14

9.3-11 A cantilever beam AB is acted upon by a uniformly
distributed moment (bending moment, not torque) of
intensity m per unit distance along the axis of the beam
(see figure).

Derive the equation of the deflection curve and then
obtain formulas for the deflection δB and angle of rotation
θB at the free end. (Note: Use the second-order differential
equation of the deflection curve.)

9.3-10 A cantilever beam AB supporting a triangularly
distributed load of maximum intensity q0 is shown in the
figure.

Derive the equation of the deflection curve and then
obtain formulas for the deflection δB and angle of rotation
θB at the free end. (Note: Use the second-order differential
equation of the deflection curve.)

9.3-13 Derive the equations of the deflection curve for a
simple beam AB loaded by a couple M0 acting at distance
a from the left-hand support (see figure). Also, determine
the deflection δ0 at the point where the load is applied.
(Note: Use the second-order differential equation of the
deflection curve.)

9.3-14 Derive the equations of the deflection curve for a
cantilever beam AB carrying a uniform load of intensity q
over part of the span (see figure). Also, determine the
deflection δB at the end of the beam. (Note: Use the sec-
ond-order differential equation of the deflection curve.)
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Problems Chapter 9

9.3-15 Derive the equations of the deflection curve for a
cantilever beam AB supporting a distributed load of peak
intensity q0 acting over one-half of the length (see figure).
Also, obtain formulas for the deflections δB and δC at
points B and C, respectively. (Note: Use the second-order
differential equation of the deflection curve.)

829

Deflections by Integration of the
Shear-Force and Load Equations
The beams described in the problems for Section 9.4 have
constant flexural rigidity EI. Also, the origin of coordinates
is at the left-hand end of each beam.

9.4-1 Derive the equation of the deflection curve for a can-
tilever beam AB when a couple M0 acts counterclockwise at
the free end (see figure). Also, determine the deflection δB
and slope θB at the free end. Use the third-order differential
equation of the deflection curve (the shear-force equation).

BA
x

y

C

q0

L/2 L/2

PROB. 9.3-15

q0

BA x

y

CL/2 L/2

PROB. 9.3-16

P

B

CA
x

y

L
3
—

L
2
— L

2
—

q = 
P
L
—

PROB. 9.3-17

x

y

BA

M0

L

PROB. 9.4-1

A

y

x

px
L
—

L

B

q = q0 sin

PROB. 9.4-2

y

xA
B M0

2M0

L

PROB. 9.4-3

9.3-16 Derive the equations of the deflection curve for a
simple beam AB with a distributed load of peak intensity
q0 acting over the left-hand half of the span (see figure).
Also, determine the deflection δC at the midpoint of the
beam. (Note: Use the second-order differential equation of
the deflection curve.)

9.3-17 The beam shown in the figure has a guided support
at A and a roller support at B. The guided support permits
vertical movement but no rotation. Derive the equation of
the deflection curve and determine the deflection δA at end
A and also δC at point C due to the uniform load of inten-
sity applied over segment CB and load P at

. (Note: Use the second-order differential equa-
tion of the deflection curve.)
x � L/3

q � P/L

9.4-2 A simple beam AB is subjected to a distributed load
of intensity , where q0 is the maximum
intensity of the load (see figure).

Derive the equation of the deflection curve, and then
determine the deflection δmax at the midpoint of the beam.
Use the fourth-order differential equation of the deflection
curve (the load equation).

q � q0 sin πx/L

9.4-3 The simple beam AB shown in the figure has
moments 2M0 and M0 acting at the ends.

Derive the equation of the deflection curve, and then
determine the maximum deflection δmax. Use the third-
order differential equation of the deflection curve (the
shear-force equation).
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Chapter 9  Deflections of Beams830

9.4-4 A beam with a uniform load has a guided support at
one end and spring support at the other. The spring has
stiffness . Derive the equation of the deflec-
tion curve by starting with the third-order differential
equation (the shear-force equation). Also, determine the
angle of rotation θB at support B.

k � 48EI/L3

9.4-5 The distributed load acting on a cantilever beam
AB has an intensity q given by the expression 
q0 cos πx/2L, where q0 is the maximum intensity of the
load (see figure).

Derive the equation of the deflection curve, and then
determine the deflection δB at the free end. Use the fourth-
order differential equation of the deflection curve (the
load equation).

9.4-6 A cantilever beam AB is subjected to a parabolically
varying load of intensity , where q0 is
the maximum intensity of the load (see figure).

Derive the equation of the deflection curve, and then
determine the deflection δB and angle of rotation θB at the
free end. Use the fourth-order differential equation of the
deflection curve (the load equation).

q � q0(L
2 � x2)/L2

9.4-8 Derive the equation of the deflection curve for beam
AB, with guided support at A and roller at B, carrying a
triangularly distributed load of maximum intensity q0 (see
figure). Also, determine the maximum deflection δmax of
the beam. Use the fourth-order differential equation of the
deflection curve (the load equation).

RB = kdB

MA

k = 48EI/L3
A B

q
y

x
L

PROB. 9.4-4

A

y

x

px
2L
—

B

q = q0 cosq0

L

PROB. 9.4-5

A

y

x

L2 �x2

L2—

B

q = q0 
q0

L

PROB. 9.4-6

A

y

x

4q0 x
L2—

B

q =  (L � x)

L

PROB. 9.4-7

BLA

q0

x

y

PROB. 9.4-8

9.4-9 Derive the equations of the deflection curve for beam
ABC, with guided support at A and roller support at B, sup-
porting a uniform load of intensity q acting on the overhang
portion of the beam (see figure). Also, determine deflection

9.4-7 A beam on simple supports is subjected to a parabol-
ically distributed load of intensity ,
where q0 is the maximum intensity of the load (see figure).

Derive the equation of the deflection curve, and then
determine the maximum deflection δmax. Use the fourth-
order differential equation of the deflection curve (the
load equation).

q � 4q0x(L � x)/L2
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Problems Chapter 9

δC and angle of rotation θC. Use the fourth-order differen-
tial equation of the deflection curve (the load equation).

831

9.5-2 A simple beam AB supports five equally spaced
loads P (see figure).

(a) Determine the deflection δ1 at the midpoint of
the beam.

9.5-3 The cantilever beam AB shown in the figure has an
extension BCD attached to its free end. A force P acts at
the end of the extension.

(a) Find the ratio a/L so that the vertical deflection
of point B will be zero.

(b) Find the ratio a/L so that the angle of rotation at
point B will be zero.

9.5-4 Beam ACB hangs from two springs, as shown in the
figure. The springs have stiffnesses k1 and k2 and the beam
has flexural rigidity EI.

(a) What is the downward displacement of point C,
which is at the midpoint of the beam, when the moment
M0 is applied? Data for the structure are as  follows:

, , ,
, and .

(b) Repeat part (a), but remove M0 and apply uni-
form load to the entire beam.q � 3.5 kN/m

k1 � 250 kN/m k2 � 160 kN/m
M0 � 10.0 kN # m L � 1.8 m EI � 216 kN # m2

9.4-10 Derive the equations of the deflection curve for
beam AB, with guided support at A and roller support at
B, supporting a distributed load of maximum intensity q0
acting on the right-hand half of the beam (see figure).
Also, determine deflection δA, angle of rotation θB, and
deflection δC at the midpoint. Use the fourth-order differ-
ential equation of the deflection curve (the load equation).

Method of Superposition
The problems for Section 9.5 are to be solved by the method
of superposition. All beams have constant flexural rigidity EI.

9.5-1 A cantilever beam AB carries three equally spaced
concentrated loads, as shown in the figure. Obtain formu-
las for the angle of rotation θB and deflection δB at the free
end of the beam.

q

BL L/2 CA
x

y

PROB. 9.4-9

BCL/2 L/2A

q0

x

y

PROB. 9.4-10

A

P P

B

P

L
3
—L

3
—L

3
—

PROB. 9.5-1

BA

P P P P P

L
6
—L

6
—L

6
—L

6
—L

6
—L

6
—

PROB. 9.5-2

L

A B

C
D

P
a

PROB. 9.5-3

k2k1 M0

RA = k1 dA RB = k2 dB

q = 3.5 kN/m (for part (b) only)

A BCL/2 L/2

PROB. 9.5-4

(b) If the same total load (5P) is distributed as a uni-
form load on the beam, what is the deflection δ2 at the
midpoint?

(c) Calculate the ratio of δ1 to δ2.
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Chapter 9  Deflections of Beams

9.5-9 A cantilever beam is subjected to a quadratic dis-
tributed load over the length of the beam (see figure).
Find an expression for moment M in terms of the peak
distributed load intensity q0 so that the deflection is

.δB � 0

q(x)

832

9.5-5 What must be the equation of the axis of
the slightly curved beam AB (see figure) before the load is
applied in order that the load P, moving along the bar,
always stays at the same level?

y � f (x)

A

P

B

y

x

L

PROB. 9.5-5

A B

q

L
3
—L

3
—L

3
—

PROB. 9.5-6

A BC

4 kN·m 16 kN

1.25 m 1.25 m

PROB. 9.5-7

L/2 L/2

EI = constantA B

M
P

PROB. 9.5-8

EI = constantA L B

M

q
0 q(x) = q0[1 – (x/L)2]

PROB. 9.5-9

EF

BA C
D

P

L
2
—

L
3

— 2L
3

—

a

PROB. 9.5-10

9.5-6 Determine the angle of rotation θB and deflection δB
at the free end of a cantilever beam AB having a uniform
load of intensity q acting over the middle third of its length
(see figure).

9.5-7 The cantilever beam ACB shown in the figure has
flexural rigidity . Calculate the
downward deflections δC and δB at points C and B, respec-
tively, due to the simultaneous action of the moment of
4 kN m applied at point C and the concentrated load of
16 kN applied at the free end B.

#

EI � 6.1 	 106 N # m2

9.5-10 A beam ABCD consisting of a simple span BD and
an overhang AB is loaded by a force P acting at the end of
the bracket CEF (see figure).

(a) Determine the deflection δA at the end of the over-
hang.

(b) Under what conditions is this deflection upward?
Under what conditions is it downward?

9.5-11 A horizontal load P acts at end C of the bracket
ABC shown in the figure.

(a) Determine the deflection δC of point C.
(b) Determine the maximum upward deflection δmax

of member AB.
Note: Assume that the flexural rigidity EI is constant

throughout the frame. Also, disregard the effects of axial
deformations and consider only the effects of bending due
to the load P.

9.5-8 A cantilever beam is subjected to load P at midspan
and counterclockwise moment M at B (see figure).

(a) Find an expression for moment M in terms of the
load P so that the reaction moment at A, MA, is equal to zero.

(b) Find an expression for moment M in terms of
the load P so that the deflection is ; also, what is
rotation θB?

(c) Find an expression for moment M in terms of
the load P so that the rotation ; also, what is
deflection δB?

δB � 0

θB � 0
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Problems Chapter 9

9.5-12 A beam ABC having flexural rigidity
is loaded by a force at end C

and tied down at end A by a wire having axial rigidity
(see figure).

What is the deflection at point C when the load P is
applied?

EA � 900 kN

P � 800 NEI � 75 kN # m2

833

9.5-15 The overhanging beam ABCD supports two con-
centrated loads P and Q (see figure).

(a) For what ratio P/Q will the deflection at point B
be zero?

(b) For what ratio will the deflection at point D be zero?
(c) If Q is replaced by uniform load with intensity q (on

the overhang), repeat parts (a) and (b), but find ratio P/(qa).

A

C

B
H

P

L

PROB. 9.5-11

9.5-16 A thin metal strip of total weight W and length L
is placed across the top of a flat table of width L/3 as
shown in the figure.

What is the clearance δ between the strip and the middle
of the table? (The strip of metal has flexural rigidity EI.)9.5-13 Determine the angle of rotation θB and deflection δB

at the free end of a cantilever beam AB supporting a
 parabolic load defined by the equation
(see figure).

q(x) � q0x
2/L2

9.5-14 A simple beam AB supports a uniform load of inten-
sity q acting over the middle region of the span (see figure).

Determine the angle of rotation θA at the left-hand
support and the deflection δmax at the midpoint.

A

D

B C

P = 800 N

0.5 m 0.75 m
0.5 m

PROB. 9.5-12

A B

q0

x

y

L

PROB. 9.5-13

A B

L

a a

q

PROB. 9.5-14

QP

B D

a

A C

q (for part (c))

x

y

L
2
— L

2
—

PROB. 9.5-15

d

L
3
— L

3
—L

6
— L

6
—

PROB. 9.5-16

9.5-17 An overhanging beam ABC with flexural rigidity
is supported by a guided support at A and

by a spring of stiffness k at point B (see figure). Span AB
has length and carries a uniform load. The
overhang BC has length . For what stiffness
k of the spring will the uniform load produce no deflection
at the free end C?

b � 375 mm
L � 0.75 m

EI � 45 N # m2

MA q

L B bkA

C

RB

x

y

PROB. 9.5-17
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Chapter 9  Deflections of Beams

9.5-21 A steel beam ABC is simply supported at A and
held by a high-strength steel wire at B (see figure). A load

acts at the free end C. The wire has axial
 rigidity , and the beam has flexural rigidity

.
What is the deflection δC of point C due to the load P?

EI � 86 kN # m2
EA � 1335 N

P � 1 kN

834

9.5-18 A beam ABCD rests on simple supports at B and C
(see figure). The beam has a slight initial curvature so that
end A is 18 mm above the elevation of the supports and end
D is 12 mm above. What moments M1 and M2, acting at
points A and D, respectively, will move points A and D
downward to the level of the supports? (The flexural rigid-
ity EI of the beam is and ).2.5 	 106 N # m2 L � 2.5 m

A LL L D

CB

M1 M2

12 mm18 mm

PROB. 9.5-18

3b 2bb

BA C

P

PROB. 9.5-19

k = 

2b b b b

A D
E

B C

P

EI
b3—

PROB. 9.5-20

A CB

500 mm 700 mm

P = 1 kN

Wire

Beam
500 mm

PROB. 9.5-21

A

D

B C c

L L L

Moment
release

q

PROB. 9.5-22

P

A

B
C

b

c

PROB. 9.5-23

9.5-19 The compound beam ABC shown in the figure has
a guided support at A and a fixed support at C. The beam
consists of two members joined by a pin connection
(i.e., moment release) at B. Find the deflection δ under the
load P.

9.5-20 A compound beam ABCDE (see figure) consists of
two parts (ABC and CDE) connected by a hinge (i.e.,
moment release) at C. The elastic support at B has stiffness

. Determine the deflection δE at the free end E
due to the load P acting at that point.
k � EI/b3

9.5-22 The compound beam shown in the figure consists
of a cantilever beam AB (length L) that is pin connected to
a simple beam BD (length 2L). After the beam is con-
structed, a clearance c exists between the beam and a sup-
port at C, midway between points B and D. Subsequently,
a uniform load is placed along the entire length of the
beam.

What intensity q of the load is needed to close the
gap at C and bring the beam into contact with the
support?

9.5-23 Find the horizontal deflection δh and vertical
deflection δv at the free end C of the frame ABC shown in
the figure. (The flexural rigidity EI is constant throughout
the frame.)

Note: Disregard the effects of axial deformations and
consider only the effects of bending due to the load P.
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Problems Chapter 9

9.5-24 The frame ABCD shown in the figure is squeezed
by two collinear forces P acting at points A and D. What
is the decrease δ in the distance between points A and D
when the loads P are applied? (The flexural rigidity EI is
constant throughout the frame.)

Note: Disregard the effects of axial deformations and
consider only the effects of bending due to the loads P.

835

9.5-27 A beam ABCDE has simple supports at B and D
and symmetrical overhangs at each end (see figure). The
center span has length L and each overhang has length b.
A uniform load of intensity q acts on the beam.

(a) Determine the ratio b/L so that the deflection δC at
the midpoint of the beam is equal to the deflections δA and
δE at the ends.

(b) For this value of b/L, what is the deflection δC at
the midpoint?

L

L/2L/2

C

D

B

A

M

dA dD

PROB. 9.5-25

L/2L/2
2L/3

C

D

B

P

AdA dD

L

A
B C D

E

Lb b

q

a

A

B

L
P

L

C

PROB. 9.5-26

PROB. 9.5-27

PROB. 9.5-28

9.5-25 A framework ABCD is acted on by counterclockwise
moment M at A (see figure). Assume that EI is constant.

(a) Find expressions for reactions at supports B and C.
(b) Find expressions for angles of rotation at A, B, C,

and D.
(c) Find expressions for horizontal deflections δA

and δD.
(d) If length , find length LCD in terms of

L for the absolute value of the ratio .|δA/δD| � 1
LAB � L/2

9.5-26 A framework ABCD is acted on by force P at
from B (see figure). Assume that EI is constant.

(a) Find expressions for reactions at supports B and C.
(b) Find expressions for angles of rotation at A, B, C,

and D.
(c) Find expressions for horizontal deflections δA

and δD.
(d) If length , find length LCD in terms of

L for the absolute value of the ratio .|δA/δD| � 1
LAB � L/2

2L/3

9.5-28 A frame ABC is loaded at point C by a force P act-
ing at an angle α to the horizontal (see figure). Both mem-
bers of the frame have the same length and the same
flexural rigidity.

Determine the angle α so that the deflection of point
C is in the same direction as the load. (Disregard the
effects of axial deformations and consider only the effects
of bending due to the load P.)

Note: A direction of loading such that the resulting
deflection is in the same direction as the load is called a
principal direction. For a given load on a planar structure,
there are two principal directions, perpendicular to each
other.

A

L

B

C
D

P

P

a

PROB. 9.5-24
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Chapter 9  Deflections of Beams

9.6-4 Determine the angle of rotation θB and the deflec-
tion δB at the free end of a cantilever beam AB with a uni-
form load of intensity q acting over the middle third of the
length (see figure).

836

Moment-Area Method
The problems for Section 9.6 are to be solved by the
moment-area method. All beams have constant flex-
ural rigidity EI.

9.6-1 A cantilever beam AB is subjected to a uniform load
of intensity q acting throughout its length (see figure).
Determine the angle of rotation θB and the deflection δB at
the free end.

L

B

q

A

PROB. 9.6-1

L

B

q0

A

PROB. 9.6-2

L

B M0A

P

PROB. 9.6-3

9.6-2 The load on a cantilever beam AB has a triangular
distribution with maximum intensity q0 (see figure).
Determine the angle of rotation θB and the deflection δB at
the free end.

9.6-3 A cantilever beam AB is subjected to a concentrated
load P and a couple M0 acting at the free end (see figure).

Obtain formulas for the angle of rotation θB and the
deflection δB at end B.

BA

q

L
3
— L

3
— L

3
—

PROB. 9.6-4

BCA

M0 P

L
2
— L

2
—

PROB. 9.6-5

BCA

P1 P2

L
2
—

L
2
—

PROB. 9.6-6

A

L

q

B

PROB. 9.6-7

9.6-5 Calculate the deflections δB and δC at points B and
C, respectively, of the cantilever beam ACB shown in the
figure. Assume , , ,
and .EI � 6.0 MN # m2

M0 � 4 kN # m P � 16 kN L � 2.4 m

9.6-6 A cantilever beam ACB supports two concentrated
loads P1 and P2 as shown in the figure.

Calculate the deflections δB and δC at points B
and C, respectively. Assume , , 

, , and .I � 20.1 	 106 mm4L � 2.6 m E � 200 GPa
P1 � 10 kN P2 � 5 kN

9.6-7 Obtain formulas for the angle of rotation θA at
support A and the deflection δmax at the midpoint for a
simple beam AB with a uniform load of intensity a (see
figure).
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Problems Chapter 9

9.6-8 A simple beam AB supports two concentrated loads
P at the positions shown in the figure. A support C at the
midpoint of the beam is positioned at distance d below the
beam before the loads are applied.

Assuming that , , ,
and , calculate the magnitude of the
loads P so that the beam just touches the support at C.

I � 198 	 106 mm4
d � 10 mm L � 6 m E � 200 GPa

837

Nonprismatic Beams

9.7-1 The cantilever beam ACB shown in the figure has
moments of inertia I2 and I1 in parts AC and CB, respectively.

(a) Using the method of superposition, determine the
deflection δB at the free end due to the load P.

(b) Determine the ratio r of the deflection δB to the
deflection δ1 at the free end of a prismatic cantilever with
moment of inertia I1 carrying the same load.

(c) Plot a graph of the deflection ratio r versus the ratio
I2/I1 of the moments of inertia. (Let I2/I1 vary from 1 to 5.)

C

A B

P P
d

L
4
— L

4
— L

4
— L

4
—

A

M0

B

L

PROB. 9.6-9

A B

L

aa

P P

PROB. 9.6-10

A B

M0 2M0

D E

L
3
— L

3
— L

3
—

PROB. 9.6-11

9.6-9 A simple beam AB is subjected to a load in the form
of a couple M0 acting at end B (see figure).

Determine the angles of rotation θA and θB at the
supports and the deflection δ at the midpoint.

9.6-10 The simple beam AB shown in the figure supports
two equal concentrated loads P, one acting downward and
the other upward.

Determine the angle of rotation θA at the left-hand
end, the deflection δ1 under the downward load, and the
deflection δ2 at the midpoint of the beam.

9.6-11 A simple beam AB is subjected to couples M0 and
2M0 acting as shown in the figure. Determine the angles of
rotation θA and θB at the ends of the beam and the deflec-
tion δ at point D where the load M0 is applied.

B
CA I1

I2

P

L
2
— L

2
—

PROB. 9.7-1

BCA

I1I2

q

L
2
— L

2
—

PROB. 9.7-2

9.7-2 The cantilever beam ACB shown in the figure sup-
ports a uniform load of intensity q throughout its length.
The beam has moments of inertia I2 and I1 in parts AC and
CB, respectively.

(a) Using the method of superposition, determine the
deflection δB at the free end due to the uniform load.

(b) Determine the ratio r of the deflection δB to the
deflection δ1 at the free end of a prismatic cantilever with
moment of inertia I1 carrying the same load.

(c) Plot a graph of the deflection ratio r versus the ratio
I2/I1 of the moments of inertia. (Let I2/I1 vary from 1 to 5.)

PROB. 9.6-8
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Chapter 9  Deflections of Beams

9.7-5 A beam ABC has a rigid segment from A to B and a
flexible segment with moment of inertia I from B to C (see
figure). A concentrated load P acts at point B.

838

9.7-3 Beam ACB hangs from two springs, as shown in the
figure. The springs have stiffnesses k1 and k2 and the beam
has flexural rigidity EI.

(a) What is the downward displacement of point C,
which is at the midpoint of the beam, when the
moment M0 is applied? Data for the structure are as fol-
lows: , , ,

, and .
(b) Repeat part (a), but remove M0 and instead, apply

uniform load q over the entire beam.

M0 � 3.0 kN # m
k2 � 110 kN/m

L � 2.5 m EI � 200 kN # m2

k1 � 140 kN/m

B
BC

A

k1

RA = k1dA

M0

RB = k2dB

k2

L/2

2EI EI

L/2

q = 1.5 kN/m (for part (b) only)

PROB. 9.7-3

q

A

L

2I
I I

B C D

L
4
— L

4
—

PROB. 9.7-4

A
I C

B

P
Rigid

L
3
— 2L

3
—

PROB. 9.7-5

A
I1.5I

C
B

P

L
3
— 2L

3
—

PROB. 9.7-6

9.7-4 A simple beam ABCD has moment of inertia I near
the supports and moment of inertia 2I in the middle region,
as shown in the figure. A uniform load of intensity q
acts over the entire length of the beam.

Determine the equations of the deflection curve for
the left-hand half of the beam. Also, find the angle of
rotation θA at the left-hand support and the deflection δmax
at the midpoint.

9.7-6 A simple beam ABC has moment of inertia 1.5I
from A to B and I from B to C (see figure). A concentrated
load P acts at point B.

Obtain the equations of the deflection curves for both
parts of the beam. From the equations, determine the
angles of rotation θA and θC at the supports and the
deflection δB at point B.

9.7-7 The tapered cantilever beam AB shown in the fig-
ure has thin-walled, hollow circular cross sections of con-
stant thickness t. The diameters at the ends A and B are
dA and , respectively. Thus, the diameter d and
moment of inertia I at distance x from the free end are,
respectively,

in which IA is the moment of inertia at end A of the beam.
Determine the equation of the deflection curve and

the deflection δA at the free end of the beam due to the
load P.

dB � 2dA

I �
π td 3

8
�

π tdA
3

8L3
(L � x)3 �

IA

L3
(L � x)3

d �
dA

L
(L � x)

Determine the angle of rotation θA of the rigid
segment, the deflection δB at point B, and the maximum
deflection δmax.
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Problems Chapter 9

9.7-8 The tapered cantilever beam AB shown in the figure
has a solid circular cross section. The diameters at the ends
A and B are dA and , respectively. Thus, the diam-
eter d and moment of inertia I at distance x from the free
end are, respectively,

in which IA is the moment of inertia at end A of the beam.
Determine the equation of the deflection curve and

the deflection δA at the free end of the beam due to the
load P.

d �
dA

L
(L � x)

dB � 2dA

I �
πd 4

64
�

πdA
4

64L4
(L � x)4 �

IA

L4
(L � x)4

839

9.7-10 A tapered cantilever beam AB supports a concen-
trated load P at the free end (see figure). The cross sections
of the beam are rectangular tubes with constant width b
and outer tube depth dA at A, and outer tube
depth at support B. The tube thickness is con-
stant, . IA is the moment of inertia of the outer
tube at end A of the beam.

If the moment of inertia of the tube is approximated
as as defined, find the equation of the deflection curve 
and the deflection A at the free end of the beam due to the
load P.

δ

t � dA/20
dB � 3dA/2

Ia(x)

P

A
B

L

x

t

d

dB = 2dAdA

PROB. 9.7-7

P

A

L

B

x d

dB = 2dAdA

PROB. 9.7-8

P

A

L

B

x b

ddA 2
dB =

3dA—

PROB. 9.7-9

P

Lx

b

d
t

dA dB = 3dA/2

4
 +Ia(x) = IA	

3
3

( (27L
10 	 x

12IA = b 	 d3

PROB. 9.7-10

P

Lx

dA dB = 3dA/2

PROB. 9.7-11

9.7-11 Repeat Prob. 9.7-10, but now use the tapered
propped cantilever tube AB, with guided support at B,
shown in the figure which supports a concentrated load P
at the guided end.

Find the equation of the deflection curve and the
deflection δB at the guided end of the beam due to the load P.

9.7-9 A tapered cantilever beam AB supports a concen-
trated load P at the free end (see figure). The cross sections
of the beam are rectangular with constant width b, depth
dA at support A, and depth at the support.
Thus, the depth d and moment of inertia I at distance x
from the free end are, respectively,

in which IA is the moment of inertia at end A of the beam.
Determine the equation of the deflection curve and

the deflection δA at the free end of the beam due to the
load P.

d �
dA

2L
(2L � x)

dB � 3dA /2

I �
bd 3

12
�

bdA
3

96L3
(2L � x)3 �

IA

8L3
(2L � x)3
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Chapter 9  Deflections of Beams

9.8-2 A simple beam AB of length L supports a concen-
trated load P at the midpoint (see figure).

(a) Evaluate the strain energy of the beam from the
bending moment in the beam.

(b) Evaluate the strain energy of the beam from the
equation of the deflection curve.

(c) From the strain energy, determine the deflection δ
under the load P.

840

9.7-12 A simple beam ACB is constructed with square
cross sections and a double taper (see figure). The depth of
the beam at the supports is dA and at the midpoint is

. Each half of the beam has length L. Thus, the
depth d and moment of inertia I at distance x from the left-
hand end are, respectively,

in which IA is the moment of inertia at end A of the beam.
(These equations are valid for x between 0 and L, that is,
for the left-hand half of the beam.)

(a) Obtain equations for the slope and deflection of
the left-hand half of the beam due to the uniform load.

(b) From those equations obtain formulas for the
angle of rotation θA at support A and the deflection δC at
the midpoint.

dC � 2dA

d �
dA

L
(L � x)

I �
d 4

12
�

dA
4

12L4
(L � x)4 �

IA

L4
(L � x)4

A B
C

L L

q

d

d
x

PROB. 9.7-12

A

L

B

b

h

PROB. 9.8-1

L
2
— L

2
—

BA

P

PROB. 9.8-2

Strain Energy
The beams described in the problems for Section 9.8
have constant flexural rigidity EI.

9.8-1 A uniformly loaded simple beam AB (see figure) of
span length L and rectangular cross section ( ,

) has a maximum bending stress due to
the uniform load.

Determine the strain energy U stored in the beam.

b � width
h � height σ max

9.8-4 A simple beam AB of length L is subjected to loads
that produce a symmetric deflection curve with maximum
deflection δ at the midpoint of the span (see figure).

How much strain energy U is stored in the beam if the
deflection curve is (a) a parabola, and (b) a half wave of a
sine curve?

9.8-3 A propped cantilever beam AB of length L, and with
guided support at A, supports a uniform load of intensity q
(see figure).

(a) Evaluate the strain energy of the beam from the
bending moment in the beam.

(b) Evaluate the strain energy of the beam from the
equation of the deflection curve.

x

y

A

L

B

q

PROB. 9.8-3

L
2
— L

2
—

BA
d

PROB. 9.8-4
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Problems Chapter 9

9.8-5 A beam ABC with simple supports at A and B and
an overhang BC supports a concentrated load P at the free
end C (see figure).

(a) Determine the strain energy U stored in the beam
due to the load P.

(b) From the strain energy, find the deflection δC
under the load P.

(c) Calculate the numerical values of U and δC if the
length L is 2.0 m, the overhang length a is 1.0 m, the beam
is an IPN steel wide-flange section, and the load P pro-
duces a maximum stress of 105 MPa in the beam. (Use

.)E � 210 GPa

200

841

Castigliano’s Theorem
The beams described in the problems for Section 9.9
have constant flexural rigidity EI.

9.9-1 A simple beam AB of length L is loaded at the left-
hand end by a couple of moment M0 (see figure).

Determine the angle of rotation θA at support A.
(Obtain the solution by determining the strain energy of
the beam and then using Castigliano’s theorem.)

9.9-2 The simple beam shown in the figure supports a con-
centrated load P acting at distance a from the left-hand
support and distance b from the right-hand support.

Determine the deflection δD at point D where the load
is applied. (Obtain the solution by determining the strain
energy of the beam and then using Castigliano’s theorem.)

9.8-6 A simple beam ACB supporting a uniform load q
over the first half of the beam and a couple of moment M0
at end B is shown in the figure.

Determine the strain energy U stored in the beam due
to the load q and the couple M0 acting simultaneously.

9.8-7 The frame shown in the figure consists of a beam
ACB supported by a strut CD. The beam has length 2L
and is continuous through joint C. A concentrated load P
acts at the free end B.

Determine the vertical deflection δB at point B due to
the load P.

Note: Let EI denote the flexural rigidity of the beam,
and let EA denote the axial rigidity of the strut. Disregard
axial and shearing effects in the beam, and disregard any
bending effects in the strut.

L

CA

a

P

B

PROB. 9.8-5

q

A

M0

B
x

y

L
2
— L

2
—

PROB. 9.8-6

L

L

L

A
B

C

D

P

PROB. 9.8-7

A B

L

M0

PROB. 9.9-1

A BD

L

a b

P

PROB. 9.9-2
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9.9-9 A simple beam ABCDE supports a uniform load of
intensity q (see figure). The moment of inertia in the cen-
tral part of the beam (BCD) is twice the moment of inertia
in the end parts (AB and DE).

Find the deflection δC at the midpoint C of the beam.
(Obtain the solution by using the modified form of
Castigliano’s theorem.)

Chapter 9  Deflections of Beams

9.9-6 A cantilever beam ACB supports two concentrated
loads P1 and P2, as shown in the figure. Determine the
deflections δC and δB at points C and B, respectively.
(Obtain the solution by using the modified form of
Castigliano’s theorem.)

842

9.9-3 An overhanging beam ABC supports a concen-
trated load P at the end of the overhang (see figure). Span
AB has length L and the overhang has length a.

Determine the deflection δC at the end of the
overhang. (Obtain the solution by determining the strain
energy of the beam and then using Castigliano’s theorem.)

A B C

L a

P

PROB. 9.9-3

9.9-4 The cantilever beam shown in the figure supports a
triangularly distributed load of maximum intensity q0.

Determine the deflection δB at the free end B. (Obtain
the solution by determining the strain energy of the beam
and then using Castigliano’s theorem.)

9.9-5 A simple beam ACB supports a uniform load of
intensity q on the left-hand half of the span (see figure).

Determine the angle of rotation θB at support B.
(Obtain the solution by using the modified form of
Castigliano’s theorem.)

A

L

B

q0

PROB. 9.9-4

A B
C

q

L
2
— L

2
—

PROB. 9.9-5

L
2
— L

2
—

A
B

C

P1 P2

PROB. 9.9-6

L
2
— L

2
—

A BC

q

PROB. 9.9-7

P

A

B

h

b
C

PROB. 9.9-8

9.9-7 The cantilever beam ACB shown in the figure is sub-
jected to a uniform load of intensity q acting between
points A and C.

Determine the angle of rotation θA at the free end A.
(Obtain the solution by using the modified form of
Castigliano’s theorem.)

9.9-8 The frame ABC supports a concentrated load P at
point C (see figure). Members AB and BC have lengths h
and b, respectively.

Determine the vertical deflection δC and angle of
rotation θC at end C of the frame. (Obtain the solution by
using the modified form of Castigliano’s theorem.)
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Problems Chapter 9 843

9.9-12 A symmetric beam ABCD with overhangs at both
ends supports a uniform load of intensity q (see figure).

Determine the deflection δD at the end of the
overhang. (Obtain the solution by using the modified form
of Castigliano’s theorem.)

L
4
—

L
4
— L

4
— L

4
—

q

2I
I I

A B C D E

PROB. 9.9-9

9.9-10 An overhanging beam ABC is subjected to a cou-
ple MA at the free end (see figure). The lengths of the over-
hang and the main span are a and L, respectively.

Determine the angle of rotation θA and deflection δA
at end A. (Obtain the solution by using the modified form
of Castigliano’s theorem.)

9.9-11 An overhanging beam ABC rests on a simple sup-
port at A and a spring support at B (see figure). A concen-
trated load P acts at the end of the overhang. Span AB has
length L, the overhang has length a, and the spring has
stiffness k.

Determine the downward displacement δC of the end
of the overhang. (Obtain the solution by using the
modified form of Castigliano’s theorem.)

A B C

a L

MA

PROB. 9.9-10

A C

L a

k

P

B

PROB. 9.9-11

L
4
— L

4
—

A
B C D

L

q

PROB. 9.9-12

L
2
—L

2
—

A B

h
W

PROB. 9.10-1

A B

h

W

—
L
2

—
L
2

PROB. 9.10-2

Deflections Produced by Impact
The beams described in the problems for Section 9.10
have constant flexural rigidity EI. Disregard the
weights of the beams themselves, and consider only the
effects of the given loads.

9.10-1 A heavy object of weight W is dropped onto the
midpoint of a simple beam AB from a height h (see figure).

Obtain a formula for the maximum bending stress
σmax due to the falling weight in terms of h, σst, and δst,
where σst is the maximum bending stress and δst is the
deflection at the midpoint when the weight W acts on the
beam as a statically applied load.

Plot a graph of the ratio (that is, the ratio
of the dynamic stress to the static stress) versus the ratio

. (Let vary from 0 to 10.)h/δst h/δst

σ max /σst

9.10-2 An object of weight W is dropped onto the mid-
point of a simple beam AB from a height h (see figure). The
beam has a rectangular cross section of area A.

Assuming that h is very large compared to the
deflection of the beam when the weight W is applied
statically, obtain a formula for the maximum bending
stress σmax in the beam due to the falling weight.
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Chapter 9  Deflections of Beams

9.10-6 An overhanging beam ABC of rectangular cross
section has the dimensions shown in the figure. A weight

drops onto end C of the beam.
If the allowable normal stress in bending is 45 MPa,

what is the maximum height h from which the weight may
be dropped? (Assume .)E � 12 GPa

W � 750 N

844

9.10-3 A cantilever beam AB of length is con-
structed of an IPN 300 wide-flange section (see figure). A
weight falls through a height onto
the end of the beam.

Calculate the maximum deflection δmax of the end of
the beam and the maximum bending stress σmax due to the
falling weight. (Assume .)E � 210 GPa

h � 6 mmW � 7 kN

L � 2.0 m

W = 7 kN

h = 6 mm

A B

IPN 300

L = 2.0 m

PROB. 9.10-3

A B

h
W

—

d

d
L
2

—L
2

PROB. 9.10-4

h = 15 mm

W = 18 kN

A B

—L
2

—L
2

PROB. 9.10-5

9.10-4 A weight falls through a height
onto the midpoint of a simple beam of length

(see figure). The beam is made of wood with square
cross section (dimension d on each side) and .

If the allowable bending stress in the wood is
, what is the minimum required

dimension d ?
σallow � 10 MPa

E � 12 GPa
L � 3 m
h � 1.0 mm

W � 20 kN

9.10-5 A weight falls through a height
onto the midpoint of a simple beam of length

(see figure).
Assuming that the allowable bending stress in the

beam is and , select
the lightest wide-flange beam listed in Table E-1 in
Appendix E that will be satisfactory.

W � 18 kN

E � 210 GPaσallow � 125 MPa

L � 3 m
h � 15 mm

A
B C

h

W

1.2 m 2.4 m 500 mm

40 mm

40 mm

PROB. 9.10-6

v
EI ImA

R L

PROB. 9.10-7

9.10-7 A heavy flywheel rotates at an angular speed ω
(radians per second) around an axle (see figure). The axle
is rigidly attached to the end of a simply supported beam
of flexural rigidity EI and length L (see figure). The fly-
wheel has mass moment of inertia Im about its axis of rota-
tion.

If the flywheel suddenly freezes to the axle, what will
be the reaction R at support A of the beam?

Temperature Effects
The beams described in the problems for Section 9.11
have constant flexural rigidity EI. In every problem,
the temperature varies linearly between the top and
bottom of the beam.

9.11-1 A simple beam AB of length L and height h under-
goes a temperature change such that the bottom of the
beam is at temperature T2 and the top of the beam is at
temperature T1 (see figure).

Determine the equation of the deflection curve of the
beam, the angle of rotation θA at the left-hand support,
and the deflection δmax at the midpoint.
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Problems Chapter 9

9.11-2 A cantilever beam AB of length L and height h (see
figure) is subjected to a temperature change such that the
temperature at the top is T1 and at the bottom is T2.

Determine the equation of the deflection curve of the
beam, the angle of rotation θB at end B, and the deflection
δB at end B.

845

9.11-5 Beam AB, with elastic support kR at A and pin sup-
port at B, of length L and height h (see figure), is heated in
such a manner that the temperature difference
between the bottom and top of the beam is proportional to
the distance from support A; that is, assume the tempera-
ture difference varies linearly along the beam:

in which T0 is a constant having units of temperature
(degrees) per unit distance. Assume the spring at A is
unaffected by the temperature change.

(a) Determine the maximum deflection δmax of the
beam.

(b) Repeat for quadratic temperature variation along
the beam, .

(c) What is δmax for parts (a) and (b) if kR goes to
infinity?

T2 � T1 � T0x
2

T2 � T1 � T0x

T2 � T1

A

y

x
B

hT1

T2

L

PROB. 9.11-1

9.11-3 An overhanging beam ABC of height h has a
guided support at A and a roller at B. The beam is heated
to a temperature T1 on the top and T2 on the bottom (see
figure).

Determine the equation of the deflection curve of the
beam, the angle of rotation θC at end C, and the deflection
δC at end C.

9.11-4 A simple beam AB of length L and height h (see fig-
ure) is heated in such a manner that the temperature dif-
ference between the bottom and top of the beam
is proportional to the distance from support A; that is,

T2 � T1

assume the temperature difference varies linearly along the
beam:

in which T0 is a constant having units of temperature
(degrees) per unit distance.

(a) Determine the maximum deflection δmax of the
beam.

(b) Repeat for quadratic temperature variation along
the beam, .T2 � T1 � T0x

2

T2 � T1 � T0x

L

B
hA T1

T2

y

x

PROB. 9.11-2

x

y

A

L

B CT1

T2

T1

T2

a

h

PROB. 9.11-3

x

y

A

L

BT1

T2

h

PROB. 9.11-4

x

y

A

L

BT1

T2kR

h

PROB. 9.11-5
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Chapter 9  Deflections of Beams846

R-9.3 A steel beam with
and span length is sub-

jected to uniform load . The maximum
deflection of the beam is approximately:

(A) 10 mm
(B) 13 mm
(C) 17 mm
(D) 19 mm

q � 9.5 kN/m
I � 119 	 106 mm4 L � 3.5 m

(E � 210 GPa)

SOME ADDITIONAL REVIEW PROBLEMS: CHAPTER 9

R-9.1 An aluminum beam with a square
cross section and span length is subjected to
uniform load . The allowable bending stress
is 60 MPa. The maximum deflection of the beam is
approximately:

(A) 10 mm
(B) 16 mm
(C) 22 mm
(D) 26 mm

q � 1.5 kN/m
L � 2.5 m

(E � 72 GPa)

R-9.4 A steel bracket ABC with
span length and height is subjected
to load at C. The maximum rotation of joint
B is approximately:

(A) 0.1�

(B) 0.3�

(C) 0.6�

(D) 0.9�

P � 15 kN
L � 4.5 m H � 2 m

(EI � 4.2 	 106 N # m2)
R-9.2 An aluminum cantilever beam with a
square cross section and span length is subjected
to uniform load The allowable bending
stress is 55 MPa. The maximum deflection of the beam is
approximately:

(A) 10 mm
(B) 20 mm
(C) 30 mm
(D) 40 mm

q � 1.5 kN/m.
L � 2.5 m
(E � 72 GPa)

q = 1.5 kN/m

L = 2.5 m

A

C

B
H

P

LL

q

k = 48EI/L3
A B

q
y

x
L
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Some Additional Review Problems: Chapter 9 847

R-9.7 A steel bracket ABCD ,
with span length and dimension , is
subjected to load at D. The maximum deflec-
tion at B is approximately:

(A) 10 mm
(B) 14 mm
(C) 19 mm
(D) 24 mm

P � 10 kN
L � 4.5 m a � 2 m

(EI � 4.2 	 106 N #m2)

R-9.5 A steel bracket ABC with 
span length and height is subjected
to load at C. The maximum horizontal dis-
placement of joint C is approximately:

(A) 22 mm
(B) 31 mm
(C) 38 mm
(D) 40 mm

P � 15 kN
L � 4.5 m H � 2 m

(EI � 4.2 	 106 N #m2)

R-9.6 A nonprismatic cantilever beam of one material is  
subjected to load P at its free end. Moment of inertia

. The ratio r of the deflection to the deflection
at the free end of a prismatic cantilever with moment of

inertia I1 carrying the same load is approximately:
(A) 0.25
(B) 0.40
(C) 0.56
(D) 0.78

δ1

I2 � 2I1 δB

A

C

B
H

P

L

L

A B

C
D

P
a

B
CA I1

I2

P

L
2
— L

2
—
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C H A P T E R10
Statically Indeterminate
Beams

Large and complex
structures, such as this

crane which is loading a
container ship, are usu-
ally statically indetermi-

nate and require a
computer to find forces

in members and dis-
placements of joints. 

(© david sanger 
photography/Alamy)
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I CHAPTER OVERVIEW
In Chapter 10, statically indeterminate beams are
considered. Here, the beam structure has more
unknown reaction forces than available equations of
statical equilibrium, so it is said to be statically inde-
terminate. The number of  excess unknown reactions
defines the degree of indeterminacy. Solution of
statically indeterminate beams requires that addi-
tional equations be developed based on the defor-
mations of  the structure, in addition to the
equations from statics. First, a number of  different
types of  statically indeterminate beams are defined
(Section 10.2), along with some common terminol-
ogy (e.g., primary structure, released structure, and
redundant) used in representing the solution. Then
a solution approach based on integration of the
equation of the elastic curve and application of
boundary conditions to find unknown constants is
presented (Section 10.3). This procedure can only be

applied in relatively simple cases, so a more general
approach based on superposition is described
(Section 10.4) and is applicable to beams undergo-
ing small displacements and behaving in a linearly
elastic manner. Here, the equations of equilibrium
are augmented by the equations of compatibility;
applied loads and resulting beam deflections are
related by the force-displacement equations for
beams derived in Chapter 9. The general superposi-
tion solution approach follows that introduced in
Section 2.4 for axially loaded members and in
Section 3.8 for circular shafts acted upon by tor-
sional moments. Finally, a number of  specialized
and advanced topics are introduced at the end of the
chapter. In Section 10.5, the effect of  differential
temperature loading is discussed, and in Section 10.6,
the effect of  curvature shortening due to bending
alone is presented.

10.1 Introduction 850
10.2 Types of Statically Indeterminate Beams 850
10.3 Analysis by the Differential Equations of the

Deflection Curve 853
10.4 Method of Superposition 860

*10.5 Temperature Effects 873
*10.6 Longitudinal Displacements at the Ends of a

Beam 881
Chapter Summary & Review 884
Problems 886

*Advanced topics

Chapter 10 is organized as follows:
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Chapter 10  Statically Indeterminate Beams

10.1 INTRODUCTION
In this chapter we will analyze beams in which the number of reactions
exceeds the number of independent equations of equilibrium. Since the
reactions of such beams cannot be determined by statics alone, the beams
are said to be statically indeterminate.

The analysis of  statically indeterminate beams is quite different from
that of  statically determinate beams. When a beam is statically determi-
nate, we can obtain all reactions, shear forces, and bending moments
from free-body diagrams and equations of  equilibrium. Then, knowing
the shear forces and bending moments, we can obtain the stresses and
deflections.

However, when a beam is statically indeterminate, the equilibrium
equations are not sufficient and additional equations are needed. The
most fundamental method for analyzing a statically indeterminate beam is
to solve the differential equations of the deflection curve, as described
later in Section 10.3. Although this method serves as a good starting point
in our analysis, it is practical for only the simplest types of statically inde-
terminate beams.

Therefore, we also discuss the method of superposition (Section 10.4),
a method that is applicable to a wide variety of structures. In the method
of superposition, we supplement the equilibrium equations with compati-
bility equations and force-displacement equations. (This same method was
described earlier in Section 2.4, where we analyzed statically indeterminate
bars subjected to tension and compression.)

In the last part of this chapter we discuss two specialized topics per-
taining to statically indeterminate beams, namely, beams with temperature
changes (Section 10.5), and longitudinal displacements at the ends of
beams (Section 10.6). Throughout this chapter, we assume that the beams
are made of linearly elastic materials.

Although only statically indeterminate beams are discussed in this
chapter, the fundamental ideas have much wider application. Most of the
structures we encounter in everyday life, including automobile frames, build-
ings, and aircraft, are statically indeterminate. However, they are much more
complex than beams and must be designed by very sophisticated analytical
techniques. Many of these techniques rely on the concepts described in this
chapter, and therefore, this chapter may be viewed as an introduction to the
analysis of statically indeterminate structures of all kinds.

10.2 TYPES OF STATICALLY
INDETERMINATE BEAMS
Statically indeterminate beams are usually identified by the arrangement
of  their supports. For instance, a beam that is fixed at one end and sim-
ply supported at the other (Fig. 10-1a) is called a propped cantilever
beam. The reactions of  the beam shown in the figure consist of  horizon-
tal and vertical forces at support A, a moment at support A, and a verti-
cal force at support B. Because there are only three independent
equations of  equilibrium for this beam, it is not possible to calculate all

850
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10.2 Types of Statically Indeterminate Beams 851

four of  the reactions from equilibrium alone. The number of  reactions in
excess of the number of  equilibrium equations is called the degree of
static indeterminacy. Thus, a propped cantilever beam is statically inde-
terminate to the first degree.

The excess reactions are called static redundants and must be selected
in each particular case. For example, the reaction RB of the propped can-
tilever beam shown in Fig. 10-1a may be selected as the redundant reac-
tion. Since this reaction is in excess of those needed to maintain
equilibrium, it can be released from the structure by removing the support
at B. When support B is removed, we are left with a cantilever beam  
(Fig. 10-1b). The structure that remains when the redundants are released
is called the released structure or the primary structure. The released struc-
ture must be stable (so that it is capable of carrying loads), and it must be
statically determinate (so that all force quantities can be determined by
equilibrium alone).

Another possibility for the analysis of the propped cantilever beam of
Fig. 10-1a is to select the reactive moment MA as the redundant. Then,
when the moment restraint at support A is removed, the released structure
is a simple beam with a pin support at one end and a roller support at the
other (Fig. 10-1c).

A special case arises if  all loads acting on the beam are vertical  
(Fig. 10-2). Then the horizontal reaction at support A vanishes, and three

P

(b)

A

RA

MA

HA

RB

B

P

(a)

Fig. 10-1
Propped cantilever beam:  
(a) beam with load and
 reactions; (b) released structure
when the reaction at end B is
selected as the redundant; and
(c) released structure when the
moment reaction at end A is
selected as the redundant

P

(c)

A

RA

P1

MA

RB

B

P2 Fig. 10-2
Propped cantilever beam 
with vertical loads only
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Chapter 10  Statically Indeterminate Beams852

P

(b)

A

RAMA
MB

HA

RB

B

P

HB

(a)

P

(c)

Fig. 10-3
Fixed-end beam: (a) beam with
load and reactions; (b) released

structure when the three
 reactions at end B are selected

as the redundants; and 
(c) released structure when the
two moment reactions and the

horizontal reaction at end B are
selected as the redundants

A

RA

MA MB
RB

B

P1 P2Fig. 10-4
Fixed-end beam with vertical

loads only

reactions remain. However, only two independent equations of equilibrium
are now available, and therefore the beam is still statically indeterminate to
the first degree. If the reaction RB is chosen as the redundant, the released
structure is a cantilever beam; if  the moment MA is chosen, the released
structure is a simple beam.

Another type of statically indeterminate beam, known as a fixed-end
beam, is shown in Fig. 10-3a. This beam has fixed supports at both ends,
resulting in a total of six unknown reactions (two forces and a moment at
each support). Because there are only three equations of equilibrium, the
beam is statically indeterminate to the third degree. (Other names for this
type of beam are clamped beam and built-in beam.)

If  we select the three reactions at end B of the beam as the redundants,
and if  we remove the corresponding restraints, we are left with a cantilever
beam as the released structure (Fig. 10-3b). If  we release the two fixed-end
moments and one horizontal reaction, the released structure is a simple
beam (Fig. 10-3c).

Again considering the special case of vertical loads only (Fig. 10-4),
we find that the fixed-end beam now has only four nonzero reactions (one
force and one moment at each support). The number of available equilib-
rium equations is two, and therefore the beam is statically indeterminate
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10.3 Analysis by the Differential Equations of the Deflection Curve 853

to the second degree. If  the two reactions at end B are selected as the
redundants, the released structure is a cantilever beam; if  the two moment
reactions are selected, the released structure is a simple beam.

The beam shown in Fig. 10-5a is an example of a continuous beam, so
called because it has more than one span and is continuous over an inte-
rior support. This particular beam is statically indeterminate to the first
degree because there are four reactive forces and only three equations of
equilibrium.

If  the reaction RB at the interior support is selected as the redun-
dant, and if  we remove the corresponding support from the beam, then
there remains a released structure in the form of  a statically determi-
nate simple beam (Fig. 10-5b). If  the reaction RC is selected as the
redundant, the released structure is a simple beam with an overhang  
(Fig. 10-5c).

In the following sections, we will discuss two methods for analyz-
ing statically indeterminate beams. The objective in each case is to
determine the redundant reactions. Once they are known, all remaining
reactions (plus the shear forces and bending moments) can be found
from equations of  equilibrium. In effect, the structure has become
 statically determinate. Therefore, as the final step in the analysis, the
stresses and deflections can be found by the methods described in preced-
ing chapters.

10.3 ANALYSIS BY THE DIFFERENTIAL
EQUATIONS OF THE DEFLECTION CURVE
Statically indeterminate beams may be analyzed by solving any one of
the three differential equations of  the deflection curve: (1) the second-
order equation in terms of  the bending moment [Eq. (9-16a)], (2) the
third-order equation in terms of  the shear force [Eq. (9-16b)], or (3) the
fourth-order equation in terms of  the intensity of  distributed load 
[Eq. (9-16c)].

The procedure is essentially the same as that for a statically determi-
nate beam (see Sections 9.2, 9.3, and 9.4) and consists of writing the dif-
ferential equation, integrating to obtain its general solution, and then
applying boundary and other conditions to evaluate the unknown quanti-
ties. The unknowns consist of the redundant reactions as well as the con-
stants of integration.

The differential equation for a beam may be solved in symbolic
terms only when the beam and its loading are relatively simple and
uncomplicated. The resulting solutions are in the form of  general pur-
pose formulas. However, in more complex situations the differential
equations must be solved numerically, using computer programs
intended for that purpose. In such cases the results apply only to specific
numerical problems.

The following examples illustrate the analysis of statically indetermi-
nate beams by solving the differential equations in symbolic terms.

Long-span bridges are often
constructed using continuous
beams (Lopatinsky Vladislav/
Shutterstock)

P1 P2

(b)

P1 P2

(c)

A

RA

HA

RC

B C

P1 P2

RB

(a)

Fig. 10-5
Example of a continuous beam:
(a) beam with loads and reac-
tions; (b) released structure
when the reaction at support B
is selected as the redundant;
and (c) released structure when
the reaction at end C is selected
as the redundant
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Chapter 10  Statically Indeterminate Beams854

Example 10-1• • •
A propped cantilever beam AB of length L supports a uniform load of inten-
sity q (Fig. 10-6). Analyze this beam by solving the second-order differential
equation of the deflection curve (the bending-moment equation).
Determine the reactions, shear forces, bending moments, slopes, and deflec-
tions of the beam.

Solution
Because the load on this beam acts in the vertical direction (Fig. 10-6), we
conclude that there is no horizontal reaction at the fixed support.
Therefore, the beam has three unknown reactions (MA, RA, and RB). Only
two equations of equilibrium are available for determining these reactions,
and therefore, the beam is statically indeterminate to the first degree.

Since we will be analyzing this beam by solving the bending-moment
equation, we must begin with a general expression for the moment. This
expression will be in terms of both the load and the selected redundant.

Redundant reaction. Let us choose the reaction RB at the simple support
as the redundant. Then, by considering the equilibrium of the entire beam,
we can express the other two reactions in terms of RB:

(a,b)

Bending moment. The bending moment M at distance x from the fixed
support can be expressed in terms of the reactions as

(c)

This equation can be obtained by the customary technique of constructing
a free-body diagram of part of the beam and solving an equation of equi-
librium.

Substituting into Eq. (c) from Eqs. (a) and (b), we obtain the bending
moment in terms of the load and the redundant reaction:

(d)

Differential equation. The second-order differential equation of the
deflection curve [Eq. (9-16a)] now becomes

(e)

After two successive integrations, we obtain the following equations for the
slopes and deflections of the beam:

(f)

(g)EIv �
qLx3

6
�

RBx3

6
�

qL2x 2

4
�

RBLx2

2
�

qx4

24
� C1x � C2

EIv� �
qLx 2

2
�

RBx2

2
�

qL2x

2
� RBLx �

qx 3

6
� C1

EIv�� � M � qLx � RBx �
qL2

2
� RBL �

qx2

2

M � qLx � RBx �
qL2

2
� RBL �

qx2

2

M � RAx � MA �
qx2

2

RA � qL � RB MA �
qL2

2
� RBL

Fig. 10-6
Example 10-1: Propped
 cantilever beam with a
 uniform load

A

RA

MA

RB
L

B

q

x

y
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10.3 Analysis by the Differential Equations of the Deflection Curve 855

These equations contain three unknown quantities (C1, C2, and RB).
Boundary conditions. Three boundary conditions pertaining to the

deflections and slopes of the beam are apparent from an inspection of 
Fig. 10-6. These conditions are as follows: (1) the deflection at the fixed sup-
port is zero, (2) the slope at the fixed support is zero, and (3) the deflection
at the simple support is zero. Thus,

Applying these conditions to the equations for slopes and deflections given
in Eqs. (f) and (g), we find , , and

(10-1)

Thus, the redundant reaction RB is now known.
Reactions. With the value of the redundant established, we can find the

remaining reactions from Eqs. (a) and (b). The results are

(10-2a,b)

Knowing these reactions, we can find the shear forces and bending moments
in the beam.

Shear forces and bending moments. These quantities can be obtained
by the usual techniques involving free-body diagrams and equations of
equilibrium. The results are

(10-3)

(10-4)

Shear-force and bending-moment diagrams for the beam can be drawn
with the aid of these equations (see Fig. 10-7).

From the diagrams, we see that the maximum shear force occurs at the
fixed support and is equal to

(10-5)

Also, the maximum positive and negative bending moments are

(10-6a,b)

Finally, we note that the bending moment is equal to zero at distance x � L/4
from the fixed support.

Slopes and deflections of the beam. Returning to Eqs. (f) and (g) for the
slopes and deflections, we now substitute the values of the constants of

➥

➥

➥

➥

Mpos �
9qL2

128
Mneg � �

qL2

8

Vmax �
5qL

8

M � RAx � MA �
qx2

2
�

5qLx

8
�

qL2

8
�

qx2

2

V � RA � qx �
5qL

8
� qx

RA �
5qL

8
MA �

qL2

8

RB �
3qL

8

C1 � 0 C2 � 0

v(0) � 0 v�(0) � 0 v(L) � 0

Continues ➥

Fig. 10-7
Shear-force and bending-
moment diagrams for the
propped cantilever beam of
Fig. 10-6
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Chapter 10  Statically Indeterminate Beams856

Example 10-1 - Continued• • •
integration ( and ) as well as the expression for the redundant
RB [Eq. (10-1)] and obtain

(10-7)

(10-8)

The deflected shape of the beam as obtained from Eq. (10-8) is shown in
Fig. 10-8.

To determine the maximum deflection of the beam, we set the slope
[Eq. (10-7)] equal to zero and solve for the distance x1 to the point where
this deflection occurs:

from which

(10-9)

Substituting this value of x into the equation for the deflection [Eq. (10-8)]
and also changing the sign, we get the maximum deflection:

(10-10)

The point of inflection is located where the bending moment is equal
to zero, that is, where . The corresponding deflection �0 of the beam
[from Eq. (10-8)] is

(10-11)

Note that when , both the curvature and the bending moment are
negative, and when , the curvature and bending moment are positive.

To determine the angle of rotation θB at the simply supported end of
the beam, we use Eq. (10-7), as

(10-12)

Slopes and deflections at other points along the axis of the beam can be
obtained by similar procedures.

Note: In this example, we analyzed the beam by taking the reaction RB
(Fig. 10-6) as the redundant reaction. An alternative approach is to take the
reactive moment MA as the redundant. Then we can express the bending
moment M in terms of MA, substitute the resulting expression into the
 second-order differential equation, and solve as before. Still another
approach is to begin with the fourth-order differential equation, as illus-
trated in the next example.

➥

➥

C1 � 0 C2 � 0

v� �
qx

48EI
(�6L2 � 15Lx � 8x2)

v � �
qx2

48EI
(3L2 � 5Lx � 2x2)

v� � 0 or �6L2 � 15Lx � 8x2 � 0

x1 �
15 � 133

16
L � 0.5785L

δmax � �(v)x�x1
�

qL4

65,536EI
(39 � 55133)

�
qL4

184.6EI
� 0.005416

qL4

EI

x � L/4

δ0 � �(v)x�L/4 �
5qL4

2048EI
� 0.002441

qL4

EI

x 6 L/4
x 7 L/4

θB � (v¿)x�L �
qL3

48EI

Fig. 10-8
Deflection curve for the
propped cantilever beam of
Fig. 10-6
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10.3 Analysis by the Differential Equations of the Deflection Curve 857

• • •
The fixed-end beam ACB shown in Fig. 10-9 supports a concentrated load P
at the midpoint. Analyze this beam by solving the fourth-order differential
equation of the deflection curve (the load equation). Determine the reac-
tions, shear forces, bending moments, slopes, and deflections of the beam.

Example 10-2

A

RA

MA
MB

RB

BC

P

x

y

L-
2

L-
2

Fig. 10-9
Example 10-2: Fixed-end beam
with a concentrated load at
the midpoint

Solution
Because the load on this beam acts only in the vertical direction, we know
that there are no horizontal reactions at the supports. Therefore, the beam
has four unknown reactions, two at each support. Since only two equations
of equilibrium are available, the beam is statically indeterminate to the sec-
ond degree.

However, we can simplify the analysis by observing from the symmetry
of the beam and its loading that the forces and moments at supports A and
B are equal, that is,

Since the vertical reactions at the supports are equal, we know from equi-
librium of forces in the vertical direction that each force is equal to P/2:

(10-13)

Thus, the only unknown quantities that remain are the moment reactions
MA and MB. For convenience, we will select the moment MA as the redun-
dant quantity.

Differential equation. Because there is no load acting on the beam
between points A and C, the fourth-order differential equation [Eq. 9-16c)]
for the left-hand half of the beam is

(a)

Successive integrations of this equation yield the following equations, which
are valid for the left-hand half of the beam:

(b)

(c)

(d)

(e)

➥

EIv �
C1x3

6
�

C2x2

2
� C3x � C4

EIv� �
C1x

2

2
� C2x � C3

EIv�� � C1x � C2

EIv��� � C1

EIv¿¿¿¿ � �q � 0 (0 6 x 6 L/2)

RA � RB �
P
2

RA � RB and MA � MB

Continues ➥

77742_10_ch10_p848-899.qxd:77742_10_ch10_p848-899.qxd  2/22/12  4:52 PM  Page 857

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 10  Statically Indeterminate Beams858

Example 10-2 - Continued• • •
These equations contain four unknown constants of integration. Since we
now have five unknowns (C1, C2, C3, C4, and MA), we need five boundary
conditions.

Boundary conditions. The boundary conditions applicable to the left-
hand half of the beam are as follows:

(1) The shear force in the left-hand segment of the beam is equal to RA,
or P/2. Therefore, from Eq. (9-16b) we find

Combining this equation with Eq. (b), we obtain .
(2) The bending moment at the left-hand support is equal to .

Therefore, from Eq. (9-16a) we get

Combining this equation with Eq. (c), we obtain .
(3) The slope of the beam at the left-hand support is equal to

zero. Therefore, Eq. (d) yields .
(4) The slope of the beam at the midpoint is also equal to zero

(from symmetry). Therefore, from Eq. (d) we find

(10-14)

Thus, the reactive moments at the ends of the beam have been determined.
(5) The deflection of the beam at the left-hand support is equal

to zero. Therefore, from Eq. (e) we find .
In summary, the four constants of integration are

(f,g,h,i)

Shear forces and bending moments. The shear forces and bending
moments can be found by substituting the appropriate constants of integra-
tion into Eqs. (b) and (c). The results are

(10-15)

(10-16)

Since we know the reactions of the beam, we can also obtain these expres-
sions directly from free-body diagrams and equations of equilibrium.

The shear-force and bending moment diagrams are shown in Fig. 10-10.

➥

➥

➥

EIv�� � M �
Px
2

�
PL
8

(0 … x … L/2)

EIv��� � V �
P
2

(0 6 x 6 L/2)

C1 �
P
2

C2 � �MA � �
PL
8

C3 � 0 C4 � 0

C4 � 0
(x � 0)

MA � MB �
PL
8

(x � L/2)
C3 � 0

(x � 0)
C2 � �MA

EIv�� � M � �MA at x � 0

�MA

C1 � P/2

EIv¿¿¿ � V �
P
2

Fig. 10-10
Shear-force and bending-
moment diagrams for the
fixed-end beam of Fig. 10-9
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10.3 Analysis by the Differential Equations of the Deflection Curve 859859

Slopes and deflections. The slopes and deflections in the left-hand half
of the beam can be found from Eqs. (d) and (e) by substituting the expres-
sions for the constants of integration. In this manner, we find

(10-17)

(10-18)

The deflection curve of the beam is shown in Fig. 10-11.
To find the maximum deflection we set x equal to L/2 in Eq. (10-18)

and change the sign; thus,

(10-19)

The point of inflection in the left-hand half of the beam occurs where the
bending moment M is equal to zero, that is, where [see Eq. (10-16)].
The corresponding deflection δ0 [from Eq. (10-18)] is

(10-20)

which is equal numerically to one-half of the maximum deflection. A second
point of inflection occurs in the right-hand half of the beam at distance L/4
from end B.

Notes: As we observed in this example, the number of boundary and
other conditions is always sufficient to evaluate not only the constants of
integration but also the redundant reactions.

Sometimes it is necessary to set up differential equations for more than
one region of the beam and use conditions of continuity between regions,
as illustrated in Examples 9-3 and 9-5 of Chapter 9 for statically determinate
beams. Such analyses are likely to be long and tedious because of the large
number of conditions that must be satisfied. However, if deflections and
angles of rotation are needed at only one or two specific points, the method
of superposition may be useful (see the next section).

➥

➥

v � �
Px2

48EI
(3L � 4x) (0 … x … L/2)

v� � �
Px
8EI

(L � 2x) (0 … x … L/2)

δmax

δmax � �(v)x�L/2 �
PL3

192EI

x � L/4

δ0 � �(v)x�L/4 �
PL3

384EI

A BC

y

x

dmax d0d0

L
2
—

L
4
— L

4
—

L
2
—

Fig. 10-11
Deflection curve for the  
fixed-end beam of Fig. 10-9
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Chapter 10  Statically Indeterminate Beams

10.4 METHOD OF SUPERPOSITION
The method of superposition is of fundamental importance in the analy-
sis of statically indeterminate bars, trusses, beams, frames, and many other
kinds of structures. We have already used the superposition method to
analyze statically indeterminate structures composed of bars in tension
and compression (Section 2.4) and shafts in torsion (Section 3.8). In this
section, we will apply the method to beams.

We begin the analysis by noting the degree of static indeterminacy and
selecting the redundant reactions. Then, having identified the redundants,
we can write equations of equilibrium that relate the other unknown reac-
tions to the redundants and the loads.

Next, we assume that both the original loads and the redundants act
upon the released structure. Then we find the deflections in the released
structure by superposing the separate deflections due to the loads and the
redundants. The sum of these deflections must match the deflections in the
original beam. However, the deflections in the original beam (at the points
where restraints were removed) are either zero or have known values.
Therefore, we can write equations of compatibility (or equations of super-
position) expressing the fact that the deflections of the released structure
(at the points where restraints were removed) are the same as the deflec-
tions in the original beam (at those same points).

Since the released structure is statically determinate, we can easily
determine its deflections by using the techniques described in Chapter 9.
The relationships between the loads and the deflections of the released
structure are called force-displacement relations. When these relations are
substituted into the equations of compatibility, we obtain equations in
which the redundants are the unknown quantities. Therefore, we can solve
those equations for the redundant reactions. Then, with the redundants
known, we can determine all other reactions from the equations of equi-
librium. Furthermore, we can also determine the shear forces and bending
moments from equilibrium.

The steps described in general terms in the preceding paragraphs can
be made clearer by considering a particular case, namely, a propped can-
tilever beam supporting a uniform load (Fig. 10-12a). We will make two
analyses, the first with the force reaction RB selected as the redundant and
the second with the moment reaction MA as the redundant. (This same
beam was analyzed in Example 10-1 of Section 10.3 by solving the differ-
ential equation of the deflection curve.)

Analysis with RB as Redundant
In this first illustration we select the reaction RB at the simple support  
(Fig. 10-12a) as the redundant. Then the equations of equilibrium that express
the other unknown reactions in terms of the redundant are as follows.

(10-21a,b)

These equations are obtained from equations of equilibrium that apply to
the entire beam taken as a free body (Fig. 10-12a).

RA � qL � RB MB �
qL2

2
� RBL

860

A

L

B

RB

RB

RA

MA

q

q

A B

(a)

(b)

(c)

(dB)1

(d)

(dB)2

Fig. 10-12
Analysis of a propped cantilever

beam by the method of super-
position with the reaction RB

selected as the redundant
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10.4 Method of Superposition 861

The next step is to remove the restraint corresponding to the redun-
dant (in this case, we remove the support at end B). The released structure
that remains is a cantilever beam (Fig. 10-12b). The uniform load q and
the redundant force RB are now applied as loads on the released structure
(Figs. 10-12c and d).

The deflection at end B of the released structure due solely to the uni-
form load is denoted , and the deflection at the same point due solely
to the redundant is denoted . The deflection �B at point B in the orig-
inal structure is obtained by superposing these two deflections. Since the
deflection in the original beam is equal to zero, we obtain the following
equation of compatibility:

(10-22)

The minus sign appears in this equation because is positive down-
ward whereas is positive upward.

The force-displacement relations that give the deflections and
in terms of the uniform load q and the redundant RB, respectively,

are found with the aid of Table G-1 in Appendix G (see Cases 1 and 4).
Using the formulas given there, we obtain

(10-23a,b)

Substituting these force-displacement relations into the equation of com-
patibility yields

(10-23c)

which can be solved for the redundant reaction:

(10-24)

Note that this equation gives the redundant in terms of the loads acting
on the original beam.

The remaining reactions (RA and MA) can be found from the equilib-
rium equations [Eqs. (10-21a and b)]; the results are

(10-25a,b)

Knowing all reactions, we can now obtain the shear forces and bending
moments throughout the beam and plot the corresponding diagrams (see
Fig. 10-7 for these diagrams).

We can also determine the deflections and slopes of the original beam
by means of the principle of superposition. The procedure consists of
superposing the deflections of the released structure when acted upon by
the loads shown in Figs. 10-12c and d. For instance, the equations of the

RA �
5qL

8
MA �

qL2

8

RB �
3qL

8

δB �
qL4

8EI
�

RBL3

3EI
� 0

(δB )1 �
qL4

8EI
(δB)2 �

RBL3

3EI

(δB )2

(δB )1

(δB )2

(δB )1

δB � (δB)1 � (δB)2 � 0

(δB)2

(δB)1

77742_10_ch10_p848-899.qxd:77742_10_ch10_p848-899.qxd  2/22/12  4:54 PM  Page 861

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 10  Statically Indeterminate Beams

deflection curves for those two loading systems are obtained from Cases 1
and 4, respectively, of Table G-1 in Appendix G:

Substituting for RB from Eq. (10-24) and then adding the deflections v1
and v2, we obtain the following equation for the deflection curve of the
original statically indeterminate beam (Fig. 10-12a):

This equation agrees with Eq. (10-8) of Example 10-1. Other deflection
quantitites can be found in an analogous manner.

Analysis with MA as Redundant
We will now analyze the same propped cantilever beam by selecting the
moment reaction MA as the redundant (Fig. 10-13). In this case, the
released structure is a simple beam (Fig. 10-13b). The equations of equi-
librium for the reactions RA and RB in the original beam are

(10-26a,b)

v1 � �
qx2

24EI
(6L2 � 4Lx � x2)

v2 �
RBx2

6EI
(3L � x)

RA �
qL

2
�

MA

L
RB �

qL

2
�

MA

L

v � v1 � v2 � �
qx2

48EI
(3L2 � 5Lx � 2x2)

862

A B

(b)

q

(c)

(uA)1
MA

(d)

(uA)2

A

L

B

RBRA

MA

q

(a)

Fig. 10-13
Analysis of a propped cantilever

beam by the method of
 superposition with the moment

reaction MA selected as the
redundant
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10.4 Method of Superposition 863

The equation of compatibility expresses the fact that the angle of  rotation
θA at the fixed end of the original beam is equal to zero. Since this angle
is obtained by superposing the angles of  rotation and in the
released structure (Figs. 10-13c and d), the compatibility equation
becomes

(10-27a)

In this equation, the angle is assumed to be positive when clockwise
and the angle is assumed to be positive when counterclockwise.

The angles of rotation in the released structure are obtained from the
formulas given in Table G-2 of Appendix G (see Cases 1 and 7). Thus, the
force-displacement relations are

Substituting into the compatibility equation [Eq. (10-27a)], we get

(10-27b)

Solving this equation for the redundant, we get , which agrees
with the previous result [Eq. (10-25b)]. Also, the equations of equilibrium
[Eqs. (10-26a and b)] yield the same results as before for the reactions RA
and RB [see Eqs. (10-25a) and (10-24), respectively].

Now that all reactions have been found, we can determine the shear
forces, bending moments, slopes, and deflections by the techniques already
described.

General Comments
The method of superposition described in this section is also called the
flexibility method or the force method. The latter name arises from the use
of force quantities (forces and moments) as the redundants; the former
name is used because the coefficients of the unknown quantities in the
compatibility equation [terms such as L3/3EI in Eq. (10-27a) and L/3EI in
Eq. (10-27b)] are flexibilities (that is, deflections or angles produced by a
unit load).

Since the method of superposition involves the superposition of
deflections, it is applicable only to linearly elastic structures. (Recall that
this same limitation applies to all topics discussed in this chapter.)

In the following examples, and also in the problems at the end of the
chapter, we are concerned primarily with finding the reactions, since this is
the key step in the solutions.
Example 10-4

θA �
qL3

24EI
�

MAL

3EI
� 0

(θA)1 �
qL3

24EI
(θA)2 �

MAL

3EI

(θA)2

(θA)1

θA � (θA)1 � (θA)2 � 0

(θA)1 (θA)2

MA � qL2/8
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Chapter 10  Statically Indeterminate Beams864

Example 10-3• • •
A two-span continuous beam ABC supports a uniform load of intensity q, as
shown in Fig. 10-14a. Each span of the beam has length L. Using the method
of superposition, determine all reactions for this beam.

A

L

CB

RBRA RC
L

q

(a)

A CB

(b)

q

(c)
(dB)1

(d)

(dB)2RB

Fig. 10-14
Example 10-3: Two-span
 continuous beam with a
 uniform load

Solution
This beam has three unknown reactions (RA, RB, and RC). Since there are two
equations of equilibrium for the beam as a whole, it is statically indetermi-
nate to the first degree. For convenience, let us select the reaction RB at the
middle support as the redundant.

Equations of equilibrium. We can express the reactions RA and RC in
terms of the redundant RB by means of two equations of equilibrium. The
first equation, which is for equilibrium of moments about point B, shows
that RA and RC are equal. The second equation, which is for equilibrium in
the vertical direction, yields the following result:

(a)

Equation of compatibility. Because the reaction RB is selected as the
redundant, the released structure is a simple beam with supports at A and C
(Fig. 10-14b). The deflections at point B in the released structure due to the
uniform load q and the redundant RB are shown in Figs. 10-14c and d, respec-
tively. Note that the deflections are denoted and . The superposi-
tion of these deflections must produce the deflection �B in the original beam
at point B. Since the latter deflection is equal to zero, the equation of com-
patibility is

(b)δB � (δB)1 � (δB)2 � 0

(δB)1 (δB)2

RA � RC � qL �
RB

2
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10.4 Method of Superposition 865

in which the deflection is positive downward and the deflection
is positive upward.

Force-displacement relations. The deflection caused by the uni-
form load acting on the released structure (Fig. 10-14c) is obtained from
Table G-2, Case 1 as 

where 2L is the length of the released structure. The deflection
produced by the redundant (Fig. 10-14d) is

as obtained from Table G-2, Case 4.
Reactions. The equation of compatibility pertaining to the vertical

deflection at point B [Eq. (b)] now becomes

(c)

from which we find the reaction at the middle support:

(10-28)

The other reactions are obtained from Eq. (a):

(10-29)

With the reactions known, we can find the shear forces, bending moments,
stresses, and deflections without difficulty.

Note: The purpose of this example is to provide an illustration of the
method of superposition, and therefore we have described all steps in the
analysis. However, this particular beam (Fig. 10-14a) can be analyzed by
inspection because of the symmetry of the beam and its loading.

From symmetry we know that the slope of the beam at the middle sup-
port must be zero, and therefore, each half of the beam is in the same con-
dition as a propped cantilever beam with a uniform load (see, for instance,
Fig. 10-6). Consequently, all of our previous results for a propped cantilever
beam with a uniform load [Eqs. (10-1) to (10-12)] can be adapted immedi-
ately to the continuous beam of Fig. 10-14a.

➥

➥

(δB )1 (δB )2

(δB )1

(δB )1 �
5q(2L)4

384EI
�

5qL4

24EI

RA � RC �
3qL

8

RB �
5qL

4

δB �
5qL4

24EI
�

RBL3

6EI
� 0

(δB)2 �
RB(2L)3

48EI
�

RBL3

6EI

(δB)2
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Chapter 10  Statically Indeterminate Beams866

Example 10-4• • •
A fixed-end beam AB (Fig. 10-15a) is loaded by a force P acting at an inter-
mediate point D. Find the reactive forces and moments at the ends of the
beam using the method of superposition. Also, determine the deflection at
point D where the load is applied.

Solution
This beam has four unknown reactions (a force and a moment at each sup-
port), but only two independent equations of equilibrium are available.
Therefore, the beam is statically indeterminate to the second degree. In this
example, we will select the reactive moments MA and MB as the redundants.

Equations of equilibrium. The two unknown force reactions (RA and RB)
can be expressed in terms of the redundants (MA and MB) with the aid of two
equations of equilibrium. The first equation is for moments about point B,
and the second is for moments about point A. The resulting expressions are

(a,b)

Equations of compatibility. When both redundants are released by
removing the rotational restraints at the ends of the beam, we are left with
a simple beam as the released structure (Figs. 10-15b, c, and d). The angles

RA �
Pb
L

�
MA

L
�

MB

L
RB �

Pa
L

�
MA

L
�

MB

L

of rotation at the ends of the released structure due to the concentrated
load P are denoted and , as shown in Fig. 10-15b. In a similar man-(θA)1 (θB )1
ner, the angles at the ends due to the redundant MA are denoted and(θA)2

, and the angles due to the redundant MB are denoted and .
Since the angles of rotation at the supports of the original beam are

equal to zero, the two equations of compatibility are

(c)

(d)

in which the signs of the various terms are determined by inspection from
the figures.

Force-displacement relations. The angles at the ends of the beam due
to the load P (Fig. 10-15b) are obtained from Case 5 of Table G-2:

in which a and b are the distances from the supports to point D where the
load is applied.

Also, the angles at the ends due to the redundant moment MA are (see
Case 7 of Table G-2):

(θA)2 �
MAL

3EI
(θB)2 �

MAL

6EI

(θA)1 �
Pab(L � b)

6LEI
(θB)1 �

Pab(L � a)
6LEI

θB � (θB)1 � (θB)2 � (θB)3 � 0

θA � (θA)1 � (θA)2 � (θA)3 � 0

(θB)2 (θA)3 (θB)3

Fig. 10-15
Example 10-4: Fixed-end beam
with a concentrated load
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L
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P

b

MA

RA RB

MB
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(a)

P

(b)

(uA)1 (uB)1

(c)

(uA)2 (uB)2
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(d)
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10.4 Method of Superposition 867

Similarly, the angles due to the moment MB are

Reactions. When the preceding expressions for the angles are substi-
tuted into the equations of compatibility [Eqs. (c) and (d)], we arrive at two
simultaneous equations containing MA and MB as unknowns:

(e)

(f)

Solving these equations for the redundants, we obtain

(10-30a,b)

Substituting these expressions for MA and MB into the equations of equilib-
rium [Eqs. (a) and (b)], we obtain the vertical reactions:

(10-31a,b)

Thus, all reactions for the fixed-end beam have been determined.
The reactions at the supports of a beam with fixed ends are commonly

referred to as fixed-end moments and fixed-end forces. They are widely
used in structural analysis, and formulas for these quantities are listed in
engineering handbooks.

Deflection at point D. To obtain the deflection at point D in the origi-
nal fixed-end beam (Fig. 10-15a), we again use the principle of superposi-

➥

➥

RA �
Pb2

L3
(L � 2a) RB �

Pa2

L3
(L � 2b)

(θA)3 �
MBL

6EI
(θB)3 �

MBL

3EI

MAL

3EI
�

MBL

6EI
�

Pab(L � b)

6LEI

MAL

6EI
�

MBL

3EI
�

Pab(L � a)

6LEI

MA �
Pab2

L2
MB �

Pa2b

L2

Continues ➥

tion. The deflection at point D is equal to the sum of three deflections: 
(1) the downward deflection at point D in the released structure due(δD )1
to the load P (Fig. 10-15b); (2) the upward deflection at the same point
in the released structure due to the redundant MA (Fig. 10-15c); and (3) the
upward deflection at the same point in the released structure due to
the redundant MB (Fig. 10-15d). This superposition of deflections is
expressed by the following equation:

(g)

in which �D is the downward deflection in the original beam.

(δD )2

δD � (δD)1 � (δD)2 � (δD)3

(δD)3
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Chapter 10  Statically Indeterminate Beams868

Example 10-4 - Continued• • •
The deflections appearing in Eq. (g) can be obtained from the formulas

given in Table G-2 of Appendix G (see Cases 5 and 7) by making the appro-
priate substitutions and algebraic simplifications. The results of these
manipulations are as follows:

Substituting the expressions for MA and MB from Eqs. (10-30a and b) into the
last two expressions, we get

Therefore, the deflection at point D in the original beam, obtained by sub-
stituting , , and into Eq. (g) and simplifying, is

(10-32)

The method described in this example for finding the deflection �D can be
used not only to find deflections at individual points, but also to find the
equations of the deflection curve.

Concentrated load acting at the midpoint of the beam. When the load
P acts at the midpoint C (Fig. 10-16), the reactions of the beam [from
Eqs. (10-30) and (10-31) with ] are

(10-33a,b)

Also, the deflection at the midpoint [from Eq. (10-32)] is

(10-34)

This deflection is only one-fourth of the deflection at the midpoint of a sim-
ple beam with the same load, which shows the stiffening effect of clamping
the ends of the beam.

The preceding results for the reactions at the ends and the deflection at
the middle [Eqs. (10-32) and (10-33)] agree with those found in Example 10-2
by solving the differential equation of the deflection curve [see Eqs. (10-13), 
(10-14), and (10-19)].

➥

(δD)1 �
Pa2b2

3LEI
(δD)2 �

MAab

6LEI
(L � b) (δD)3 �

MBab

6LEI
(L � a)

(δD)2 �
Pa2b3

6L3EI
(L � b) (δD)3 �

Pa3b2

6L3EI
(L � a)

(δD)1 (δD)2 (δD)3

δD �
Pa3b3

3L3EI

a � b � L/2

MA � MB �
PL
8

RA � RB �
P
2

δC �
PL3

192EI

A

L
2
—L

2
—

BC

P

MA

RA RB

MB

Fig. 10-16
Fixed-end beam with a
 concentrated load acting at
the midpoint
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10.4 Method of Superposition 869

• • •
A fixed-end beam AB supports a uniform load of intensity q acting over part
of the span (Fig. 10-17a). Determine the reactions of this beam (that is, find
the fixed-end moments and fixed-end forces).

Example 10-5

(a)

A

L

q

a

B
MA

RA RB

MB

(b)

A

dxx

q dx

B
dMA

dRA dRB

dMB

Fig. 10-17
Example 10-5: (a) Fixed-end
beam with a uniform load 
over part of the span, and 
(b) reactions produced by an
element qdx of the uniform
load

Solution
Procedure. We can find the reactions of this beam by using the principle of
superposition together with the results obtained in the preceding example
(Example 10-4). In that example we found the reactions of a fixed-end beam
subjected to a concentrated load P acting at distance a from the left-hand
end [see Fig. 10-15a and Eqs. (10-30) and (10-31)].

In order to apply those results to the uniform load of Fig. 10-17a, we will
treat an element of the uniform load as a concentrated load of magnitude
qdx acting at distance x from the left-hand end (Fig. 10-17b). Then, using the
formulas derived in Example 10-4, we can obtain the reactions caused by this
element of load. Finally, by integrating over the length a of the uniform load,
we can obtain the reactions due to the entire uniform load.

Fixed-end moments. Let us begin with the moment reactions, for
which we use Eqs. (10-30a and b) of Example 10-4. To obtain the moments
caused by the element qdx of the uniform load (compare Fig. 10-17b with
Fig. 10-15a), we replace P with qdx, a with x, and b with . Thus, the
fixed-end moments due to the element of load (Fig. 10-17b) are

Integrating over the loaded part of the beam, we get the fixed-end
moments due to the entire uniform load:

(10-35a)

(10-35b)

Fixed-end forces. Proceeding in a similar manner as for the fixed-end
moments, but using Eqs. (10-31a and b), we obtain the following expres-
sions for the fixed-end forces due to the element qdx of load:

➥

➥

dRA �
q(L � x)2(L � 2x)dx

L3
dRB �

qx2(3L � 2x)dx

L3

MB �
L

dMB �
q

L2
3

a

0
x2(L � x)dx �

qa3

12L2 (4L � 3a)

MA �
L

dMA �
q

L2 3

a

0
x(L � x)2dx �

qa2

12L2 (6L2 � 8aL � 3a2)

dMA �
qx(L � x)2dx

L2
dMB �

qx2(L � x)dx

L2

L � x

Continues ➥
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Chapter 10  Statically Indeterminate Beams870

Example 10-5 - Continued• • •
Integration gives

(10-36a)

(10-36b)

Thus, all reactions (fixed-end moments and fixed-end forces) have been found.
Uniform load acting over the entire length of the beam. When the load

acts over the entire span (Fig. 10-18), we can obtain the reactions by substi-
tuting into the preceding equations, yielding

(10-37a,b)

➥

➥

MA � MB �
qL2

12
RA � RB �

qL

2

RA �
L

dRA �
q

L3
3

a

0
(L � x)2(L � 2x)dx �

qa

2L3 (2L3 � 2a2 � a3)

a � L

RB �
L

dRB �
q

L3
3

a

0
x2(3L � 2x)dx �

qa3

2L3 (2L � a)

A

q

L

BMA

RA RB

MB

Fig. 10-18
Fixed-end beam with a
 uniform load

The deflection at the midpoint of a uniformly loaded beam is also of
interest. The simplest procedure for obtaining this deflection is to use the
method of superposition. The first step is to remove the moment restraints
at the supports and obtain a released structure in the form of a simple
beam. The downward deflection at the midpoint of a simple beam due to a
uniform load (from Case 1, Table G-2) is

(a)

and the upward deflection at the midpoint due to the end moments (from
Case 10, Table G-2) is

(b)

Thus, the final downward deflection of the original fixed-end beam 
(Fig. 10-18) is

Substituting for the deflections from Eqs. (a) and (b), we get

(10-38)

This deflection is one-fifth of the deflection at the midpoint of a simple
beam with a uniform load [Eq. (a)], again illustrating the stiffening effect of
fixity at the ends of the beam.

δC �
qL4

384EI

δC � (δC )1 � (δC )2

(δC)2 �
MAL2

8EI
�

(qL2/12)L2

8EI
�

qL4

96EI

(δC)1 �
5qL4

384EI
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10.4 Method of Superposition 871

• • •
A beam ABC (Fig. 10-19a) rests on simple supports at points A and B and is
supported by a cable at point C. The beam has total length 2L and supports
a uniform load of intensity q. Prior to the application of the uniform load,
there is no force in the cable nor is there any slack in the cable.

When the uniform load is applied, the beam deflects downward at
point C and a tensile force T develops in the cable. Find the magnitude of
this force.

Example 10-6

A

q

L

B

h

C

D

L

Cable

(a)

A

q

B
C C

D

(b)

T

T

Fig. 10-19
Example 10-6: Beam ABC with
one end supported by a cable

Solution
Redundant force. The structure ABCD, consisting of the beam and cable, has
three vertical reactions (at points A, B, and D). However, only two equations
of equilibrium are available from a free-body diagram of the entire struc-
ture. Therefore, the structure is statically indeterminate to the first degree,
and we must select one redundant quantity for purposes of analysis.

The tensile force T in the cable is a suitable choice for the redundant.
We can release this force by removing the connection at point C, thereby
cutting the structure into two parts (Fig. 10-19b). The released structure con-
sists of the beam ABC and the cable CD as separate elements, with the
redundant force T acting upward on the beam and downward on the cable.

Equation of compatibility. The deflection at point C of beam ABC
(Fig. 10-19b) consists of two parts, a downward deflection due to the (δC)1

Continues ➥

uniform load and an upward deflection due to the force T. At the 
same time, the lower end C of cable CD displaces downward by an amount

, equal to the elongation of the cable due to the force T. Therefore,
the equation of compatibility, which expresses the fact that the down-
ward deflection of end C of the beam is equal to the elongation of the
cable, is

(a)

Having formulated this equation, we now turn to the task of evaluating all
three displacements.

Force-displacement relations. The deflection at the end of the over-
hang (point C in beam ABC) due to the uniform load can be found from the
results given in Example 9-9 of Section 9.5 (see Fig. 9-21). Using Eq. (9-68) of
that example, and substituting , we get

(b)(δC)1 �
qL4

4EbIb

a � L

(δC)1

(δC)1 � (δC)2 � (δC)3

(δC)3

(δC)2
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Chapter 10  Statically Indeterminate Beams872

Example 10-6 - Continued• • •
where EbIb is the flexural rigidity of the beam.

The deflection of the beam at point C due to the force T can be taken
from the answer to Prob. 9.8-5 or Prob. 9.9-3. Those answers give the
deflection at the end of the overhang when the length of the over-
hang is a:

Now substituting , we obtain the desired deflection:

(c)

Finally, the elongation of the cable is

(d)

where h is the length of the cable and is its axial rigidity.
Force in the cable. By substituting the three displacements [Eqs. (b), (c),

and (d)] into the equation of compatibility [Eq. (a)], we get

Solving for the force T, we find

(10-39)

With the force T known, we can find all reactions, shear forces, and bend-
ing moments by means of free-body diagrams and equations of equilibrium.

This example illustrates how an internal force quantity (instead of an
external reaction) can be used as the redundant.

➥

(δC)2

T �
3qL4EcAc

8L3EcAc � 12hEbIb

qL4

4EbIb
�

2TL3

3EbIb
�

Th
EcAc

EcAc

(δC)3 �
Th

EcAc

(δC)2 �
2TL3

3EbIb

a � L

(δC)2 �
Ta2(L � a)

3EbIb

A

q

L

B

h

C

D

L

Cable

(a)

A

q

B
C C

D

(b)

T

T

Fig. 10-19 (Repeated)
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10.5 Temperature Effects 873

*10.5 TEMPERATURE EFFECTS
Temperature changes may produce changes in lengths of bars and lateral
deflections of beams as discussed previously in Sections 2.5 and 9.13. If
these length changes and lateral deflections are restrained, thermal stresses
will be produced in the material. In Section 2.5 we saw how to find these
stresses in statically indeterminate bars, and now we will consider some of
the effects of temperature changes in statically indeterminate beams.

The stresses and deflections produced by temperature changes in a
statically indeterminate beam can be analyzed by methods that are similar
to those already described for the effects of loads. To begin the discussion,
consider the propped cantilever beam AB shown in Fig. 10-20. We assume
that the beam was originally at a uniform temperature T0, but later its tem-
perature is increased to T1 on the upper surface and T2 on the lower sur-
face. The variation of temperature over the height h of the beam is
assumed to be linear.

Because the temperature varies linearly, the average temperature of
the beam is

(10-40)

and occurs at midheight of the beam. The difference between this average
temperature and the initial temperature T0 results in a tendency for the
beam to change in length. If  the beam is free to expand longitudinally, its
length will increase by an amount �T given by Eq. (9-135), which is
repeated here:

(10-41)

In this equation, α is the coefficient of thermal expansion of the material
and L is the length of the beam. If  longitudinal expansion is free to occur,
no axial stresses will be produced by the temperature changes. However, if
longitudinal expansion is restrained, axial stresses will develop, as
described in Section 2.5.

Now consider the effects of the temperature differential ,
which tends to produce a curvature of the beam but no change in length.
Curvature due to temperature changes is described in Section 9.11, where
the following differential equation of the deflection curve is derived [see
Eq. (9-137)]:

(10-42)

This equation applies to a beam that is unrestrained by supports and
therefore is free to deflect and rotate. Note that when T2 is greater than T1,
the curvature is positive and the beam tends to bend concave upward.
Deflections and rotations of simple beams and cantilever beams due to a
temperature differential can be determined with the aid of Eq. (10-42), as
discussed in Section 9.11. We can now use those results when analyzing
statically indeterminate beams by the method of superposition.

d2v
dx2 �

α(T2 � T1)

h

T2 � T1

δT � α(Taver � T0)L � α aT1 � T2

2
� T0bL

Taver �
T1 � T2

2

A

L

BT1

T2

h

y

x

Fig. 10-20
Propped cantilever beam with a
temperature differential
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Chapter 10  Statically Indeterminate Beams

Method of Superposition
To illustrate the use of superposition, let us determine the reactions of the
fixed-end beam of Fig. 10-21a due to the temperature differential. As
usual, we begin the analysis by selecting the redundant reactions.
Although other choices result in more efficient calculations, we will select
the reactive force RB and reactive moment MB as the redundants in order
to illustrate the general methodology.

874

A h
x

y

L

T1

T2

B

MA

RA
RB

MB

A T1

T1

T2

T2

B

(a)

(b)

(c)

(dB)1

(uB)1

Fig. 10-21
(a) Fixed-end beam with 

a temperature differential, 
(b) released structure, 

and (c) deflection curve for 
the released structure

When the supports corresponding to the redundants are removed, we
obtain the released structure shown in Fig. 10-21b (a cantilever beam).
The deflection and angle of rotation at end B of this cantilever (due to the
temperature differential) are as follows (see Fig. 10-21c):

These equations are obtained from the solution to Prob. 9.11-2 in the
 preceding chapter. Note that when T2 is greater than T1, the deflection

is upward and the angle of rotation is counterclockwise.
Next, we need to find the deflections and angles of rotation in the

released structure (Fig. 10-21b) due to the redundants RB and MB. These
quantities are obtained from Cases 4 and 6, respectively, of Table G-1:

(δB)3 � �
MBL2

2EI
(θB)3 � �

MBL

EI

(δB)2 �
RBL3

3EI
(θB)2 �

RBL2

2EI

(δB)1 (θB)1

(δB)1 �
α(T2 � T1)L

2

2h
(θB)1 �

α(T2 � T1)L

h
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10.5 Temperature Effects 875

In these expressions, upward deflection and counterclockwise rotation are
positive (as in Fig. 10-21c).

We can now write the equations of compatibility for the deflection
and angle of rotation at support B as follows:

(10-43a)

(10-43b)

or, upon substituting the appropriate expressions,

(10-43c)

(10-43d)

These equations can be solved simultaneously for the two redundants:

The fact that RB is zero could have been anticipated initially from the sym-
metry of the fixed-end beam. If  we had utilized this fact from the outset,
the preceding solution would have been simplified because only one equa-
tion of compatibility would have been required.

We also know from symmetry (or from equations of equilibrium) that
the reaction RB is equal to the reaction RA and that the moment MA is
equal to the moment MB. Therefore, the reactions for the fixed-end beam
shown in Fig. 10-21a are as follows:

(10-44a,b)

From these results we see that the beam is subjected to a constant bending
moment due to the temperature changes.

Differential Equation of the Deflection Curve
We can also analyze the fixed-end beam of Fig. 10-21a by solving the dif-
ferential equation of the deflection curve. When a beam is subjected to
both a bending moment M and a temperature differential , the
differential equation becomes [see Eqs. (9-11) and (10-42)]:

(10-45a)d2v
dx2 �

M
EI

�
α(T2 � T1)

h

T2 � T1

RB � 0 MB �
αEI(T2 � T1)

h

α(T2 � T1)L

h
�

RBL2

2EI
�

MBL

EI
� 0

α(T2 � T1)L
2

2h
�

RBL3

3EI
�

MBL2

2EI
� 0

θB � (θB)1 � (θB)2 � (θB)3 � 0

δB � (δB)1 � (δB)2 � (δB)3 � 0

RA � RB � 0 MA � MB �
αEI(T2 � T1)

h
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Chapter 10  Statically Indeterminate Beams

or

(10-45b)

For the fixed-end beam of Fig. 10-21a, the expression for the bending
moment in the beam is

(10-46)

where x is measured from support A. Substituting into the differential
equation and integrating, we obtain the following equation for the slope of
the beam:

(10-47)

The two boundary conditions on the slope ( when and
) give and

(10-48)

A second integration gives the deflection of the beam:

(10-49)

The boundary conditions on the deflection ( when and
) give and

(10-50)

Solving simultaneously Eqs. (g) and (i), we find

From the equilibrium of the beam, we obtain and .
Thus, these results agree with those found by the method of superposition
[see Eqs. (10-44a and b)].

Note that we carried out the preceding solution without taking advan-
tage of symmetry because we wished to illustrate the general approach of
the integration method.

Knowing the reactions of the beam, we can now find the shear forces,
bending moments, slopes, and deflections. The simplicity of the results
may surprise you.

EIv¿¿ � M �
αEI(T2 � T1)

h

M � RAx � MA

RA � 0 MA �
αEI(T2 � T1)

h

v¿ � 0

RAL

3
� MA � �

αEI(T2 � T1)

h

C2 � 0x � L
x � 0v � 0

EIv �
RAx3

6
�

MAx2

2
�

αEI(T2 � T1)x
2

2h
� C2

RAL

2
� MA � �

αEI(T2 � T1)

h

C1 � 0x � L
x � 0

EIv¿ �
RAx2

2
� MAx �

αEI(T2 � T1)x

h
� C1

MB � MARB � 0
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10.5 Temperature Effects 877

• • •
The two-span beam ABC in Fig. 10-22 below has a pin support at A, a roller
support at B, and either a roller or elastic spring support (spring constant k)
at C. The beam has a height of h and is subjected to a temperature differ-
ential with temperature T1 on its upper surface and T2 on its lower surface
(see Fig. 10-22a and b). Assume that the elastic spring is unaffected by the
temperature change.

(a) If support C is a roller support, find all support reactions using the
method of superposition.

(b) Find all support reactions if the roller at C is replaced by the elastic spring
support; also find the displacement at C.

Example 10-7

Fig. 10-22
Example 10-7: Two-span beam
subject to differential
 temperature change

Solution
(a) Roller support at C. This beam (Fig. 10-22a) is statically indeterminate to

the first degree (see discussion in Example 10-3 solution). We select reac-
tion RC as the redundant which allows us to use the analyses of the
released structure (with the support at C removed) presented in
Examples 9-5 (concentrated load applied at C) and 9-19 (subject to tem-
perature differential). We will use the method of superposition, also
known as the force or flexibility method, to find the solution.

Continues ➥

(a)

A

y

B Ch
x

RA

T1

T2

T1

T2

RB RC

L a

y

y

(b)

A B Ch
x

RA1

T1

T2

T1

T2

RB1
dC1

L a

(c)

A B Ch
x

RA2
RB2

RC1
dC2

L a
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Chapter 10  Statically Indeterminate Beams878

Example 10-7 - Continued• • •
Superposition. The superposition process is shown in the Figs. 10-22b
and 10-22c in which redundant RC is removed to produce a released (or
statically determinate) structure. We first apply the “actual loads” [here,
temperature differential ], and then we apply the redundant as
a load to the second released structure.

Equilibrium. Summing forces in the y direction in Fig. 10-22a (using a
statics sign convention in which forces in the positive y direction are
positive), we find that

(a)

Summing moments about B (again using a statics sign convention in
which counterclockwise is positive), we find

so

(b)

which can be subsitituted back into Eq. (a) to give

(c)

(Note that we could also find reactions RA and RB using superposition of
the reactions shown in Figs. 10-22b and c, as follows:
and , where RA1 and RB1 are known to be zero.)

Compatibility. Displacement in the actual structure (Fig. 10-22a),
so compatibility of displacements requires that

(d)

where and are shown in Figs. 10-22b and 10-22c for the released
structures subject to temperature differential and applied redundant
force RC, respectively. Initially, and are assumed positive (upward)
when using a statics sign convention, and a negative result indicates that
the reverse is true.

Force-displacement and temperature-displacement relations. We can
now use the results of Examples 9-5 and 9-19 to find displacements
and . First, from Eq. (f) in Example 9-19, we see that

(e)

and from Eq. (9-55) (modified to include variable a as the length of
member BC and replacing load P with redundant force RC:

(f)

Reactions. We can now substitute Eqs. (e) and (f) into Eq. (d) and then
solve for redundant RC:

α(T2 � T1)

2h
(a)(L � a) �

RCa2(L � a)

3EI
� 0

δC2 �
RCa2(L � a)

3EI

δC1 �
α(T2 � T1)a(L � a)

2h

δC1
δC2

δC2δC1

δC2δC1

δC1 � δC2 � δC � 0

δC � 0

RB � RB1 � RB2

RA � RA1 � RA2

RB � �RC � aa
L
bRC � �RCa1 �

a
L
b

RA � aa
L
bRC

�RAL � RCa � 0

RA � RB � �RC

(T2 � T1)
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10.5 Temperature Effects 879

so

(g)

noting that the negative result means that reaction force RC is down-
ward [for positive temperature differential ]. The result for RC
is now substituted into Eqs. (b) and (c) to find reactions RA and RB as

(h)

(i)

where RA acts downward and RB acts upward.

Numerical example. In Example 9-19, we computed the upward displace-
ment at joint C [see Eq. (h), Example 9-19] assuming that beam ABC is a
steel wide flange, HE (see Table E-1a), with a length an
overhang , and is subject to temperature differential

Celsius. From Table H-4, the coefficient of thermal expan-(T2 � T1) � 3°

➥

➥

➥

a � L/2

RC �
�3EIα (T2 � T1)

2ah

�
3EIα(T2 � T1)(L � a)

2Lah

RB � �RCa1 �
a

L
b �

3EIα(T2 � T1)

2ah
a1 �

a

L
b

L � 9 m,700B

RA � aa

L
bRC � aa

L
b c �3EIα(T2 � T1)

2ah
d �

�3EIα (T2 � T1)

2Lh

(T2 � T1)

Continues ➥

sion for structural steel is . The modulus for steel is
210 GPa. Now we can find numerical values of reactions RA, RB, and RC
using Eqs. (g), (h), and (i):

We note that the reactions sum to zero as required for equilibrium.

(b) Spring support at C. Once again, we select reaction RC as the redundant.
However, RC is now at the base of the elastic spring support. When
redundant reaction RC is applied to the second released structure, it will
first compress the spring and then be applied to the beam at C, causing
upward deflection.

Superposition. The superposition solution approach (i.e., force or flexi-
bility method) follows that used previously and is shown in Fig. 10-23.

� �9.25 kN (downward)

RC �
�3EIα(T2 � T1)

2ah
�

�3(210 GPa)(256900 cm4)(12 � 10�6/°C)(3°C)
2(4.5 m)700 mm

� 13.87 kN (upward)

�
3(210 GPa)(256900 cm4)(12 � 10�6/°C)(3°C)(9 m � 4.5 m)

2(9 m)(4.5 m)(700 mm)

RB �
3EIα (T2 � T1)(L � a)

2Lah

� �4.62 kN (downward)

RA �
�3EIα(T2 � T1)

2Lh
�

�3(210 GPa)(256900 cm4)(12 � 10�6/°C)(3°C)
2(9 m)(700 mm)

α � 12 � 10�6/°C
Fig. 10-23
Example 10-7: Two-span  
beam with elastic support 
and subject to differential
temperature change

(a)

A B Ch
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k

RB

RC = kdCL a

(b)

A B Ch
x

RA1
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T2

RB1
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(c)
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Chapter 10  Statically Indeterminate Beams880

Example 10-7 - Continued• • •
Equilibrium. The addition of the spring support at C does not alter the
expressions of static equilibrium in Eqs. (a), (b), and (c).

Compatibility. The compatibility equation is now written for the base of
the spring (not the top of the spring), where it is attached to the
beam at C. From Fig. 10-23, we see that compatibility of displacements
requires:

(j)

Force-displacement and temperature-displacement relations. The
spring is assumed to be unaffected by the differential change, so we
conclude that the top and base of the spring displace the same in
Fig. 10-23b, which means that Eq. (e) is still valid and . However,
we must include the compression of the spring in the expression for �2,
so we get

(k)

where the expression for comes from Eq. (f).

Reactions. We can now substitute Eqs. (e) and (k) into compatibility 
with Eq. (j) and then solve for redundant RC:

so

(l)

From statics [Eqs. (b), (c)], we find:

(m)

(n)

Once again, the minus signs for RA and RC indicate that they are
downward [for positive ], while RB is upward. Finally, if
spring constant k goes to infinity, the support at C is once again a
roller support, as in Fig. 10-22, and Eqs. (l), (m), and (n) reduce to
Eqs. (g), (h), and (i).

➥

➥

➥

RB � �RCa1 �
a

L
b �

aα(T2 � T1)(L � a)2

2Lh c1
k

�
a2(L � a)

3EI
d

δC2

δ2 �
RC

k
� δC2 �

RC

k
�

RCa2(L � a)

3EI

δ1 � δC1

δ1 � δ2 � δ � 0

(T2 � T1)

RA � aa
L
bRC �

�aα(T2 � T1)a(L � a)

2Lh c 1

k
�

a2(L � a)

3EI
d

RC �
�aα (T2 � T1)(L � a)

2h c1
k

�
a2(L � a)

3EI
d

α(T2 � T1)

2h
(a)(L � a) �

RCa2(L � a)

3EI
�

RC

k
� 0
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10.6 Longitudinal Displacements at the Ends of a Beam 881

*10.6 LONGITUDINAL DISPLACEMENTS 
AT THE ENDS OF A BEAM
When a beam is bent by lateral loads, the ends of the beam move closer
together. It is common practice to disregard these longitudinal displace-
ments because usually they have no noticeable effect on the behavior of the
beam. In this section, we will show how to evaluate these displacements
and determine whether or not they are important.

Consider a simple beam AB that is pin-supported at one end and free to
displace longitudinally at the other (Fig. 10-24a). When this beam is bent by
lateral loads, the deflection curve has the shape shown in part (b) of the fig-
ure. In addition to the lateral deflections, there is a longitudinal displacement
at end B of the beam. End B moves horizontally from point B to point B�

through a small distance λ, called the curvature shortening of the beam.
As the name implies, curvature shortening is due to bending of the axis

of the beam and is not due to axial strains produced by tensile or compres-
sive forces. As we see from Fig. 10-24b, the curvature shortening is equal to
the difference between the initial length L of the straight beam and the
length of the chord AB� of the bent beam. Of course, both the lateral deflec-
tions and the curvature shortening are highly exaggerated in the figure.

Curvature Shortening
To determine the curvature shortening, we begin by considering an element
of length ds measured along the curved axis of the beam (Fig. 10-24b). The
projection of this element on the horizontal axis has length dx. The rela-
tionship between the length of the element and the length of its horizontal
projection is obtained from the Pythagorean theorem:

where dv is the increment in the deflection v of the beam as we move
through the distance dx. Thus,

(10-51a)ds � 3(dx)2 � (dv)2 � dx
C

1 � a dv
dx
b2

(ds)2 � (dx)2 � (dv)2

A

L

y

x
B

(a)

A

y

H H

(c)

xB

B

(b)

A

y

x

ds

dx
B′

l

Fig. 10-24
(a) Simple beam with lateral
loads, (b) horizontal
 displacement λ at the end of  
the beam, and (c) horizontal
reactions H for a beam with
immovable supports
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Chapter 10  Statically Indeterminate Beams

The difference between the length of the element and the length of its hor-
izontal projection is

(10-51b)

Now let us introduce the following binomial series (see Appendix C):

(10-52)

which converges when t is numerically less than 1. If  t is very small com-
pared to 1, we can disregard the terms involving t2, t3, and so on, in com-
parison with the first two terms. Then we obtain

(10-53)

The term in Eq. (10-51b) is ordinarily very small compared to
1. Therefore, we can use Eq. (10-53) with and rewrite
Eq. (10-51b) as

(10-54)

If  the left- and right-hand sides of this expression are integrated over the
length of the beam, we obtain an expression for the difference between the
length of the beam and the length of the chord AB� (Fig. 10-24b):

Thus, the curvature shortening is

(10-55)

This equation is valid provided the deflections and slopes are small.
Note that when the equation of the deflection curve is known, we can

substitute into Eq. (10-55) and determine the shortening λ.

Horizontal Reactions
Now suppose that the ends of the beam are prevented from translating
longitudinally by immovable supports (Fig. 10-24c). Because the ends can-
not move toward each other, a horizontal reaction H will develop at each
end. This force will cause the axis of the beam to elongate as bending
occurs.

In addition, the force H itself  will have an effect upon the bending
moments in the beam, because an additional bending moment (equal to H
times the deflection) will exist at every cross section. Thus, the deflection
curve of the beam depends not only upon the lateral loads but also upon
the reaction H, which in turn depends upon the shape of the deflection
curve, as shown by Eq. (10-55).

λ �
1
2 L

L

0
a dv

dx
b2

dx

L � AB� �
L

L

0

1
2
a dv

dx
b2

dx

11 � t � 1 �
t
2

�
t2

8
�

t2

16
� Á

ds � dx � dx
C

1 � a dv
dx
b2

� dx � dx c
C

1 � a dv
dx
b2

� 1 d

ds � dx � dx c1 �
1
2
a dv

dx
b2

� 1 d �
1
2
a dv

dx
b2

dx

t � (dv/dx)2
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10.6 Longitudinal Displacements at the Ends of a Beam 883

Rather than attempt an exact analysis of this complicated problem, let
us obtain an approximate expression for the force H in order to ascertain its
importance. For that purpose, we can use any reasonable approximation to
the deflection curve. In the case of a pin-ended beam with downward loads
(Fig. 10-24c), a good approximation is a parabola having the equation

(10-56)

where � is the downward deflection at the midpoint of the beam. The cur-
vature shortening λ corresponding to this assumed deflected shape can be
found by substituting the expression for the deflection v into Eq. (10-55)
and integrating; the result is

(10-57)

The horizontal force H required to elongate the beam by this amount is

(10-58)

in which EA is the axial rigidity of the beam. The corresponding axial ten-
sile stress in the beam is

(10-59)

This equation gives a close estimate of the tensile stress produced by the
immovable supports of a simple beam.

General Comments
Now let us substitute some numerical values so that we can assess the sig-
nificance of the curvature shortening. The deflection � at the midpoint of
the beam is usually very small compared to the length; for example, the
ratio �/L might be 1/500 or smaller. Using this value, and also assuming
that the material is steel with 200 GPa, we find from Eq. (10-59) that
the tensile stress is only 2.1 MPa. Since the allowable tensile stress in the
steel is typically 100 MPa or larger, it becomes clear that the axial stress
due to the horizontal force H may be disregarded when compared to the
ordinary working stresses in the beam.

Furthermore, in the derivation of Eq. (10-55) we assumed that the ends
of the beam were held rigidly against horizontal displacements, which is
not physically possible. In reality, small longitudinal displacements always
occur, thereby reducing the axial stress calculated from Eq. (10-55).*

From the preceding discussions, we conclude that the customary prac-
tice of disregarding the effects of any longitudinal restraints and assuming
that one end of the beam is on a roller support (regardless of the actual
construction) is justified. The stiffening effect of longitudinal restraints is
significant only when the beam is very long and slender and supports large
loads. This behavior is sometimes referred to as “string action,” because it
is analogous to the action of a cable, or string, supporting a load.

*For a more complete analysis of beams with immovable supports, see Ref. 10-1.

λ �
8δ2

3L

v � �
4δx(L � x)

L2

E �

σt �
H
A

�
8Eδ2

3L2

H �
EAλ

L
�

8EAδ2

3L2
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884

CHAPTER SUMMARY & REVIEW

In Chapter 10, we investigated the behavior of statically indeterminate
beams acted on by concentrated and also distributed loads, such as self-
weight; thermal effects and longitudinal displacement due to curvature
shortening also were considered as specialized topics at the end of the
chapter. We developed two analysis approaches: (1) integration of
the equation of the elastic curve using available boundary conditions to
solve for unknown constants of integration and redundant reactions, and
(2) the more general approach (used earlier in Chapters 2 and 3 for axial
and torsional structures, respectively) based on superposition. In the super-
position procedure, we augmented the equilibrium equations from statics
with compatibility equations to generate a sufficient number of equations
to solve for all unknown forces. The force-displacement relations were used
with the compatibility equations to generate the additional equations
needed to solve the problem. The number of additional equations required
was seen to be dependent on the degree of statical indeterminacy of the
beam  structure. The superposition approach is limited to beam structures
made of linearly elastic materials. The major concepts presented in this
chapter are as follows:

1. Several types of statically indeterminate beam structures, such as
propped cantilever, fixed-end, and continuous beams were discussed.
The degree of statical indeterminacy was determined for each beam
type, and a released structure was defined for each case by removing
different redundant reaction forces.

2. The released structure must be statically determinate and stable
under the action of the applied loadings. Note that it is also possible
to insert internal releases on axial force, shear, and moment (see
 discussion in Chapter 4) to produce the released structure, as will be
discussed in later courses on structural analysis.

3. For simple statically indeterminate beam structures, the differential
equation of the elastic curve can be written as a second-, third-, or
fourth-order equation in terms of moment, shear force, and distrib-
uted load, respectively. By applying boundary and other conditions,
one can solve for the constants of integration and the redundant
reactions.

4. A more general solution approach for more complex beam and other
types of structures is the method of superposition (also known as the
force or flexibility method). Here, additional equations which
describe the compatibility of displacements and incorporate the
appropriate force-displacement relations for beams are used to sup-
plement the equilibrium equations. The number of compatibility
equations required for solution is equal to the degree of statical
 indeterminacy of the beam structure.
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5. In most cases, there are multiple paths to the same solution depend-
ing upon the choice of the redundant reaction.

6. Differential temperature changes and longitudinal displacements
induce reaction forces only in statically indeterminate beams; if  the
beam is statically determinate, joint displacements will occur, but no
internal forces will result from these effects.

885
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886 Chapter 10  Statically Indeterminate Beams

Differential Equations  
of the Deflection Curve
The problems for Section 10.3 are to be solved by integrat-
ing the differential equations of the deflection curve. All
beams have constant flexural rigidity EI. When drawing
shear-force and bending-moment diagrams, be sure to label
all critical ordinates, including maximum and minimum
values.

10.3-1 A propped cantilever beam AB of length L is
loaded by a counterclockwise moment M0 acting at sup-
port B (see figure).

Beginning with the second-order differential equation
of the deflection curve (the bending-moment equation),
obtain the reactions, shear forces, bending moments,
slopes, and deflections of the beam. Construct the shear-
force and bending-moment diagrams, labeling all critical
ordinates.

10.3-2 A fixed-end beam AB of length L supports a uni-
form load of intensity q (see figure).

Beginning with the second-order differential equation
of the deflection curve (the bending-moment equation),
obtain the reactions, shear forces, bending moments,
slopes, and deflections of the beam. Construct the shear-
force and bending-moment diagrams, labeling all critical
ordinates.

PROBLEMS CHAPTER 10
10.3-3 A cantilever beam AB of length L has a fixed sup-
port at A and a roller support at B (see figure). The sup-
port at B is moved downward through a distance �B.

Using the fourth-order differential equation of the
deflection curve (the load equation), determine the reac-
tions of the beam and the equation of the deflection curve.
(Note: Express all results in terms of the imposed displace-
ment �B.)

A

L

y

x
B

M0

MA

RA

RB

PROB. 10.3-1

dB

L

A

B

x

y

RA

MA

RB

PROB. 10.3-3

y

x
A L B

kR 

q

MA

RA
MB

PROB. 10.3-4

A

L

y

x
B

MB
MA

RA RB

q

PROB. 10.3-2

10.3-4 A cantilever beam of length L and loaded by uni-
form load of intensity q has a fixed support at A and
spring support at B with rotational stiffness kR. A rotation
at B, θB, results in a reaction moment .MB � kR � θB

10.3-5 A cantilever beam of length L and loaded by a tri-
angularly distributed load of maximum intensity q0 at B.

Use the fourth-order differential equation of the
deflection curve to solve for reactions at A and B and also
the equation of the deflection curve.

Find rotation θB and displacement �B at end B. Use
the second-order differential equation of the deflection
curve to solve for displacements at end B.
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10.3-9 A fixed-end beam of length L is loaded by a dis-
tributed load in the form of a cosine curve with maximum
intensity q0 at A.

(a) Use the fourth-order differential equation of the
deflection curve to solve for reactions at A and B and also
the equation of the deflection curve.

(b) Repeat part (a) if  the distributed load is now
.q0(1 � x2/L2)

10.3-8 A fixed-end beam of length L is loaded by a dis-
tributed load in the form of a cosine curve with maximum
intensity q0 at A.

(a) Use the fourth-order differential equation of the
deflection curve to solve for reactions at A and B and also
the equation of the deflection curve.

(b) Repeat part (a) using the distributed load
.q0 sin(πx/L)

10.3-6 A propped cantilever beam of length L is loaded by
a parabolically distributed load with maximum intensity q0
at B.

(a) Use the fourth-order differential equation of the
deflection curve to solve for reactions at A and B and also
the equation of the deflection curve.

(b) Repeat part (a) if  the parabolic load is replaced by
.q0 sin(πx/2L)

A L

y q0

x
B

MA

RA

RB

PROB. 10.3-5

L
2
—

L
2
—

A

y
px
—
Lq0  cos q0

x
B

MA

MB

RA
RB

(     )

PROB. 10.3-8

A L

y

x
B

MA

MB

RA
RB

px
—
2Lq0  cos 

q0 (     )

PROB. 10.3-9

A L

y q0

B
MA

MB

RA
RB

PROB. 10.3-10PROB. 10.3-7

A L

y
q0

x
B

MA

RA

RB

q0
x2
—
L2(     )

PROB. 10.3-6

10.3-7 A propped cantilever beam of length L is loaded by
a parabolically distributed load with maximum intensity q0
at A.

(a) Use the fourth-order differential equation of the
deflection curve to solve for reactions at A and B and also
the equation of the deflection curve.

(b) Repeat part (a) if  the parabolic load is replaced by
.q0 cos(πx /2L)

10.3-10 A fixed-end beam of length L is loaded by trian-
gularly distributed load of maximum intensity q0 at B.

Use the fourth-order differential equation of the
deflection curve to solve for reactions at A and B and also
the equation of the deflection curve.

887Problems Chapter 10

q(x) = q0[1 – (x/L)2]q0

y

A L
x

B
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Chapter 10  Statically Indeterminate Beams

Determine the reactions RA, RB, and MA for this
beam. Also, draw the shear-force and bending-moment
diagrams, labeling all critical ordinates.

888

10.3-11 A counterclockwise moment M0 acts at the mid-
point of a fixed-end beam ACB of length L (see figure).

Beginning with the second-order differential equation
of the deflection curve (the bending-moment equation),
determine all reactions of the beam and obtain the equa-
tion of the deflection curve for the left-hand half  of the
beam.

Then construct the shear-force and bending-moment
diagrams for the entire beam, labeling all critical ordinates.
Also, draw the deflection curve for the entire beam.

A

L
—
2

L
—
2

y

x
BC

MB

M0

MA

RA RB

PROB. 10.3-11

A

a b

B

L

MA

RA
RB

P

PROB. 10.4-1

A L B
x

y

MA

MB

RA

q

PROB. 10.4-2

A B
L L

x

y

C

MA

RA
RB

q

PROB. 10.4-3

A

L
—
2

L
—
2

y

x
BC

MA

M0

RA RB

PROB. 10.3-12

10.3-12 A propped cantilever beam of length L is loaded by
a concentrated moment M0 at midpoint C. Use the  second-
order differential equation of the deflection curve to solve
for reactions at A and B. Draw shear-force and bending-
moment diagrams for the entire beam. Also find the equa-
tions of the deflection curves for both halves of the beam,
and draw the deflection curve for the entire beam.

Method of Superposition
The problems for Section 10.4 are to be solved by the method
of superposition. All beams have constant flexural rigidity
EI unless otherwise stated. When drawing shear-force and
bending-moment diagrams, be sure to label all critical ordi-
nates, including maximum and minimum values.

10.4-1 A propped cantilever beam AB of  length L car-
ries a concentrated load P acting at the position shown
in the figure.

10.4-2 A beam with a guided support at B is loaded by a
uniformly distributed load with intensity q. Use the
method of superposition to solve for all reactions. Also
draw shear-force and bending-moment diagrams, labeling
all critical ordinates.

10.4-3 A propped cantilever beam of length 2L with sup-
port at B is loaded by a uniformly distributed load with
intensity q. Use the method of superposition to solve for
all reactions. Also draw shear-force and bending-moment
diagrams, labeling all critical ordinates.

10.4-4 The continuous frame ABC has a pin support at A,
roller supports at B and C, and a rigid corner connection
at B (see figure). Members AB and BC each have flexural
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Problems Chapter 10

rigidity EI. A moment M0 acts counterclockwise at B.
(Note: Disregard axial deformations in member AB and
consider only the effects of bending.)

(a) Find all reactions of the frame.
(b) Find joint rotations θ at A, B, and C.
(c) Find the required new length of member BC in

terms of L, so that θB in part (b) is doubled in size.

889

L

L/2

C

B

A M0

PROB. 10.4-4

L

L/2

C

BA M0

PROB. 10.4-5

PROB. 10.4-6

L

L/2L/2

A

C

D

B

A

M0 M0

PROB. 10.4-7

P

B

D

C

A

tAB

tCD

PROB. 10.4-8

10.4-5 The continuous frame ABC has a pin support at A,
roller supports at B and C, and a rigid corner connection
at B (see figure). Members AB and BC each have flexural
rigidity EI. A moment M0 acts counterclockwise at A.
(Note: Disregard axial deformations in member AB and
consider only the effects of bending.)

(a) Find all reactions of the frame.
(b) Find joint rotations θ at A, B, and C.
(c) Find the required new length of member AB in

terms of L, so that θA in part (b) is doubled in size.

10.4-6 Beam AB has a pin support at A and a roller sup-
port at B. Joint B is also restrained by a linearly elastic
rotational spring with stiffness kR, which provides a resist-
ing moment MB due to rotation at B. Member AB has flex-
ural rigidity EI. A moment M0 acts counterclockwise at B.

(a) Use the method of superposition to solve for all
reactions.

10.4-7 The continuous frame ABCD has a pin support at B,
roller supports at A, C, and D, and rigid corner connections
at B and C (see figure). Members AB, BC, and CD each have
flexural rigidity EI. Moment M0 acts counterclockwise at B
and clockwise at C. (Note: Disregard axial deformations in
member AB and consider only the effects of bending.)

(a) Find all reactions of the frame.
(b) Find joint rotations θ at A, B, C, and D.
(c) Repeat parts (a) and (b) if  both moments M0

are counterclockwise.

10.4-8 Two flat beams AB and CD, lying in horizontal
planes, cross at right angles and jointly support a vertical
load P at their midpoints (see figure). Before the load P is
applied, the beams just touch each other. Both beams are
made of the same material and have the same widths. Also,
the ends of both beams are simply supported. The lengths
of beams AB and CD are LAB and LCD, respectively.

What should be the ratio of the thicknesses of
the beams if all four reactions are to be the same?

tAB /tCD

(b) Find an expression for joint rotation θA in terms of
spring stiffness kR. What is θA when ? What is θAkR : 0
when ? What is θA when ?kR : q kR � 6EI/L

L

BA M0

MB = kRuB

kR
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Chapter 10  Statically Indeterminate Beams

10.4-12 A continuous beam ABC with two unequal spans,
one of length L and one of length 2L, supports a uniform
load of intensity q (see figure).

Determine the reactions RA, RB, and RC for this
beam. Also, draw the shear-force and bending-moment
diagrams, labeling all critical ordinates.

890

10.4-9 A propped cantilever beam of length 2L is loaded
by a uniformly distributed load with intensity q. The beam
is supported at B by a linearly elastic spring with stiffness
k. Use the method of superposition to solve for all reac-
tions. Also draw shear-force and bending-moment dia-
grams, labeling all critical ordinates. Let .k � 6EI /L3

B
k 

A
L L

x

y

C
MA

RA

RB = kdB

q0

PROB. 10.4-9

A

RA RB RC

L

B C

2L

q

PROB. 10.4-12

D

E

A B
C

P = 8 kN

L = 3 m
 =1.5 m

k 

MA

RA
RB

B C

P

A

L
2
—

PROB. 10.4-13

BA
x

y

C
MA

RA MB = kRuB

q

kR =  EI
L
—

PROB. 10.4-10

A B
MBMA

RA RB

q0

L
2
— L

2
—

PROB. 10.4-11

10.4-10 A propped cantilever beam of length 2L is loaded
by a uniformly distributed load with intensity q. The beam
is supported at B by a linearly elastic rotational spring with
stiffness kR, which provides a resisting moment MB due to
rotation θB. Use the method of superposition to solve for
all reactions. Also draw shear-force and bending-moment
diagrams, labeling all critical ordinates. Let .kR � EI/L

10.4-11 Determine the fixed-end moments (MA and MB)
and fixed-end forces (RA and RB) for a beam of length L
supporting a triangular load of maximum intensity q0 (see
figure). Then draw the shear-force and bending-moment
diagrams, labeling all critical ordinates.

10.4-13 Beam ABC is fixed at support A and rests (at
point B) upon the midpoint of beam DE (see the first part
of the figure). Thus, beam ABC may be represented as a
propped cantilever beam with an overhang BC and a lin-
early elastic support of stiffness k at point B (see the sec-
ond part of the figure).

The distance from A to B is , the distance
from B to C is , and the length of beam DE is

. Both beams have the same flexural rigidity EI.
A concentrated load acts at the free end of
beam ABC.

Determine the reactions RA, RB, and MA for beam
ABC. Also, draw the shear-force and bending-moment dia-
grams for beam ABC, labeling all critical ordinates.

P � 8 kN
L � 3 m

L/2 � 1.5 m
L � 3 m
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Problems Chapter 10

10.4-14 A propped cantilever beam has flexural rigidity
. When the loads shown are applied to

the beam, it settles at joint B by 5 mm. Find the reaction at
joint B.

EI � 4.5 MN # m2

891

10.4-17 A beam ABC is fixed at end A and supported by
beam DE at point B (see figure). Both beams have the same
cross section and are made of the same material.

(a) Determine all reactions due to the load P.
(b) What is the numerically largest bending moment

in either beam?

A
B

C

MA

RA

RB

q

2EI
EI

L
2

L
2

PROB. 10.4-16

A

y

x
CB

5 kN/m 2 kN

4 m

5 mm
settlement

1 m
2 m

RB
RA

MA

PROB. 10.4-14

A

D

CB

E

P

MA

RA
RD RE

L
4

L
4

L
4

L
4

PROB. 10.4-17

A

L

C
D

B

RB

RA
RC

RDL L

q

PROB. 10.4-18

A CB

RA
RB RC

LL

q

x

y

� = 10 mm

PROB. 10.4-19

A

L1 = 2 m

RA

x

y

MA
B C

D

q

H = 1 m

IPN 160

6 mm tie rod

L2 = 0.6 m

PROB. 10.4-15

10.4-15 A cantilever beam is supported by a tie rod at B
as shown. Both the tie rod and the beam are steel with

. The tie rod is just taut before the distrib-
uted load is applied.

(a) Find the tension force in the tie rod.
(b) Draw shear-force and bending-moment diagrams

for the beam, labeling all critical ordinates.

q � 3 kN/m
E � 210 GPa

10.4-16 The figure shows a nonprismatic, propped can-
tilever beam AB with flexural rigidity 2EI from A to C and
EI from C to B.

Determine all reactions of the beam due to the uni-
form load of  intensity q. (Hint: Use the results of
Probs. 9.7-1 and 9.7-2.)

10.4-18 A three-span continuous beam ABCD with three
equal spans supports a uniform load of intensity q (see
 figure).

Determine all reactions of this beam and draw the
shear-force and bending-moment diagrams, labeling all
critical ordinates.

10.4-19 A beam rests on supports at A and B and is loaded
by a distributed load with intensity q as shown. A small gap
� exists between the unloaded beam and the support at C.
Assume that span length and flexural rigidity of
the beam . Plot a graph of the bend-
ing moment at B as a function of the load intensity q.

(Hint: See Example 9-9 for guidance on computing
the deflection at C.)

EI � 1.2 � 106 N # m2
L � 1 m
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Chapter 10  Statically Indeterminate Beams

10.4-22 Two identical, simply supported beams AB and
CD are placed so that they cross each other at their mid-
points (see figure). Before the uniform load is applied, the
beams just touch each other at the crossing point.

Determine the maximum bending moments
and in beams AB and CD, respectively, due to
the uniform load if  the intensity of  the load is

and the length of each beam is .q � 6.4 kN/m L � 4 m

(MCD)max

(MAB)max

892

10.4-20 A fixed-end beam AB of length L is subjected to
a moment M0 acting at the position shown in the figure.

(a) Determine all reactions for this beam.
(b) Draw shear-force and bending-moment diagrams

for the special case in which .a � b � L/2

A

L

a b

B

MBMA

M0

RA RB

PROB. 10.4-20
A

B

C

D
q

PROB. 10.4-22

D

A B

C

E

3 m 3 m

Wood beam

Steel rod

1.8 m

3 m
6 kN/m

IPN 180

PROB. 10.4-23

h =
1.3 m

t = 40 mm

d =
1 m

B

A

PROB. 10.4-21

10.4-21 A temporary wood flume serving as a channel for
irrigation water is shown in the figure. The vertical boards
forming the sides of the flume are sunk in the ground,
which provides a fixed support. The top of the flume is
held by tie rods that are tightened so that there is no deflec-
tion of the boards at that point. Thus, the vertical boards
may be modeled as a beam AB, supported and loaded as
shown in the last part of the figure.

Assuming that the thickness t of the boards is 40 mm,
the depth d of the water is 1 m, and the height h to the tie
rods is 1.3 m, what is the maximum bending stress σ in the
boards? (Hint: The numerically largest bending moment
occurs at the fixed support.)

10.4-23 The cantilever beam AB shown in the figure is an
IPN steel I-beam with . The simple beam
DE is a wood beam (nominal dimen-
sions) in cross section with . A steel rod AC of
diameter 6 mm, length 3 m, and serves as a
hanger joining the two beams. The hanger fits snugly
between the beams before the uniform load is applied to
beam DE.

Determine the tensile force F in the hanger and the
maximum bending moments MAB and MDE in the two
beams due to the uniform load, which has intensity

. (Hint: To aid in obtaining the maximum
bending moment in beam DE, draw the shear-force and
bending-moment diagrams.)

q � 6 kN/m

E � 200 GPa
E � 10 GPa

100 mm � 300 mm
180 E � 200 GPa
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Problems Chapter 10

10.4-24 The beam AB shown in the figure is simply sup-
ported at A and B and supported on a spring of stiffness k
at its midpoint C. The beam has flexural rigidity EI and
length 2L.

What should be the stiffness k of the spring in order
that the maximum bending moment in the beam (due to
the uniform load) will have the smallest possible value?

893

A

L

B

L

q

C
k 

PROB. 10.4-24

A

B

P

L
—
2

L—
2

L

C

HA
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VA

PROB. 10.4-26

B
k kk

L
2
—

L
4
—

L
4
—

A C

RA
RB

RC

P

PROB. 10.4-27

A

B

P

L—
2

L—
2

L

C

HA

MA

VC

VA

PROB. 10.4-25

10.4-25 The continuous frame ABC has a fixed support at
A, a roller support at C, and a rigid corner connection at B
(see figure). Members AB and BC each have length L and
flexural rigidity EI. A horizontal force P acts at midheight
of member AB.

(a) Find all reactions of the frame.
(b) What is the largest bending moment Mmax in the

frame? (Note: Disregard axial deformations in member AB
and consider only the effects of bending.)

10.4-26 The continuous frame ABC has a pinned support
at A, a guided support at C, and a rigid corner connection
at B (see figure). Members AB and BC each have length L
and flexural rigidity EI. A horizontal force P acts at mid-
height of member AB.

(a) Find all reactions of the frame.
(b) What is the largest bending moment Mmax in the

frame? (Note: Disregard axial deformations in members
AB and BC and consider only the effects of bending.)

10.4-27 A wide-flange beam ABC rests on three identical
spring supports at points A, B, and C (see figure). The flex-
ural rigidity of the beam is , and
each spring has stiffness . The length of the
beam is .

If  the load P is 25 kN, what are the reactions RA, RB,
and RC? Also, draw the shear-force and bending-moment
diagrams for the beam, labeling all critical ordinates.

L � 5 m
k � 10 MN/m

EI � 20 � 106 N # m2

Ship container handling cranes made up of two
plane frames (Courtesy of the National Information
Service for Earthquake Engineering EERC, University
of California Berkeley.)
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Chapter 10  Statically Indeterminate Beams

10.4-30 A thin steel beam AB used in conjunction with an
electromagnet in a high-energy physics experiment is
securely bolted to rigid supports (see figure). A magnetic
field produced by coils C results in a force acting on the
beam. The force is trapezoidally distributed with maxi-
mum intensity . The length of the beam
between supports is and the dimension c of
the trapezoidal load is 50 mm. The beam has a rectangular
cross section with width and height

.
Determine the maximum bending stress and the

maximum deflection for the beam. (Disregard any
effects of axial deformations and consider only the effects
of bending. Use .)E � 200 GPa

δmax

σmax

h � 20 mm
b � 60 mm

L � 200 mm
q0 � 18 kN/m

894

10.4-28 A fixed-end beam AB of length L is subjected to
a uniform load of intensity q acting over the middle region
of the beam (see figure).

(a) Obtain a formula for the fixed-end moments MA
and MB in terms of the load q, the length L, and the length
b of the loaded part of the beam.

(b) Plot a graph of the fixed-end moment MA versus
the length b of the loaded part of the beam. For conven-
ience, plot the graph in the following nondimensional
form:

with the ratio b/L varying between its extreme values of 0
and 1.

(c) For the special case in which , draw
the shear-force and bending-moment diagrams for the
beam, labeling all critical ordinates.

a � b � L/3

MA

qL2/12
versus

b
L

A

a ab

L

B

MBMA

RA RB

q

PROB. 10.4-28

q0

A

L

C

h

c c

B

PROB. 10.4-30

L L

A

ppp

C B

d1 d1d2

PROB. 10.4-29

10.4-29 A beam supporting a uniform load of intensity q
throughout its length rests on pistons at points A, C, and
B (see figure). The cylinders are filled with oil and are con-
nected by a tube so that the oil pressure on each piston is
the same. The pistons at A and B have diameter d1, and the
piston at C has diameter d2.

(a) Determine the ratio of d2 to d1 so that the largest
bending moment in the beam is as small as possible.

(b) Under these optimum conditions, what is the
largest bending moment Mmax in the beam?

(c) What is the difference in elevation between point C
and the end supports?

Temperature Effects
The beams described in the problems for Section 10.5 have
constant flexural rigidity EI.

10.5-1 A cable CD of length H is attached to the third
point of a simple beam AB of length L (see figure). The
moment of inertia of the beam is I, and the effective cross-
sectional area of the cable is A. The cable is initially taut
but without any initial tension.

(a) Obtain a formula for the tensile force S in the cable
when the temperature drops uniformly by �T degrees,
assuming that the beam and cable are made of the same
material (modulus of elasticity E and coefficient of ther-
mal expansion α). Use the method of superposition in the
solution.

(b) Repeat part (a) assuming a wood beam and steel
cable.

A
C

B

DCable

� T

H

2L
——
3

L—
3

PROB. 10.5-1
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Problems Chapter 10

10.5-2 A propped cantilever beam, fixed at the left-hand
end A and simply supported at the right-hand end B, is sub-
jected to a temperature differential with temperature T1 on
its upper surface and T2 on its lower surface (see figure).

(a) Find all reactions for this beam. Use the method
of superposition in the solution. Assume the spring sup-
port is unaffected by temperature.

(b) What are the reactions when ?k : q

895

(a) Obtain formulas for the longitudinal force H at
the ends of  the beam and the corresponding axial tensile
stress σt.

(b) For an aluminum-alloy beam with 
, calculate the tensile stress σt when the ratio

of the deflection δ to the length L equals 1/200, 1/400, and
1/600.

E � 70 GPa

A

L

B

q

h

A

L

B

q

h
H H

PROB. 10.6-2

A
h

L
MA

RA

RB = kdB

T1

T2

y

x

k

B

PROBS. 10.5-2 and 10.5-3

AH

L

H

y

xB
d

PROB. 10.6-1

A
h

L

CB

RA RC

T1

T2 L—
3

RB = kdB

k

y

x

PROBS. 10.5-4 and 10.5-5

10.5-3 Solve the preceding problem by integrating the dif-
ferential equation of the deflection curve.

10.5-4 A two-span beam with spans of lengths L and L/3 is
subjected to a temperature differential with temperature T1
on its upper surface and T2 on its lower surface (see figure).

(a) Determine all reactions for this beam. Use the
method of superposition in the solution. Assume the
spring support is unaffected by temperature.

(b) What are the reactions when ?k : q

10.5-5 Solve the preceding problem by integrating the dif-
ferential equation of the deflection curve

Longitudinal Displacements 
at the Ends of Beams

10.6-1 Assume that the deflected shape of a beam AB with
immovable pinned supports (see figure) is given by the
equation , where δ is the deflection at
the midpoint of the beam and L is the length. Also, assume
that the beam has constant axial rigidity EA.

v � �δ sin πx/L

10.6-2 (a) A simple beam AB with length L and height h
supports a uniform load of intensity q (see the first part of
the figure). Obtain a formula for the curvature shortening
λ of this beam. Also, obtain a formula for the maximum
bending stress σb in the beam due to the load q.

(b) Now assume that the ends of the beam are pinned
so that curvature shortening is prevented and a horizontal
force H develops at the supports (see the second part of the
figure). Obtain a formula for the corresponding axial tensile
stress σt.

(c) Using the formulas obtained in parts (a) and (b),
calculate the curvature shortening λ , the maximum bend-
ing stress σb, and the tensile stress σt for the following
steel beam: length , height ,
 modulus of  elasticity , and moment of
 inertia . Also, the load on the beam
has intensity .

Compare the tensile stress σt produced by the axial
forces with the maximum bending stress σb produced by
the uniform load.

q � 25 kN/m
I � 36 � 106 mm4

E � 200 GPa
L � 3 m h � 300 mm
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Chapter 10  Statically Indeterminate Beams896

SOME ADDITIONAL REVIEW PROBLEMS: CHAPTER 10

R-10.1 Propped cantilever beam AB has moment M1 applied
at joint B. Framework ABC has moment M2 applied at C.
Both structures have constant flexural rigidity EI. If the ratio
of the applied moments , the ratio of the 
reactive moments at clamped support A is
 approximately:

(A) 1
(B) 3/2
(C) 2
(D) 5/2

MA1/MA2

M1/M2 � 3/2

A
x

B

L

M1

MA1

y

A
x

B

L

M2 C

L/2

MA2

y

A B

L

M1

θB1

x

y

θB2

A
x

B

L

M2 C

L/2

y

R-10.2 Propped cantilever beam AB has moment M1 applied
at joint B. Framework ABC has moment M2 applied at C.
Both structures have constant flexural rigidity EI. If the ratio
of the applied moments , the ratio of the joint
rotations at B, , is approximately:

(A) 1
(B) 3/2
(C) 2
(D) 5/2

θB1/θB2

M1/M2 � 3/2
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Some Additional Review Problems: Chapter 10 897

R-10.4 Structure 1 with member BC of length L/2 has
force P1 applied at joint C. Structure 2 with member BC of
length L has force P2 applied at C. Both structures have
constant flexural rigidity EI. The required ratio of the
applied forces so that joint B rotations θB1 and θB2 are
equal is approximately:

(A) 1
(B) 5/4
(C) 3/2
(D) 2

P1/P2

R-10.3 Structure 1 with member BC of length L/2 has
force P1 applied at joint C. Structure 2 with member BC of
length L has force P2 applied at C. Both structures have
constant flexural rigidity EI. If  the ratio of  the
applied forces , the ratio of the joint B rotations

is approximately:
(A) 1
(B) 5/4
(C) 3/2
(D) 2

θB1/θB2

P1/P2 � 5/2

A
x

B

C

C

L

L/2

P1

y

A
x

B

y

P2

L

L

θB1

θB2
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Chapter 10  Statically Indeterminate Beams

R-10.6 Structure 1 with member BC of length L/2 has
force P1 applied at joint C. Structure 2 with member BC of
length L has force P2 applied at C. Both structures have
constant flexural rigidity EI. The required ratio of the
applied forces so that joint B reactions RB1 and RB2
are equal is approximately:

(A) 1
(B) 5/4
(C) 3/2
(D) 2

P1/P2

898

R-10.5 Structure 1 with member BC of length L/2 has
force P1 applied at joint C. Structure 2 with member BC of
length L has force P2 applied at C. Both structures have
constant flexural rigidity EI. If  the ratio of the applied
forces , the ratio of the joint B reactions

is approximately:
(A) 1
(B) 5/4
(C) 3/2
(D) 2

RB1/RB2

P1/P2 � 5/2

A
x

B

RB1

C

C

L

L/2

P1

y

A
x

B

y

P2

RB2

L

L
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Some Additional Review Problems: Chapter 10

R-10.7 Structure 1 with member BC of length L/2 has
force P1 applied at joint C. Structure 2 with member BC of
length L has force P2 applied at C. Both structures have
constant flexural rigidity EI. If  the ratio of the applied
forces , the ratio of the joint C lateral deflec-
tions is approximately:

(A) 1/2
(B) 4/5
(C) 3/2
(D) 2

δC1/δC2

P1/P2 � 5/2

899

A
x

B

δC1

C

L

L/2

P1

y

δC2
C

A
x

B

y

P2

L

L
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C H A P T E R11
Columns

Critical load carrying elements in structures such as columns and other slender compression members are
 susceptible to buckling failure. (Jose AS Reyes/Shutterstock)
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Chapter 11 is organized as follows:

Chapter 11 is primarily concerned with the buckling of
slender columns which support compressive loads in
structures. First, the critical axial load which indicates
the onset of buckling is defined and computed for a
number of simple models composed of rigid bars and
elastic springs (Section 11.2). Stable,  neutral, and
unstable equilibrium conditions are described for these
idealized rigid structures. Then linear elastic buckling
of slender columns with pinned-end conditions is con-
sidered (Section 11.3). The differential equation of the
deflection curve is derived and solved to obtain
expressions for the Euler buckling load (Pcr) and asso-
ciated buckled shape for the fundamental mode.
Critical stress (σcr) and slenderness ratio (L/r) are
defined, and the effects of large deflections, column
imperfections, inelastic behavior, and optimum

shapes of columns are explained. Critical loads and
buckled mode shapes are then computed for three
additional  column  support cases (fixed-free, fixed-
fixed, and fixed-pinned) (Section 11.4), and the
 concept of effective length (Le) is introduced. If the
axial compressive load is not applied at the centroid
of the cross  section of the column, the eccentricity of
the load must be considered in the differential equa-
tion of the deflection curve (Section 11.5), and the
behavior of the  column is changed as shown in the
load-deflection diagram. Maximum stresses in
columns with  eccentric loads may be computed using
the secant formula (Section 11.6). Finally, if the mate-
rial is stressed beyond the proportional limit, inelastic
 buckling must be considered (Sections 11.7 and 11.8)
using one of three available theories.
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Chapter 11  Columns

11.1 INTRODUCTION
Load-carrying structures may fail in a variety of ways, depending upon
the type of structure, the conditions of support, the kinds of loads, and the
materials used. For instance, an axle in a vehicle may fracture suddenly
from repeated cycles of loading, or a beam may deflect excessively, so that
the structure is unable to perform its intended functions. These kinds of
failures are prevented by designing structures so that the maximum
stresses and maximum displacements remain within tolerable limits. Thus,
strength and stiffness are important factors in design, as discussed
throughout the preceding chapters.

Another type of failure is buckling, which is the subject matter of this
chapter. We will consider specifically the buckling of columns, which are
long, slender structural members loaded axially in compression (Fig. 11-1a).
If a compression member is relatively slender, it may deflect laterally and
fail by bending (Fig. 11-1b) rather than failing by direct compression of the
material. You can demonstrate this behavior by compressing a plastic ruler
or other slender object. When lateral bending occurs, we say that the col-
umn has buckled. Under an increasing axial load, the lateral deflections will
increase too, and eventually the column will collapse completely.

The phenomenon of buckling is not limited to columns. Buckling can
occur in many kinds of structures and can take many forms. When you
step on the top of an empty aluminum can, the thin cylindrical walls
buckle under your weight and the can collapses. When a large bridge col-
lapsed a few years ago, investigators found that failure was caused by the
buckling of a thin steel plate that wrinkled under compressive stresses.
Buckling is one of the major causes of failures in structures, and therefore
the possibility of buckling should always be considered in design.

11.2 BUCKLING AND STABILITY
To illustrate the fundamental concepts of buckling and stability, we will
analyze the idealized structure, or buckling model, shown in Fig. 11-2a.
This hypothetical structure consists of two rigid bars AB and BC, each of
length L/2. They are joined at B by a pin connection and held in a vertical
position by a rotational spring having stiffness βR.*

This idealized structure is analogous to the column of Fig. 11-1a,
because both structures have simple supports at the ends and are com-
pressed by an axial load P. However, the elasticity of the idealized struc-
ture is “concentrated” in the rotational spring, whereas a real column can
bend throughout its length (Fig. 11-1b).

In the idealized structure, the two bars are perfectly aligned and the
axial load P has its line of action along the longitudinal axis (Fig. 11-2a).
Consequently, the spring is initially unstressed and the bars are in direct
compression.

902

Fig. 11-1
Buckling of a slender column

due to an axial compressive 
load P

A A

B

L

P

B

P

(a) (b)

*The general relationship for a rotational spring is , where M is the moment acting on the spring, βR is
the rotational stiffness of the spring, and is the angle through which the spring rotates. Thus, rotational stiff-
ness has units of moment divided by angle, such as N�m/rad. The analogous relationship for a translational
spring is , where F is the force acting on the spring, β is the translational stiffness of the spring (or spring
constant), and δ is the change in length of the spring. Thus, translational stiffness has units of force divided by
length, such as N/m.

θ

F � βδ

M � βRθ
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11.2 Buckling and Stability 903

Now suppose that the structure is disturbed by some external force
that causes point B to move a small distance laterally (Fig. 11-2b). The
rigid bars rotate through small angles θ and a moment develops in
the spring. The direction of this moment is such that it tends to return the
structure to its original straight position, and therefore it is called a
restoring moment. At the same time, however, the tendency of the axial
compressive force is to increase the lateral displacement. Thus, these two
actions have opposite effects—the restoring moment tends to decrease the
displacement and the axial force tends to increase it.

Now consider what happens when the disturbing force is removed. If
the axial force P is relatively small, the action of the restoring moment will
predominate over the action of the axial force and the structure will return
to its initial straight position. Under these conditions, the structure is said
to be stable. However, if the axial force P is large, the lateral displacement
of point B will increase and the bars will rotate through larger and larger
angles until the structure collapses. Under these conditions, the structure
is unstable and fails by lateral buckling.

Critical Load
The transition between the stable and unstable conditions occurs at a spe-
cial value of the axial force known as the critical load (denoted by the sym-
bol Pcr). We can determine the critical load of our buckling model by
considering the structure in the disturbed position (Fig. 11-2b) and inves-
tigating its equilibrium.

First, we consider the entire structure as a free body and sum
moments about support A. This step leads to the conclusion that there is
no horizontal reaction at support C. Second, we consider bar BC as a free
body (Fig. 11-2c) and note that it is subjected to the action of the axial
forces P and the moment MB in the spring. The moment MB is equal to
the rotational stiffness βR times the angle of rotation 2θ of the spring;
thus,

(11-1a)MB � 2βRθ

Fig. 11-2
Buckling of an idealized 
structure consisting of two rigid
bars and a rotational spring

L
2
—

L
2
—

A

C

B

Rigid
bar

bR

(a) (b)

(c)

P

A

C

B

B
bR

P

Rigid
bar u

C

P

u

u

MB

P
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Chapter 11  Columns

Since the angle θ is a small quantity, the lateral displacement of point B is
. Therefore, we obtain the following equation of equilibrium by sum-

ming moments about point B for bar BC (Fig. 11-2c):

(11-1b)

or, upon substituting from Eq. (11-1a),

(11-2)

One solution of this equation is , which is a trivial solution and
merely means that the structure is in equilibrium when it is perfectly
straight, regardless of the magnitude of the force P.

A second solution is obtained by setting the term in parentheses equal
to zero and solving for the load P, which is the critical load:

(11-3)

At the critical value of the load the structure is in equilibrium regardless
of the magnitude of the angle θ [provided the angle remains small,
because we made that assumption when deriving Eq. (11-1b)].

From the preceding analysis we see that the critical load is the only
load for which the structure will be in equilibrium in the disturbed posi-
tion. At this value of the load, the restoring effect of the moment in the
spring just matches the buckling effect of the axial load. Therefore, the
critical load represents the boundary between the stable and unstable con-
ditions.

If the axial load is less than Pcr, the effect of the moment in the spring
predominates and the structure returns to the vertical position after a
slight disturbance; if the axial load is larger than Pcr, the effect of the axial
force predominates and the structure buckles:

.
.

From Eq. (11-3) we see that the stability of the structure is increased either
by increasing its stiffness or by decreasing its length. Later in this chapter,
when we determine critical loads for various types of columns, we will see
that these same observations apply.

Summary
Let us now summarize the behavior of the idealized structure (Fig. 11-2a)
as the axial load P increases from zero to a large value.

When the axial load is less than the critical load , the
structure is in equilibrium when it is perfectly straight. Because the equi-
librium is stable, the structure returns to its initial position after being dis-
turbed. Thus, the structure is in equilibrium only when it is perfectly
straight .

When the axial load is greater than the critical load , the struc-
ture is still in equilibrium when (because it is in direct compressionθ � 0

(P 7 Pcr)
(θ � 0)

(0 6 P 6 Pcr)

If P 7 Pcr, the structure is unstable
If P 6 Pcr, the structure is stable

Pcr �
4βR

L

θ � 0

a2βR �
PL
2
bθ � 0

MB � P aθL
2
b � 0

θL/2

904
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11.2 Buckling and Stability 905

and there is no moment in the spring), but the equilibrium is unstable and
cannot be maintained. The slightest disturbance will cause the structure to
buckle.

At the critical load , the structure is in equilibrium even
when point B is displaced laterally by a small amount. In other words,
the structure is in equilibrium for any small angle θ, including .
However, the structure is neither stable nor unstable—it is at the
boundary between stability and instability. This condition is referred to
as neutral equilibrium.

The three equilibrium conditions for the idealized structure are shown
in the graph of axial load P versus angle of rotation θ (Fig. 11-3). The two
heavy lines, one vertical and one horizontal, represent the equilibrium
conditions. Point B, where the equilibrium diagram branches, is called a
bifurcation point.

The horizontal line for neutral equilibrium extends to the left and
right of the vertical axis because the angle θ may be clockwise or counter-
clockwise. The line extends only a short distance, however, because our
analysis is based upon the assumption that θ is a small angle. (This
assumption is quite valid, because θ is indeed small when the structure
first departs from its vertical position. If buckling continues and θ
becomes large, the line labeled “Neutral equilibrium” curves upward, as
shown later in Fig. 11-12.)

The three equilibrium conditions represented by the diagram of Fig. 11-3
are analogous to those of a ball placed upon a smooth surface (Fig. 11-4). If
the surface is concave upward, like the inside of a dish, the equilibrium is sta-
ble and the ball always returns to the low point when disturbed. If the surface
is convex upward, like a dome, the ball can theoretically be in equilibrium on
top of the surface, but the equilibrium is unstable and in reality the ball rolls
away. If the surface is perfectly flat, the ball is in neutral equilibrium and
remains wherever it is placed.

As we will see in the next section, the behavior of an ideal elastic column
is analogous to that of the buckling model shown in Fig. 11-2. Furthermore,
many other kinds of structural and mechanical systems fit this model.

θ � 0

(P � Pcr)

Fig. 11-4
Ball in stable, unstable, and 
neutral equilibrium

Fig. 11-3
Equilibrium diagram for buck-
ling of an idealized structure

P

B

O u

Stable equilibrium

Unstable equilibrium

Neutral equilibrium

Pcr
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Chapter 11  Columns906

Example 11-1• • •

Structure 1

Structure 2

L

L/2

L/2

L/2

L/2

Initial
position

Initial
position

ΔC = θDL

ΔB = 0

ΔA

ΔC = θDL

θC = 2θD

ΔA

ΔB = θD(3L/2)

(a) (b)

θD

θD

β

βR

C C

L

D

B B

A A

D

P PFig. 11-5
Example 11-1: Buckled
 positions of two idealized
structures, (a) one supported
laterally by a translational
spring, and (b) the other
 supported by a rotational
 elastic connection

Two idealized columns are shown in Fig. 11-5. Both columns are initially
straight and vertical. The first column (Structure 1, Fig. 11-5a) consists of
a single rigid bar ABCD which is pinned at D and laterally supported at B
by a spring with translational stiffness β. The second column (Structure 2,
Fig. 11-5b) is comprised of rigid bars ABC and CD that are joined at C by
an elastic connection with rotational stiffness . Structure 2 is
pinned at D and has a roller support at B. Find an expression for critical
load Pcr for each column.

βR � (2/5)βL2

L/2

ΔC = θDL

ΔA

MC

C

B

A

L/2

P

P

θC = 2θD

(c)

L/2

L/2

Initial
position

ΔB

ΔA

ΔC = θDL

(d)

θD

θC

θD

βR

β

C

B

L

D

P

A

L/2

MC = βR (θC − θD)

θCL

θC

HB
C

(e)

B

A

L/2

P

P

HB = βΔB
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11.2 Buckling and Stability 907

Solution
Structure 1. We begin by considering the equilibrium of Structure 1 in a dis-
turbed position caused by some external load and defined by small rotation
angle θD (Fig. 11-5a). Summing moments about D, we get the following
equilibrium equation:

(a)

where (b)

and (c)

Since the angle θD is small, lateral displacement ΔA is obtained using Eq. (b).
The force HB in the translational spring at B is the product of spring constant
β and small horizontal displacement ΔB. Substituting the expression for ΔA
from Eq. (b) and the expression for HB from Eq (c) into Eq. (a), and solving
for P, we find that the critical load Pcr for Structure 1 is

(d)

The buckled mode shape for Structure 1 is the disturbed position shown in
Fig. 11-5a.

Structure 2. The translational spring at B is now replaced by a roller sup-
port, and the structure is assembled using two rigid bars (ABC and CD) joined
by a rotational spring having stiffness βR. If we sum moments about D for
the undisturbed structure, we conclude that horizontal reaction HB is zero.
Next, we consider the equilibrium of Structure 2 in a disturbed position, once
again defined by small rotation angle θD (Fig. 11-5b). Using a free-body dia-
gram of the upper bar ABC (Fig. 11-5c) and noting that the moment Mc is
equal to rotational stiffness βR times the total relative rotation of the spring,
we have

(e)

We see that equilibrium of bar ABC requires that

(f)

Substituting expressions for Mc, ΔA, and Δc into Eq. (f), we obtain

So the critical load Pcr for Structure 2 is

(g)

The buckled mode shape for Structure 2 is the disturbed position shown in
Fig. 11-5b.

Combined Model and Analysis. We can create a more advanced or
 complex structure model by combining the features of Structure 1 and
Structure 2 into a single structure, as shown in Fig. 11-5d. This idealized

➥

➥

HB � β¢B � β cθDa3L
2
b d

¢A � θDaL � 2
L
2
b � θD(2L)

©MD � 0 P¢A � HBa3L
2
b

Pcr �
3βR

2L
or Pcr �

3
2L
a2

5
βL2b �

3
5

βL

Pcr �
MC

¢A � ¢C

�
βR(3θD)

θCa L
2
b � θD(L)

�
βR(3θD)

θD(2L)

©MC � 0 MC � P(¢A � ¢C) � 0

MC � βR(θC � θD) � βR(2θD � θD) � βR(3θD)

Pcr �
HB

¢A

a3L
2
b �

βθDa3L
2
b

θD(2L)
a3L

2
b �

9
8

βL

Continues ➥
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Chapter 11  Columns908

structure is shown in its disturbed position and now has both translational
spring β at B and rotational elastic connection βR at joint C where rigid bars
ABC and CD are joined. Note that two rotation angles, θC and θD, are now
required to uniquely describe any arbitrary position of the disturbed
 structure (alternatively, we could use translations ΔB and ΔC, for example,
instead of θC and θD). We will refer to position angles θC and θD as degrees
of freedom. Hence, the combined structure has two degrees of freedom
and, therefore, has two possible buckled mode shapes and two different
critical loads, each of which causes the associated buckling mode. In con-
trast, we see now that Structures 1 and 2 are single degree of freedom struc-
tures, because only θD is needed (or alternatively, ΔC) to define the buckled
shape of each structure depicted in Figs. 11-5a and b.

We can now observe that if rotational spring βR becomes infinitely stiff
in the combined structure (Fig. 11-5d) (but β remains finite), the two degree
of freedom (2DOF) combined model reduces to the single degree of free-
dom (SDOF) model of Fig. 11-5a. Similarly, if translational spring β becomes
infinitely stiff in Fig. 11-5d (while βR remains finite), the elastic support at B
becomes a roller support. We conclude that the solutions for Pcr for
Structures 1 and 2 in Eqs. (d) and (g) are simply two special-case solutions of
the general combined model in Fig. 11-5d.

Our goal now is to find a general solution for the 2DOF model in
Fig. 11-5d and then show that solutions for Pcr for Structures 1 and 2 can be
obtained from this general solution.

First, we consider the equilibrium of the entire 2DOF model in the dis-
turbed position shown in Fig. 11-5d. Summing moments about D, we get

where

and

Combining these expressions, we obtain the following equation in terms of
the two unknown position angles (θC and θD) as

(h)

We can obtain a second equation which describes the equilibrium of
the disturbed structure from the free-body diagram of bar ABC alone
(Fig. 11-5e). The moment at C is equal to rotational spring stiffness βR times
the relative rotation at C, and the spring force HB is equal to the spring con-
stant β times the total translational displacement at B:

(i)

and

(j)HB � β¢B � β aθC
L
2

� θDLb

MC � βR(θC � θD)

θCaP �
3
4

βLb � θDaP �
3
2

βLb � 0

HB � β¢B � β aθC
L
2

� θDLb

¢A � (θC � θD)L

©MD � 0 P¢A � HBa3L
2
b � 0

Example 11-1 - Continued• • •
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11.2 Buckling and Stability 909

Summing moments about C in Fig. 11-5e, we get the second equilibrium
equation for the combined model as

(k)

Inserting expressions for MC using Eq. (i) and HB using Eq. (j) into Eq. (k) and
simplifying gives

(l)

We now have two algebraic equations in Eqs. (h) and (l) and two
unknowns (θC,θD). These equations can have nonzero (i.e., nontrivial) solu-
 tions only if the determinant of the coefficients of θC and D is equal to
zero. Substituting the assumed expression for and then evalu -
ating the determinant produces the following characteristic equation for
the system:

(m)

Solving Eq. (m) using the quadratic formula results in two possible val-
ues of the critical load:

These are the eigenvalues of the combined 2DOF system. Usually, the lower
value of the critical load is of more interest, because the structure will
buckle first at this lower load value. If we substitute Pcr1 and Pcr2 back into
Eqs. (h) and (l), we can find the buckled mode shape (i.e., eigenvector) asso-
ciated with each critical load.

Application of combined model to Structures 1 and 2. If the rotational
spring stiffness βR goes to infinity while the translational spring stiffness β
remains finite, the combined model (Fig. 11-5d) reduces to Structure 1
because the rotation angles θC and θD are equal, as shown in Fig. 11-5a.
Equating θC and θD in Eq. (h) and solving for P results in , which
is the critical load for Structure 1 [see Eq. (d)].

If the rotational spring stiffness βR remains finite while the transla-
tional spring stiffness β goes to infinity, the combined model (Fig. 11-5d)
reduces to Structure 2. The translational spring becomes a roller support,
so (i.e., ) while rotation angle (i.e., θC is  
clockwise, so negative, as shown in Fig. 11-5b). Inserting and

into Eq. (l) gives the critical load for Structure 2 [see Eq. (g)].θC � �2θD

β � 0
HB � 0 θC � �2θD¢B � 0

Pcr � (9/8)βL

θ

©MC � 0 P(θCL) � MC � HB
L
2

� 0

Pcr2 � βLa41 � 1241
40

b � 1.413βL

Pcr1 � βLa41 � 1241
40

b � 0.637βL

P2 � a41
20

βLbP �
9

10
(βL)2 � 0

βR (2/5βL2)

θCaP �
1
4

βL �
βR

L
b � θDa

βR

L
�

1
2

βLb � 0
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Chapter 11  Columns

11.3 COLUMNS WITH PINNED ENDS
We begin our investigation of the stability behavior of columns by ana-
lyzing a slender column with pinned ends (Fig. 11-6a). The column is
loaded by a vertical force P that is applied through the centroid of the end
cross section. The column itself is perfectly straight and is made of a lin-
early elastic material that follows Hooke’s law. Since the column is
assumed to have no imperfections, it is referred to as an ideal column.

For purposes of analysis, we construct a coordinate system with its
origin at support A and with the x axis along the longitudinal axis of the
column. The y axis is directed to the left in the figure, and the z axis (not
shown) comes out of the plane of the figure toward the viewer. We assume
that the xy plane is a plane of symmetry of the column and that any bend-
ing takes place in that plane (Fig. 11-6b). The coordinate system is identi-
cal to the one used in our previous discussions of beams, as can be seen by
rotating the column clockwise through an angle of 90�.

When the axial load P has a small value, the column remains perfectly
straight and undergoes direct axial compression. The only stresses are the
uniform compressive stresses obtained from the equation . The
column is in stable equilibrium, which means that it returns to the straight
position after a disturbance. For instance, if we apply a small lateral load
and cause the column to bend, the deflection will disappear and the col-
umn will return to its original position when the lateral load is removed.

As the axial load P is gradually increased, we reach a condition of
neutral equilibrium in which the column may have a bent shape. The cor-
responding value of the load is the critical load Pcr. At this load the col-
umn may undergo small lateral deflections with no change in the axial
force. For instance, a small lateral load will produce a bent shape that
does not disappear when the lateral load is removed. Thus, the critical
load can maintain the column in equilibrium either in the straight position
or in a slightly bent position.

At higher values of the load, the column is unstable and may collapse
by buckling, that is, by excessive bending. For the ideal case that we are
discussing, the column will be in equilibrium in the straight position even

σ � P/A

910

Fig. 11-6
Column with pinned ends: 

(a) ideal column, (b) buckled
shape, and (c) axial force P

and bending moment M acting
at a cross section P

(a) (b)

A

B

L

P

A

B

P

y y y

x x

x

M

(c)

A

x

v
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11.3 Columns with Pinned Ends 911

when the axial force P is greater than the critical load. However, since the
equilibrium is unstable, the smallest imaginable disturbance will cause the
column to deflect sideways. Once that happens, the deflections will imme-
diately increase and the column will fail by buckling. The behavior is sim-
ilar to that described in the preceding section for the idealized buckling
model (Fig. 11-2).

The behavior of an ideal column compressed by an axial load P
(Figs. 11-6a and b) may be summarized as follows:

the column is in stable equilibrium in the straight
position.
the column is in neutral equilibrium in either the straight
or a slightly bent position.

the column is in unstable equilibrium in the straight
position and will buckle under the slightest disturbance.

Of course, a real column does not behave in this idealized manner because
imperfections are always present. For instance, the column is not perfectly
straight, and the load is not exactly at the centroid. Nevertheless, we begin
by studying ideal columns because they provide insight into the behavior
of real columns.

Differential Equation for Column Buckling
To determine the critical loads and corresponding deflected shapes for an
ideal pin-ended column (Fig. 11-6a), we use one of the differential equations
of the deflection curve of a beam [see Eqs. (9-16a, b, and c) in Section 9.2].
These equations are applicable to a buckled column because the column
bends as though it were a beam (Fig. 11-6b).

Although both the fourth-order differential equation (the load equa-
tion) and the third-order differential equation (the shear-force equation)
are suitable for analyzing columns, we will elect to use the second-order
equation (the bending-moment equation) because its general solution is
usually the simplest. The bending-moment equation [Eq. (9-16a)] is

(11-4)

in which M is the bending moment at any cross section, v is the lateral
deflection in the y direction, and EI is the flexural rigidity for bending in
the xy plane.

The bending moment M at distance x from end A of the buckled col-
umn is shown acting in its positive direction in Fig. 11-6c. Note that the
bending moment sign convention is the same as that used in earlier chap-
ters, namely, positive bending moment produces positive curvature (see
Figs. 9-3 and 9-4).

The axial force P acting at the cross section is also shown in Fig. 11-6c.
Since there are no horizontal forces acting at the supports, there are no
shear forces in the column. Therefore, from equilibrium of moments about
point A, we obtain

(11-5)

where v is the deflection at the cross section.

If P 7 Pcr,

If P � Pcr,

If P 6 Pcr,

M � Pv � 0 or M � �Pv

EIv�� � M
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Chapter 11  Columns

This same expression for the bending moment is obtained if we assume
that the column buckles to the right instead of to the left (Fig. 11-7a).
When the column deflects to the right, the deflection itself is �v but the
moment of the axial force about point A also changes sign. Thus, the equi-
librium equation for moments about point A (see Fig. 11-7b) is

which gives the same expression for the bending moment M as before.
The differential equation of the deflection curve [Eq. (11-4)] now

becomes

(11-6)

By solving this equation, which is a homogeneous, linear, differential equa-
tion of second order with constant coefficients, we can determine the mag-
nitude of the critical load and the deflected shape of the buckled column.

Note that we are analyzing the buckling of columns by solving the
same basic differential equation as the one we solved in Chapters 9 and 10
when finding beam deflections. However, there is a fundamental difference
in the two types of analysis. In the case of beam deflections, the bending
moment M appearing in Eq. (11-4) is a function of the loads only—it does
not depend upon the deflections of the beam. In the case of buckling, the
bending moment is a function of the deflections themselves [Eq. (11-5)].

Thus, we now encounter a new aspect of bending analysis. In our pre-
vious work, the deflected shape of the structure was not considered, and
the equations of equilibrium were based upon the geometry of the unde-
formed structure. Now, however, the geometry of the deformed structure
is taken into account when writing equations of equilibrium.

Solution of the Differential Equation
For convenience in writing the solution of the differential equation of
Eq. (11-6), we introduce the notation

(11-7a,b)

in which k is always taken as a positive quantity. Note that k has units of
the reciprocal of length, and therefore quantities such as kx and kL are
nondimensional.

Using this notation, we can rewrite Eq. (11-6) in the form

(11-8)

From mathematics we know that the general solution of this equation is

(11-9)

in which C1 and C2 are constants of integration (to be evaluated from the
boundary conditions, or end conditions, of the column). Note that the
number of arbitrary constants in the solution (two in this case) agrees with
the order of the differential equation. Also, note that we can verify the

v � C1 sin kx � C2 cos kx

v�� � k2v � 0

k2 �
P
EI

or k �
C

P
EI

EIv�� � Pv � 0

M � P(�v) � 0

912

Fig. 11-7
Column with pinned ends (alter-

native direction of buckling)
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11.3 Columns with Pinned Ends 913

solution by substituting the expression for v [Eq. (11-9)] into the differen-
tial equation [Eq. (11-8)] and reducing it to an identity.

To evaluate the constants of integration appearing in the solution
[Eq. (11-9)], we use the boundary conditions at the ends of the column;
namely, the deflection is zero when and (see Fig. 11-5b):

(11-10a,b)

The first condition gives , and therefore,

(11-10c)

The second condition gives

(11-10d)

From this equation we conclude that either or . We
will consider both of these possibilities.

Case 1. If the constant C1 equals zero, the deflection v is also zero [see
Eq. (11-10c)], and therefore the column remains straight. In addition, we
note that when C1 equals zero, Eq. (11-10d) is satisfied for any value of
the quantity kL. Consequently, the axial load P may also have any value
[see Eq. (11-7b)]. This solution of the differential equation (known in
mathematics as the trivial solution) is represented by the vertical axis of the
load-deflection diagram (Fig. 11-8). It gives the behavior of an ideal col-
umn that is in equilibrium (either stable or unstable) in the straight posi-
tion (no deflection) under the action of the compressive load P.

Case 2. The second possibility for satisfying Eq. (11-10d) is given by
the following equation, known as the buckling equation:

(11-11)

This equation is satisfied when . However, since
means that , this solution is not of interest. Therefore, the

solutions we will consider are

(11-12)

or [see Eq. (11-6a)]:

(11-13)

This formula gives the values of P that satisfy the buckling equation and
provide solutions (other than the trivial solution) to the differential
equation.

The equation of the deflection curve from Eqs. (11-10c) and (11-12) is

(11-14)

Only when P has one of the values given by Eq. (11-13) is it theoretically
possible for the column to have a bent shape [given by Eq. (11-14)]. For

v � C1 sin kx � C1 sin
nπx
L

n � 1, 2, 3, Á

P �
n2π 2EI

L2 n � 1, 2, 3, Á

kL � nπ n � 1, 2, 3, Á

kL � 0 P � 0
kL � 0, π, 2π, Á

sin kL � 0

sin kL � 0C1 � 0

C1 sin kL � 0

v � C1 sin kx

C2 � 0

v(0) � 0 and v(L) � 0

x � Lx � 0

Fig. 11-8 
Load-deflection diagram for an
ideal, linearly elastic column

P

B

O v

Stable equilibrium

Unstable equilibrium

Neutral equilibrium

Pcr
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Chapter 11  Columns

all other values of P, the column is in equilibrium only if it remains
straight. Therefore, the values of P given by Eq. (11-13) are the critical
loads for this column.

Critical Loads
The lowest critical load for a column with pinned ends (Fig. 11-9a) is
obtained when :

(11-15)

The corresponding buckled shape (sometimes called a mode shape) is

(11-16)

as shown in Fig. 11-9b. The constant C1 represents the deflection at the
midpoint of the column and may have any small value, either positive or
negative. Therefore, the part of the load-deflection diagram correspon-
ding to Pcr is a horizontal straight line (Fig. 11-8). Thus, the deflection at
the critical load is undefined, although it must remain small for our equa-
tions to be valid. Above the bifurcation point B the equilibrium is unsta-
ble, and below point B it is stable.

Buckling of a pinned-end column in the first mode is called the fun-
damental case of column buckling.

The type of buckling described in this section is called Euler buckling,
and the critical load for an ideal elastic column is often called the Euler
load. The famous mathematician Leonhard Euler (1707–1783), generally
recognized as the greatest mathematician of all time, was the first person
to investigate the buckling of a slender column and determine its critical
load (Euler published his results in 1744); see Ref. 11-1.

By taking higher values of the index n in Eqs. (11-13) and (11-14), we
obtain an infinite number of critical loads and corresponding mode
shapes. The mode shape for has two half-waves, as pictured in
Fig. 11-9c. The corresponding critical load is four times larger than the
critical load for the fundamental case. The magnitudes of the critical loads

n � 2

v � C1 sin
πx
L

Pcr �
π 2EI

L2

n � 1

914

Fig. 11-9
Buckled shapes for an ideal 

column with pinned ends: 
(a) initially straight column, 

(b) buckled shape for ,
and (c) buckled shape 
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11.3 Columns with Pinned Ends 915

are proportional to the square of n, and the number of half-waves in the
buckled shape is equal to n.

Buckled shapes for the higher modes are often of no practical interest
because the column buckles when the axial load P reaches its lowest criti-
cal value. The only way to obtain modes of buckling higher than the first
is to provide lateral support of the column at intermediate points, such as
at the midpoint of the column shown in Fig. 11-9 (see Example 11-2 at the
end of this section).

General Comments
From Eq. (11-15), we see that the critical load of a column is propor-
tional to the flexural rigidity EI and inversely proportional to the
square of the length. Of particular interest is the fact that the strength
of the material itself, as represented by a quantity such as the propor-
tional limit or the yield stress, does not appear in the equation for the
critical load. Therefore, increasing a strength property does not raise
the critical load of a slender column. It can only be raised by increasing
the flexural rigidity, reducing the length, or providing additional lateral
support.

The flexural rigidity can be increased by using a “stiffer” material
(that is, a material with larger modulus of elasticity E ) or by distributing
the material in such a way as to increase the moment of inertia I of the
cross section, just as a beam can be made stiffer by increasing the moment
of inertia. The moment of inertia is increased by distributing the material
farther from the centroid of the cross section. Hence, a hollow tubular
member is generally more economical for use as a column than a solid
member having the same cross-sectional area.

Reducing the wall thickness of a tubular member and increasing its
lateral dimensions (while keeping the cross-sectional area constant) also
increases the critical load because the moment of inertia is increased.
This process has a practical limit, however, because eventually the wall
itself will become unstable. When that happens, localized buckling
occurs in the form of small corrugations or wrinkles in the walls of the
column. Thus, we must distinguish between overall buckling of a col-
umn, which is discussed in this chapter, and local buckling of its parts.
The latter requires more detailed investigations and is beyond the scope
of this book.

In the preceding analysis (see Fig. 11-9), we assumed that the
xy plane was a plane of symmetry of the column and that buckling took
place in that plane. The latter assumption will be met if the column has
lateral supports perpendicular to the plane of the figure, so that the col-
umn is constrained to buckle in the xy plane. If the column is supported
only at its ends and is free to buckle in any direction, then bending will
occur about the principal centroidal axis having the smaller moment of
inertia.

For instance, consider the rectangular and wide-flange cross sections
shown in Fig. 11-10. In each case, the moment of inertia I1 is greater than
the moment of inertia I2; hence the column will buckle in the 1–1 plane,
and the smaller moment of inertia I2 should be used in the formula for the
critical load. If the cross section is square or circular, all centroidal axes
have the same moment of inertia and buckling may occur in any longitu-
dinal plane.

Fig. 11-10
Cross sections of columns show-
ing principal centroidal axes
with I1 7 I2

1 1 1 1

2

2

2

2

C C
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Chapter 11  Columns

Critical Stress
After finding the critical load for a column, we can calculate the cor-
responding critical stress by dividing the load by the cross-sectional
area. For the fundamental case of buckling (Fig. 11-9b), the critical
stress is

(11-17)

in which I is the moment of inertia for the principal axis about which
buckling occurs. This equation can be written in a more useful form by
introducing the notation

(11-18)

in which r is the radius of gyration of the cross section in the plane of bend-
ing.* Then the equation for the critical stress becomes

(11-19)

in which L/r is a nondimensional ratio called the slenderness ratio:

(11-20)

Note that the slenderness ratio depends only on the dimensions of the
column. A column that is long and slender will have a high slenderness
ratio and therefore a low critical stress. A column that is short and
stubby will have a low slenderness ratio and will buckle at a high stress.
Typical values of the slenderness ratio for actual columns are between
30 and 150.

The critical stress is the average compressive stress on the cross section
at the instant the load reaches its critical value. We can plot a graph of this
stress as a function of the slenderness ratio and obtain a curve known as
Euler’s curve (Fig. 11-11). The curve shown in the figure is  plotted for a
structural steel with . The curve is valid only when the
 critical stress is less than the proportional limit of the steel, because
the equations were derived using Hooke’s law. Therefore, we draw a
 horizontal line on the graph at the proportional limit of the steel (assumed
to be 250 MPa) and terminate Euler’s curve at that level of stress.**

E � 200 GPa

Slenderness ratio �
L
r

σcr �
π 2E

(L/r)2

r �
C

I
A

σcr �
Pcr

A
�

π 2EI
AL2

916

*Radius of gyration is described in Section 12.4.

**Euler’s curve is not a common geometric shape. It is sometimes mistakenly called a hyperbola, but hyper-
bolas are plots of polynomial equations of the second degree in two variables, whereas Euler’s curve is a
plot of an equation of the third degree in two variables.

Fig. 11-11
Graph of Euler’s curve [from

Eq. (11-19)] for structural steel
with and

σpl � 250 MPa
E � 200 GPa
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11.3 Columns with Pinned Ends 917

Effects of Large Deflections, Imperfections,
and Inelastic Behavior
The equations for critical loads were derived for ideal columns, that is,
columns for which the loads are precisely applied, the construction is
perfect, and the material follows Hooke’s law. As a consequence, we
found that the magnitudes of the small deflections at buckling were
undefined.* Thus, when , the column may have any small deflec-
tion, a condition represented by the horizontal line labeled A in the load-
deflection diagram of Fig. 11-12. (In this figure, we show only the
right-hand half of the diagram, but the two halves are symmetric about
the vertical axis.)

The theory for ideal columns is limited to small deflections because we
used the second derivative v� for the curvature. A more exact analysis,
based upon the exact expression for curvature [Eq. (9-19) in Section 9.2],
shows that there is no indefiniteness in the magnitudes of the deflections at
buckling. Instead, for an ideal, linearly elastic column, the load-deflection
diagram goes upward in accord with curve B of Fig. 11-12. Thus, after a
linearly elastic column begins to buckle, an increasing load is required to
cause an increase in the deflections.

Now suppose that the column is not constructed perfectly; for
instance, the column might have an imperfection in the form of a small
initial curvature, so that the unloaded column is not perfectly straight.
Such imperfections produce deflections from the onset of loading, as
shown by curve C in Fig. 11-12. For small deflections, curve C approaches
line A as an asymptote. However, as the deflections become large, it
approaches curve B. The larger the imperfections, the further curve C
moves to the right, away from the vertical line. Conversely, if the column
is constructed with considerable accuracy, curve C approaches the verti-
cal axis and the horizontal line labeled A. By comparing lines A, B, and C,
we see that for practical purposes the critical load represents the maxi-
mum load-carrying capacity of an elastic column, because large deflec-
tions are not acceptable in most applications.

Finally, consider what happens when the stresses exceed the propor-
tional limit and the material no longer follows Hooke’s law. Of course, the
load-deflection diagram is unchanged up to the level of load at which the
proportional limit is reached. Then the curve for inelastic behavior
(curve D) departs from the elastic curve, continues upward, reaches a
maximum, and turns downward.

The precise shapes of the curves in Fig. 11-12 depend upon the mate-
rial properties and column dimensions, but the general nature of the
behavior is typified by the curves shown.

Only extremely slender columns remain elastic up to the critical
load. Stockier columns behave inelastically and follow a curve such
as D. Thus, the maximum load that can be supported by an inelastic col-
umn may be considerably less than the Euler load for that same column.
Furthermore, the descending part of curve D represents sudden and cat-
astrophic collapse, because it takes smaller and smaller loads to main-
tain larger and larger deflections. By contrast, the curves for elastic

P � Pcr

*In mathematical terminology, we solved a linear eigenvalue problem. The critical load is an eigenvalue and
the corresponding buckled mode shape is an eigenfunction as discussed in Example 11-1.

Fig. 11-12
Load-deflection diagram for
columns: Line A, ideal elastic col-
umn with small deflections;
curve B, ideal elastic column
with large deflections; curve C,
elastic column with imperfec-
tions; and curve D, inelastic col-
umn with imperfections

P
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Pcr

B

A

D
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O
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Chapter 11  Columns

columns are quite stable, because they continue upward as the deflec-
tions increase, and therefore it takes larger and larger loads to cause an
increase in deflection. (Inelastic buckling is described in more detail in
Sections 11.7 and 11.8.)

Optimum Shapes of Columns
Compression members usually have the same cross sections throughout
their lengths, and therefore only prismatic columns are analyzed in this
chapter. However, prismatic columns are not the optimum shape if min-
imum weight is desired. The critical load of a column consisting of a
given amount of material may be increased by varying the shape so that
the column has larger cross sections in those regions where the bending
moments are larger. Consider, for instance, a column of solid circular
cross section with pinned ends. A column shaped as shown in Fig. 11-13a
will have a larger critical load than a prismatic column made from the
same volume of material. As a means of approximating this optimum
shape, prismatic columns are sometimes reinforced over part of their
lengths (Fig. 11-13b).

Now consider a prismatic column with pinned ends that is free to
buckle in any lateral direction (Fig. 11-14a). Also, assume that the column
has a solid cross section, such as a circle, square, triangle, rectangle, or
hexagon (Fig. 11-14b). An interesting question arises: For a given cross-
sectional area, which of these shapes makes the most efficient column? Or,
in more precise terms, which cross section gives the largest critical load?
Of course, we are assuming that the critical load is calculated from the
Euler formula using the smallest moment of inertia for the
cross section.

While a common answer to this question is “the circular shape,” you
can readily demonstrate that a cross section in the shape of an equilat-
eral triangle gives a 21% higher critical load than does a circular cross
section of the same area (see Prob. 11.3-11). The critical load for an
equilateral triangle is also higher than the loads obtained for the other
shapes; hence, an equilateral triangle is the optimum cross section (based
only upon theoretical considerations). For a mathematical analysis of
optimum column shapes, including columns with varying cross sections,
see Ref. 11-4.

Pcr � π2EI/L2

918

Fig. 11-13 
Nonprismatic columns

(a) (b)

PP

Fig. 11-14
Which cross-sectional shape is

the optimum shape for a 
prismatic column?

P

(a)

(b)
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11.3 Columns with Pinned Ends 919

• • •

Continues ➥

A long, slender column ABC is pin supported at the ends and compressed by
an axial load P (Fig. 11-15). Lateral support is provided at the midpoint B in
the plane of the figure. However, lateral support perpendicular to the plane
of the figure is provided only at the ends.

The column is constructed of a standard steel shape (IPN 220) having
modulus of elasticity and proportional limit .
The total length of the column is .

Determine the allowable load Pallow using a factor of safety
with respect to Euler buckling of the column.

n � 2.5
L � 8 m

σpl � 300 MPaE � 200 GPa

Example 11-2

Slender steel column with lat-
eral support near midheight
(Lester Lefkowitz/Getty Images)

C

A

B

P

X X

L
—
2

= 4 m

L—
2

= 4 m

1 1

2

2
Section X–X

IPN 220

(a) (b)

Fig. 11-15
Example 11-2: Euler buckling
of a slender column

Solution
Because of the manner in which it is supported, this column may buckle in
either of the two principal planes of bending. As one possibility, it may
buckle in the plane of the figure, in which case the distance between lateral
supports is and bending occurs about axis 2–2 (see Fig. 11-9c for
the mode shape of buckling).

As a second possibility, the column may buckle perpendicular to the
plane of the figure with bending about axis 1–1. Because the only lateral
support in this direction is at the ends, the distance between lateral supports
is (see Fig. 11-9b for the mode shape of buckling).

Column properties. From Table E-2, Appendix E, we obtain the 
following moments of inertia and cross-sectional area for an IPN 220
 column:

I1 � 3060 cm4 I2 � 162 cm4 A � 39.5 cm2

L � 8 m

L/2 � 4 m
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Chapter 11  Columns920

Critical loads. If the column buckles in the plane of the figure, the crit-
ical load is

Substituting numerical values, we obtain

If the column buckles perpendicular to the plane of the figure, the critical
load is

Therefore, the critical load for the column (the smaller of the two preced-
ing values) is

and buckling occurs in the plane of the figure.
Critical stresses. Since the calculations for the critical loads are valid only

if the material follows Hooke’s law, we need to verify that the critical
stresses do not exceed the proportional limit of the material. In the case of
the larger critical load, we obtain the following critical stress:

Since this stress is less than the proportional limit , both
 critical-load calculations are satisfactory.

Allowable load. The allowable axial load for the column, based on
Euler buckling, is

in which is the desired factor of safety.

➥

n � 2.5

Pcr �
π 2EI2
(L/2)2

�
4π 2EI2

L2

Pallow �
Pcr

n
�

200 kN
2.5

� 79.9 kN

(σpl � 300 MPa)

σcr �
Pcr

A
�

943.8 kN

39.5 cm2
� 238.9 MPa

Pcr � 200 kN

Pcr �
π 2EI1

L2
�

π 2(200 GPa)(3060 cm4)

(8 m)2
� 943.8 kN

Pcr �
4π 2EI2

L2
�

4π 2(200 GPa)(162 cm4)

(8 m)2
� 200 kN

Example 11-2 - Continued• • •
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11.4 Columns with Other Support Conditions 921

11.4 COLUMNS WITH OTHER SUPPORT
CONDITIONS
Buckling of a column with pinned ends (described in the preceding sec-
tion) is usually considered as the most basic case of buckling. However, in
practice we encounter many other end conditions, such as fixed ends, free
ends, and elastic supports. The critical loads for columns with various
kinds of support conditions can be determined from the differential equa-
tion of the deflection curve by following the same procedure that we used
when analyzing a pinned-end column.

The procedure is as follows. First, with the column assumed to be in
the buckled state, we obtain an expression for the bending moment in the
column. Second, we set up the differential equation of the deflection
curve, using the bending-moment equation . Third, we solve
the equation and obtain its general solution, which contains two cons -
tants of integration plus any other unknown quantities. Fourth, we apply
boundary conditions pertaining to the deflection v and the slope v�
and obtain a set of simultaneous equations. Finally, we solve those
 equations to obtain the critical load and the deflected shape of the buck-
led column.

This straightforward mathematical procedure is illustrated in the fol-
lowing discussion of three types of columns.

Column Fixed at the Base and Free at the Top
The first case we will consider is an ideal column that is fixed at the base,
free at the top, and subjected to an axial load P (Fig. 11-16a).* The
deflected shape of the buckled column is shown in Fig. 11-16b. From this
figure we see that the bending moment at distance x from the base is

(11-21)

where δ is the deflection at the free end of the column. The differential
equation of the deflection curve then becomes

(11-22)

in which I is the moment of inertia for buckling in the xy plane.
Using the notation from Eq. (11-7a), we can rearrange

Eq. (11-22) into the form

(11-23)

which is a linear differential equation of second order with constant coef-
ficients. However, it is a more complicated equation than the equation for
a column with pinned ends [see Eq. (11-8)] because it has a nonzero term
on the right-hand side.

The general solution of Eq. (11-23) consists of two parts: (1) the homo-
geneous solution, which is the solution of the homogeneous equation
obtained by replacing the right-hand side with zero, and (2) the particular

v�� � k2v � k2δ

k2 � P/EI

EIv�� � M � P(δ � v)

M � P(δ � v)

(EIv�� � M)

Slender concrete columns fixed
at the base and free at the top
during construction (Digital
Vision/Getty Images)

*This column is of special interest because it is the one first analyzed by Euler in 1744.
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Chapter 11  Columns

solution, which is the solution of Eq. (11-23) that produces the term on the
right-hand side.

The homogeneous solution (also called the complementary solution) is
the same as the solution of Eq. (11-8); hence,

(11-24a)

where C1 and C2 are constants of integration. Note that when vH is sub-
stituted into the left-hand side of the differential equation of Eq. (11-23),
it produces zero.

The particular solution of the differential equation is

(11-24b)

When vP is substituted into the left-hand side of the differential equation,
it produces the right-hand side, that is, it produces the term .
Consequently, the general solution of the equation, equal to the sum of vH
and vP, is

(11-25)

This equation contains three unknown quantities (C1, C2, and δ ), 
and therefore three boundary conditions are needed to complete the
solution.

At the base of the column, the deflection and slope are each equal to
zero. Therefore, we obtain the following boundary conditions:

Applying the first condition to Eq. (11-25), we find

(11-26)C2 � �δ

v(0) � 0 v�(0) � 0

v � C1 sin kx � C2 cos kx � δ

k2δ

vP � δ

vH � C1 sin kx � C2 cos kx

922

Fig. 11-16
Ideal column fixed at the base

and free at the top: (a) initially
straight column, (b) buckled
shape for , (c) buckled

shape for , and (d) buck-
led shape for n � 5

n � 3
n � 1
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11.4 Columns with Other Support Conditions 923

To apply the second condition, we first differentiate Eq. (11-25) to obtain
the slope:

(11-27)

Applying the second condition to this equation, we find .
Now we can substitute the expressions for C1 and C2 into the general

solution of Eq. (11-25) and obtain the equation of the deflection curve for
the buckled column:

(11-28)

Note that this equation gives only the shape of the deflection curve—the
amplitude δ remains undefined. Thus, when the column buckles, the
deflection given by Eq. (11-28) may have any arbitrary magnitude, except
that it must remain small (because the differential equation is based upon
small deflections).

The third boundary condition applies to the upper end of the column,
where the deflection v is equal to δ :

Using this condition with Eq. (11-28), we get

(11-29)

From this equation we conclude that either or . If
, there is no deflection of the bar [see Eq. (11-28)] and we have the

trivial solution—the column remains straight and buckling does not occur.
In that case, Eq. (11-29) will be satisfied for any value of the quantity kL,
that is, for any value of the load P. This conclusion is represented by the
vertical line in the load-deflection diagram of Fig. 11-8.

The other possibility for solving Eq. (11-29) is

(11-30)

which is the buckling equation. In this case, Eq. (11-29) is satisfied regard-
less of the value of the deflection δ. Thus, as already observed, δ is unde-
fined and may have any small value.

The equation cos is satisfied when

(11-31)

Using the expression , we obtain the following formula for the
critical loads:

(11-32)

Also, the buckled mode shapes are obtained from Eq. (11-28):

(11-33)

C1 � 0

v � δ a1 � cos
nπx
2L
b n � 1, 3, 5, Á

Pcr �
n2π 2EI

4L2 n � 1, 3, 5, Á

k2 � P/EI

kL �
nπ
2

n � 1, 3, 5, Á

kL � 0

cos kL � 0

δ � 0
δ � 0 cos kL � 0

δ cos kL � 0

v(L) � δ

v � δ (1 � cos kx)

v� � C1k cos kx � C2k sin kx
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Chapter 11  Columns

The lowest critical load is obtained by substituting in Eq. (11-32):

(11-34)

The corresponding buckled shape [from Eq. (11-33)] is

(11-35)

and is shown in Fig. 11-16b.
By taking higher values of the index n, we can theoretically obtain an

infinite number of critical loads from Eq. (11-32). The corresponding
buckled mode shapes have additional waves in them. For instance, when

the buckled column has the shape shown in Fig. 11-16c and Pcr is
nine times larger than for . Similarly, the buckled shape for
has even more waves (Fig. 11-16d) and the critical load is twenty-five
times larger.

Effective Lengths of Columns
The critical loads for columns with various support conditions can be
related to the critical load of a pinned-end column through the concept
of an effective length. To demonstrate this idea, consider the deflected
shape of a column fixed at the base and free at the top (Fig. 11-17a).
This column buckles in a curve that is one-quarter of a complete sine
wave. If we extend the deflection curve (Fig. 11-17b), it becomes one-
half of a complete sine wave, which is the deflection curve for a pinned-
end column.

The effective length Le for any column is the length of the equivalent
pinned-end column, that is, it is the length of a pinned-end column having
a deflection curve that exactly matches all or part of the deflection curve
of the original column.

Another way of expressing this idea is to say that the effective length
of a column is the distance between points of inflection (that is, points of
zero moment) in its deflection curve, assuming that the curve is extended
(if necessary) until points of inflection are reached. Thus, for a fixed-free
column (Fig. 11-17), the effective length is

(11-36)

Because the effective length is the length of an equivalent pinned-end
column, we can write a general formula for critical loads as

(11-37)

If we know the effective length of a column (no matter how complex the
end conditions may be), we can substitute into the preceding equation and
determine the critical load. For instance, in the case of a fixed-free col-
umn, we can substitute and obtain Eq. (11-34).Le � 2L

Pcr �
π2EI

Le
2

Le � 2L

n � 5n � 1
n � 3

v � δ a1 � cos
πx
2L
b

Pcr �
π 2EI
4L2

n � 1

924

Fig. 11-17
Deflection curves showing the

effective length Le for a column
fixed at the base and free at 

the top

(a)

(b)

P

L

P

Le = 2L

P
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11.4 Columns with Other Support Conditions 925

The effective length is often expressed in terms of an effective-length
factor K:

(11-38)

where L is the actual length of the column. Thus, the critical load is

(11-39)

The factor K equals 2 for a column fixed at the base and free at the top and
equals 1 for a pinned-end column. The effective-length factor is often
included in design formulas for columns.

Column with Both Ends Fixed Against Rotation
Next, let us consider a column with both ends fixed against rotation
(Fig. 11-18a). Note that in this figure we use the standard symbol for the
fixed support at the base of the column. However, since the column is
free to shorten under an axial load, we must introduce a new symbol at
the top of the column. This new symbol shows a rigid block that is con-
strained in such a manner that rotation and horizontal displacement are
prevented but vertical movement can occur. (As a convenience when
drawing sketches, we often replace this more accurate symbol with the
standard symbol for a fixed support—see Fig. 11-18b—with the under-
standing that the column is free to shorten.)

The buckled shape of the column in the first mode is shown in 
Fig. 11-18c. Note that the deflection curve is symmetrical (with zero slope
at the midpoint) and has zero slope at the ends. Because rotation at the
ends is prevented, reactive moments M0 develop at the supports. These
moments, as well as the reactive force at the base, are shown in the figure.

From our previous solutions of the differential equation, we know
that the equation of the deflection curve involves sine and cosine func-
tions. Also, we know that the curve is symmetric about the midpoint.
Therefore, we see immediately that the curve must have inflection points
at distances L/4 from the ends. It follows that the middle portion of the

Pcr �
π 2EI
(KL)2

Le � KL

Fig. 11-18
Buckling of a column with both
ends fixed against rotation
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Chapter 11  Columns

deflection curve has the same shape as the deflection curve for a pinned-
end column. Thus, the effective length of a column with fixed ends, equal
to the distance between inflection points, is

(11-40)

Substituting into Eq. (11-37) gives the critical load:

(11-41)

This formula shows that the critical load for a column with fixed ends is
four times that for a column with pinned ends. As a check, this result may
be verified by solving the differential equation of the deflection curve (see
Prob. 11.4-9).

Column Fixed at the Base and Pinned at the Top
The critical load and buckled mode shape for a column that is fixed at the
base and pinned at the top (Fig. 11-19a) can be determined by solving the
 differential equation of the deflection curve. When the column buckles 
(Fig. 11-19b), a reactive moment M0 develops at the base because there can
be no rotation at that point. Then from the equilibrium of the entire column,
we know that there must be horizontal reactions R at each end such that

(11-42)

The bending moment in the buckled column, at distance x from the base, is

(11-43)

and therefore, the differential equation is

(11-44)

Again substituting and rearranging, we get

(11-45)

The general solution of this equation is

(11-46)

in which the first two terms on the right-hand side constitute the homoge-
neous solution and the last term is the particular solution. This solution can
be verified by substitution into the differential equation of Eq. (11-44).

Since the solution contains three unknown quantities (C1, C2, and R),
we need three boundary conditions. They are

v(0) � 0 v�(0) � 0 v(L) � 0

v � C1 sin kx � C2 cos kx �
R
P

(L � x)

v�� � k2v �
R
EI

(L � x)

k2 � P/EI

EIv�� � M � �Pv � R(L � x)

M � M0 � Pv � Rx � �Pv � R(L � x)

M0 � RL

Pcr �
4π 2EI

L2

Le �
L
2

926
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11.4 Columns with Other Support Conditions 927

Applying these conditions to Eq. (11-46) yields

(11-47a,b,c)

All three equations are satisfied if , in which case we
have the trivial solution and the deflection is zero.

To obtain the solution for buckling, we must solve Eqs. (11-47a, b,
and c) in a more general manner. One method of solution is to eliminate
R from the first two equations, which yields

(11-47d)

Next, we substitute this expression for C2 into Eq. (11-47c) and obtain the
buckling equation:

(11-48)

The solution of this equation gives the critical load.
Since the buckling equation is a transcendental equation, it cannot be

solved explicitly.* Nevertheless, the values of kL that satisfy the equation can
be determined numerically by using a computer program for finding roots of
equations. The smallest nonzero value of kL that satisfies Eq. (11-48) is

(11-49)

The corresponding critical load is

(11-50)Pcr �
20.19EI

L2 �
2.046π 2EI

L2

kL � 4.4934

C1 tan kL � C2 � 0

kL � tan kL

C1kL � C2 � 0 or C2 � �C1kL

C1 � C2 � R � 0

C2 �
RL
P

� 0 C1k �
R
P

� 0

Fig. 11-19
Column fixed at the base and
pinned at the top

L

v

A

B

M0

P

(a)

A

B R

Le = 0.699L

R

P

P

(b)

y

x

A

B

Pcr

(c)

=
20.19 EI

L2—

*In a transcendental equation, the variables are contained within transcendental functions. A transcendental
function cannot be expressed by a finite number of algebraic operations; hence, trigonometric, logarithmic,
exponential, and other such functions are transcendental.
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Chapter 11  Columns

which (as expected) is higher than the critical load for a column with
pinned ends and lower than the critical load for a column with fixed ends
[see Eqs. (11-15) and (11-41)].

The effective length of the column may be obtained by comparing
Eqs. (11-50) and (11-37); thus,

(11-51)

This length is the distance from the pinned end of the column to the point
of inflection in the buckled shape (Fig. 11-19c).

The equation of the buckled mode shape is obtained by substituting
[Eq. (11-47d)] and [Eq. (11-47b)] into the gen-

eral solution [Eq. (11-46)]:

(11-52)

in which . The term in brackets gives the mode shape for the
deflection of the buckled column. However, the amplitude of the deflec-
tion curve is undefined because C1 may have any value (within the usual
limitation that the deflections must remain small).

Limitations
In addition to the requirement of small deflections, the Euler buckling the-
ory used in this section is valid only if the column is perfectly straight
before the load is applied, the column and its supports have no imperfec-
tions, and the column is made of a linearly elastic material that follows
Hooke’s law. These limitations were explained previously in Section 11.3.

Summary of Results
The lowest critical loads and corresponding effective lengths for the four
columns we have analyzed are summarized in Fig. 11-20.

k � 4.4934/L

v � C1[sin kx � kL cos kx � k(L � x)]

C2 � �C1kL R/P � C1k

Le � 0.699L L 0.7L

928

Fig. 11-20
Critical loads, effective lengths,
and effective-length factors for

ideal columns
Pcr =

p2 EI—
L2 Pcr =

p2 EI—
4L2

Pcr =
4p2 EI—

L2 Pcr =
2.046 p2 EI—

L2

Le = L Le = 2L 

K = 1 K = 2 

Le = 0.5L 

K = 0.5 

Le = 0.699L 

K = 0.699 

L L L L 

(a) Pinned-pinned
column

(b) Fixed-free column (c) Fixed-fixed column (d) Fixed-pinned column

Le 
Le 
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11.4 Columns with Other Support Conditions 929

• • •

Continues ➥

A viewing platform in a wild-animal park (Fig. 11-21a) is supported by a row
of aluminum pipe columns having length and outer diameter

. The bases of the columns are set in concrete footings and the
tops of the columns are supported laterally by the platform. The columns
are being designed to support compressive loads .

Determine the minimum required thickness t of the columns (Fig. 11-21b)
if a factor of safety is required with respect to Euler buckling. (For the
aluminum, use 72 GPa for the modulus of elasticity and use 480 MPa for the
proportional limit.)

n � 3

P � 100 kN

d � 100 mm
L � 3.25 m

Example 11-3

(b)

d

t

(a)

L
d

Fig. 11-21 
Example 11-3: Aluminum pipe
column

Solution
Critical load. Because of the manner in which the columns are constructed,
we will model each column as a fixed-pinned column (see Fig. 11-20d).
Therefore, the critical load is

(a)

in which I is the moment of inertia of the tubular cross section:

(b)

Substituting (or 0.1 m), we get

(c)

in which t is expressed in meters.

d � 100 mm

I �
π

64
[(0.1 m)4 � (0.1 m � 2t)4]

I �
π

64
[d4 � (d � 2t)4]

Pcr �
2.046π 2EI

L2
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Chapter 11  Columns930

Required thickness of the columns. Since the load per column is 100 kN
and the factor of safety is 3, each column must be designed for the
 following critical load:

Substituting this value for Pcr in Eq. (a), and also replacing I with its expres-
sion from Eq. (c), we obtain

Note that all terms in this equation are expressed in units of newtons and
meters.

After multiplying and dividing, the preceding equation simplifies to 

or

from which we obtain 

Therefore, the minimum required thickness of the column to meet the spec-
ified conditions is

Supplementary calculations. Knowing the diameter and thickness of
the  column, we can now calculate its moment of inertia, cross-sectional
area, and radius of gyration. Using the minimum thickness of 6.83 mm, we
obtain

The slenderness ratio L/r of the column is approximately 98, which is in the
customary range for slender columns, and the diameter-to-thickness ratio d/t
is approximately 15, which should be adequate to prevent local buckling of
the walls of the column.

The critical stress in the column must be less than the proportional limit
of the aluminum if the formula for the critical load of Eq. (a) is to be valid.
The critical stress is

which is less than the proportional limit (480 MPa). Therefore, our calcula-
tion for the critical load using Euler buckling theory is satisfactory.

0.1 m � 2t � 0.08635 m and t � 0.006825 m

(0.1 m � 2t)4 � (0.1 m)4 � 44.40 	 10�6 m4 � 55.60 	 10�6 m4

44.40 	 10�6 m4 � (0.1 m)4 � (0.1 m � 2t)4

➥

Pcr � nP � 3(100 kN) � 300 kN

σcr �
Pcr

A
�

300 kN

1999 mm2
� 150 MPa

A �
π
4

[d2 � (d � 2t)2] � 1999 mm2 r �
C

I
A

� 33.0 mm

I �
π

64
[d4 � (d � 2t)4] � 2.18 	 106 mm4

tmin � 6.83 mm

300,000 N �
2.046π 2(72 	 109 Pa)

(3.25 m)2
a π
64
b C(0.1 m)4 � (0.1 m � 2t)4D

Example 11-3 - Continued• • •
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11.5 Columns with Eccentric Axial Loads 931

11.5 COLUMNS WITH ECCENTRIC AXIAL
LOADS
In Sections 11.3 and 11.4, we analyzed ideal columns in which the axial
loads acted through the centroids of the cross sections. Under these con-
ditions, the columns remain straight until the critical loads are reached,
after which bending may occur.

Now we will assume that a column is compressed by loads P that are
applied with a small eccentricity e measured from the axis of the column
(Fig. 11-22a). Each eccentric axial load is equivalent to a centric load P
and a couple of moment (Fig. 11-22b). This moment exists from
the instant the load is first applied, and therefore the column begins to
deflect at the onset of loading. The deflection then becomes steadily larger
as the load increases.

To analyze the pin-ended column shown in Fig. 11-22, we make the
same assumptions as in previous sections; namely, the column is initially
perfectly straight, the material is linearly elastic, and the xy plane is a
plane of symmetry. The bending moment in the column at distance x from
the lower end (Fig. 11-22b) is

(11-53)

where v is the deflection of the column (positive when in the positive direc-
tion of the y axis). Note that the deflections of the column are negative
when the eccentricity of the load is positive.

The differential equation of the deflection curve is

(11-54)

or (11-55)

in which , as before. The general solution of this equation is

(11-56)

in which C1 and C2 are constants of integration in the homogeneous solu-
tion and e is the particular solution. As usual, we can verify the solution
by substituting it into the differential equation.

The boundary conditions for determining the constants C1 and C2 are
obtained from the deflections at the ends of the column (Fig. 11-22b):

These conditions yield

Therefore, the equation of the deflection curve is

(11-57)v � �eatan
kL
2

sin kx � cos kx � 1b

C2 � �e C1 � �
e (1 � cos kL)

sin kL
� �e tan

kL
2

v(0) � 0 v(L) � 0

v � C1 sin kx � C2 cos kx � e

k2 � P/EI

v�� � k2v � k2e

EIv�� � M � Pe � Pv

M0 � Pe

M � M0 � P(�v) � Pe � Pv

Fig. 11-22
Column with eccentric axial
loads

B

A

P P

P P

L

e

e

�v

x

y

M0 = Pe

M0 = Pe

(a) (b)
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Chapter 11  Columns

For a column with known loads P and known eccentricity e, we can
use this equation to calculate the deflection at any point along the
x axis.

The behavior of a column with an eccentric load is quite different
from that of a centrally loaded column, as can be seen by comparing
Eq. (11-57) with Eqs. (11-16), (11-33), and (11-52). Equation (11-57)
shows that each value of the eccentric load P produces a definite value of
the deflection, just as each value of the load on a beam produces a definite
deflection. In contrast, the deflection equations for centrally loaded
columns give the buckled mode shape (when ) but with the ampli-
tude undefined.

Because the column shown in Fig. 11-22 has pinned ends, its critical
load (when centrally loaded) is

(11-58)

We will use this formula as a reference quantity in some of the equations
that follow.

Maximum Deflection
The maximum deflection δ produced by the eccentric loads occurs at the
midpoint of the column (Fig. 11-23) and is obtained by setting x equal to
L/2 in Eq. (11-57):

or, after simplifying,

(11-59)

This equation can be written in a slightly different form by replacing the
quantity k with its equivalent in terms of the critical load [see Eq. (11-58)]:

(11-60)

Thus, the nondimensional term kL becomes

(11-61)

and Eq. (11-59) for the maximum deflection becomes

(11-62)δ � e csec aπ
2 C

P
Pcr

b � 1d

kL � π
C

P
Pcr

k �
C

P
EI

�
C

Pπ 2

PcrL
2 �

π
L C

P
Pcr

δ � easec
kL
2

� 1b

δ � �vaL
2
b � ea tan

kL
2

sin
kL
2

� cos
kL
2

� 1b

P � Pcr

Pcr �
π 2EI

L2

932

Fig. 11-23
Maximum deflection δ of a col-

umn with eccentric axial loads

L
2
—

L
2
—

P

P

d

e

e
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11.5 Columns with Eccentric Axial Loads 933

As special cases, we note the following: (1) The deflection δ is zero
when the eccentricity e is zero and P is not equal to Pcr, (2) the deflection is
zero when the axial load P is zero, and (3) the deflection becomes infinitely
large as P approaches Pcr. These characteristics are shown in the
load-deflection diagram of Fig. 11-24.

To plot the load-deflection diagram, we select a particular value e1
of the eccentricity and then calculate for various values of the load P.
The resulting curve is labeled in Fig. 11-24. We note immedi-
ately that the deflection increases as P increases, but the relationship
is nonlinear. Therefore, we cannot use the principle of superposition for
calculating deflections due to more than one load, even though the
material of the column is linearly elastic. As an example, the deflection
due to an axial load 2P is not equal to twice the deflection caused by an
axial load P.

Additional curves, such as the curve labeled , are plotted in a
similar manner. Since the deflection is linear with e in Eq. (11-62), the
curve for has the same shape as the curve for , but the
abscissas are larger by the ratio .

As the load P approaches the critical load, the deflection increases
without limit and the horizontal line corresponding to becomes
an asymptote for the curves. In the limit, as e approaches zero, the curves
on the diagram approach two straight lines, one vertical and one horizon-
tal (compare with Fig. 11-8). Thus, as expected, an ideal column with a
centrally applied load is the limiting case of a column with an
eccentric load .

Although the curves plotted in Fig. 11-24 are mathematically correct,
we must keep in mind that the differential equation is valid only for small
deflections. Therefore, when the deflections become large, the curves are
no longer physically valid and must be modified to take into account the
presence of large deflections and (if the proportional limit of the material
is exceeded) inelastic bending effects (see Fig. 11-12).

The reason for the nonlinear relationship between loads and deflec-
tions, even when the deflections are small and Hooke’s law holds, can
be understood if we observe once again that the axial loads P are equiv-
alent to centrally applied loads P plus couples Pe acting at the ends of
the column (Fig. 11-22b). The couples Pe, if acting alone, would pro-
duce bending deflections of the column in the same manner as for a
beam. In a beam, the presence of the deflections does not change the
action of the loads, and the bending moments are the same whether
the deflections exist or not. However, when an axial load is applied to
the member, the existence of deflections increases the bending moments
(the increases are equal to the product of the axial load and the deflec-
tions). When the bending moments increase, the deflections are further
increased—hence, the moments increase even more, and so on. Thus,
the bending moments in a column depend upon the deflections, which
in turn depend upon the bending moments. This type of behavior
results in a nonlinear relationship between the axial loads and the
deflections.

In general, a straight structural member subjected to both bending
loads and axial compressive loads is called a beam-column. In the case of
a column with eccentric loads (Fig. 11-22), the bending loads are the
moments and the axial loads are the forces P.M0 � Pe

δ

δ

δ

δ
e � e1

(e 7 0)
(e � 0)

P � Pcr

e2/e1

e � e1e � e2

e � e2

Fig. 11-24
Load-deflection diagram for a
column with eccentric axial
loads [see Fig. 11-23 and 
Eq. (11-62)]

O d

P

Pcr
e = 0

e = 0

e2 
 e1 
 0

e = e2
e = e1
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Chapter 11  Columns

Maximum Bending Moment
The maximum bending moment in an eccentrically loaded column occurs
at the midpoint where the deflection is a maximum (Fig. 11-23):

(11-63)

Substituting for from Eqs. (11-59) and (11-62), we obtain

(11-64)

The manner in which Mmax varies as a function of the axial load P is
shown in Fig. 11-25.

When P is small, the maximum moment is equal to Pe, which means
that the effect of the deflections is negligible. As P increases, the bending
moment grows nonlinearly and theoretically becomes infinitely large as P
approaches the critical load. However, as explained before, our equations
are valid only when the deflections are small, and they cannot be used
when the axial load approaches the critical load. Nevertheless, the pre-
ceding equations and accompanying graphs indicate the general behavior
of beam-columns.

Other End Conditions
The equations given in this section were derived for a pinned-end column,
as shown in Figs. 11-22 and 11-23. If a column is fixed at the base and free
at the top (Fig. 11-20b), we can use Eqs. (11-59) and (11-64) by replacing
the actual length L with the equivalent length 2L (see Prob. 11.5-9).
However, the equations do not apply to a column that is fixed at the base
and pinned at the top (Fig. 11-20d). The use of an equivalent length equal
to 0.699L gives erroneous results; instead, we must return to the differen-
tial equation and derive a new set of equations.

In the case of a column with both ends fixed against rotation 
(Fig. 11-20c), the concept of an eccentric axial load acting at the end of
the column has no meaning. Any moment applied at the end of the col-
umn is resisted directly by the supports and produces no bending of the
column itself.

δ

Mmax � Pe sec
kL
2

� Pe sec aπ
2 C

P
Pcr

b

Mmax � P(e � δ )

934

Fig. 11-25
Maximum bending moment in a

column with eccentric axial
loads [see Fig. 11-23 and 

Eq. (11-64)]

O

Mmax

Pcr

Pe

P
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11.5 Columns with Eccentric Axial Loads 935

• • •
A brass bar AB projecting from the side of a large machine is loaded at end B
by a force acting with an eccentricity (Fig. 11-26). The
bar has a rectangular cross section with height and width

.
What is the longest permissible length Lmax of the bar if the deflection

at the end is limited to 3 mm? (For the brass, use .)

Solution
Critical load. We will model this bar as a slender column that is fixed at end
A and free at end B. Therefore, the critical load (see Fig. 11-20b) is

(a)

The moment of inertia for the axis about which bending occurs is

Therefore, the expression for the critical load becomes

(b)

in which Pcr has units of KN and L has units of meters.
Deflection. The deflection at the end of the bar is given by Eq. (11-62),

which applies to a fixed-free column as well as a pinned-end column:

(c)

In this equation, Pcr is given by Eq. (a).
Length. To find the maximum permissible length of the bar, we substi-

tute for δ its limiting value of 3 mm. Also, we substitute and
, and we substitute for Pcr from Eq. (b). Thus,

The only unknown in this equation is the length L (meters). To solve for L,
we perform the various arithmetic operations in the equation and then
rearrange the terms. The result is

Using radians and solving this equation, we get . Thus, the max-
imum permissible length of the bar is

If a longer bar is used, the deflection will exceed the allowable value of 3 mm.

➥

e � 11 mm

Lmax � 0.243 m

L � 0.243 m

0.2727 � sec (2.746L) � 1

3 mm � (11 mm) csec aπ
2 C

7 kN

2.29/L2
b � 1 d

P � 7 kN

δ � e csec aπ
2 C

P
Pcr

b � 1 d

Pcr �
π 2(110 GPa)(0.844 cm4)

4L2
�

2.29 kN # m2

L2

I �
hb3

12
�

(30 mm)(15 mm)3

12
� 0.844 cm4

Pcr �
π 2EI

4L2

E � 110 GPa

b � 15 mm
h � 30 mm

e � 11 mmP � 7 kN

Example 11-4

Fig. 11-26
Example 11-4: Brass bar with
an eccentric axial load

PBrass bar

e

L
A B

h b
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Chapter 11  Columns

11.6 THE SECANT FORMULA FOR
COLUMNS
In the preceding section we determined the maximum deflection and max-
imum bending moment in a pin-ended column subjected to eccentric axial
loads. In this section, we will investigate the maximum stresses in the col-
umn and obtain a special formula for calculating them.

The maximum stresses in a column with eccentric axial loads occur at
the cross section where the deflection and bending moment have their
largest values, that is, at the midpoint (Fig. 11-27a). Acting at this cross
section are the compressive force P and the bending moment Mmax
(Fig. 11-27b). The stresses due to the force P are equal to P/A, where A is
the cross-sectional area of the column, and the stresses due to the bending
moment Mmax are obtained from the flexure formula.

Thus, the maximum compressive stress, which occurs on the concave
side of the column, is

(11-65)

in which I is the moment of inertia in the plane of bending and c is the dis-
tance from the centroidal axis to the extreme point on the concave side of
the column. Note that in this equation we consider compressive stresses to
be positive, since these are the important stresses in a column.

The bending moment Mmax is obtained from Eq. (11-64), which is
repeated here:

Since for a pinned-end column, and since , where r is
the radius of gyration in the plane of bending, the preceding equation becomes

(11-66)

Substituting into Eq. (11-65), we obtain the following formula for the
maximum compressive stress:

or

(11-67)

This equation is commonly known as the secant formula for an eccentri-
cally loaded column with pinned ends.

The secant formula gives the maximum compressive stress in the col-
umn as a function of the average compressive stress P/A, the modulus of
elasticity E, and two nondimensional ratios—the slenderness ratio L/r
from Eq. (11-20) and the eccentricity ratio:

(11-68)Eccentricity ratio �
ec
r2

σmax �
P
A
c1 �

ec
r2 sec a L

2r C
P

EA
b d

σmax �
P
A

�
Pec

I
sec a L

2r C
P

EA
b

Mmax � Pe sec a L
2r C

P
EA
b

Pcr � π 2EI/L2 I � Ar2

Mmax � Pe sec aπ
2 C

P
Pcr

b

σmax �
P
A

�
Mmaxc

I

936

Fig. 11-27
Column with eccentric 

axial loads

L
2

—

P
e

(a) (b)

P

Mmax

L
2

—

L
2

—

P

P

d

e

e

77742_11_ch11_p900-967.qxd:77742_11_ch11_p900-967.qxd  2/22/12  5:47 PM  Page 936

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



11.6 The Secant Formula for Columns 937

As the name implies, the eccentricity ratio is a measure of the eccentricity
of the load as compared to the dimensions of the cross section. Its numer-
ical value depends upon the position of the load, but typical values are in
the range from 0 to 3, with the most common values being less than 1.

When analyzing a column, we can use the secant formula to calculate
the maximum compressive stress whenever the axial load P and its eccen-
tricity e are known. Then the maximum stress can be compared with the
allowable stress to determine if the column is adequate to support the load.

We can also use the secant formula in the reverse manner, that is, if
we know the allowable stress, we can calculate the corresponding value of
the load P. However, because the secant formula is transcendental, it is
not practical to derive a formula for the load P. Instead, we can solve
Eq. (11-67) numerically in each individual case.

A graph of the secant formula is shown in Fig. 11-28. The abscissa is
the slenderness ratio L/r, and the ordinate is the average compressive
stress P/A. The graph is plotted for a steel column with modulus of elas-
ticity and maximum stress . Curves are
plotted for several values of the eccentricity ratio . These curves are
valid only when the maximum stress is less than the proportional limit of
the material, because the secant formula was derived using Hooke’s law.

A special case arises when the eccentricity of the load disappears
, because then we have an ideal column with a centrally applied

load. Under these conditions the maximum load is the critical load
and the corresponding maximum stress is the critical

stress [see Eqs. (11-17) and (11-19)]:

(11-69)

Since this equation gives the stress P/A in terms of the slenderness ratio
L/r, we can plot it on the graph of the secant formula (Fig. 11-28) as
Euler’s curve.

Let us now assume that the proportional limit of the material is the
same as the selected maximum stress, that is, 250 MPa. Then we construct

σcr �
Pcr

A
�

π 2EI
AL2 �

π 2E
(L/r)2

(Pcr � π 2EI/L2)

(e � 0)

ec/r2
E � 200 GPa σ max � 250 MPa

Fig. 11-28
Graph of the secant formula
[Eq. (11-67)] for 
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Chapter 11  Columns

a horizontal line on the graph at a value of 250 MPa, and we terminate
Euler’s curve at that stress. The horizontal line and Euler’s curve represent
the limits of the secant-formula curves as the eccentricity e approaches zero.

Discussion of the Secant Formula
The graph of the secant formula shows that the load-carrying capacity of
a column decreases significantly as the slenderness ratio L/r increases,
especially in the intermediate region of L/r values. Thus, long slender
columns are much less stable than short, stocky columns. The graph also
shows that the load-carrying capacity decreases with increasing eccentric-
ity e; furthermore, this effect is relatively greater for short columns than
for long ones.

The secant formula was derived for a column with pinned ends, but it
can also be used for a column that is fixed at the base and free at the top.
All that is required is to replace the length L in the secant formula with the
equivalent length 2L. However, because it is based upon Eq. (11-64), the
secant formula is not valid for the other end conditions that we discussed.

Now let us consider an actual column, which inevitably differs from
an ideal column because of imperfections, such as initial curvature of the
longitudinal axis, imperfect support conditions, and nonhomogeneity of
the material. Furthermore, even when the load is supposed to be centrally
applied, there will be unavoidable eccentricities in its direction and point
of application. The extent of these imperfections varies from one column
to another, and therefore there is considerable scatter in the results of lab-
oratory tests performed with actual columns.

All imperfections have the effect of producing bending in addition to
direct compression. Therefore, it is reasonable to assume that the behav-
ior of an imperfect, centrally loaded column is similar to that of an ideal,
eccentrically loaded column. In such cases, the secant formula can be used
by choosing an approximate value of the eccentricity ratio to
account for the combined effects of the various imperfections. For
instance, a commonly used value of the eccentricity ratio for pinned-end
columns in  structural-steel design is . The use of the secant
formula in this manner for columns with centrally applied loads provides
a rational means of accounting for the effects of imperfections, rather
than accounting for them simply by increasing the factor of safety. (For
further discussions of the secant formula and the effects of imperfections,
see Ref. 11-5 and textbooks on buckling and stability.)

The procedure for analyzing a centrally loaded column by means of
the secant formula depends upon the particular conditions. For instance,
if the objective is to determine the allowable load, the procedure is as fol-
lows. Assume a value of the eccentricity ratio based upon test results,
code values, or practical experience. Substitute this value into the secant
formula, along with the values of L/r, A, and E for the actual column.
Assign a value to σmax, such as the yield stress σY or the proportional
limit σpl of the material. Then solve the secant formula for the load Pmax
that produces the maximum stress. (This load will always be less than the
critical load Pcr for the column.) The allowable load on the column equals
the load Pmax divided by the factor of safety n.

The following example illustrates how the secant formula may be used
to determine the maximum stress in a column when the load is known,
and also how to determine the load when the maximum stress is given.

ec/r2

ec/r2 � 0.25

ec/r2

938
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11.6 The Secant Formula for Columns 939

• • •

Continues ➥

A steel wide-flange column of HE shape (Fig. 11-29a) is pin  supported
at the ends and has a length of 7.5 m. The column supports a centrally
applied load and an eccentrically applied load
(Fig. 11-29b). Bending takes place about axis 1–1 of the cross section, and the
eccentric load acts on axis 2–2 at a distance of 400 mm from the centroid C.

(a) Using the secant formula, and assuming , calculate the
 maximum compressive stress in the column.

(b) If the yield stress for the steel is , what is the factor of
safety with respect to yielding?

Solution
(a) Maximum compressive stress. The two loads P1 and P2 acting as shown in
Fig. 11-29b are statically equivalent to a single load acting
with an eccentricity (Fig. 11-29c). Since the column is now
loaded by a single force P having an eccentricity e, we can use the secant
formula to find the maximum stress.

The required properties of the HE 320A wide-flange shape are obtained
from Table E-1 in Appendix E:

The required terms in the secant formula of Eq. (11-67) are calculated as
 follows:

Substituting these values into the secant formula, we get

This compressive stress occurs at midheight of the column on the concave
side (the right-hand side in Fig. 11-29b).

➥� (160.77 MPa)(1 � 0.466) � 235.6 MPa

σmax �
P
A
c1 �

ec

r2
sec a L

2r C
P

EA
b d

P
EA

�
2000 kN

(210 GPa)(124.4 cm2)
� 765.6 	 10�6

L
r

�
7.5 m

13.58 cm
� 55.23

ec

r2
�

(40 mm)(155 mm)

(13.58 cm)2
� 0.336

P
A

�
2000 kN

124.4 cm2
� 160.77 MPa

A � 124.4 cm2 r � 13.58 cm c �
310 mm

2
� 155 mm

e � 40 mm
P � 2000 kN

σY � 300 MPa

E � 210 GPa

P2 � 200 kNP1 � 1800 kN

320A

Example 11-5

C
2 2

1

1
HE 320A

(a)

(b)

(c)

C

P2 = 200 kN

P = 2000 kN

P1 = 1800 kN

Column

Bracket

400 mm

e

Fig. 11-29
Example 11-5: Column with an
eccentrically applied axial load
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Chapter 11  Columns940

(b) Factor of safety with respect to yielding. To find the factor of safety,
we need to determine the value of the load P, acting at the eccentricity e,
that will produce a maximum stress equal to the yield stress
Since this value of the load is just sufficient to produce initial yielding of the
material, we will denote it as PY.

Note that we cannot determine PY by multiplying the load P (equal to
2000 kN) by the ratio . The reason is that we are dealing with a non-
linear relationship between load and stress. Instead, we must substitute

in the secant formula and then solve for the corre-
sponding load P, which becomes PY. In other words, we must find the value
of PY that satisfies the following equation:

(11-70)

Substituting numerical values, we obtain

or

in which PY has units of kN. Solving this equation numerically, we get

This load will produce yielding of the material (in compression) at the cross
section of maximum bending moment.

Since the actual load is , the factor of safety against
 yielding is

This example illustrates two of the many ways in which the secant formula
may be used. Other types of analysis are illustrated in the problems at the
end of the chapter.

➥

σY � 300 MPa.

σY /σmax

σmax � σY � 300 MPa

PY � 2473 kN

n �
PY

P
�

2473 kN
2000 kN

� 1.236

P � 2000 kN

3732 kN � PY C1 � 0.336 sec A5.403 	 10�41PY B D

300 MPa �
PY

124.4 cm2
C1 � 0.336 sec £55.23

2 C

PY

(210 GPa)(124.4 cm2)
≥ S

σY �
PY

A
c1 �

ec

r2
sec a L

2r C

PY

EA
b d

Example 11-5 - Continued• • •
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11.7 Elastic and Inelastic Column Behavior 941

11.7 ELASTIC AND INELASTIC COLUMN
BEHAVIOR
In the preceding sections we described the behavior of columns when the
material is stressed below the proportional limit. We began by consider-
ing an ideal column subjected to a centrally applied load (Euler buckling),
and we arrived at the concept of a critical load Pcr. Then we considered
columns with eccentric axial loads and derived the secant formula. We
portrayed the results of these analyses on a diagram of average compres-
sive stress P/A versus the slenderness ratio L/r (see Fig. 11-28). The behav-
ior of an ideal column is represented in Fig. 11-28, by Euler’s curve, and
the behavior of columns with eccentric loads is represented by the family
of curves having various values of the eccentricity ratio .

We will now extend our discussion to include inelastic buckling, that
is, the buckling of columns when the proportional limit is exceeded. We
will portray the behavior on the same kind of diagram as before, namely,
a diagram of average compressive stress P/A versus slenderness ratio L/r
(see Fig. 11-30). Note that Euler’s curve is shown on this diagram as
curve ECD. This curve is valid only in the region CD where the stress is
below the proportional limit σpl of the material. Therefore, the part of
Euler’s curve above the proportional limit is shown by a dashed line.

The value of slenderness ratio above which Euler’s curve is valid is
obtained by setting the critical stress from Eq. (11-69) equal to the pro-
portional limit σpl and solving for the slenderness ratio. Thus, letting

represent the critical slenderness ratio (Fig. 11-30), we get

(11-71)aL
r
b

c

�
C

π 2E
σpl

(L/r)c

ec/r2

Fig. 11-30
Diagram of average compressive
stress P/A versus slenderness
ratio L/r
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Chapter 11  Columns

As an example, consider structural steel with σpl � 250 MPa and
. Then the critical slenderness ratio is equal to 91.1.

Above this value, an ideal column buckles elastically and the Euler load is
valid. Below this value, the stress in the column exceeds the proportional
limit and the column buckles inelastically.

If we take into account the effects of eccentricities in loading or
imperfections in construction, but still assume that the material follows
Hooke’s law, we obtain a curve such as the one labeled “Secant formula”
in Fig. 11-30. This curve is plotted for a maximum stress σmax equal to the
proportional limit σpl.

When comparing the secant-formula curve with Euler’s curve, we
must keep in mind an important distinction. In the case of Euler’s curve,
the stress P/A not only is proportional to the applied load P, but also is
the actual maximum stress in the column when buckling occurs.
Consequently, as we move from C to D along Euler’s curve, both the max-
imum stress P/A (equal to the critical stress) and the axial load P decrease.
However, in the case of the secant-formula curve, the average stress P/A
decreases as we move from left to right along the curve (and therefore the
axial load P also decreases) but the maximum stress (equal to the propor-
tional limit) remains constant.

From Euler’s curve, we see that long columns with large slenderness
ratios buckle at low values of the average compressive stress P/A. This
condition cannot be improved by using a higher-strength material,
because collapse results from instability of the column as a whole and not
from failure of the material itself. The stress can only be raised by reduc-
ing the slenderness ratio L/r or by using a material with higher modulus of
elasticity E.

When a compression member is very short, it fails by yielding and
crushing of the material, and no buckling or stability considerations are
involved. In such a case, we can define an ultimate compressive stress σult
as the failure stress for the material. This stress establishes a strength limit
for the column, represented by the horizontal line AB in Fig. 11-30. The
strength limit is much higher than the proportional limit, since it repre-
sents the ultimate stress in compression.

Between the regions of short and long columns, there is a range of
intermediate slenderness ratios too small for elastic stability to govern
and too large for strength considerations alone to govern. Such an
 intermediate-length column fails by inelastic buckling, which means that
the maximum stresses are above the proportional limit when buckling
occurs. Because the proportional limit is exceeded, the slope of the stress-
strain curve for the material is less than the modulus of elasticity; hence,
the critical load for inelastic buckling is always less than the Euler load
(see Section 11.8).

The dividing lines between short, intermediate, and long columns are
not precise. Nevertheless, it is useful to make these distinctions because
the maximum load-carrying capacity of columns in each category is based
upon quite different types of behavior. The maximum load-carrying
capacity of a particular column (as a function of its length) is represented
by curve ABCD in Fig. 11-30. If the length is very small (region AB), the
column fails by direct compression; if the column is longer (region BC), it
fails by inelastic buckling; and if it is even longer (region CD), it fails by
elastic buckling (that is, Euler buckling). Curve ABCD applies to columns

(L/r)cE � 210 GPa

942
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11.8 Inelastic Buckling 943

with various support conditions if the length L in the slenderness ratio is
replaced by the effective length Le.

The results of load tests on columns are in reasonably good agreement
with curve ABCD. When test results are plotted on the diagram, they gen-
erally form a band that lies just below this curve. Considerable scatter of
test results is to be expected, because column performance is sensitive to
such matters as the accuracy of construction, the alignment of loads, and
the details of support conditions. To account for these variables, we usu-
ally obtain the allowable stress for a column by dividing the maximum
stress (from curve ABCD) by a suitable factor of safety, which often has a
value of about 2. Because imperfections are apt to increase with increase
in length, a variable factor of safety (increasing as L/r increases) is some-
times used. 

11.8 INELASTIC BUCKLING
The critical load for elastic buckling is valid only for relatively long
columns, as explained previously (see curve CD in Fig. 11-30). If a column
is of intermediate length, the stress in the column will reach the propor-
tional limit before buckling begins (curve BC in Fig. 11-30). To calculate
critical loads in this intermediate range, we need a theory of inelastic
 buckling. Three such theories are described in this section: the tangent-
modulus theory, the reduced-modulus theory, and the Shanley theory.

Tangent-Modulus Theory
Let us again consider an ideal, pinned-end column subjected to an axial
force P (Fig. 11-31a). The column is assumed to have a slenderness ratio
L/r that is less than the critical slenderness ratio [Eq. (11-71)], and there-
fore the axial stress P/A reaches the proportional limit before the critical
load is reached.

The compressive stress-strain diagram for the material of the column
is shown in Fig. 11-32. The proportional limit of the material is indicated
as σpl, and the actual stress σA in the column (equal to P/A) is represented
by point A (which is above the proportional limit). If the load is
increased, so that a small increase in stress occurs, the relationship
between the increment of stress and the corresponding increment of
strain is given by the slope of the stress-strain diagram at point A. This
slope, equal to the slope of the tangent line at A, is called the tangent
 modulus and is denoted by Et; thus,

(11-72)

Note that the tangent modulus decreases as the stress increases beyond the
proportional limit. When the stress is below the proportional limit, the
tangent modulus is the same as the ordinary elastic modulus E.

According to the tangent-modulus theory of inelastic buckling, the col-
umn shown in Fig. 11-31a remains straight until the inelastic critical load
is reached. At that value of load, the column may undergo a small lateral
deflection (Fig. 11-31b). The resulting bending stresses are superimposed

Et �
dσ
dε

Fig. 11-31
Ideal column of intermediate
length that buckles inelastically
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Chapter 11  Columns

upon the axial compressive stresses σA. Since the column starts bending
from a straight position, the initial bending stresses represent only a small
increment of stress. Therefore, the relationship between the bending
stresses and the resulting strains is given by the tangent modulus. Since the
strains vary linearly across the cross section of the column, the initial
bending stresses also vary linearly, and therefore the expressions for cur-
vature are the same as those for linearly elastic bending except that Et
replaces E:

(11-73)

[compare with Eqs. (9-5) and (9-7)].
Because the bending moment (see Fig. 11-31b), the differ-

ential equation of the deflection curve is

(11-74)

This equation has the same form as the equation for elastic buckling
[Eq. (11-6)] except that Et appears in place of E. Therefore, we can solve
the equation in the same manner as before and obtain the following equa-
tion for the tangent-modulus load:

(11-75)

This load represents the critical load for the column according to the
 tangent-modulus theory. The corresponding critical stress is

(11-76)

which is similar in form to Eq. (11-69) for the Euler critical stress.
Since the tangent modulus Et varies with the compressive stress

(Fig. 11-32), we usually obtain the tangent-modulus load by an
iterative procedure. We begin by estimating the value of Pt. This trial value,
call it P1, should be slightly larger than σpl A, which is the axial load when
the stress just reaches the proportional limit. Knowing P1, we can calculate
the corresponding axial stress and determine the  tangentσ1 � P1/A

σ � P/A

σt �
Pt

A
�

π 2Et

(L/r)2

Pt �
π 2EtI

L2

EtIv�� � Pv � 0

M � �Pv

κ �
1
ρ �

d2v
dx2 �

M
EtI
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11.8 Inelastic Buckling 945

 modulus Et from the stress-strain diagram. Next, we use Eq. (11-75) to
obtain a second estimate of Pt. Let us call this value P2. If P2 is very close
to P1, we may accept the load P2 as the tangent-modulus load. However, it
is more likely that additional cycles of iteration will be required until we
reach a load that is in close agreement with the preceding trial load. This
value is the tangent-modulus load.

A diagram showing how the critical stress σt varies with the slender-
ness ratio L/r is given in Fig. 11-33 for a typical metal column with pinned
ends. Note that the curve is above the proportional limit and below
Euler’s curve.

The tangent-modulus formulas may be used for columns with various
support conditions by using the effective length Le in place of the actual
length L.

Reduced-Modulus Theory
The tangent-modulus theory is distinguished by its simplicity and ease of
use. However, it is conceptually deficient because it does not account for
the complete behavior of the column. To explain the difficulty, we will
consider again the column shown in Fig. 11-31a. When this column first
departs from the straight position (Fig. 11-31b), bending stresses are
added to the existing compressive stresses P/A. These additional stresses
are compressive on the concave side of the column and tensile on the con-
vex side. Therefore, the compressive stresses in the column become larger
on the concave side and smaller on the other side.

Now imagine that the axial stress P/A is represented by point A on the
stress-strain curve (Fig. 11-32). On the concave side of the column (where
the compressive stress is increased), the material follows the tangent mod-
ulus Et. However, on the convex side (where the compressive stress is
decreased), the material follows the unloading line AB on the stress-strain
diagram. This line is parallel to the initial linear part of the diagram, and
therefore its slope is equal to the elastic modulus E. Thus, at the onset of
bending, the column behaves as if it were made of two different materials,
a material of modulus Et on the concave side and a material of modulus E
on the convex side.

A bending analysis of such a column can be made using the bending
theories for a beam of two materials (Sections 6.2 and 6.3). The results of
such analyses show that the column bends as though the material had a
modulus of elasticity between the values of E and Et. This “effective mod-
ulus” is known as the reduced modulus Er, and its value depends not only
upon the magnitude of the stress (because Et depends upon the magnitude
of the stress), but also upon the shape of the cross section of the column.
Thus, the reduced modulus Er is more difficult to determine than is the
tangent modulus Et. In the case of a column having a rectangular cross
section, the equation for the reduced modulus is

(11-77)Er �
4EEt

11E � 1Et22

Fig. 11-33
Diagram of critical stress versus
slenderness ratio
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Chapter 11  Columns

For a wide-flange beam with the area of the web disregarded, the reduced
modulus for bending about the strong axis is

(11-78)

The reduced modulus Er is also called the double modulus.
Since the reduced modulus represents an effective modulus that gov-

erns the bending of the column when it first departs from the straight posi-
tion, we can formulate a reduced-modulus theory of inelastic buckling.
Proceeding in the same manner as for the tangent-modulus theory, we
begin with an equation for the curvature and then we write the differen-
tial equation of the deflection curve. These equations are the same as
Eqs. (11-73) and (11-74), except that Er appears instead of Et. Thus, we
arrive at the following equation for the reduced-modulus load:

(11-79)

The corresponding equation for the critical stress is

(11-80)

To find the reduced-modulus load Pr, we again must use an iterative pro-
cedure, because Er depends upon Et. The critical stress according to the
reduced-modulus theory is shown in Fig. 11-33. Note that the curve for σr
is above that for σt, because Er is always greater than Et.

The reduced-modulus theory is difficult to use in practice because Er
depends upon the shape of the cross section as well as the stress-strain
curve and must be evaluated for each particular column. Moreover, this
theory also has a conceptual defect. In order for the reduced modulus Er
to apply, the material on the convex side of the column must be undergo-
ing a reduction in stress. However, such a reduction in stress cannot occur
until bending actually takes place. Therefore, the axial load P, applied to
an ideal straight column, can never actually reach the reduced-modulus
load Pr. To reach that load would require that bending already exist,
which is a contradiction.

Shanley Theory
From the preceding discussions we see that neither the tangent-modulus
theory nor the reduced-modulus theory is entirely rational in explaining

Er �
2EEt

E � Et

σr �
π 2Er

(L/r)2

Pr �
π 2ErI

L2
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11.8 Inelastic Buckling 947

the phenomenon of inelastic buckling. Nevertheless, an understanding of
both theories is necessary in order to develop a more complete and logi-
cally consistent theory. Such a theory was developed by F. R. Shanley in
1946 (see the historical note that follows), and today it is called the
Shanley theory of inelastic buckling.

The Shanley theory overcomes the difficulties with both the tan-
gent-modulus and reduced-modulus theories by recognizing that it
is not possible for a column to buckle inelastically in a manner that is
analogous to Euler buckling. In Euler buckling, a critical load
is reached at which the column is in neutral equilibrium, represented by
a horizontal line on the load-deflection diagram (Fig. 11-34). As
already explained, neither the tangent-modulus load Pt nor the
reduced-modulus load Pr can represent this type of behavior. In both
cases, we are led to a contradiction if we try to associate the load with
a condition of neutral equilibrium.

Instead of neutral equilibrium, wherein a deflected shape suddenly
becomes possible with no change in load, we must think of a column
that has an ever-increasing axial load. When the load reaches the tan-
gent-modulus load (which is less than the reduced-modulus load),
bending can begin only if the load continues to increase. Under these
conditions, bending occurs simultaneously with an increase in load,
resulting in a decrease in strain on the convex side of the column. Thus,
the effective modulus of the material throughout the cross section
becomes greater than Et, and therefore, an increase in load is possible.
However, the effective modulus is not as great as Er, because Er is based
upon full strain reversal on the convex side of the column. In other
words, Er is based upon the amount of strain reversal that exists if the
column bends without a change in the axial force, whereas the presence
of an increasing axial force means that the reduction in strain is not
as great.

Thus, instead of neutral equilibrium, where the relationship between
load and deflection is undefined, we now have a definite relationship
between each value of the load and the corresponding deflection. This
behavior is shown by the curve labeled “Shanley theory” in Fig. 11-34.
Note that buckling begins at the tangent-modulus load; then the load
increases, but does not reach the reduced-modulus load until the deflec-
tion becomes infinitely large (theoretically). However, other effects
become important as the deflection increases, and in reality the curve
eventually goes downward, as shown by the dashed line.

The Shanley concept of inelastic buckling has been verified by
numerous investigators and by many tests. However, the maximum
load attained by real columns (see the dashed curve trending downward
in Fig. 11-34) is only slightly above the tangent-modulus load Pt. In
addition, the tangent-modulus load is very simple to calculate.
Therefore, for many practical purposes it is reasonable to adopt the
tangent-modulus load as the critical load for inelastic buckling of
columns.

The preceding discussions of elastic and inelastic buckling are
based upon idealized conditions. Although theoretical concepts are
important in understanding column behavior, the actual design of
columns must take into account additional factors not considered in the

Fig. 11-34
Load-deflection diagram for
elastic and inelastic buckling

O

Pt

v

Pr

Pcr

P
Euler load

Reduced-modulus load

Tangent-modulus load

Shanley
theory
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Chapter 11  Columns

theory. For instance, steel columns always contain residual stresses pro-
duced by the rolling process. These stresses vary greatly in different
parts of the cross section, and therefore the stress level required to pro-
duce yielding varies throughout the cross section. For such reasons, a
variety of empirical design formulas have been developed for use in
designing columns. 

Historical Note Over 200 years had elapsed between the first calculation
of a buckling load by Euler (in 1744) and the final development of the the-
ory by Shanley (in 1946). Several famous investigators in the field of
mechanics contributed to this development, and their work is described in
this note.

After Euler’s pioneering studies (Ref. 11-1), little progress was made
until 1845, when the French engineer A. H. E. Lamarle pointed out that
Euler’s formula should be used only for slenderness ratios beyond a cer-
tain limit and that experimental data should be relied upon for columns
with smaller ratios (Ref. 11-6). Then in 1889, another French engineer,
A. G. Considère, published the results of the first comprehensive tests on
columns (Ref. 11-7). He pointed out that the stresses on the concave side
of the column increased with Et and the stresses on the convex side
decreased with E. Thus, he showed why the Euler formula was not appli-
cable to inelastic buckling, and he stated that the effective modulus was
between E and Et. Although he made no attempt to evaluate the effec-
tive modulus, Considère was responsible for beginning the reduced-
modulus theory.

In the same year, and quite independently, the German engineer F.
Engesser suggested the tangent-modulus theory (Ref. 11-8). He
denoted the tangent modulus by the symbol T (equal to ) and
proposed that T be substituted for E in Euler’s formula for the critical
load. Later, in March 1895, Engesser again presented the tangent-
modulus theory (Ref. 11-9), obviously without knowledge of
Considère’s work. Today, the tangent-modulus theory is often called
the Engesser theory.

Three months later, Polish-born F. S. Jasinsky, then a professor in St.
Petersburg, pointed out that Engesser’s tangent-modulus theory was
incorrect, called attention to Considère’s work, and presented the
reduced-modulus theory (Ref. 11-10). He also stated that the reduced
modulus could not be calculated theoretically. In response, and only one
month later, Engesser acknowledged the error in the tangent-modulus
approach and showed how to calculate the reduced modulus for any cross
section (Ref. 11-11). Thus, the reduced-modulus theory is also known as
the Considère-Engesser theory.

The reduced-modulus theory was also presented by the famous  scientist
Theodore von Kármán in 1908 and 1910 (Refs. 11-12, 11-13, and 11-14),
apparently independently of the earlier investigations. In Ref. 11-13
he derived the formulas for Er for both rectangular and idealized wide-
flange sections (that is, wide-flange sections without a web). He extended
the theory to include the effects of eccentricities of the buckling load, and
he showed that the maximum load decreases rapidly as the eccentricity
increases.

dσ /dε

948
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11.8 Inelastic Buckling 949

The reduced-modulus theory was the accepted theory of inelastic
buckling until 1946, when the American aeronautical-engineering profes-
sor F. R. Shanley pointed out the logical paradoxes in both the tangent-
modulus and reduced-modulus theories. In a remarkable one-page paper
(Ref. 11-15), Shanley not only explained what was wrong with the
 generally accepted theories, but also proposed his own theory that
resolved the paradoxes. In a second paper, five months later, he gave
 further analyses to support his earlier theory and gave results from tests
on columns (Ref. 11-16). Since that time, many other investigators have
confirmed and expanded Shanley’s concept.

For excellent discussions of the column-buckling problem, see the
comprehensive papers by Hoff (Refs. 11-17 and 11-18), and for a histori-
cal account, see the paper by Johnston (Ref. 11-19).
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950

CHAPTER SUMMARY & REVIEW

In Chapter 11, we investigated the elastic and inelastic behavior of axially
loaded members known as columns. First, the concepts of buckling and
stability of these slender compression elements were discussed using equi-
librium of simple column models made up of rigid bars and elastic springs.
Then elastic columns with pinned ends, acted on by centroidal compres-
sive loads, were considered and the differential equation of the deflection
curve was solved to obtain the buckling load (Pcr) and buckled mode shape;
linear elastic behavior was assumed. Three additional support cases were
investigated, and the buckling load for each case was expressed in terms
of the column’s effective length, that is, the length of an equivalent pinned-
end column. Behavior of pinned-end columns with eccentric axial loads
was discussed and the secant formula was derived that defines the maxi-
mum stress in these columns. Finally, three theories for inelastic buckling
of columns were presented. 

The major concepts presented in this chapter are as follows:

1. Buckling instability of slender columns is an important mode of fail-
ure that must be considered in their design (in addition to strength
and stiffness).

2. A slender column with pinned ends and length L, acted on by a com-
pressive load at the centroid of the cross section, and restricted to
linear elastic behavior, will buckle at the Euler buckling load

in the fundamental mode; hence, the buckling load depends on the
flexural rigidity (EI) and length (L), but not the strength of the mate-
rial.

3. Changing the support conditions, or providing additional lateral sup-
ports, changes the critical buckling load. However, Pcr for these other
support cases may be obtained by replacing the actual column length
(L) by the effective length (Le) in the formula for Pcr above. Three
additional support cases are shown in Fig. 11-20. We can express the
effective length Le in terms of an effective-length factor K as

where for a pinned-end column and for a column
fixed at its base. The critical load Pcr then is expressed as

Pcr �
π2EI
(KL)2

K � 2K � 1

Le � KL

Pcr � π2EI/L2
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951

Effective-length factor K is often used in column design formulas.

4. Columns with eccentric axial loads behave quite differently from
those with centroidal loads. The maximum compressive stress in
pinned-end columns with load P applied at eccentricity e is defined
by the secant formula; a graph of this formula (Fig. 11-28) shows
that column load-carrying capacity decreases with increasing eccen-
tricity. The secant formula gives the maximum compressive stress or
σmax in an eccentrically loaded, pinned-end column in terms of aver-
age compressive stress P/A, modulus of elasticity E, slenderness ratio
L/r, and eccentricity ratio as

5. Long columns (i.e., large slenderness ratios L/r) buckle at low values
of compressive stress; short columns (i.e., low L/r) fail by yielding
and crushing of the material; and intermediate columns (with values
of L/r which lie between those for long and short columns) fail by
inelastic buckling. The critical buckling load for inelastic buckling is
always less than the Euler buckling load; the dividing lines between
short, intermediate, and long columns are not precisely defined.

6. Three theories for inelastic buckling of intermediate columns are: the
tangent-modulus theory, the reduced-modulus theory, and the
Shanley theory. However, empirical formulas are actually used for
the design of columns because the theoretical formulas do not
account for such things as residual stresses in steel columns and
other factors.

σmax �
P
A
c1 �

ec
r2 sec a L

2r C
P

EA
b d

ec/r2

77742_11_ch11_p900-967.qxd:77742_11_ch11_p900-967.qxd  2/22/12  5:51 PM  Page 951

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Idealized Buckling Models

11.2-1 The figure shows an idealized structure consisting
of one or more rigid bars with pinned connections and lin-
early elastic springs. Rotational stiffness is denoted βR,
and translational stiffness is denoted β.

Determine the critical load Pcr for the structure.

PROBLEMS CHAPTER 11
Determine the critical load Pcr for the structure.

952 Chapter 11  Columns

A

B

L

bR

P

PROB. 11.2-1

L
2
—

L
2
—

A

C

B

bR

bR

bR

P

PROB. 11.2-3

b

(a)

A

C

B

bR

P

L

Hinge

Hinge
Elastic
support

a

(b)

Elastic
support

b

A

C

B

bR

bR

P

L/2

L/2

Elastic
connection

PROB. 11.2-4
(a)

bR

L

C

a

A

B
b

P

(b)

bR

bRL

C

a

A

B
b

P

Elastic
supports Elastic

supports

PROB. 11.2-2

11.2-2 The figure shows an idealized structure consisting
of one or more rigid bars with pinned connections and lin-
early elastic springs. Rotational stiffness is denoted βR,
and translational stiffness is denoted β.

(a) Determine the critical load Pcr for the structure
from the figure part a.

(b) Find Pcr if another rotational spring is added at B
from the figure part b.

11.2-3 The figure shows an idealized structure consisting
of one or more rigid bars with pinned connections and
linearly elastic springs. Rotational stiffness is denoted βR,
and translational stiffness is denoted β.

11.2-4 The figure shows an idealized structure consisting
of bars AB and BC which are connected using a hinge at B
and linearly elastic springs at A and B. Rotational stiffness
is denoted βR and translational stiffness is denoted β.

(a) Determine the critical load Pcr for the structure
from the figure part a.

(b) Find Pcr if an elastic connection is now used to
connect bar segments AB and BC from the figure part b.

11.2-5 The figure shows an idealized structure consisting
of two rigid bars joined by an elastic connection with rota-
tional stiffness βR. Determine the critical load Pcr for the
structure.
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11.3-1 Calculate the critical load Pcr for an HE 140B steel
column (see figure) having length and

under the following conditions:
(a) The column buckles by bending about its strong

axis (axis 1–1), and (b) the column buckles by bending
about its weak axis (axis 2–2). In both cases, assume that
the column has pinned ends.

E � 200 GPa
L � 8 m

953Problems Chapter 11

B D
C

Elastic connection

A

L/2 LL/2

bR P

PROB. 11.2-5

F

Elastic support

Elastic support

L/2L/2 E

bR = (2/5) bL2b b

BA

L/2L/2

C

DP

PROB. 11.2-6

1
C

1

2

2

PROBS. 11.3-1 through 11.3-3

B

D

A C

L

Md 2d

0.6 L

PROB. 11.3-4

b

A

B

P

C

L/2

L

bR = 3bL2/2

Elastic
support

PROB. 11.2-7

11.2-6 The figure shows an idealized structure consisting
of rigid bars ABC and DEF joined by linearly elastic
spring β between C and D. The structure is also supported
by translational elastic support β at B and rotational elas-
tic support βR at E.

Determine the critical load Pcr for the structure.

11.2-7 The figure shows an idealized structure consisting
of an L-shaped rigid bar structure supported by linearly
elastic springs at A and C. Rotational stiffness is denoted
βR and translational stiffness is denoted β.

Determine the critical load Pcr for the structure.

Critical Loads of Columns with
Pinned Supports
The problems for Section 11.3 are to be solved using the
assumptions of ideal, slender, prismatic, linearly elastic
columns (Euler buckling). Buckling occurs in the plane of
the figure unless stated otherwise.

11.3-2 Solve the preceding problem for an IPN 140 steel
 column having length Let 

11.3-3 Solve Prob. 11.3-1 for an  HE 140A steel column
 having length 

11.3-4 A horizontal beam AB is pin supported at end A
and carries a clockwise moment M at joint B, as shown in
the figure. The beam is also supported at C by a pinned-
end column of length L; the column is restrained laterally
at 0.6L from the base at D. Assume the column can only
buckle in the plane of the frame. The column is a solid steel
bar of square cross section having length

and side dimensions . Let dimen-
sions . Based upon the critical load of the column,
determine the allowable moment M if the factor of safety
with respect to buckling is .n � 2.0

d � L/2
b � 70 mmL � 2.4 m

(E � 200 GPa)

L � 8 m.

E � 200 GPa.L � 8 m.
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Chapter 11  Columns

11.3-7 A horizontal beam AB has a guided support at
end A and carries a load Q at end B, as shown in the fig-
ure part a. The beam is supported at C and D by two iden-
tical pinned-end columns of length L. Each column has
flexural rigidity EI.

(a) Find an expression for the critical load Qcr. (In
other words, at what load Qcr does the system collapse
because of Euler buckling of the columns?

(b) Repeat part (a), but assume a pin support at A.
Find an expression for the critical moment Mcr (i.e., find
the moment M at B at which the system collapses because
of Euler buckling of the columns).

954

11.3-5 A horizontal beam AB is pin supported at end A
and carries a load Q at joint B, as shown in the figure. The
beam is also supported at C by a pinned-end column of
length L; the column is restrained laterally at 0.6L from
the base at D. Assume the column can only buckle in the
plane of the frame. The column is a solid aluminum bar

of square cross section having length
and side dimensions . Let

dimension . Based upon the critical load of the
column, determine the allowable force Q if the factor of
safety with respect to buckling is .n � 1.8

d � L/2
b � 38 mmL � 0.75 m

(E � 70 GPa)

B

D

A C

L Q

d 2d

0.6 L

PROB. 11.3-5

BA C D

LL Q

d d 2d

BA C D

LL

M
d d 2d

(a) (b)

PROB. 11.3-7

B

D

A C

L

Q

d 2d

(a)

PROB. 11.3-6

11.3-6 A horizontal beam AB is supported at end A and
carries a load Q at joint B, as shown in the figure part a.
The beam is also supported at C by a pinned-end column
of length L. The column has flexural rigidity EI.

(a) For the case of a guided support at A (figure
part a), what is the critical load Qcr? (In other words, at
what load Qcr does the system collapse because of Euler
buckling of the column DC?)

(b) Repeat part (a) if the guided support at A is
replaced by column AF with length 3L/2 and flexural
rigidity EI (see figure part b).

B

D

A
C

F

L

Q

d 2d

3L
2

—

(b)
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Problems Chapter 11

11.3-8 A slender bar AB with pinned ends and length L is
held between immovable supports (see figure).

What increase ΔT in the temperature of the bar will
produce buckling at the Euler load?

955

11.3-11 Three pinned-end columns of the same material
have the same length and the same cross-sectional area
(see figure). The columns are free to buckle in any direc-
tion. The columns have cross sections as follows: (1) a
 circle, (2) a square, and (3) an equilateral triangle.

Determine the ratios P1 : P2 : P3 of the critical loads
for these columns.

A B

L

ΔT

PROB. 11.3-8

(3)(2)(1)

PROB. 11.3-11

C

A

B

P

X X
L

L

1 1

2

2

Section  X - X  

HE 260A

PROB. 11.3-12

L
2
—

L
2
—

C

B

A

b

X X

P

b

h

Section X-X

PROB. 11.3-9

2 r

PROB. 11.3-10

11.3-9 A rectangular column with cross-sectional dimen-
sions b and h is pin supported at ends A and C (see figure).
At midheight, the column is restrained in the plane of the
 figure, but is free to deflect perpendicularly to the plane of
the figure.

Determine the ratio h/b such that the critical load is the
same for buckling in the two principal planes of the column.

11.3-10 Three identical, solid circular rods, each of radius r
and length L, are placed together to form a compression
member (see the cross section shown in the figure).

Assuming pinned-end conditions, determine the criti-
cal load Pcr as follows: (a) The rods act independently as
individual columns, and (b) the rods are bonded by epoxy
throughout their lengths so that they function as a single
member.

What is the effect on the critical load when the rods
act as a single member?

11.3-12 A long slender column ABC is pinned at ends A
and C and compressed by an axial force P (see figure). At
the midpoint B, lateral support is provided to prevent
deflection in the plane of the figure. The column is a steel
wide-flange section (HE ) with . The
distance between lateral supports is .

Calculate the allowable load P using a factor of safety
, taking into account the possibility of Euler buck-

ling about either principal centroidal axis (i.e., axis 1–1 or
axis 2–2).

n � 2.4

L � 5.5 m
260A E � 200 GPa
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Chapter 11  Columns

11.3-14 The hoisting arrangement for lifting a large pipe is
shown in the figure. The spreader is a steel tubular section
with outer diameter 70 mm and inner diameter 57 mm. Its
length is 2.6 m and its modulus of elasticity is 200 GPa.

Based upon a factor of safety of 2.25 with respect to
Euler buckling of the spreader, what is the maximum
weight of pipe that can be lifted? (Assume pinned condi-
tions at the ends of the spreader.)

956

11.3-13 The roof over a concourse at an airport is sup-
ported by the use of pretensioned cables. At a typical joint
in the roof structure, a strut AB is compressed by the
action of tensile forces F in a cable that makes an angle

with the strut (see figure and photo). The strut is
a circular tube of steel with outer diame-
ter and inner diameter . The
strut is 1.75 m long and is assumed to be pin connected at
both ends.

Using a factor of safety with respect to the
critical load, determine the allowable force F in the
cable.

n � 2.5

d2 � 60 mm d1 � 50 mm
(E � 200 GPa)

α � 75°

d2

F

B

A

F

Strut

Cable

a

a

PROB. 11.3-13

F

1010
7 7

A BSpreader

Cable

Cable

Pipe

PROB. 11.3-14

d = 50 mm

t

PROB. 11.3-15

Cable and strut at typical joint of airport concourse roof
(© Barry Goodno)

11.3-15 A pinned-end strut of aluminum
with length is constructed of circular tubing
with outside diameter (see figure). The strut
must resist an axial load with a factor of safety

with respect to the critical load.
Determine the required thickness t of the tube.

P � 18 kN
n � 2.0

d � 50 mm
L � 1.8 m

(E � 70 GPa)

11.3-16 The cross section of a column built up of two steel
I-beams (IPN sections) is shown in the figure. The
beams are connected by spacer bars, or lacing, to ensure
that they act together as a single column. (The lacing is
represented by dashed lines in the figure.)

The column is assumed to have pinned ends and
may buckle in any direction. Assuming
and , calculate the critical load Pcr for the
column.

L � 8.5 m
E � 200 GPa

180

77742_11_ch11_p900-967.qxd:77742_11_ch11_p900-967.qxd  2/22/12  5:52 PM  Page 956

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems Chapter 11

11.3-17 The truss ABC shown in the figure supports a
vertical load W at joint B. Each member is a slender circu-
lar steel pipe with outside diameter
100 mm and wall thickness 6 mm. The distance between
supports is 7 m. Joint B is restrained against displacement
perpendicular to the plane of the truss.

Determine the critical value Wcr of the load.

(E � 200 GPa)

957

11.3-19 An IPN 160 steel cantilever beam AB is supported
by a steel tie rod at B as shown. The tie rod is just taut
when a roller support is added at C at a distance s to the
left of B, then the distributed load q is applied to beam seg-
ment AC. Assume and neglect the self
weight of the beam and tie rod. See Table E-2 in
Appendix E for the properties of the IPN beam.

(a) What value of uniform load q will, if exceeded,
result in buckling of the tie rod if , ,

, and ?
(b) What minimum beam moment of inertia Ib is

required to prevent buckling of the tie rod if ,
, , , and ?

(c) For what distance s will the tie rod be just on the
verge of buckling if , , ,
and ?d � 6 mm

q � 2 kN/m L1 � 2 m H � 1 m

L1 � 2 m H � 1 m d � 6 mm s � 0.6 m
q � 2 kN/m

H � 1 m d � 6 mm
L1 � 2 m s � 0.6 m

E � 200 GPa

100 mm

IPN 180

PROB. 11.3-16

W

A

B

C
40° 55°

7 m

100 mm

PROB. 11.3-17

A

C

B

W

u

L1

PROB. 11.3-18

s
L1

Tie rod, diameter d

IPN 160

H

B
A

q

D

C

PROB. 11.3-19

A

G

E

B

3F 2F F

C D3 m 3 m 3 m

3 m

4.5 m

1 mF

PROB. 11.3-20

11.3-18 A truss ABC supports a load W at joint B, as
shown in the figure. The length L1 of member AB is fixed,
but the length of strut BC varies as the angle θ is changed.
Strut BC has a solid circular cross section. Joint B is
restrained against displacement perpendicular to the plane
of the truss.

Assuming that collapse occurs by Euler buckling of
the strut, determine the angle θ for minimum weight of
the strut.

11.3-20 The plane truss shown in the figure supports ver-
tical loads F at joint D, 2F at joint C, and 3F at joint B.
Each member is a slender circular pipe
with an outside diameter of 60 mm and wall thickness of
5 mm. Joint B is restrained against displacement perpendi-
cular to the plane of the truss. Determine the critical value
of load variable F (kN) at which member BF fails by Euler
buckling.

(E � 70 GPa)
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Chapter 11  Columns

11.4-3 A wide-flange steel column of
HE shape (see figure) has length . It is sup-
ported only at the ends and may buckle in any direction.

Calculate the allowable load Pallow based upon the
critical load with a factor of sa fety . Consider the
following end conditions: (1) pinned-pinned, (2) fixed-free,
(3) fixed-pinned, and (4) fixed-fixed.

n � 2.5

450A L � 9 m
(E � 200 GPa)

958

11.3-21 A space truss is restrained at joints O, A, B, and C,
as shown in the figure. Load P is applied at joint A and load
2P acts downward at joint C. Each member is a  slender, cir-
cular pipe with an outside diameter of
90 mm and wall thickness of 6.5 mm. Length variable

. Determine the critical value of load variable
P (kN) at which member OB fails by Euler buckling.
L � 3.5 m

(E � 73 GPa)

y

C
cx

ox

oy

O

oz

L

BA
z x

Ay
Ax Bz

By
P

0.8L

0.6L

2P

PROB. 11.3-21

1 1

2

2

PROBS. 11.4-3 and 11.4-4

IPN 200

PROB. 11.4-5

d1 d2

PROBS. 11.4-1 and 11.4-2

Columns with Other Support
Conditions
The problems for Section 11.4 are to be solved using the
assumptions of ideal, slender, prismatic, linearly elastic
columns (Euler buckling). Buckling occurs in the plane of
the figure unless stated otherwise.

11.4-1 An aluminum pipe column with
length has inside and outside diameters

and , respectively (see figure).
The column is supported only at the ends and may buckle
in any direction.

Calculate the critical load Pcr for the following end con-
ditions: (1) pinned-pinned, (2) fixed-free, (3) fixed-pinned,
and (4) fixed-fixed.

d1 � 130 mm d2 � 150 mm
L � 3 m

(E � 70 GPa)

11.4-2 Solve the preceding problem for a steel pipe column
with length , inner diameter

, and outer diameter .d1 � 36 mm d2 � 40 mm
(E � 210 GPa) L � 1.2 m

11.4-4 Solve the preceding problem for an HE 100A shape
with length and .

11.4-5 The upper end of an IPN 200 standard steel column
is supported laterally between two pipes

(see figure). The pipes are not attached to the column, and
friction between the pipes and the column is unreliable.
The base of the column provides a fixed support, and the
column is 4 m long.

Determine the critical load for the column, consider-
ing Euler buckling in the plane of the web and also per-
pendicular to the plane of the web.

(E � 200 GPa)

L � 7.5 m E � 200 GPa

11.4-6 A vertical post AB is embedded in a concrete
 foundation and held at the top by two cables (see figure).
The post is a hollow steel tube with modulus of elasticity
200 GPa, outer diameter of 40 mm, and thickness of
5 mm. The cables are tightened equally by turnbuckles.
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Problems Chapter 11

If a factor of safety of 3.0 against Euler buckling in
the plane of the figure is desired, what is the maximum
allowable tensile force Tallow in the cables?

959

11.4-8 The roof beams of a warehouse are supported by
pipe columns (see figure) having outer diameter

and inner diameter . The
columns have length , modulus ,
and fixed supports at the base.

Calculate the critical load Pcr of one of the columns
using the following assumptions: (1) the upper end is
pinned and the beam prevents horizontal displacement; (2)
the upper end is fixed against rotation and the beam pre-
vents horizontal displacement; (3) the upper end is pinned,
but the beam is free to move horizontally; and (4) the
upper end is fixed against rotation, but the beam is free to
move horizontally.

L � 4.0 m E � 210 GPa
d2 � 100 mm d1 � 90 mm

40 mm
Cable

Steel tube

Turnbuckle

2.1 m

A

B

2.0 m 2.0 m

PROB. 11.4-6

d2

Pipe column

Roof beam

L

PROB. 11.4-8

BA
a

C

E

D

Q

16 mm16 mm

1.0  m0.3 m

0.9 m 1.2 m

PROB. 11.4-7

B

L

A

P

PROB. 11.4-9

11.4-7 The horizontal beam ABC shown in the figure is
supported by columns BD and CE. The beam is pre-
vented from moving horizontally by the pin support at
end A. Each column is pinned at its upper end to the
beam, but at the lower ends, support D is a guided sup-
port and support E is pinned. Both columns are solid
steel bars of square cross section with
width equal to 16 mm. A load Q acts at distance a from
column BD.

(a) If the distance , what is the critical
value Qcr of the load?

(b) If the distance a can be varied between 0 and
1.0 m, what is the maximum possible value of Qcr? What is
the corresponding value of the distance a?

a � 0.5 m

(E � 200 GPa)

11.4-9 Determine the critical load Pcr and the equation of
the buckled shape for an ideal column with ends fixed
against rotation (see figure) by solving the differential
equation of the deflection curve. (See also Fig. 11-18.)
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Chapter 11  Columns

(b) For the particular case when member BC is iden-
tical to member AB, the rotational stiffness βR equals
3EI/L (see Case 7, Table G-2, Appendix G). For this spe-
cial case, determine the critical load Pcr.

960

11.4-10 An aluminum tube AB of circular cross section
has a guided support at the base and is pinned at the top
to a horizontal beam supporting a load (see
figure).

Determine the required thickness t of the tube if its
outside diameter d is 200 mm and the desired factor of
safety with respect to Euler buckling is . (Assume

.)E � 72 GPa
n � 3.0

Q � 200 kN

B

A

d � 200 mm

Q � 200 kN

1.0 m 1.0 m

2.0 m

PROB. 11.4-10

A

B

L

P

bR

P

B
C

A

L

EI

(a) (b)

x

y

PROB. 11.4-11

P = 12.5 kN

50 mm
25 mm

PROB. 11.5-1

11.4-11 The frame ABC consists of two members AB and
BC that are rigidly connected at joint B, as shown in part a
of the figure. The frame has pin supports at A and C. A
concentrated load P acts at joint B, thereby placing mem-
ber AB in direct compression.

To assist in determining the buckling load for mem-
ber AB, we represent it as a pinned-end column, as shown
in part b of the figure. At the top of the column, a rota-
tional spring of stiffness βR represents the restraining
action of the horizontal beam BC on the column (note that
the horizontal beam provides resistance to rotation of
joint B when the column buckles). Also, consider only
bending effects in the analysis (i.e., disregard the effects of
axial deformations).

(a) By solving the differential equation of the deflec-
tion curve, derive the following buckling equation for this
column:

in which L is the length of the column and EI is its flexural
rigidity.

βRL

EI
(kL cot kL � 1) � k2L2 � 0

Columns with Eccentric Axial
Loads
When solving the problems for Section 11.5, assume that
bending occurs in the principal plane containing the eccen-
tric axial load.

11.5-1 An aluminum bar having a rectangular cross sec-
tion and length is com-
pressed by axial loads that have a resultant
acting at the midpoint of the long side of the cross section
(see figure).

Assuming that the modulus of elasticity E is equal to
and that the ends of the bar are pinned, calculate

the maximum deflection δ and the maximum bending
moment Mmax.

70 GPa

P � 12.5 kN
(50 mm 	 25 mm) L � 1.0 m
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Problems Chapter 11

11.5-2 A steel bar having a square cross section
and length is compressed

by axial loads that have a resultant acting at
the midpoint of one side of the cross section (see figure).

Assuming that the modulus of elasticity E is equal to
210 GPa and that the ends of the bar are pinned, calculate
the maximum deflection δ and the maximum bending
moment Mmax.

P � 60 kN
(50 mm 	 50 mm) L � 2.0 m

961

11.5-4 Plot the load-deflection diagram for a pinned-end
column with eccentric axial loads (see figure) if the eccen-
tricity e of the load is 5 mm and the column has length

, moment of inertia , and
modulus of elasticity .

Note: Plot the axial load as ordinate and the deflec-
tion at the midpoint as abscissa.

11.5-5 Solve the preceding problem for a column
with , , , and

.

11.5-6 A steel column (IPN 200) is compressed by axial
loads that have a resultant P acting at the point shown in
the figure. The member has modulus of elasticity

and pinned conditions at the ends. Lateral
supports prevent any bending about the weak axis of the
cross section.

If the length of the member is 6.2 m and the deflection
is limited to 6.5 mm, what is the maximum allowable load
Pallow?

E � 200 GPa

E � 70 GPa
e � 5 mm L � 4 m I � 935 cm4

E � 210 GPa
L � 3.6 m I � 9.0 	 106 mm4

P = 60 kN

PROB. 11.5-2

B

A

P P

P P

L

e

e

�v

x

y

M0 = Pe

M0 = Pe

(a) (b)

PROBS. 11.5-3 through 11.5-5

P

IPN 200

PROB. 11.5-6

P = 90 kN

IPN 340

PROBS. 11.5-7 and 11.5-8

11.5-3 Determine the bending moment M in the pinned-
end column with eccentric axial loads shown in the figure.
Then plot the bending-moment diagram for an axial load

.
Note: Express the moment as a function of the dis-

tance x from the end of the column, and plot the diagram
in nondimensional form with M/Pe as ordinate and x/L as
abscissa.

P � 0.3Pcr

11.5-7 A steel column (IPN 340) is compressed by axial
loads that have a resultant acting at the point
shown in the figure. The material is steel with modulus of
elasticity . Assuming pinned-end condi-
tions, determine the maximum permissible length Lmax if
the deflection is not to exceed 1/400th of the length.

E � 200 GPa

P � 90 kN
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Chapter 11  Columns

11.5-11 Solve the preceding problem for a cast iron
 column with , , ,
and . The deflection at the top is limited to
50 mm.

11.5-12 A steel post AB of hollow circular cross section is
fixed at the base and free at the top (see figure). The inner
and outer diameters are and ,
respectively, and the length .

A cable CBD passes through a fitting that is welded to
the side of the post. The distance between the plane of the
cable (plane CBD) and the axis of the post is ,
and the angles between the cable and the ground are

. The cable is pretensioned by tightening the
turnbuckles.

If the deflection at the top of the post is limited to
, what is the maximum allowable tensile force

T in the cable? (Assume .)E � 205 GPa
δ � 20 mm

α � 53.13°

e � 100 mm

L � 4.0 m
d1 � 96 mm d2 � 110 mm

E � 90 GPa
b � 150 mm t � 12 mm P � 110 kN

962

11.5-8 Solve the preceding problem using an HE 160B if
the resultant force P equals 110 kN and .

11.5-9 The column shown in the figure is fixed at the base
and free at the upper end. A compressive load P acts at the
top of the column with an eccentricity e from the axis of
the column.

Beginning with the differential equation of the deflec-
tion curve, derive formulas for the maximum deflection δ
of the column and the maximum bending moment Mmax in
the column.

E � 200 GPa

L

P P

(a) (b)

ee

y

x

d

B

A

PROB. 11.5-9

A

B

C D

L = 4.0 m

Cable

d2
a = 53.13° a = 53.13°

d1

d2

e = 100 mm

PROB. 11.5-12

P

A A

L

Section A-A

t

b

PROBS. 11.5-10 and 11.5-11

11.5-10 An aluminum box column of square cross section
is fixed at the base and free at the top (see figure). The out-
side dimension b of each side is 100 mm and the thickness t
of the wall is 8 mm. The resultant of the compressive loads
acting on the top of the column is a force
 acting at the outer edge of the column at the midpoint of
one side.

What is the longest permissible length Lmax of the col-
umn if the deflection at the top is not to exceed 30 mm?
(Assume .)E � 73 GPa

P � 50 kN

11.5-13 A frame ABCD is constructed of steel wide-
flange members (HE and subjected
to triangularly distributed loads of maximum intensity q0
acting along the vertical members (see figure). The dis-
tance between supports is and the height of the
frame is . The members are rigidly connected
at B and C.

(a) Calculate the intensity of load q0 required to pro-
duce a maximum bending moment of 9 in the hor-
izontal member BC.

(b) If the load q0 is reduced to one-half of the value
calculated in part (a), what is the maximum bending
moment in member BC? What is the ratio of this moment
to the moment of 9 in part (a)?kN # m

kN # m

h � 1.2 m
L � 6 m

140A; E � 200 GPa)
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Problems Chapter 11

The Secant Formula
When solving the problems for Section 11.6, assume that
bending occurs in the principal plane containing the eccen-
tric axial load.

11.6-1 A steel bar has a square cross section of width
(see figure). The bar has pinned supports at

the ends and is 1 m long. The axial forces acting at the end
of the bar have a resultant located at distance

from the center of the cross section. Also, the
modulus of elasticity of the steel is 200 GPa.

(a) Determine the maximum compressive stress σmax
in the bar.

(b) If the allowable stress in the steel is 125 MPa,
what is the maximum permissible length Lmax of the
bar?

e � 20 mm
P � 80 kN

b � 50 mm

963

If the allowable stress in the brass is 150 MPa, what is
the allowable axial force Pallow?

11.6-3 A square aluminum bar with pinned ends carries a
load acting at distance from
the center (see figure). The bar has length and
modulus of elasticity .

If the stress in the bar is not to exceed 42 MPa, what
is the minimum permissible width bmin of the bar?

11.6-4 A pinned-end column of length is con-
structed of steel pipe having inside diam-
eter and outside diameter (see
figure). A compressive load acts with eccen-
tricity .

(a) What is the maximum compressive stress σmax in
the column?

(b) If the allowable stress in the steel is 50 MPa, what
is the maximum permissible length Lmax of the column?

e � 30 mm
P � 10 kN

d1 � 60 mm d2 � 68 mm
(E � 210 GPa)

L � 2.1 m

E � 70 GPa
L � 1.5 m

P � 120 kN e � 50 mm

Section E-E

E

E

B

A

h

L

D

C

q0 q0

PROB. 11.5-13

P
e

PROBS. 11.6-1 through 11.6-3

P
e

d1

d2

PROBS. 11.6-4 through 11.6-6

11.6-2 A brass bar with a square cross
section is subjected to axial forces having a resultant P act-
ing at distance e from the center (see figure). The bar is pin
supported at the ends and is 0.6 m in length. The side
dimension b of the bar is 30 mm and the eccentricity e of
the load is 10 mm.

(E � 100 GPa)

11.6-5 A pinned-end strut of length is con-
structed of steel pipe having inside diam-
eter and outside diameter (see
figure). A compressive load is applied with
eccentricity .

(a) What is the maximum compressive stress σmax in
the strut?

(b) What is the allowable load Pallow if a factor of
safety with respect to yielding is required? (Assume
that the yield stress σY of the steel is 300 MPa.)

11.6-6 A circular aluminum tube with pinned ends sup-
ports a load acting at distance
from the center (see figure). The length of the tube is 3.5 m
and its modulus of elasticity is 73 GPa.

If the maximum permissible stress in the tube is 20 MPa,
what is the required outer diameter d2 if the ratio of diame-
ters is to be ?d1/d2 � 0.9

P � 18 kN e � 50 mm

n � 2

e � 25 mm
P � 10 kN

d1 � 50 mm d2 � 56 mm
(E � 200 GPa)

L � 1.6 m
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Chapter 11  Columns

wide-flange member (see figure). The column is 3 m long.
The force P acting at the top of the column has an eccen-
tricity .

(a) If , what is the maximum compres-
sive stress in the column?

(b) If the yield stress is 240 MPa and the required fac-
tor of safety with respect to yielding is 2.1, what is the
allowable load Pallow?

P � 180 kN
e � 32 mm

964

11.6-7 A steel column with pinned ends is
constructed of an HE wide-flange shape (see figure).
The column is 7 m long. The resultant of the axial loads
 acting on the column is a force P acting with an eccentricity

.
(a) If , determine the maximum com-

pressive stress σmax in the column.
(b) Determine the allowable load Pallow if the yield

stress is and the factor of safety with
respect to yielding of the material is .n � 2.5

σY � 300 MPa

P � 500 kN
e � 50 mm

260B
(E � 200 GPa)

HE 260B

P
e = 50 mm

PROB. 11.6-7

P

P

L

A A

e

e

Section A-A

PROBS. 11.6-9 and 11.6-10

P = 340 kN

IPN 450

e = 38 mm

PROB. 11.6-8

11.6-8 An IPN 450 steel column is compressed by a force
acting with an eccentricity , as

shown in the figure. The column has pinned ends and
length L. Also, the steel has modulus of elasticity

and yield stress .
(a) If the length , what is the maximum com-

pressive stress σmax in the column?
(b) If a factor of safety is required with

respect to yielding, what is the longest permissible length
Lmax of the column?

n � 2.0

L � 3 m
E � 200 GPa σY � 250 MPa

e � 38 mm.P � 340 kN

11.6-9 A steel column that is fixed at the
base and free at the top is constructed of an HE 180B 

(E � 200 GPa)

11.6-10 An HE 240A wide-flange steel column with length
is fixed at the base and free at the top (see fig-

ure). The load P acting on the column is intended to be
centrally applied, but because of unavoidable discrep -
ancies in construction, an eccentricity ratio of 0.25 is
 specified. Also, the following data are supplied: 

, , and .
(a) What is the maximum compressive stress σmax in

the column?
(b) What is the factor of safety n with respect to yield-

ing of the steel?

11.6-11 A pinned-end column with length is
constructed from an HE 320B wide-flange shape (see
 figure). The column is subjected to a centrally applied load

and an eccentrically applied load
The load P2 acts at distance

from the centroid of the cross section. The properties of
the steel are and .

(a) Calculate the maximum compressive stress in the
column.

(b) Determine the factor of safety with respect to
yielding.

E � 200 GPa σY � 290 MPa

s � 125 mm
P1 � 800 kN
P2 � 350 kN.

L � 6 m

E � 200 GPa σY � 290 MPa P � 310 kN

L � 3.8 m
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Some Additional Review Problems: Chapter 11

11.6-12 The wide-flange pinned-end column shown in the
figure carries two loads, a force acting at
the centroid and a force acting at
distance , from the centroid. The column is
an HE 240B shape with , , and

.
(a) What is the maximum compressive stress in the

column?
(b) If the load P1 remains at 450 kN, what is the

largest permissible value of the load P2 in order to main-
tain a factor of safety of 2.0 with respect to yielding?

11.6-13 An HE 320A wide-flange column of length
is fixed at the base and free at the top (see

 figure). The column supports a centrally applied load
and a load supported on a

bracket. The distance from the centroid of the column to
the load P2 is . Also, the modulus of elasticity
is and the yield stress is .E � 200 GPa σY � 250 MPa

s � 300 mm

P1 � 530 kN P2 � 180 kN

L � 4.5 m

σY � 290 MPa
L � 4.2 m E � 200 GPa

s � 100 mm
P2 � 270 kN

P1 � 450 kN

965

11.6-14 A wide-flange column with a bracket is fixed at
the base and free at the top (see figure). The column sup-
ports a load acting at the centroid and a
load acting on the bracket at distance

, from the load P1. The column is an HE 240A
shape with , , and 

(a) What is the maximum compressive stress in the
column?

(b) If the load P1 remains at 340 kN, what is the
largest permissible value of the load P2 in order to main-
tain a factor of safety of 1.8 with respect to yielding?

L � 5 m E � 200 GPa σY � 290 MPa.
s � 250 mm

P2 � 110 kN
P1 � 340 kN

Wide-flange
column

P2 P1s

PROBS. 11.6-11 and 11.6-12

P1 P2

L
A A

Section A-A

s

PROBS. 11.6-13 and 11.6-14

(a) Calculate the maximum compressive stress in the
column.

(b) Determine the factor of safety with respect to
yielding.

SOME ADDITIONAL REVIEW PROBLEMS: CHAPTER 11

R-11.1 Beam ACB has a sliding support at A and is sup-
ported at C by a pinned-end steel column with square
cross section and height

. The column must resist a load Q at B with a
factor of safety of 2.0 with respect to the critical load. The
maximum permissible value of Q is approximately:

(A) 10.5 kN
(B) 11.8 kN
(C) 13.2 kN
(D) 15.0 kN

L � 3.75 m
b � 40 mm)(E � 200 GPa,

B

D

A C

L

Q

d 2d
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Chapter 11  Columns

R-11.4 A steel pipe
of length

hangs from a rigid surface and is subjected to a temperature
increase . The column is fixed at the top and
has a small gap at the bottom. To avoid buckling, the min-
imum clearance at the bottom should be approximately:

(A) 2.55 mm
(B) 3.24 mm
(C) 4.17 mm
(D) 5.23 mm

d2 � 82 mm,
(E � 190 GPa, α � 14 	 10�6/°C,

¢T � 50 °C

L � 4.25 mand d1 � 70 mm)

966

R-11.2 Beam ACB has a pin support at A and is supported
at C by a steel column with a square cross section

and height . The
column is pinned at C and fixed at D. The column must
resist a load Q at B with a factor of safety of 2.0 with respect
to the critical load. The maximum permissible value of Q is
approximately:

(A) 3.0 kN
(B) 6.0 kN
(C) 9.4 kN
(D) 10.1 kN

L � 5.25 m(E � 190 GPa, b � 42 mm)

B

D

A C

L Q

d 2d

B

L

A

ΔT

LΔT

Gap
Frictionless
surface

d

t

W

A

B

C
40° 50°

L

d

R-11.3 A steel pipe column
of

length is subjected to a temperature increase
�T. The column is pinned at the top and fixed at the bot-
tom. The temperature increase at which the column will
buckle is approximately:

(A) 36 �C
(B) 42 �C
(C) 54 �C
(D) 58 �C

and d1 � 70 mm)d2 � 82 mm,α � 14 	 10�6/°C,
(E � 190 GPa,

L � 4.25 m

R-11.6 A plane truss composed of two steel pipes
and wall thickness

is subjected to vertical load W at joint B. Joints A
and C are apart. The critical value of load W for
buckling in the plane of the truss is nearly:

(A) 138 kN
(B) 146 kN
(C) 153 kN
(D) 164 kN

L � 7 m
6.5 mm)

�d � 100 mm,(E � 210 GPa,

R-11.5 A pinned-end copper strut with
length is constructed of circular tubing with 
outside diameter . The strut must resist an
axial load with a  factor of safety of 2.0 with
respect to the critical load. The required thickness t of the
tube is approximately:

(A) 2.75 mm
(B) 3.15 mm
(C) 3.89 mm
(D) 4.33 mm

P � 14 kN
d � 38 mm

L � 1.6 m
(E � 110 GPa)
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Some Additional Review Problems: Chapter 11

R-11.7 A beam is pin connected to the tops of two identi-
cal pipe columns, each of height h, in a frame. The frame
is restrained against sidesway at the top of column 1. Only
buckling of columns 1 and 2 in the plane of the frame is of
interest here. The ratio (a/L) defining the placement of
load Qcr, which causes both columns to buckle simultane-
ously, is approximately:

(A) 0.25
(B) 0.33
(C) 0.67
(D) 0.75

967

R-11.10 Two pipe columns are required to have the same
Euler buckling load Pcr. Column 1 has flexural rigidity EI
and height L1; column 2 has flexural rigidity (4/3)EI and
height L2. The ratio at which both columns will
buckle under the same load is approximately:

(A) 0.55
(B) 0.72
(C) 0.81
(D) 1.10

(L2/L1)

a L-a

Qcr

1
EI

h

EI

h
2

d1 d2

BC

A

d � 200 mm

Q = 600 kN

1.5 m 1.0 m

2.5 m

EI

Pcr

L1

EI

L2

Pcr

4—
3

Pcr

L L

Pcr

EI1 EI2
2—
3

R-11.8 A steel pipe column with length
is constructed of circular tubing with outside

diameter and inner diameter .
The pipe column is fixed at the base and pinned at the top
and may buckle in any direction. The Euler buckling load
of the column is most nearly:

(A) 303 kN
(B) 560 kN
(C) 690 kN
(D) 720 kN

d2 � 90 mm d1 � 64 mm
L � 4.25 m

(E � 210 GPa)

R-11.9 An aluminum tube AB of circular
cross section has a pinned support at the base and is pin-
connected at the top to a horizontal beam supporting a
load . The outside diameter of the tube is
200 mm and the desired factor of safety with respect to
Euler buckling is 3.0. The required thickness t of the tube
is most nearly:

(A) 8 mm
(B) 10 mm
(C) 12 mm
(D) 14 mm

Q � 600 kN

(E � 72 GPa)

R-11.11 Two pipe columns are required to have the same
Euler buckling load Pcr. Column 1 has flexural rigidity EI1
and height L; column 2 has flexural rigidity (2/3)EI2 and
height L. The ratio at which both columns will
buckle under the same load is approximately:

(A) 0.8
(B) 1.0
(C) 2.2
(D) 3.1

(I2/I1)
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C H A P T E R12
Review of Centroids and
Moments of Inertia

Steel members come in a wide variety of shapes; the properties of the cross section are needed for analysis and
design. (© Fresh Picked/Alamy)
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I CHAPTER OVERVIEW
Topics covered in Chapter 12 include centroids and
how to locate them (Sections 12.2 and 12.3), moments
of inertia (Section 12.4), parallel-axis theorems
(Section 12.5), polar moments of inertia (Section
12.6), products of inertia (Section 12.7), rotation of
axes (Section 12.8), and principal axes (Section 12.9).

Only plane areas are considered. There are numerous
examples within the chapter and problems at the end
of the chapter available for review.

A table of centroids and moments of inertia for
a variety of common geometric shapes is given in
Appendix D for convenient reference.

12.1 Introduction 970
12.2 Centroids of Plane Areas 970
12.3 Centroids of Composite Areas 973
12.4 Moments of Inertia of Plane Areas 976
12.5 Parallel-Axis Theorem for Moments of 

Inertia 979

12.6 Polar Moments of Inertia 983
12.7 Products of Inertia 985
12.8 Rotation of Axes 988
12.9 Principal Axes and Principal Moments of

Inertia 990
Problems 994

Chapter 12 is organized as follows:
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Chapter 12  Review of Centroids and Moments of Inertia

12.1 INTRODUCTION
This chapter is a review of the definitions and formulas pertaining to cen-
troids and moments of inertia of plane areas. The word “review” is appro-
priate because these topics are usually covered in earlier courses, such as
mathematics and engineering statics, and therefore most readers will
already have been exposed to the material. However, since centroids and
moments of inertia are used repeatedly throughout the preceding chap-
ters, they must be clearly understood by the reader and the essential defi-
nitions and formulas must be readily accessible.

The terminology used in this and earlier chapters may appear puz-
zling to some readers. For instance, the term “moment of inertia” is
clearly a misnomer when referring to properties of an area, since no
mass is involved. Even the word “area” is used inappropriately. When
we say “plane area,” we really mean “plane surface.” Strictly speaking,
area is a measure of the size of a surface and is not the same thing as the
surface itself. In spite of its deficiencies, the terminology used in this
book is so entrenched in the engineering literature that it rarely causes
confusion.

12.2 CENTROIDS OF PLANE AREAS
The position of the centroid of a plane area is an important geometric
property. To obtain formulas for locating centroids, we will refer to
Fig. 12-1, which shows a plane area of irregular shape with its centroid at
point C. The xy coordinate system is oriented arbitrarily with its origin
at any point O. The area of the geometric figure is defined by the follow-
ing integral:

(12-1)

in which dA is a differential element of area having coordinates x and y
(Fig. 12-1) and A is the total area of the figure.

The first moments of the area with respect to the x and y axes are
defined, respectively, as follows:

(12-2a,b)

Thus, the first moments represent the sums of the products of the differ-
ential areas and their coordinates. First moments may be positive or neg-
ative, depending upon the position of the xy axes. Also, first moments
have units of length raised to the third power; for instance, mm3.

The coordinates and of the centroid C (Fig. 12-1) are equal to the
first moments divided by the area:

(12-3a,b)xq �
Qy

A
�
L

x dA

L
dA

yq �
Qx

A
�
L

y dA

L
dA

yqxq

Qx �
L

y dA Qy �
L

x dA

A �
L

dA

970

Fig. 12-1
Plane area of arbitrary shape

with centroid C

O

C

y

y
y

x

x

x dA

77742_12_ch12_p968-1000.qxd:77742_12_ch12_p968-1000.qxd  2/22/12  6:14 PM  Page 970

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



12.2 Centroids of Plane Areas 971

If the boundaries of the area are defined by simple mathematical expres-
sions, we can evaluate the integrals appearing in Eqs. (12-3a) and (12-3b)
in closed form and thereby obtain formulas for and . The formulas
listed in Appendix D were obtained in this manner. In general, the coor-
dinates and may be positive or negative, depending upon the position
of the centroid with respect to the reference axes.

If an area is symmetric about an axis, the centroid must lie on that
axis because the first moment about an axis of symmetry equals zero. For
example, the centroid of the singly symmetric area shown in 
Fig. 12-2 must lie on the x axis, which is the axis of symmetry. Therefore,
only one coordinate must be calculated in order to locate the centroid C.

If an area has two axes of symmetry, as illustrated in Fig. 12-3, the
position of the centroid can be determined by inspection because it lies at
the intersection of the axes of symmetry.

An area of the type shown in Fig. 12-4 is symmetric about a point. It
has no axes of symmetry, but there is a point (called the center of sym-
metry) such that every line drawn through that point contacts the area
in a symmetrical manner. The centroid of such an area coincides with
the center of symmetry, and therefore, the centroid can be located by
inspection.

If an area has irregular boundaries not defined by simple mathemati-
cal expressions, we can locate the centroid by numerically evaluating the
integrals in Eqs. (12-3a) and (12-3b). The simplest procedure is to divide
the geometric figure into small finite elements and replace the integrations
with summations. If we denote the area of the ith element by , then the
expressions for the summations are

(12-4a,b,c)

in which n is the total number of elements, is the y coordinate of the cen-
troid of the ith element, and is the x coordinate of the centroid of the
ith element. Replacing the integrals in Eqs. (12-3a) and (12-3b) by the cor-
responding summations, we obtain the following formulas for the coordi-
nates of the centroid:

(12-5a,b)

The accuracy of the calculations for and depends upon how closely the
selected elements fit the actual area. If they fit exactly, the results are
exact. Many computer programs for locating centroids use a numerical
scheme similar to the one expressed by Eqs. (12-5a) and (12-5b).

yqxq

xq �
Qy

A
�

a

n

i � 1

xqi¢Ai

a

n

i � 1

¢Ai

yq �
Qx

A
�

a

n

i � 1

yqi¢Ai

a

n

i � 1

¢Ai

xqi

yqi

A � a

n

i � 1

¢Ai Qx � a

n

i � 1

yqi¢Ai Qy � a

n

i � 1

xqi¢Ai

¢Ai

yqxq

yqxq

Fig. 12-2
Area with one axis of symmetry

x

y

C

Fig. 12-3
Area with two axes of symmetry

x

y

C

Fig. 12-4
Area that is symmetric about a
point

x

y

C

The centroid of wide-flange steel
sections lies at the intersection of
the axes of symmetry (Photo
courtesy of Louis Geschwinder)
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Chapter 12  Review of Centroids and Moments of Inertia972

Example 12-1• • •
A parabolic semisegment OAB is bounded by the x axis, the y axis, and a par-
abolic curve having its vertex at A (Fig. 12-5). The equation of the curve is

(a)

in which b is the base and h is the height of the semisegment.
Locate the centroid C of the semisegment.

Solution
To determine the coordinates and of the centroid C (Fig. 12-5), we will
use Eqs. (12-3a) and (12-3b). We begin by selecting an element of area dA
in the form of a thin vertical strip of width dx and height y. The area of this
differential element is

(b)

Therefore, the area of the parabolic semisegment is

(c)

Note that this area is 2/3 of the area of the surrounding rectangle.
The first moment of an element of area dA with respect to an axis is

obtained by multiplying the area of the element by the distance from its
centroid to the axis. Since the x and y coordinates of the centroid of the ele-
ment shown in Fig. 12-5 are x and y/2, respectively, the first moments of the
element with respect to the x and y axes are

(d)

(e)

in which we have substituted for dA from Eq. (b).
We can now determine the coordinates of the centroid C:

(f,g) 

These results agree with the formulas listed in Appendix D, Case 17.
Notes: The centroid C of the parabolic semisegment may also be located

by taking the element of area dA as a horizontal strip of height dy and
width

(h)

This expression is obtained by solving Eq. (a) for x in terms of y.

➥

x � b
A

1 �
y

h

xq �
Qy

A
�

3b
8

yq �
Qx

A
�

2h
5

Qy �
L

x dA �
L

b

0
hxa1 �

x2

b2
bdx �

b2h
4

Qx �
L

y

2
dA �

L

b

0

h2

2
a1 �

x2

b2
b2

dx �
4bh2

15

A �
L

dA �
L

b

0
ha1 �

x2

b2 bdx �
2bh

3

dA � y dx � ha1 �
x2

b2
bdx

yqxq

y � f (x) � ha1 �
x2

b2
b

y

x
x

x
h

b

C

A

B
y

y

dx

dA

y

y = f (x)

O

2

Fig. 12-5
Example 12-1: Centroid of a
parabolic semisegment
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12.3 Centroids of Composite Areas 973

12.3 CENTROIDS OF COMPOSITE AREAS
In engineering work we rarely need to locate centroids by integration,
because the centroids of common geometric figures are already known
and tabulated. However, we frequently need to locate the centroids of
areas composed of several parts, each part having a familiar geometric
shape, such as a rectangle or a circle. Examples of such composite areas are
the cross sections of beams and columns, which usually consist of rectan-
gular elements (for instance, see Figs. 12-2, 12-3, and 12-4).

The areas and first moments of composite areas may be calculated by
summing the corresponding properties of the component parts. Let us
assume that a composite area is divided into a total of n parts, and let us
denote the area of the ith part as Ai. Then we can obtain the area and first
moments by the following summations:

(12-6a,b,c)

in which and are the coordinates of the centroid of the ith part.
The coordinates of the centroid of the composite area are

(12-7a,b)

Since the composite area is represented exactly by the n parts, the preced-
ing equations give exact results for the coordinates of the centroid.

To illustrate the use of Eqs. (12-7a) and (12-7b), consider the 
L-shaped area (or angle section) shown in Fig. 12-6a. This area has side
dimensions b and c and thickness t. The area can be divided into two
 rectangles of areas A1 and A2 with centroids C1 and C2, respectively
(Fig. 12-6b). The areas and centroidal coordinates of these two parts are

Therefore, the area and first moments of the composite area [from
Eqs. (12-6a, b, and c)] are

Qy � xq1A1 � xq2A2 �
t
2

(bt � c2 � t2)

Qx � yq1A1 � yq2A2 �
t
2

(b2 � ct � t2)

A � A1 � A2 � t(b � c � t)

A2 � (c � t)t xq2 �
c � t

2
yq2 �

t
2

A1 � �bt xq1 �
t
2

yq1 �
b
2

xq �
Qy

A
�

a

n

i � 1

xqiAi

a

n

i � 1

Ai

yq �
Qx

A
�

a

n

i � 1

yqiAi

a

n

i � 1

Ai

yqixqi

A � a

n

i � 1

Ai Qx � a

n

i � 1

yqiAi Qy � a

n

i � 1

xqiAi

Fig. 12-6
Centroid of a composite area
consisting of two parts
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Chapter 12  Review of Centroids and Moments of Inertia

Finally, we can obtain the coordinates and of the centroid C of the
composite area (Fig. 12-6b) from Eqs. (12-7a) and (12-7b):

(12-8a,b)

A similar procedure can be used for more complex areas, as illustrated in
Example 12-2.

Note 1: When a composite area is divided into only two parts, the cen-
troid C of the entire area lies on the line joining the centroids C1 and C2
of the two parts (as shown in Fig. 12-6b for the L-shaped area).

Note 2: When using the formulas for composite areas [see Eqs. (12-6)
and (12-7)], we can handle the absence of an area by subtraction. This pro-
cedure is useful when there are cutouts or holes in the figure.

For instance, consider the area shown in Fig. 12-7a. We can analyze
this figure as a composite area by subtracting the properties of the inner
rectangle efgh from the corresponding properties of the outer rectangle
abcd. (From another viewpoint, we can think of the outer rectangle as a
“positive area” and the inner rectangle as a “negative area.”)

Similarly, if an area has a hole (Fig. 12-7b), we can subtract the prop-
erties of the area of the hole from those of the outer rectangle. (Again, the
same effect is achieved if we treat the outer rectangle as a “positive area”
and the hole as a “negative area.”)

xq yq

xq �
Qy

A
�

bt � c2 � t2

2(b � c � t)
yq �

Qx

A
�

b2 � ct � t2

2(b � c � t)

974

Fig. 12-7
Composite areas with a cutout

and a hole

(a)

(b)

a e

f g

h

b c

d

Cutouts in beams must be considered in centroid and moment of
inertia calculations (Don Farrall/Getty Images)
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12.3 Centroids of Composite Areas 975

The cross section of a steel beam is constructed of a HE 450A wide-flange
section with a cover plate welded to the top flange and a
UPN 320 channel section welded to the bottom flange (Fig. 12-8).

Locate the centroid C of the cross-sectional area.

Solution
Let us denote the areas of the cover plate, the wide-flange section, and the
channel section as areas A1, A2, and A3, respectively. The centroids of these
three areas are labeled C1, C2, and C3, respectively, in Fig. 12-8. Note that the
composite area has an axis of symmetry, and therefore all centroids lie on
that axis. The three partial areas are

in which the areas A2 and A3 are obtained from Tables E-1 and E-3 of
Appendix E.

Let us place the origin of the x and y axes at the centroid C2 of the wide-
flange section. Then the distances from the x axis to the centroids of the
three areas are as follows:

in which the pertinent dimensions of the wide-flange and channel sections
are obtained from Tables E-1 and E-3.

The area A and first moment Qx of the entire cross section are obtained
from Eqs. (12-6a) and (12-6b) as follows:

Now we can obtain the coordinate to the centroid C of the composite area
from Eq. (12-7b):

Since is positive in the positive direction of the y axis, the minus sign means
that the centroid C of the composite area is located below the x axis, as shown
in Fig. 12-8. Thus, the distance between the x axis and the centroid C is

Note that the position of the reference axis (the x axis) is arbitrary; however,
in this example we placed it through the centroid of the wide-flange section
because it slightly simplifies the calculations.

➥

Qx � a

n

i�1
yiAi � y1A1 � y2A2 � y3A3

cq � 34.73 mm

cq

yq

yq �
Qx

A
�

(�1012 cm3)

291.3 cm2
� �34.726 mm

yq

� (22.75 cm)(37.5 cm2) � 0 � (24.6 cm)(75.8 cm2) � �1012 cm3

� 37.5 cm2 � 178 cm2 � 75.8 cm2 � 291.3 cm2

A � a

n

i�1
Ai � A1 � A2 � A3

yq2 � 0 yq3 �
440 mm

2
� 26 mm � 246 mm

yq1 �
440 mm

2
�

15 mm
2

� 227.5 mm

A1 � (25 cm)(1.5 cm) � 37.5 cm2 A2 � 178 cm2 A3 � 75.8 cm2

25 cm � 1.5 cm

Example 12-2• • •

x

y

C3

C2

C
c

C1
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UPN 320

y1

y3

25 cm � 1.5 cm
Plate

Fig. 12-8
Example 12-2: Centroid of a
composite area
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Chapter 12  Review of Centroids and Moments of Inertia976

12.4 MOMENTS OF INERTIA OF PLANE
AREAS
The moments of inertia of a plane area (Fig. 12-9) with respect to the x and
y axes, respectively, are defined by the integrals

(12-9a,b)

in which x and y are the coordinates of the differential element of area dA.
Because the element dA is multiplied by the square of the distance from
the reference axis, moments of inertia are also called second moments of
area. Also, we see that moments of inertia of areas (unlike first moments)
are always positive quantities.

To illustrate how moments of inertia are obtained by integration, we
will consider a rectangle having width b and height h (Fig. 12-10). The x
and y axes have their origin at the centroid C. For convenience, we use a
differential element of area dA in the form of a thin horizontal strip of
width b and height dy (therefore, ). Since all parts of the ele-
mental strip are the same distance from the x axis, we can express the
moment of inertia Ix with respect to the x axis as follows:

(12-10)

In a similar manner, we can use an element of area in the form of a verti-
cal strip with area and obtain the moment of inertia with
respect to the y axis:

(12-11)

If a different set of axes is selected, the moments of inertia will have
different values. For instance, consider axis BB at the base of the rectan-
gle (Fig. 12-10). If this axis is selected as the reference, we must define y as
the coordinate distance from that axis to the element of area dA. Then the
calculations for the moment of inertia become

(12-12)

Note that the moment of inertia with respect to axis BB is larger than the
moment of inertia with respect to the centroidal x axis. In general, the

IBB �
L

y2dA �
L

h

0
y2bdy �

bh3

3

Iy �
L

x2 dA �
L

b/2

�b/2
x2hdx �

hb3

12

dA � hdx

dA � b dy

Ix �
L

y2 dA �
L

h/2

�h/2
y2bdy �

bh3

12

Ix �
L

y2 dA Iy �
L

x2 dA

Fig. 12-9
Plane area of arbitrary shape

O

C

y

y

x

x dA

Fig. 12-10
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12.4 Moments of Inertia of Plane Areas 977

moment of inertia increases as the reference axis is moved parallel to itself
farther from the centroid.

The moment of inertia of a composite area with respect to any par-
ticular axis is the sum of the moments of inertia of its parts with respect
to that same axis. An example is the hollow box section shown in
Fig. 12-11a, where the x and y axes are axes of symmetry through the
centroid C. The moment of inertia Ix with respect to the x axis is equal
to the algebraic sum of the moments of inertia of the outer and inner
rectangles. (As explained earlier, we can think of the inner rectangle as
a “negative area” and the outer rectangle as a “positive area.”)
Therefore,

(12-13)

This same formula applies to the channel section shown in Fig. 12-11b,
where we may consider the cutout as a “negative area.”

For the hollow box section, we can use a similar technique to obtain
the moment of inertia Iy with respect to the vertical axis. However, in the
case of the channel section, the determination of the moment of inertia Iy
requires the use of the parallel-axis theorem, which is described in the next
section (Section 12.5).

Formulas for moments of inertia are listed in Appendix D. For shapes
not shown, the moments of inertia can usually be obtained by using the
listed formulas in conjunction with the parallel-axis theorem. If an area
is of such irregular shape that its moments of inertia cannot be obtained
in this manner, then we can use numerical methods. The procedure is to
divide the area into small elements of area �Ai, multiply each such area
by the square of its distance from the reference axis, and then sum the
products.

Radius of Gyration
A distance known as the radius of gyration is occasionally encountered in
mechanics. Radius of gyration of a plane area is defined as the square root
of the moment of inertia of the area divided by the area itself; thus,

(12-14a,b)

in which rx and ry denote the radii of gyration with respect to the x and y
axes, respectively. Since moment of inertia has units of length to the
fourth power and area has units of length to the second power, radius of
gyration has units of length.

Although the radius of gyration of an area does not have an obvious
physical meaning, we may consider it to be the distance (from the refer-
ence axis) at which the entire area could be concentrated and still have the
same moment of inertia as the original area.

rx �
B

Ix

A
ry �

B

Iy

A

Ix �
bh3

12
�

b1h1
3

12

Fig. 12-11
Composite areas

xh

h h1

h1

b1

b

b
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Chapter 12  Review of Centroids and Moments of Inertia978

Example 12-3• • •
Determine the moments of inertia Ix and Iy for the parabolic semiseg -
ment OAB shown in Fig. 12-12. The equation of the parabolic boundary is

(a)

(This same area was considered previously in Example 12-1.)

Solution
To determine the moments of inertia by integration, we will use Eqs. (12-9a)
and (12-9b). The differential element of area dA is selected as a vertical strip
of width dx and height y, as shown in Fig. 12-12. The area of this element is

(b)

Since every point in this element is at the same distance from the y axis, the
moment of inertia of the element with respect to the y axis is x2 dA.
Therefore, the moment of inertia of the entire area with respect to the y
axis is obtained as follows:

(c) 

To obtain the moment of inertia with respect to the x axis, we note that
the differential element of area dA has a moment of inertia dIx with respect
to the x axis equal to

as obtained from Eq. (12-12). Hence, the moment of inertia of the entire
area with respect to the x axis is

(d) 

These same results for Ix and Iy can be obtained by using an element in
the form of a horizontal strip of area or by using a rectangular
 element of area and performing a double integration. Also, note
that the preceding formulas for Ix and Iy agree with those given in Case 17 of
Appendix D.

➥

➥

dA � dxdy
dA � xdy

Ix �
L

b

0

y3

3
dx �

L

b

0

h3

3
a1 �

x2

b2
b3

dx �
16bh3

105

Iy �
L

x2dA �
L

b

0
x2ha1 �

x2

b2
bdx �

2hb3

15

dIx �
1
3

(dx)y3 �
y3

3
dx

dA � y dx � ha1 �
x2

b2
bdx

y � f(x) � ha1 �
x2

b2
b

y

x
x

h

b

A

B

y

dx

dA

y = f (x)

O

y
2

Fig. 12-12
Example 12-3: Moments of
inertia of a parabolic 
semisegment
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12.5 Parallel-Axis Theorem for Moments of Inertia 979

12.5 PARALLEL-AXIS THEOREM FOR
MOMENTS OF INERTIA
In this section we will derive a very useful theorem pertaining to moments
of inertia of plane areas. Known as the parallel-axis theorem, it gives the
relationship between the moment of inertia with respect to a centroidal
axis and the moment of inertia with respect to any parallel axis.

To derive the theorem, we consider an area of arbitrary shape with
centroid C (Fig. 12-13). We also consider two sets of coordinate axes: 
(1) the axes with origin at the centroid, and (2) a set of parallel xy
axes with origin at any point O. The distances between the two sets of
parallel axes are denoted d1 and d2. Also, we identify an element of area
dA having coordinates x and y with respect to the centroidal axes.

From the definition of moment of inertia, we can write the following
equation for the moment of inertia Ix with respect to the x axis:

(12-15)

The first integral on the right-hand side is the moment of inertia with
respect to the xc axis. The second integral is the first moment of the area
with respect to the xc axis (this integral equals zero because the xc axis
passes through the centroid). The third integral is the area A itself.
Therefore, the preceding equation reduces to

(12-16a)

Proceeding in the same manner for the moment of inertia with respect to
the y axis, we obtain

(12-16b)Iy � Iyc
� Ad2

2

Ix � Ixc
� Ad1

2

Ixc

Ix �
L

(y � d1)
2 dA �

L
y2 dA � 2d1

L
ydA � d1

2

L
dA

xcyc

Fig. 12-13
Derivation of parallel-axis 
theorem
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Chapter 12  Review of Centroids and Moments of Inertia

Equations (12-16a) and (12-16b) represent the parallel-axis theorem for
moments of inertia:

The moment of inertia of an area with respect to any axis in its plane
is equal to the moment of inertia with respect to a parallel centroidal
axis plus the product of the area and the square of the distance between
the two axes.

To illustrate the use of the theorem, consider again the rectangle
shown in Fig. 12-10. Knowing that the moment of inertia about the x axis,
which is through the centroid, is equal to [see Eq. (12-10) of
Section 12.4), we can determine the moment of inertia IBB about the base
of the rectangle by using the parallel-axis theorem:

This result agrees with the moment of inertia obtained previously by inte-
gration [see Eq. (12-12) of Section 12.4].

From the parallel-axis theorem, we see that the moment of inertia
increases as the axis is moved parallel to itself farther from the centroid.
Therefore, the moment of inertia about a centroidal axis is the least
moment of inertia of an area (for a given direction of the axis).

When using the parallel-axis theorem, it is essential to remember that
one of the two parallel axes must be a centroidal axis. If it is necessary to
find the moment of inertia I2 about a noncentroidal axis 2-2 (Fig. 12-14)
when the moment of inertia I1 about another noncentroidal (and parallel)
axis 1-1 is known, we must apply the parallel-axis theorem twice. First, we
find the centroidal moment of inertia from the known moment of
 inertia I1:

(12-17)

Then we find the moment of inertia I2 from the centroidal moment of
inertia:

(12-18)

This equation shows again that the moment of inertia increases with
increasing distance from the centroid of the area.

I2 � Ixc
� Ad2

2 � I1 � A(d2
2 � d1

2)

Ixc
� I1 � Ad1

2

Ixc

bh3/12

IBB � Ix � Ad2 �
bh3

12
� bhah

2
b2

�
bh3

3

980

Fig. 12-10 (Repeated)
Moments of inertia of a 
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12.5 Parallel-Axis Theorem for Moments of Inertia 981

The parabolic semisegment OAB shown in Fig. 12-15 has base b and height
h. Using the parallel-axis theorem, determine the moments of inertia
and with respect to the centroidal axes xc and yc.Iyc

Ixc

Example 12-4• • •

y

x

xc

yc

xh

b

C

A

B
y

O

Fig. 12-15
Example 12-4: Parallel-axis 
theorem

Solution
We can use the parallel-axis theorem (rather than integration) to find
the centroidal moments of inertia because we already know the area A,
the  centroidal coordinates and , and the moments of inertia Ix and Iy
with respect to the x and y axes. These quantities were obtained earlier in
Examples 12-1 and 12-3. They also are listed in Case 17 of Appendix D and
are repeated here:

To obtain the moment of inertia with respect to the xc axis, we use
Eq. (12-17) and write the parallel-axis theorem as follows:

(12-19a) 

In a similar manner, we obtain the moment of inertia with respect to the
yc axis:

(12-19b) 

Thus, we have found the centroidal moments of inertia of the semisegment.

➥

➥

yqxq

Iyc
� Ic � Axq2 �

2hb3

15
�

2bh
3
a3b

8
b2

�
19hb3

480

Ixc
� Ix � Ayq2 �

16bh3

105
�

2bh
3
a2h

5
b2

�
8bh3

175

A �
2bh

3
xq �

3b
8

yq �
2h
5

Ix �
16bh3

105
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2hb3
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Chapter 12  Review of Centroids and Moments of Inertia982

Example 12-5• • •

x

y

C3

C2

C
CC

c

C1

HE 450A

UPN 320

y1

y3

Plate 25 cm � 1.5 cm

Fig. 12-16
Example 12-5: Moment of 
inertia of a composite area

Determine the moment of inertia Ic with respect to the horizontal axis C–C
through the centroid C of the beam cross section shown in Fig. 12-16. (The
position of the centroid C was determined previously in Example 12-2 of
Section 12.3.)

Note: From beam theory (Chapter 5), we know that axis C–C is the neu-
tral axis for bending of this beam, and therefore the moment of inertia Ic
must be determined in order to calculate the stresses and deflections of this
beam.

Solution
We will determine the moment of inertia Ic with respect to axis C–C by
applying the parallel-axis theorem to each individual part of the composite
area. The area divides naturally into three parts: (1) the cover plate, (2) the
wide-flange section, and (3) the channel section. The following areas and
centroidal distances were obtained previously in Example 12-2:

The moments of inertia of the three parts with respect to horizontal axes
through their own centroids C1, C2, and C3 are as follows:

The moments of inertia I2 and I3 are obtained from Tables E-1 and E-3,
respectively, of Appendix E.

Now we can use the parallel-axis theorem to calculate the moments of
inertia about axis C–C for each of the three parts of the composite area:

The sum of these individual moments of inertia gives the moment of inertia
of the entire cross-sectional area about its centroidal axis C–C:

This example shows how to calculate moments of inertia of composite areas
by using the parallel-axis theorem.

(Ic)2 � I2 � A2cq
2 � 63720 cm4 � (178 cm2)(34.73 cm)2 � 65870 cm4

➥Ic � (Ic)1 � (Ic)2 � (Ic)3 � 1.261 � 105 cm4

(Ic)3 � I3 � A3(yq3 � cq)2 � 597 cm4 � (75.8 cm2)(21.13 cm)2 � 34430 cm4

(Ic)1 � I1 � A1(yq1 � cq)2 � 7.031 cm4 � (37.5 cm2)(26.22 cm)2 � 25790 cm4

I2 � 63720 cm4 I3 � 597 cm4

I1 �
bh3

12
�

1
12

(25 cm)(1.5 cm)3 � 7.031 cm4

yq1 � 227.5 mm yq2 � 0 yq3 � 246 mm cq � 34.73 mm

A1 � 37.5 cm2 A2 � 178 cm2 A3 � 75.8 cm2
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12.6 Polar Moments of Inertia 983

12.6 POLAR MOMENTS OF INERTIA
The moments of inertia discussed in the preceding sections are defined
with respect to axes lying in the plane of the area itself, such as the x and
y axes in Fig. 12-17. Now we will consider an axis perpendicular to the
plane of the area and intersecting the plane at the origin O. The moment
of inertia with respect to this perpendicular axis is called the polar moment
of inertia and is denoted by the symbol IP.

The polar moment of inertia with respect to an axis through O per-
pendicular to the plane of the figure is defined by the integral

(12-20)

in which ρ is the distance from point O to the differential element of area
dA (Fig. 12-17). This integral is similar in form to those for moments
of inertia Ix and Iy [see Eqs. (12-9a) and (12-9b)].

Inasmuch as , where x and y are the rectangular coor-
dinates of the element dA, we obtain the following expression for IP:

Thus, we obtain the important relationship

(12-21)

This equation shows that the polar moment of inertia with respect to an axis
perpendicular to the plane of the figure at any point O is equal to the sum
of the moments of inertia with respect to any two perpendicular axes x
and y passing through that same point and lying in the plane of the figure.

For convenience, we usually refer to IP simply as the polar moment of
inertia with respect to point O, without mentioning that the axis is per-
pendicular to the plane of the figure. Also, to distinguish them from polar
moments of inertia, we sometimes refer to Ix and Iy as rectangular
moments of inertia.

Polar moments of inertia with respect to various points in the plane
of an area are related by the parallel-axis theorem for polar moments of
inertia. We can derive this theorem by referring again to Fig. 12-13. Let us
denote the polar moments of inertia with respect to the origin O and the
centroid C by and , respectively. Then, using Eq. (12-21), we
can write the following equations:

(12-22)

Now refer to the parallel-axis theorems derived in Section 12.5 for rectan-
gular moments of inertia [see Eqs. (12-16a) and (12-16b)]. Adding those
two equations, we get

Ix � Iy � Ixc
� Iyc

� A(d1
2 � d2

2)

(IP)O � Ix � Iy (IP)C � Ixc
� Iyc

(IP)O (IP)C

IP � Ix � Iy

IP �
L

ρ2 dA �
L

(x2 � y2)dA �
L

x2 dA �
L

y2 dA

ρ2 � x2 � y2

IP �
L

ρ2 dA

Fig. 12-17
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theorem
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Chapter 12  Review of Centroids and Moments of Inertia

Substituting from Eqs. (12-22), and also noting that
(Fig. 12-13), we obtain

(12-23)

This equation represents the parallel-axis theorem for polar moments of
inertia:

The polar moment of inertia of an area with respect to any point O in
its plane is equal to the polar moment of inertia with respect to the
centroid C plus the product of the area and the square of the distance
between points O and C.

To illustrate the determination of polar moments of inertia and the
use of the parallel-axis theorem, consider a circle of radius r (Fig. 12-18).
Let us take a differential element of area dA in the form of a thin ring of
radius ρ and thickness dρ (thus, ). Since every point in the
element is at the same distance from the center of the circle, the polar
moment of inertia of the entire circle with respect to the center is

(12-24)

This result is listed in Case 9 of Appendix D.
The polar moment of inertia of the circle with respect to any point B

on its circumference (Fig. 12-18) can be obtained from the parallel-axis
theorem:

(12-25)

As an incidental matter, note that the polar moment of inertia has its
smallest value when the reference point is the centroid of the area.

A circle is a special case in which the polar moment of inertia can be
determined by integration. However, most of the shapes encountered in
engineering work do not lend themselves to this technique. Instead, polar
moments of inertia are usually obtained by summing the rectangular
moments of inertia for two perpendicular axes [Eq. (12-21)].

(IP)B � (IP)C � Ad2 �
πr4

2
� πr2(r2) �

3πr4

2

ρ
dA � 2πρ dρ

d2 � d1
2 � d2

2

(IP)C �
L

ρ2 dA �
L

r

0
2πρ3dρ �

πr4

2

(IP)O � (IP)C � Ad2

984

Fig. 12-18 
Polar moment of inertia 

of a circle
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12.7 Products of Inertia 985

12.7 PRODUCTS OF INERTIA
The product of inertia of a plane area is defined with respect to a set of
perpendicular axes lying in the plane of the area. Thus, referring to the
area shown in Fig. 12-19, we define the product of inertia with respect to
the x and y axes as follows:

(12-26)

From this definition we see that each differential element of area dA is
multiplied by the product of its coordinates. As a consequence, products
of inertia may be positive, negative, or zero, depending upon the position
of the xy axes with respect to the area.

If the area lies entirely in the first quadrant of the axes (as in Fig. 12-19),
then the product of inertia is positive because every element dA has positive
coordinates x and y. If the area lies entirely in the second quadrant, the prod-
uct of inertia is negative because every element has a positive y coordinate
and a negative x coordinate. Similarly, areas entirely within the third and
fourth quadrants have positive and negative products of inertia, respectively.
When the area is located in more than one quadrant, the sign of the product
of inertia depends upon the distribution of the area within the quadrants.

A special case arises when one of the axes is an axis of symmetry of
the area. For instance, consider the area shown in Fig. 12-20, which is
symmetric about the y axis. For every element dA having coordinates x
and y, there exists an equal and symmetrically located element dA having
the same y coordinate but an x coordinate of opposite sign. Therefore, the
products xy dA cancel each other and the integral in Eq. (12-26) vanishes.
Thus, the product of inertia of an area is zero with respect to any pair of
axes in which at least one axis is an axis of symmetry of the area.

As examples of the preceding rule, the product of inertia Ixy equals
zero for the areas shown in Figs. 12-10, 12-11, 12-16, and 12-18. In con-
trast, the product of inertia Ixy has a positive nonzero value for the area
shown in Fig. 12-15. (These observations are valid for products of inertia
with respect to the particular xy axes shown in the figures. If the axes are
shifted to another position, the product of inertia may change.)

Products of inertia of an area with respect to parallel sets of axes are
related by a parallel-axis theorem that is analogous to the corresponding
theorems for rectangular moments of inertia and polar moments of iner-
tia. To obtain this theorem, consider the area shown in Fig. 12-21, which
has centroid C and centroidal axes. The product of inertia Ixy with
respect to any other set of axes, parallel to the axes, is

in which d1 and d2 are the coordinates of the centroid C with respect to
the xy axes (thus, d1 and d2 may have positive or negative values).

=

L
xy dA � d1

L
x dA � d2

L
y dA � d1d2

L
dA

Ixy =

L
(x � d2)(y � d1)dA

xcyc
xcyc

Ixy �
L

xydA

Fig. 12-19 
Plane area of arbitrary shape

O

C

y

y

x

x dA

Fig. 12-20 
The product of inertia equals
zero when one axis is an axis of
symmetry

x

y

O

dA dA

Fig. 12-21 
Plane area of arbitrary shape

C

O

y

y

yc

xc

d2

d1

x

x
dA

77742_12_ch12_p968-1000.qxd:77742_12_ch12_p968-1000.qxd  2/22/12  6:25 PM  Page 985

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 12  Review of Centroids and Moments of Inertia

The first integral in the last expression is the product of inertia 
with respect to the centroidal axes; the second and third integrals equal
zero because they are the first moments of the area with respect to the cen-
troidal axes; and the last integral is the area A. Therefore, the preceding
equation reduces to

(12-27)

This equation represents the parallel-axis theorem for products of inertia:

The product of inertia of an area with respect to any pair of axes in its
plane is equal to the product of inertia with respect to parallel
centroidal axes plus the product of the area and the coordinates of the
centroid with respect to the pair of axes.

To demonstrate the use of this parallel-axis theorem, let us determine
the product of inertia of a rectangle with respect to xy axes having their ori-
gin at point O at the lower left-hand corner of the rectangle (Fig. 12-22).
The product of inertia with respect to the centroidal axes is zero
because of symmetry. Also, the coordinates of the centroid with respect to
the xy axes are

Substituting into Eq. (12-20), we obtain

(12-28)

This product of inertia is positive because the entire area lies in the first
quadrant. If the xy axes are translated horizontally so that the
origin moves to point B at the lower right-hand corner of the rectangle
(Fig. 12-22), the entire area lies in the second quadrant and the product of
inertia becomes .

The following example also illustrates the use of the parallel-axis the-
orem for products of inertia.

�b2h2/4

Ixy � Ixcyc
� Ad1d2 � 0 � bhah

2
b ab

2
b �

b2h2

4

d1 �
h
2

d2 �
b
2

xcyc

Ixcyc

Ixy � Ixcyc
� Ad1d2

986

Fig. 12-22 
Parallel-axis theorem for 

products of inertia

C

BO

y

x

xc

yc

b

h
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12.7 Products of Inertia 987

Determine the product of inertia Ixy of the Z-section shown in Fig. 12-23. The
section has width b, height h, and constant thickness t.

Example 12-6• • •

Solution
To obtain the product of inertia with respect to the xy axes through the cen-
troid, we divide the area into three parts and use the parallel-axis theorem.
The parts are as follows: (1) a rectangle of width and thickness t in the
upper flange, (2) a similar rectangle in the lower flange, and (3) a web rec-
tangle with height h and thickness t.

The product of inertia of the web rectangle with respect to the xy axes
is zero (from symmetry). The product of inertia of the upper flange rec-
tangle (with respect to the xy axes) is determined by using the parallel-axis
theorem:

(a)

in which is the product of inertia of the rectangle with respect to its own 
centroid, A is the area of the rectangle, d1 is the y coordinate of the centroid
of the rectangle, and d2 is the x coordinate of the centroid of the rectangle.
Thus,

Substituting into Eq. (a), we obtain the product of inertia of the rectangle
in the upper flange:

The product of inertia of the rectangle in the lower flange is the same.
Therefore, the product of inertia of the entire Z-section is twice , or

(12-29) 

Note that this product of inertia is positive because the flanges lie in the first
and third quadrants.

➥

Ixc yc

Ixy �
bt
2

(h � t)(b � t)

(Ixy)1

(Ixy)1 � Ixc yc
� Ad1d2 � 0 � (b � t)(t)ah

2
�

t
2
b ab

2
b �

bt
4

(h � t)(b � t)

Ixcyc
� 0 A � (b � t)(t) d1 �

h
2

�
t
2

d2 �
b
2

(Ixy)1 � Ixc yc
� Ad1d2

(Ixy)1

b � t

y

x

t b

b

t
t

A1

A2

A3
C

h—
2

h—
2

Fig. 12-23 
Example 12-6: Product of 
inertia of a Z-section
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Chapter 12  Review of Centroids and Moments of Inertia

12.8 ROTATION OF AXES
The moments of inertia of a plane area depend upon the position of the
origin and the orientation of the reference axes. For a given origin, the
moments and product of inertia vary as the axes are rotated about that
origin. The manner in which they vary, and the magnitudes of the maxi-
mum and minimum values, are discussed in this and the following section.

Let us consider the plane area shown in Fig. 12-24, and let us assume
that the xy axes are a pair of arbitrarily located reference axes. The
moments and products of inertia with respect to those axes are

(12-30a,b,c)

in which x and y are the coordinates of a differential element of area dA.
The x1y1 axes have the same origin as the xy axes but are rotated

through a counterclockwise angle θ with respect to those axes. The
moments and product of inertia with respect to the x1y1 axes are denoted

, , and , respectively. To obtain these quantities, we need the
coordinates of the element of area dA with respect to the x1y1 axes. These
coordinates may be expressed in terms of the xy coordinates and the angle θ
by geometry, as follows:

(12-31a,b)

Then the moment of inertia with respect to the x1 axis is

or, by using Eqs. (12-30a, b, and c),

(12-32)

Now we introduce the following trigonometric identities:

2 sin θ cos θ � sin 2θ

cos2θ �
1
2

(1 � cos 2θ) sin2θ �
1
2

(1 � cos 2θ)

Ix1
� Ix cos2θ � Iy sin2θ � 2Ixy sin θ cos θ

� cos 2θ
L

y2 dA � sin2θ
L

x2 dA � 2 sin θ cos θ
L

xy dA

Ix1
�
L

y1
2 dA �

L
(y cos θ � x sin θ)2 dA

x1 � x cos θ � y sin θ y1 � y cos θ � x sin θ

Ix1y1
Iy1

Ix1

Ix �
L

y2dA Iy �
L

x2dA Ixy �
L

xydA

988

Fig. 12-24
Rotation of axes

O

yy1

y1
x1

x1
y

x

x dAu

u
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12.8 Rotation of Axes 989

Then Eq. (12-32) becomes

(12-33)

In a similar manner, we can obtain the product of inertia with respect to
the x1y1 axes:

(12-34)

Again using the trigonometric identities, we obtain

(12-35)

Equations (12-33) and (12-35) give the moment of inertia and the
product of inertia with respect to the rotated axes in terms of the
moments and product of inertia for the original axes. These equations are
called the transformation equations for moments and products of inertia.

Note that these transformation equations have the same form as
thetrans formation equations for plane stress [Eqs. (7-4a) and (7-4b) of
Section 7.2]. Upon comparing the two sets of equations, we see that Ix1

Ix1y1

Ix1

Ix1y1
�

Ix � Iy

2
sin 2θ � Ixy cos 2θ

� (Ix � Iy) sin θ cos θ � Ixy( cos 2θ � sin 2θ)

Ix1y1
�
L

x1y1 dA �
L

(x cos θ � y sin θ)(y cos θ � x sin θ)dA

Ix1
�

Ix � Iy

2
�

Ix � Iy

2
cos 2θ � Ixy sin 2θ

corresponds to corresponds to , Ix corresponds to σx, Iy�τx1y1
Ix1y1

σx1
,

corresponds to σy, and Ixy corresponds to . Therefore, we can also
analyze moments and products of inertia by the use of Mohr’s circle (see
Section 7.4).

The moment of inertia may be obtained by the same procedure
that we used for finding and . However, a simpler procedure is to

Iy1

�τxy

Ix1
Ix1y1

replace θ with in Eq. (12-33). The result is

(12-36)

This equation shows how the moment of inertia varies as the axes are
rotated about the origin.

A useful equation related to moments of inertia is obtained by taking
the sum of and [Eqs. (12-33) and (12-36)]. The result is

(12-37)

This equation shows that the sum of the moments of inertia with respect
to a pair of axes remains constant as the axes are rotated about the ori-
gin. This sum is the polar moment of inertia of the area with respect to
the origin. Note that Eq. (12-37) is analogous to Eq. (7-6) for stresses and
Eq. (7-72) for strains.

Ix1
� Iy1

� Ix � Iy

Ix1
Iy1

Iy1

Iy1
�

Ix � Iy

2
�

Ix � Iy

2
cos 2θ � Ixy sin 2θ

θ � 90°
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Chapter 12  Review of Centroids and Moments of Inertia

12.9 PRINCIPAL AXES AND PRINCIPAL
MOMENTS OF INERTIA
The transformation equations for moments and products of inertia
[Eqs. (12-33), (12-35), and (12-36)] show how the moments and products
of inertia vary as the angle of rotation θ varies. Of special interest are the
maximum and minimum values of the moment of inertia. These values are
known as the principal moments of inertia, and the corresponding axes are
known as principal axes.

Principal Axes
To find the values of the angle θ that make the moment of inertia aIx1

990

maximum or a minimum, we take the derivative with respect to θ of the
expression on the right-hand side of Eq. (12-33) and set it equal to zero:

(12-38)

Solving for θ from this equation, we get

(12-39)

in which θp denotes the angle defining a principal axis. This same result
is obtained if we take the derivative of [Eq. (12-36)].

Equation (12-39) yields two values of the angle in the range from2θp

Iy1

tan 2θp � �
2Ixy

Ix � Iy

(Ix � Iy) sin 2θ � 2Ixy cos 2θ � 0

0 to 360�; these values differ by 180�. The corresponding values of θp dif-
fer by 90� and define the two perpendicular principal axes. One of these
axes corresponds to the maximum moment of inertia and the other corre-
sponds to the minimum moment of inertia.

Now let us examine the variation in the product of inertia as θ
changes [see Eq. (12-35)]. If , we get , as expected. If

we obtain . Thus, during a 90� rotation the product
of inertia changes sign, which means that for an intermediate orientation of
the axes, the product of inertia must equal zero. To determine this orienta-
tion, we set [Eq. (12-35)] equal to zero:

This equation is the same as Eq. (12-38), which defines the angle θp to the
principal axes. Therefore, we conclude that the product of inertia is zero for
the principal axes.

In Section 12.7 we showed that the product of inertia of an area with
respect to a pair of axes equals zero if at least one of the axes is an axis of
symmetry. It follows that if an area has an axis of symmetry, that axis and
any axis perpendicular to it constitute a set of principal axes.

The preceding observations may be summarized as follows: (1) prin-
cipal axes through an origin O are a pair of orthogonal axes for which the
moments of inertia are a maximum and a minimum; (2) the orientation of
the principal axes is given by the angle θp obtained from Eq. (12-39);
(3) the product of inertia is zero for principal axes; and (4) an axis of
 symmetry is always a principal axis.

(Ix � Iy) sin 2θ � 2Ixy cos 2θ � 0

Ix1y1

θ � 90°, Ix1y1
� �Ixy

θ � 0 Ix1y1
� Ixy

Ix1y1
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12.9 Principal Axes and Principal Moments of Inertia 991

Principal Points
Now consider a pair of principal axes with origin at a given point O. If there
exists a different pair of principal axes through that same point, then every
pair of axes through that point is a set of principal axes. Furthermore, the
moment of inertia must be constant as the angle θ is varied.

The preceding conclusions follow from the nature of the transfor-
mation equation for [Eq. (12-33)]. Because this equation containsIx1

Fig. 12-25 
Rectangle for which every axis
(in the plane of the area)
through point O is a principal
axis

b

b b

y ′
x ′

y

O x

Fig. 12-26 
Examples of areas for which
every centroidal axis is a princi-
pal axis and the centroid C is a
principal point

x

y

C

x

y

C

y ′

y ′

x ′

x ′

(a)

(b)

trigonometric functions of the angle 2θ, there is one maximum value and
one minimum value of as 2θ varies through a range of 360� (or as θ
varies through a range of 180�). If a second maximum exists, then the
only possibility is that remains constant, which means that every pair
of axes is a set of principal axes and all moments of inertia are the same.

A point so located that every axis through the point is a principal axis,
and hence the moments of inertia are the same for all axes through the
point, is called a principal point.

An illustration of this situation is the rectangle of width 2b and height b
shown in Fig. 12-25. The xy axes, with origin at point O, are principal axes
of the rectangle because the y axis is an axis of symmetry. The axes,
with the same origin, are also principal axes because the product of inertia

equals zero (because the triangles are symmetrically located with
respect to the x� and y� axes). It follows that every pair of axes through O
is a set of principal axes and every moment of inertia is the same (and
equal to ). Therefore, point O is a principal point for the rectangle.
(A second principal point is located where the y axis intersects the upper
side of the rectangle.)

A useful corollary of the concepts described in the preceding four
paragraphs applies to axes through the centroid of an area. Consider an
area having two different pairs of centroidal axes such that at least one axis
in each pair is an axis of symmetry. In other words, there exist two differ-
ent axes of symmetry that are not perpendicular to each other. Then it fol-
lows that the centroid is a principal point.

Two examples, a square and an equilateral triangle, are shown in
Fig. 12-26. In each case the xy axes are principal centroidal axes because
their origin is at the centroid C and at least one of the two axes is an axis
of symmetry. In addition, a second pair of centroidal axes (the axes)
has at least one axis of symmetry. It follows that both the xy and axes
are principal axes. Therefore, every axis through the centroid C is a prin-
cipal axis, and every such axis has the same moment of inertia.

If an area has three different axes of symmetry, even if two of them are
perpendicular, the conditions described in the preceding paragraph are
automatically fulfilled. Therefore, if an area has three or more axes of
symmetry, the centroid is a principal point and every axis through the cen-
troid is a principal axis and has the same moment of inertia. These condi-
tions are fulfilled for a circle, for all regular polygons (equilateral triangle,
square, regular pentagon, regular hexagon, and so on), and for many
other symmetric shapes.

In general, every plane area has two principal points. These points lie
equidistant from the centroid on the principal centroidal axis having the
larger principal moment of inertia. A special case occurs when the two
principal centroidal moments of inertia are equal; then the two principal
points merge at the centroid, which becomes the sole principal point.

x�y�

x�y�

2b4/3

Ix�y�

x�y�

Ix1

Ix1
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Chapter 12  Review of Centroids and Moments of Inertia

Principal Moments of Inertia
Let us now determine the principal moments of inertia, assuming that Ix,
Iy, and Ixy are known. One method is to determine the two values of θp
(differing by 90�) from Eq. (12-39) and then substitute these values into
Eq. (12-33) for . The resulting two values are the principal moments of
inertia, denoted by I1 and I2. The advantage of this method is that we
know which of the two principal angles θp corresponds to each principal
moment of inertia.

It is also possible to obtain general formulas for the principal
moments of inertia. We note from Eq. (12-39) and Fig. 12-27 [which is a
geometric representation of Eq. (12-39)] that

(12-40a,b)

in which

(12-41)

is the hypotenuse of the triangle. When evaluating R, we always take the
positive square root.

Now we substitute the expressions for cos 2θp and sin 2θp [from Eqs.
(12-40a and b)] into Eq. (12-33) for and obtain the algebraically larger
of the two principal moments of inertia, denoted by the symbol I1:

(12-42a)

The smaller principal moment of inertia, denoted as I2, may be obtained
from the equation

[see Eq. (12-37)]. Substituting the expression for I1 into this equation and
solving for I2, we get

(12-42b)

Eq. (12-42a and b) provide a convenient way to calculate the principal
moments of inertia.

The following example illustrates the method for locating the princi-
pal axes and determining the principal moments of inertia.

I2 �
Ix � Iy

2
�

B
a Ix � Iy

2
b2

� Ixy
2

I1 �
Ix � Iy

2
�

B
a Ix � Iy

2
b2

� Ixy
2

R �
B
a Ix � Iy

2
b2

� Ixy
2

I1 � I2 � Ix � Iy

Ix1

cos 2θp �
Ix � Iy

2R
sin 2θp �

�Ixy

R

Ix1

992

Fig. 12-27 
Geometric representation of 
Eq. (12-39)

2up

R =

I x �
 I y 

2

Ix � Iy
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� I
2
xy
 

� Ixy
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12.9 Principal Axes and Principal Moments of Inertia 993

Determine the orientations of the principal centroidal axes and the magni-
tudes of the principal centroidal moments of inertia for the cross-sectional
area of the Z-section shown in Fig. 12-28. Use the following numerical data:
height , width , and constant thickness t � 15 mm.h � 200 mm b � 90 mm

Example 12-7• • •

Solution
Let us use the xy axes (Fig. 12-28) as the reference axes through the centroid C.
The moments and product of inertia with respect to these axes can be
obtained by dividing the area into three rectangles and using the parallel-axis
theorems. The results of such calculations are as follows:

Substituting these values into the equation for the angle θp [Eq. (12-39)], we get

Thus, the two values of θp are

Using these values of θp in the transformation equation for [Eq. (12-33)],

we find and , respectively. These same

values are obtained if we substitute into Eqs. (12-42a and b). Thus, the
principal moments of inertia and the angles to the corresponding princi-
pal axes are

The principal axes are shown in Fig. 12-28 as the axes.

Ixy � �9.366 � 106 mm4

Ix � 29.29 � 106 mm4 Iy � 5.667 � 106 mm4

θp � 19.2° and 109.2°

x1y1

I2 � 2.4 � 106 mm4 θp2
� 109.2°

I1 � 32.6 � 106 mm4 θp1
� 19.2°

2.4 � 106 mm4Ix1
� 32.6 � 106 mm4

Ix1

tan 2θp � �
2Ixy

Ix � Iy
� 0.7930 2θp � 38.4° and 218.4°

h
2
—

h
2
—

b

b

t

t

y

x

x1

y1

t

C

up

Fig. 12-28 
Example 12-7: Principal axes
and principal moments of iner-
tia for a Z-section
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Centroids of Areas
The problems for Section 12.2 are to be solved by
integration.

12.2-1 Determine the distances and to the centroid C
of a right triangle having base b and altitude h (see Case 6,
Appendix D).

12.2-2 Determine the distance to the centroid C of a
trapezoid having bases a and b and altitude h (see Case 8,
Appendix D).

12.2-3 Determine the distance to the centroid C of a
semicircle of radius r (see Case 10, Appendix D).

12.2-4 Determine the distances and to the centroid C
of a parabolic spandrel of base b and height h (see Case 18,
Appendix D).

12.2-5 Determine the distances and to the centroid C
of a semisegment of nth degree having base b and height h
(see Case 19, Appendix D).

Centroids of Composite Areas
The problems for Section 12.3 are to be solved by using the
formulas for composite areas.

12.3-1 Determine the distance to the centroid C of a
trapezoid having bases a and b and altitude h (see Case 8,
Appendix D) by dividing the trapezoid into two triangles.

12.3-2 One quarter of a square of side a is removed (see
figure). What are the coordinates and of the centroid C
of the remaining area?

xq yq

yq

yqxq

yqxq

yq

yq

yqxq

PROBLEMS CHAPTER 12
12.3-3 Calculate the distance to the centroid C of the
channel section shown in the figure if ,

and .

yq

b � 25 mm, c � 50 mm
a � 150 mm
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y

y

xO

C

a
2
—

a
2
—

a
2
—

a
2
—

x

PROBS. 12.3-2 and 12.5-2

a
2
—

a
2
—

b

c

b

b BB

y

y

xO

C

PROBS. 12.3-3, 12.3-4, and 12.5-3

x

y

y

C

O

HE 600B

Plate 200 mm � 20 mm

PROBS. 12.3-5 and 12.5-5

12.3-4 What must be the relationship between the dimen-
sions a, b, and c of the channel section shown in the figure
in order that the centroid C will lie on line BB?

12.3-5 The cross section of a beam constructed of a
HE wide-flange section with a 
cover plate welded to the top flange is shown in the figure.

Determine the distance from the base of the beam to
the centroid C of the cross-sectional area.

yq

600B 200 mm � 20 mm
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Moments of Inertia
Problems 12.4-1 through 12.4-4 are to be solved by
integration.

12.4-1 Determine the moment of inertia Ix of a triangle of
base b and altitude h with respect to its base (see Case 4,
Appendix D).

12.4-2 Determine the moment of inertia IBB of a trapezoid
having bases a and b and altitude h with respect to its base
(see Case 8, Appendix D).

12.4-3 Determine the moment of inertia Ix of a parabolic
spandrel of base b and height h with respect to its base (see
Case 18, Appendix D).

12.4-4 Determine the moment of inertia Ix of a circle of
radius r with respect to a diameter (see Case 9,
Appendix D).

Problems 12.4-5 through 12.4-9 are to be solved by
considering the area to be a composite area.

12.4-5 Determine the moment of inertia IBB of a rectangle
having sides of lengths b and h with respect to a diagonal
of the rectangle (see Case 2, Appendix D).

995

12.3-6 Determine the distance to the centroid C of the
composite area shown in the figure.

yq

Problems Chapter 12

y

y

x

30 mm

30 mm

15 mm 30 mm

90 mm

90 mm

30 mm

120 mm

180 mm 180 mm

105 mm

O

C

PROBS. 12.3-6, 12.5-6, and 12.7-6

y

x

12 mm

12 mm

100 mm

150 mm

y

C

O

PROBS. 12.3-7, 12.4-7, 12.5-7, and 12.7-7

y

x

170 mm

50 mm 50 mm

80
mm

80
mm

80
mm

80
mm

280 mm

150 mm

300 mm

O

PROB. 12.3-8

12.3-7 Determine the coordinates and of the centroid C
of the L-shaped area shown in the figure.

xq yq

12.3-8 Determine the coordinates and of the centroid C
of the area shown in the figure.

xq yq
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Chapter 12  Review of Centroids and Moments of Inertia

Parallel-Axis Theorem

12.5-1 Calculate the moment of inertia Ib of a HE
wide-flange section with respect to its base. (Use data from
Table E-l, Appendix E.)

12.5-2 Determine the moment of inertia Ic with respect to
an axis through the centroid C and parallel to the x axis
for the geometric figure described in Prob. 12.3-2.

12.5-3 For the channel section described in Prob. 12.3-3,
calculate the moment of inertia with respect to an axis
through the centroid C and parallel to the x axis.

12.5-4 The moment of inertia with respect to axis 1–1 of
the scalene triangle shown in the figure is .
Calculate its moment of inertia I2 with respect to axis 2–2.

90 � 103 mm4

Ixc

320B

996

12.4-6 Calculate the moment of inertia Ix for the compos-
ite circular area shown in the figure. The origin of the axes
is at the center of the concentric circles, and the three
diameters are 20, 40, and 60 mm.

x

y

PROB. 12.4-6

40 mm 15 mm
1

2 2

1

PROB. 12.5-4

12.4-7 Calculate the moments of inertia Ix and Iy with
respect to the x and y axes for the L-shaped area shown in
the figure for Prob. 12.3-7.

12.4-8 A semicircular area of radius 150 mm has a rec-
tangular cutout of dimensions (see
 figure).

Calculate the moments of inertia Ix and Iy with
respect to the x and y axes. Also, calculate the correspon-
ding radii of gyration rx and ry.

50 mm � 100 mm

x

y

O

50
mm

50
mm

50
mm

150 mm 150 mm

PROB. 12.4-8

12.4-9 Calculate the moments of inertia I1 and I2 of a
HE wide-flange section using the cross-sectional
dimensions given in Table E-l, Appendix E. (Disregard the
cross-sectional areas of the fillets.) Also, calculate the cor-
responding radii of gyration r1 and r2, respectively.

450A

12.5-5 For the beam cross section described in Prob. 12.3-5,
calculate the centroidal moments of inertia and
with respect to axes through the centroid C such that the xc
axis is parallel to the x axis and the yc axis coincides with
the y axis.

12.5-6 Calculate the moment of inertia with respect
to an axis through the centroid C and parallel to the 
x axis for the composite area shown in the figure for
Prob. 12.3-6.

12.5-7 Calculate the centroidal moments of inertia and
with respect to axes through the centroid C and paral-

lel to the x and y axes, respectively, for the L-shaped area
shown in the figure for Prob. 12.3-7.

12.5-8 The wide-flange beam section shown in the figure
has a total height of 250 mm and a constant thickness of
15 mm.

Iyc

Ixc

Ixc

Ixc
Iyc
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Problems Chapter 12

Polar Moments of Inertia

12.6-1 Determine the polar moment of inertia IP of an
isosceles triangle of base b and altitude h with respect to its
apex (see Case 5, Appendix D).

12.6-2 Determine the polar moment of inertia with
respect to the centroid C for a circular sector (see Case 13,
Appendix D).

12.6-3 Determine the polar moment of inertia IP for a
HE wide-flange section with respect to one of its out-
ermost corners.

12.6-4 Obtain a formula for the polar moment of inertia
IP with respect to the midpoint of the hypotenuse for a
right triangle of base b and height h (see Case 6,
Appendix D).

12.6-5 Determine the polar moment of inertia with
respect to the centroid C for a quarter-circular spandrel
(see Case 12, Appendix D).

Products of Inertia

12.7-1 Using integration, determine the product of inertia
Ixy for the parabolic semisegment shown in Fig. 12-5 (see
also Case 17 in Appendix D).

(IP)C

220B

(IP)C

997

12.7-2 Using integration, determine the product of inertia
Ixy for the quarter-circular spandrel shown in Case 12,
Appendix D.

12.7-3 Find the relationship between the radius r and the
distance b for the composite area shown in the figure in
order that the product of inertia Ixy will be zero.

y

b

b

x250 mm

15 mm15 mm

15 mm

C

PROB. 12.5-8

y

r

x

b
O

PROB. 12.7-3

y

t

b

b

t

xO

PROB. 12.7-4

12.7-4 Obtain a formula for the product of inertia Ixy of
the symmetrical L-shaped area shown in the figure.

Determine the flange width b if it is required that the
centroidal moments of inertia Ix and Iy be in the ratio 3
to 1, respectively.

12.7-5 Calculate the product of inertia I12 with respect to the
centroidal axes 1–1 and 2–2 for an L
angle section (see Table E-4, Appendix E). (Disregard the
cross-sectional areas of the fillet and rounded corners.)

12.7-6 Calculate the product of inertia Ixy for the com-
posite area shown in Prob. 12.3-6.

12.7-7 Determine the product of inertia with
respect to centroidal axes xc and yc parallel to the x and
y axes, respectively, for the L-shaped area shown in
Prob. 12.3-7.

Ixc yc

150 � 150 � 15 mm
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Chapter 12  Review of Centroids and Moments of Inertia

flanges. (Use the dimensions and properties given in
Table E-1.)

12.8-4 Calculate the moments of inertia and and the
product of inertia with respect to the axes for
the L-shaped area shown in the figure if ,

, , and .b � 100 mm t � 15 mm θ � 30°
a � 150 mm

Ix1y1
x1y1

Ix1
Iy1

998

Rotation of Axes

The problems for Section 12.8 are to be solved by
using the transformation equations for moments and
products of inertia.

12.8-1 Determine the moments of inertia and and the
product of inertia for a square with sides b, as shown in
the figure. (Note that the axes are centroidal axes
rotated through an angle with respect to the xy axes.)θ

x1y1

Ix1y1

Ix1
Iy1

y

x

x1

y1

b

b

C
u

PROB. 12.8-1

y

t

t

a

b
x

y1

x1

u

O

PROBS. 12.8-4 and 12.9-4

h
2
—

h
2
—

y

x

b

b

t t

t

y1

x1

C
u

PROBS. 12.8-5, 12.8-6, 12.9-5, and 12.9-6

y

x

x1

y1

h

b

C

PROB. 12.8-2

12.8-2 Determine the moments and product of inertia with
respect to the axes for the rectangle shown in the fig-
ure. (Note that the x1 axis is a diagonal of the rectangle.)

x1y1

12.8-3 Calculate the moment of inertia Id for a HE
wide-flange section with respect to a diagonal passing
through the centroid and two outside corners of the

320A

12.8-5 Calculate the moments of inertia and and the
product of inertia with respect to the axes for
the Z-section shown in the figure if ,

, , and .t � 12 mm θ � 60°
b � 75 mm

h � 100 mm

Ix1y1
x1y1

Ix1
Iy1

12.8-6 Solve the preceding problem if ,
, , and .h � 120 mm t � 12 mm θ � 30°

b � 80 mm
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Problems Chapter 12

Principal Axes, Principal Points,
and Principal Moments of Inertia

12.9-1 An ellipse with major axis of length 2a and minor
axis of length 2b is shown in the figure.

(a) Determine the distance c from the centroid C of
the ellipse to the principal points P on the minor axis (y
axis).

(b) For what ratio a/b do the principal points lie on the
circumference of the ellipse? 

(c) For what ratios do they lie inside the ellipse?

999

12.9-4 Determine the angles and defining the ori-
entations of the principal axes through the origin O and
the corresponding principal moments of inertia I1 and I2
for the L-shaped area described in Prob. 12.8-4
( , , and ).a � 150 mm b � 100 mm t � 15 mm

θp1
θp2

y

c

c b

a a

b

x

P

P

C

PROB. 12.9-1

y

x

h

b
O

x1

y1

u

PROB. 12.9-3

y

t

t

a

b
x

y1

x1

u

O

PROBS. 12.8-4 and 12.9-4

h
2
—

h
2
—

y

x

b

b

t t

t

y1

x1

C
u

PROBS. 12.8-5, 12.8-6, 12.9-5, and 12.9-6

y

xb—
6

b—
6

b—
2

b—
2

b—
2

b
—
6

P2

C
P1

PROB. 12.9-2

12.9-2 Demonstrate that the two points P1 and P2,
located as shown in the figure, are the principal points of
the isosceles right triangle.

12.9-3 Determine the angles and defining the ori-
entations of the principal axes through the origin O for the
right triangle shown in the figure if and

. Also, calculate the corresponding principal
moments of inertia I1 and I2.
h � 200 mm

b � 150 mm

θp1
θp2

12.9-5 Determine the angles and defining the ori-
entations of the principal axes through the centroid C and
the corresponding principal centroidal moments of inertia
I1 and I2 for the Z-section described in Prob. 12.8-5
( , , and ).b � 75 mm h � 100 mm t � 12 mm

θp1
θp2
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Chapter 12  Review of Centroids and Moments of Inertia

12.9-8 Determine the angles and defining the ori-
entations of the principal centroidal axes and the corre-
sponding principal moments of inertia I1 and I2 for the
L-shaped area shown in the figure if ,

, and .b � 150 mm t � 16 mm
a � 80 mm

θp1
θp2

1000

12.9-6 Solve the preceding problem for the Z-section
described in Prob. 12.8-6 ( , , and

).t � 12 mm
b � 80 mm h � 120 mm

h
2
—

h
2
—

y

x

b

b

t t

t

y1

x1

C
u

PROBS. 12.8-5, 12.8-6, 12.9-5, and 12.9-6

a

C

t

t

b

u

y1
yc

x1

xc

PROBS. 12.9-8 and 12.9-9

y

x

h

b

C

x1

y1

u

PROB. 12.9-7

12.9-7 Determine the angles and defining the ori-
entations of the principal axes through the centroid C for
the right triangle shown in the figure if . Also,
determine the corresponding principal centroidal
moments of inertia I1 and I2.

h � 2b

θp1
θp2

12.9-9 Solve the preceding problem if ,
, and .b � 150 mm t � 12 mm

a � 75 mm
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1-3 Love, A. E. H., A Treatise on the Mathematical Theory
of Elasticity, 4th Ed., Dover Publications, Inc., New York,
1944 (originally published by the Cambridge University
Press in 1927); see “Historical Introduction,” pp. 1–31.

Note: Augustus Edward Hough Love (1863–1940)
was an outstanding English elastician who taught at
Oxford University. His many important investigations
included the analysis of seismic surface waves, now called
Love waves by geophysicists.

1-4 Jacob Bernoulli (1654–1705), also known by the names
James, Jacques, and Jakob, was a member of the famous
family of mathematicians and scientists of Basel,
Switzerland (see Ref. 9-1). He did important work in con-
nection with elastic curves of beams. Bernoulli also devel-
oped polar coordinates and became famous for his work in
theory of probability, analytic geometry, and other fields.

Jean Victor Poncelet (1788–1867) was a Frenchman
who fought in Napoleon’s campaign against Russia and
was given up for dead on the battlefield. He survived, was
taken prisoner, and later returned to France to continue
his work in mathematics. His major contributions to
mathematics are in geometry; in mechanics he is best
known for his work on properties of materials and
dynamics. (For the work of Bernoulli and Poncelet in
connection with stress-strain diagrams, see Ref. 1-1, p. 88,
and Ref. 1-2, Vol. I, pp. 10, 533, and 873.)

1-5 James and James, Mathematics Dictionary, Van
Nostrand Reinhold, New York (latest edition).

1-6 Robert Hooke (1635–1703) was an English scientist
who performed experiments with elastic bodies and devel-
oped improvements in timepieces. He also formulated
the laws of gravitation independently of Newton, of whom
he was a contemporary. Upon the founding of the Royal
Society of London in 1662, Hooke was appointed its
first curator. (For the origins of Hooke’s law, see Ref. 1-1,
pp. 17–20, and Ref. 1-2, Vol. I, p. 5.)

1-7 Thomas Young (1773–1829) was an outstanding
English scientist who did pioneering work in optics,

1001

1-1 Timoshenko, S. P., History of Strength of Materials,
Dover Publications, Inc., New York, 1983 (originally pub-
lished by McGraw-Hill Book Co., Inc., New York, 1953).

References and Historical Notes

S. P. Timoshenko 
(1878–1972)

Note: Stephen P. Timoshenko (1878–1972) was a
famous scientist, engineer, and teacher. Born in Russia, he
came to the United States in 1922. He was a researcher
with the Westinghouse Research Laboratory, a professor
at the University of Michigan, and later a professor at
Stanford University, where he retired in 1944.

Timoshenko made many original contributions, both
theoretical and experimental, to the field of applied
mechanics, and he wrote twelve pioneering textbooks that
revolutionized the teaching of mechanics in the United
States. These books, which were published in as many as
five editions and translated into as many as 35 languages,
covered the subjects of statics, dynamics, mechanics of
materials, vibrations, structural theory, stability, elasticity,
plates, and shells.

1-2 Todhunter, I., and Pearson, K., A History of the
Theory of Elasticity and of the Strength of Materials, Vols.
I and II, Dover Publications, Inc., New York, 1960 (orig-
inally published by the Cambridge University Press in
1886 and 1893). Note: Isaac Todhunter (1820–1884) and
Karl Pearson (1857–1936) were English mathematicians
and educators. Pearson was especially noteworthy for his
original contributions to statistics.
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References and Historical Notes

the University of Michigan. He was a professor at Cornell
University and subsequently at Stanford University,
where he headed the program in applied mechanics.

2-2 Leonhard Euler (1707–1783) was a famous Swiss
mathematician, perhaps the greatest mathematician of all
time. Ref. 11-1 gives information about his life and works.
(For his work on statically indeterminate structures, see
Ref. 1-1, p. 36, and Ref. 2-3, p. 650.)

2-3 Oravas, G. A., and McLean, L., “Historical develop-
ment of energetical principles in elastomechanics,” Applied
Mechanics Reviews, Part I, Vol. 19, No. 8, August 1966,
pp. 647–658, and Part II, Vol. 19, No. 11, November 1966,
pp. 919–933.

2-4 Louis Marie Henri Navier (1785–1836), a famous
French mathematician and engineer, was one of the
founders of the mathematical theory of elasticity. He con-
tributed to beam, plate, and shell theory, to theory of vibra-
tions, and to the theory of viscous fluids. (See Ref. 1-1,
p. 75; Ref. 1-2, Vol. I, p. 146; and Ref. 2-3, p. 652, for his
analysis of statically indeterminate structures.)

2-5 Piobert, G., Morin, A.-J., and Didion, I., “Commission
des Principes du Tir,” Mémorial de l’Artillerie, Vol. 5, 1842,
pp. 501–552.

Note: This paper describes experiments made by
firing artillery projectiles against iron plating. On page 505
appears the description of the markings that are the slip
bands. The description is quite brief, and there is no
indication that the authors attributed the markings to
inherent material characteristics. Guillaume Piobert
(1793– 1871) was a French general and mathematician
who made many studies of ballistics; when this paper was
written, he was a captain in the artillery.

2-6 Lüders, W., “Ueber die Äusserung der elasticität
an stahlartigen Eisenstäben und Stahlstäben, und
über eine beim Biegen solcher Stäbe beobachtete
Molecularbewegung,” Dingler’s Polytechnisches Journal,
Vol. 155, 1860, pp. 18–22.

Note: This paper clearly describes and illustrates the
bands that appear on the surface of a polished steel
specimen during yielding. Of course, these bands are only
the surface manifestation of three-dimensional zones of
deformation; hence, the zones should probably be
characterized as “wedges” rather than bands.

2-7 Benoit Paul Emile Clapeyron (1799–1864) was a
famous French structural engineer and bridge designer; he
taught engineering at the École des Ponts et Chaussées in

1002

sound, impact, and other subjects. (For information about
his work with materials, see Ref. 1-1, pp. 90–98, and Ref.
1-2, Vol. I, pp. 80–86.)

1-8 Siméon Denis Poisson (1781–1840) was a great French
mathematician. He made many contributions to both
mathematics and mechanics, and his name is preserved in
numerous ways besides Poisson’s ratio. For instance, we
have Poisson’s equation in partial differential equations
and the Poisson distribution in theory of probability. (For
information about Poisson’s theories of material behavior,
see Ref. 1-1, pp. 111–114; Ref. 1-2, Vol. I, pp. 208–318;
and Ref. 1-3, p. 13.)

Thomas Young
(1773–1829)

S. D. Poisson
(1781–1840)

2-1 Timoshenko, S. P., and Goodier, J. N., Theory of
Elasticity, 3rd Ed., McGraw-Hill Book Co., Inc., New
York, 1970 (see p. 110). Note: James Norman Goodier
(1905–1969) was well known for his research contributions
to theory of elasticity, stability, wave propagation in
solids, and other branches of applied mechanics. Born in
England, he studied at Cambridge University and later at
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References and Historical Notes

Paris. It appears that Clapeyron’s theorem, which states
that the work of the external loads acting on a linearly
elastic body is equal to the strain energy, was first pub-
lished in 1833. (See Ref. 1-1, pp. 118 and 288; Ref. 1-2,
Vol. I, p. 578; and Ref. 1-2, Vol. II, p. 418.)

2-8 Poncelet investigated longitudinal vibrations of a bar
due to impact loads (see Ref. 1-1, p. 88). See Ref. 1-4 for
additional information about his life and works.

2-9 Budynas, R., and Young, W. C., Roark’s Formulas for
Stress and Strain, McGraw-Hill Book Co., Inc., New York,
2002.

2-10 Barré de Saint-Venant (1797–1886) is generally rec-
ognized as the most outstanding elastician of all time.
Born near Paris, he studied briefly at the École
Polytechnique and later graduated from the École des
Ponts et Chaussées. His later professional career suffered
greatly from his refusal, as a matter of conscience and pol-
itics, to join his schoolmates in preparing for the defense of
Paris in March 1814, just prior to Napoleon’s abdication.
As a consequence, his achievements received greater
recognition in other countries than they did in France.

Some of his most famous contributions are the
formulation of the fundamental equations of elasticity and
the development of the exact theories of bending and
torsion. He also developed theories for plastic deformations
and vibrations. His full name was Adéhmar Jean Claude
Barré, Count de Saint-Venant. (See Ref. 1-1, pp. 229–242;
Ref. 1-2, Vol. I, pp. 833–872, Vol. II, Part I, pp. 1–286, Vol.
II, Part II, pp. 1–51; and Ref. 2-1, pp. 39–40.)

2-11 Zaslavsky, A., “A note on Saint-Venant’s principle,”
Israel Journal of Technology, Vol. 20, 1982, pp. 143–144.

2-12 Ramberg, W. A., and Osgood, W. R., “Description
of stress-strain curves by three parameters,” National
Advisory Committee for Aeronautics, Technical Note No.
902, July 1943.

3-1 The relationship between torque and angle of twist in
a circular bar was correctly established in 1784 by Charles
Augustin de Coulomb (1736–1806), a famous French sci-
entist (see Ref. 1-1, pp. 51–53, 82, and 92, and Ref. 1-2,
Vol. I, p. 69). Coulomb made contributions in electricity
and magnetism, viscosity of fluids, friction, beam bending,
retaining walls and arches, torsion and torsional vibra-
tions, and other subjects (see Ref. 1-1, pp. 47–54).

Thomas Young (Ref. 1-7) observed that the applied
torque is balanced by the shear stresses on the cross
section and that the shear stresses are proportional to the
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distance from the axis. The French engineer Alphonse J.
C. B. Duleau (1789–1832) performed tests on bars in
torsion and also developed a theory for circular bars (see
Ref. 1-1, p. 82).

C. A. de Coulomb 
(1736–1806)

3-2 Bredt, R., “Kritische Bemerkungen zur
Drehungselastizität,” Zeitschrift des Vereines Deutscher
Ingenieure, Vol. 40, 1896, pp. 785–790, and 813–817.

Note: Rudolph Bredt (1842–1900) was a German
engineer who studied in Karlsruhe and ZÜrich. Then he
worked for a while in Crewe, England, at a train factory,
where he learned about the design and construction of
cranes. This experience formed the basis for his later work
as a crane manufacturer in Germany. His theory of
torsion was developed in connection with the design of
box-girder cranes.

5-1 A proof of the theorem that cross sections of a beam
in pure bending remain plane can be found in the paper by
Fazekas, G. A., “A note on the bending of Euler beams,”
Journal of Engineering Education, Vol. 57, No. 5, January
1967. The validity of the theorem has long been recog-
nized, and it was used by early investigators such as Jacob
Bernoulli (Ref. 1-4) and L. M. H. Navier (Ref. 2-4). For a
discussion of the work done by Bernoulli and Navier in
connection with bending of beams, see Ref. 1-1, pp. 25–27
and 70–75.

5-2 Galilei, Galileo, Dialogues Concerning Two New
Sciences, translated from the Italian and Latin into
English by Henry Crew and Alfonso De Salvio, The
Macmillan Company, New York, 1933 (translation first
published in 1914.)

Note: This book was published in 1638 by Louis
Elzevir in Leida, now Leiden, Netherlands. Two New
Sciences represents the culmination of Galileo’s work on
dynamics and mechanics of materials. It can truly be said
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5-4 (1) EN 1993 Eurocode 3, Design of steel structures (see
http://eurocodes.jrc.ec.europa.eu/showpage.php?id=332);
also see http://www.eurocodes.co.uk/; (2) National Structural
Steelwork Specification, 5th ed., The British Constructional
Steelwork Association Limited, 4 Whitehall Court,
Westminster, London SW1A 2ES (www.steelconstruction
.org); (3) Steel Construction Manual, Thirteenth Edition,
American Institute of Steel Construction, One East Wacker
Drive Suite 700, Chicago, IL 60601-1802 (http://aisc.org);
(4) For available steel structural shapes in Europe and else-
where: see http://www.arcelor.com/sections/en/arcelor_
sections/products/sections/section_ranges.html

5-5 (1) EN 1999 Eurocode 9, Design of aluminum structures
(see http://eurocodes.jrc.ec.europa.eu/showpage.php?id=332);
also see http://www.eurocodes.co.uk/; (2) The Aluminum
Association, 1525 Wilson Boulevard, Suite 600, Arlington,
VA 22209 (http://www.aluminum.org) (see Aluminum Design
Manual, Part 6, for dimensions and section properties for alu-
minum channels, I-beams, angles, tees, zees, square, rectangu-
lar and round tube, pipe, etc); (3) For available aluminum
structural shapes in Europe: see http://blecha.at/en/engl.htm

5-6 (1) EN 1995 Eurocode 5, Design of timber structures (see
http://eurocodes.jrc.ec.europa.eu/showpage.php?id=332);
also see http://www.eurocodes.co.uk/; (2) The Timber
Research and Development Association (TRADA):
http://www.trada.co.uk/; (3) National Design Specification
for Wood Construction (ASD/LRFD), published by the
American Wood Council, a division of the American Forest
and Paper Association, 1111 19th Street NW, (Suite 800),
Washington, D.C. 20036. (For other publications and addi-
tional information, see http://www.awc.org/Standards/
nds.html and www.afandpa.org.); (4) See Appendix F for
selected shapes available in Europe.

5-7 D. J. Jourawski (1821–1891) was a Russian bridge and
railway engineer who developed the now widely used
approximate theory for shear stresses in beams (see Ref. 1-1,
pp. 141–144, and Ref. 1-2, Vol. II, Part I, pp. 641– 642). In
1844, only two years after graduating from the Institute
of Engineers of Ways of Communication in St. Petersburg,
he was assigned the task of designing and constructing a
major bridge on the first railway line from Moscow to
St. Petersburg. He noticed that some of the large timber
beams split longitudinally in the centers of the cross sec-
tions, where he knew the bending stresses were zero.
Jourawski drew free-body diagrams and quickly discovered
the existence of horizontal shear stresses in the beams. He
derived the shear formula and applied his theory to various
shapes of beams. Jourawski’s paper on shear in beams is
cited in Ref. 5-8. His name is sometimes transliterated as
Dimitrii Ivanovich Zhuravskii.
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that these two subjects, as we know them today, began
with Galileo and the publication of this famous book.

Galileo Galilei was born in Pisa in 1564. He made
many famous experiments and discoveries, including those
on falling bodies and pendulums that initiated the science
of dynamics. Galileo was an eloquent lecturer and
attracted students from many countries. He pioneered in
astronomy and developed a telescope with which he
made many astronomical discoveries, including the
mountainous character of the moon, Jupiter’s satellites,
the phases of Venus, and sunspots. Because his scientific
views of the solar system were contrary to theology, he
was condemned by the church in Rome and spent the last
years of his life in seclusion in Florence; during this period
he wrote Two New Sciences. Galileo died in 1642 and was
buried in Florence.

5-3 The history of beam theory is described in Ref. 1-1, pp.
11–47 and 135–141, and in Ref. 1-2. Edme Mariotte (1620–
1684) was a French physicist who made developments in
dynamics, hydrostatics, optics, and mechanics. He made
tests on beams and developed a theory for calculating load-
carrying capacity; his theory was an improvement on
Galileo’s work, but still not correct. Jacob Bernoulli (1654–
1705), who is described in Ref. 1-4, first determined that
the curvature is proportional to the bending moment.
However, his constant of proportionality was incorrect.

Leonhard Euler (1707–1783) obtained the differential
equation of the deflection curve of a beam and used it to
solve many problems of both large and small deflections
(Euler’s life and work are described in Ref. 11-1). The first
person to obtain the distribution of stresses in a beam and
correctly relate the stresses to the bending moment probably
was Antoine Parent (1666–1716), a French physicist and
mathematician. Later, a rigorous investigation of strains and
stresses in beams was made by Saint-Venant (1797–1886);
see Ref. 2-10. Important contributions were also made by
Coulomb (Ref. 3-1) and Navier (Ref. 2-4).

Galileo Galilei
(1564–1642)
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5-8 Jourawski, D. J., “Sur la résistance d’un corps pris-
matique . . . ,” Annales des Ponts et Chaussés, Mémoires et
Documents, 3rd Series, Vol. 12, Part 2, 1856, pp. 328–351.

5-9 Zaslavsky, A., “On the limitations of the shearing
stress formula,” International Journal of Mechanical
Engineering Education, Vol. 8, No. 1, 1980, pp. 13–19. (See
also Ref. 2-1, pp. 358–359.)

5-10 Maki, A. C., and Kuenzi, E. W., “Deflection and
stresses of tapered wood beams,” Research Paper FPL 34,
U. S. Forest Service, Forest Products Laboratory,
Madison, Wisconsin, September 1965, 54 pages.

6-1 Timoshenko, S. P., “Use of stress functions to study
flexure and torsion of prismatic bars,” (in Russian), St.
Petersburg, 1913 (reprinted in Vol. 82 of the Memoirs of
the Institute of Ways of Communication, pp. 1–21).

Note: In this paper, the point in the cross section of a
beam through which a concentrated force should act in
order to eliminate rotation was found. Thus, this work
contains the first determination of a shear center. The
particular beam under investigation had a solid semicircular
cross section (see Ref. 2-1, pp. 371–373).

7-1 Augustin Louis Cauchy (1789–1857) was one of the
greatest mathematicians. Born in Paris, he entered the
École Polytechnique at the age of 16, where he studied
under Lagrange, Laplace, Fourier, and Poisson. He was
quickly recognized for his mathematical prowess, and at
age 27 he became a professor at the École and a member of
the Academy of Sciences. His major works in pure mathe-
matics were in group theory, number theory, series, inte-
gration, differential equations, and analytical functions.

In applied mathematics, Cauchy introduced the concept
of stress as we know it today, developed the equations of
theory of elasticity, and introduced the notion of principal
stresses and principal strains (see Ref. 1-1, pp. 107–111). An
entire chapter is devoted to his work on theory of elasticity in
Ref. 1-2 (see Vol. I, pp. 319–376).

7-2 See Ref. 1-1, pp. 229–242. Note: Saint-Venant was a
pioneer in many aspects of theory of elasticity, and
Todhunter and Pearson dedicated their book, A History of
the Theory of Elasticity (Ref. 1-2), to him. For further
information about Saint-Venant, see Ref. 2-10.

7-3 William John Macquorn Rankine (1820–1872) was
born in Edinburgh, Scotland, and taught engineering at
Glasgow University. He derived the stress transformation
equations in 1852 and made many other contributions to
theory of elasticity and applied mechanics (see Ref. 1-1,
pp. 197–202, and Ref. 1-2, Vol. II, Part I, pp. 86 and 287–
322). His engineering subjects included arches, retaining
walls, and structural theory.
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Rankine also achieved scientific fame for his work
with fluids, light, sound, and behavior of crystals, and he
is especially well known for his contributions to molecular
physics and thermodynamics. His name is preserved by the
Rankine cycle in thermodynamics and the Rankine
absolute temperature scale.

7-4 The famous German civil engineer Otto Christian
Mohr (1835–1918) was both a theoretician and a prac ti-
cal designer. He was a professor at the Stuttgart
Polytechnikum and later at the Dresden Polytechnikum.
He developed the circle of stress in 1882 (Ref. 7-5 and
Ref. 1-1, pp. 283–288).

Mohr made numerous contributions to the theory of
structures, including the Williot-Mohr diagram for truss
displacements, the moment-area method for beam
deflections, and the Maxwell-Mohr method for analyzing
statically indeterminate structures. (Note: Joseph Victor
Williot, 1843–1907, was a French engineer, and James Clerk
Maxwell, 1831–1879, was a famous British scientist.)

7-5 Mohr, O., “Über die Darstellung des Spannungs-
zustandes und des Deformationszustandes eines
Körperelementes,” Zivilingenieur, 1882, p. 113.

8-1 Karl Culmann (1821–1881) was a famous German
bridge and railway engineer. In 1849–1850 he spent two
years traveling in England and the United States to study
bridges, which he later wrote about in Germany. He
designed numerous bridge structures in Europe, and in
1855 he became professor of structures at the newly organ-
ized Zürich Polytechnicum. Culmann made many devel-
opments in graphical methods and wrote the first book on
graphic statics, published in Zürich in 1866. Stress trajec-
tories are one of the original topics presented in this book
(see Ref. 1-1, pp. 190–197).

9-1 The work of Jacob Bernoulli, Euler, and many others
with respect to elastic curves is described in Ref. 1-1, pp. 27
and 30–36, and Ref. 1-2. Another member of the Bernoulli
family, Daniel Bernoulli (1700–1782), proposed to Euler
that he obtain the differential equation of the deflection
curve by minimizing the strain energy, which Euler did.
Daniel Bernoulli, a nephew of Jacob Bernoulli, is
renowned for his work in hydrodynamics, kinetic theory of
gases, beam vibrations, and other subjects. His father, John
Bernoulli (1667–1748), a younger brother of Jacob, was an
equally famous mathematician and scientist who first for-
mulated the principle of virtual displacements, and solved
the problem of the brachystochrone.

John Bernoulli established the rule for obtaining the
limiting value of a fraction when both the numerator and
denominator tend to zero. He communicated this last rule to G.
F. A. de l’Hôpital (1661–1704), a French nobleman who wrote
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him and was part of his thesis for the civil engineering degree
at the Polytechnic Institute of Turin in 1873.

Carlo Alberto Pio Castigliano was born of a poor
family in Asti in 1847 and died of pneumonia in 1884,
while at the height of his productivity. The story of his life
is told by Oravas in the introduction to the 1966 edition,
and a bibliography of Castigliano’s works and a list of his
honors and awards are also given there. His contributions
are also documented in Refs. 2-3 and 1-1. He used the
name Alberto Castigliano when signing his writings.

9-3 Hauff, E., Theorie des Gleichgewichtes elastischer
Systeme und deren Anwendung, Carl Gerold’s Sohn, Vienna,
1886. (A translation of Castigliano’s book, Ref. 9-2.)

9-4 Andrews, E. S., Elastic Stresses in Structures, Scott,
Greenwood and Son, London, 1919. (A translation of
Castigliano’s book, Ref. 9-2.)

9-5 Castigliano, C. A. P., The Theory of Equilibrium of
Elastic Systems and Its Applications, translated by E. S.
Andrews, with a new introduction and biographical por-
trait by G. A. Oravas, Dover Publications, Inc., New
York, 1966. (A republication of Ref. 9-4 but with the addi-
tion of historical material by Oravas.)

9-6 Oravas, G. A., “Historical Review of Extremum
Principles in Elastomechanics,” an introductory section 
(pp. xx–xlvi) of the book, The Theory of Equilibrium of
Elastic Systems and Its Applications, by C. A. P. Castigliano,
translated by E. S. Andrews, Dover Publications, Inc., New
York, 1966 (Ref. 9-5).

9-7 Macaulay, W. H., “Note on the deflection of beams,”
The Messenger of Mathematics, vol. XLVIII, May 1918–
April 1919, Cambridge, 1919, pp. 129–130.

Note: William Herrick Macaulay, 1853–1936, was an
English mathematician and Fellow of King’s College,
Cambridge. In this paper he defined “by a function
of x which is zero when x is less than a and equal to 
when x is equal to or greater than a.” Then he showed how
to use this function when finding beam deflections.
Unfortunately, he did not give any references to the earlier
work of Clebsch and Föppl; see Refs. 9-8 through 9-10.

9-8 Clebsch, A., Theorie der Elasticität fester Körper,
B. G. Teubner, Leipzig, 1862, 424 pages. (Translated into
French and annotated by Saint-Venant, Théorie de
l’Élasticité des Corps Solides, Paris, 1883. Saint-Venant’s
notes increased Clebsch’s book threefold in size.)

Note: The method of finding beam deflections by
integrating across points of discontinuity was presented
first in this book; see Ref. 1-1, pp. 258–259 and Ref. 9-10.
Rudolf Friedrich Alfred Clebsch, 1933–1872, was a

f(x)
{f(x)}a
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the first book on calculus (1696) and included this theorem,
which consequently became known as L’Hôpital’s rule.

Daniel’s nephew, Jacob Bernoulli (1759–1789), also
known as James or Jacques, was a pioneer in the theory of
plate bending and plate vibrations.

Much interesting information about the many
prominent members of the Bernoulli family, as well as
other pioneers in mechanics and mathematics, can be
found in books on the history of mathematics.

9-2 Castigliano, A., Théorie de l’équilibre des systèmes élas-
tiques et ses applications, A. F. Negro, Turin, 1879, 480 pages.

Note: In this book Castigliano presented in very
complete form many fundamental concepts and principles
of structural analysis. Although Castigliano was Italian,
he wrote this book in French in order to gain a wider
audience for his work. It was translated into both German
and English (Refs. 9-3 and 9-4). The English translation
was republished in 1966 by Dover Publications and is
especially valuable because of the introductory material by
Gunhard A. Oravas (Refs. 9-5 and 9-6).

Castigliano’s first and second theorems appear on
pp. 15–16 of the 1966 edition of his book. He identified them
as Part 1 and Part 2 of the “Theorem of the Differential
Coefficients of the Internal Work.” In mathematical form,
they appear in his book as

where Wi is the internal work (or strain energy), Fp
represents any one of the external forces, and rp is the
displacement of the point of application of Fp.

Castigliano did not claim complete originality for the first
theorem, although he stated in the Preface to his book that his
presentation and proof were more general than anything
published previously. The second theorem was original with

Fp �
dWi

drp

and rp �
dWi

dFp

Jacob Bernoulli
(1654–1705)
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German mathematician and scientist. He was a professor
of engineering at the Karlsruhe Polytechnicum and later a
professor of mathematics at Göttingen University.

9-9 Föppl, A., Vorlesungen über technische Mechanik, Vol.
III: Festigkeitslehre, B. G. Teubner, Leipzig, 1897.

Note: In this book, Föppl extended Clebsch’s method
for finding beam deflections. August Föppl, 1854–1924,
was a German mathematician and engineer. He was a
professor at the University of Leipzig and later at the
Polytechnic Institute of Munich.

9-10 Pilkey, W. D., “Clebsch’s method for beam deflec-
tions,” Journal of Engineering Education, vol. 54, no. 5,
January 1964, pp. 170–174. This paper describes Clebsch’s
method and gives a very complete historical account, with
many references.

10-1 Zaslavsky, A., “Beams on immovable supports,”
Publications of the International Association for Bridge and
Structural Engineering, Vol. 25, 1965, pp. 353–362.

11-1 Euler, L., “Methodus inveniendi lineas curvas maximi
minimive proprietate gaudentes . . . ,” Appendix I, “De curvis
elasticis,” Bousquet, Lausanne and Geneva, 1744. (English
translation: Oldfather, W. A., Ellis, C. A., and Brown, D. M.,
Isis, Vol. 20, 1933, pp. 72–160. Also, republished in Leonhardi
Euleri Opera Omnia, series 1, Vol. 24, 1952.)

Note: Leonhard Euler (1707–1783) made many
remarkable contributions to mathematics and mechanics,
and he is considered by most mathematicians to be the most
productive mathematician of all time. His name,
pronounced “oiler,” appears repeatedly in present-day
textbooks; for instance, in mechanics we have Euler’s
equations of motion of a rigid body, Euler’s angles, Euler’s
equations of fluid flow, the Euler load in column buckling,
and much more; and in mathematics we encounter the
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famous Euler constant, as well as Euler’s numbers, the
Euler identity , Euler’s formula

, Euler’s differential equation, Euler’s
equation of a variational problem, Euler’s quadrature
formula, the Euler summation formula, Euler’s theorem on
homogeneous functions, Euler’s integrals, and even Euler
squares (square arrays of numbers possessing special
properties).

In applied mechanics, Euler was the first to derive the
formula for the critical buckling load of an ideal, slender
column and the first to solve the problem of the elastica.
This work was published in 1744, as cited previously. He
dealt with a column that is fixed at the base and free at the
top. Later, he extended his work on columns (Ref. 11-2).
Euler’s numerous books include treatises on celestial
mechanics, dynamics, and hydromechanics, and his
papers include subjects such as vibrations of beams and
plates and statically indeterminate structures.

In the field of mathematics, Euler made outstanding
contributions to trigonometry, algebra, number theory,
differential and integral calculus, infinite series, analytic
geometry, differential equations, calculus of variations, and
many other subjects. He was the first to conceive of
trigonometric values as the ratios of numbers and the first to
present the famous equation . Within
his books on mathematics, all of which were classical
references for many generations, we find the first
development of the calculus of variations as well as such
intriguing items as the proof of Fermat’s “last theorem” for

and . Euler also solved the famous problem of
the seven bridges of Königsberg, a problem of topology,
another field in which he pioneered.

Euler was born near Basel, Switzerland, and attended
the University of Basel, where he studied under John
Bernoulli (1667–1748). From 1727 to 1741 he lived and
worked in St. Petersburg, where he established a great
reputation as a mathematician. In 1741 he moved to Berlin
upon the invitation of Frederick the Great, King of
Prussia. He continued his mathematical research in Berlin
until the year 1766, when he returned to St. Petersburg at
the request of Catherine II, Empress of Russia.

Euler continued to be prolific until his death in St.
Petersburg at the age of 76; during this final period of his
life he wrote more than 400 papers. In his entire lifetime, the
number of books and papers written by Euler totaled 886;
he left many manuscripts at his death and they continued to
be published by the Russian Academy of Sciences in St.
Petersburg for 47 years afterward. All this in spite of the fact
that one of his eyes went blind in 1735 and the other in 1766.
The story of Euler’s life is told in Ref. 1-1, pp. 28–30, and
some of his contributions to mechanics are described in
Ref. 1-1, pp. 30–36 (see also Refs. 1-2, 1-3, 2-2, and 5-3).

n � 3 n � 4

eiθ � cos θ � i sin θ

(eiπ � 1 � 0)
(eiθ � cos θ � i sin θ)

Leonhard Euler
(1707–1783)
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11-10 Jasinski, F., “Noch ein Wort zu den ‘Knickfragen,’”
Schweizerische Bauzeitung, Vol. 25, No. 25, June 22, 1895,
pp. 172–175. Note: Félix S. Jasinski (1856–1899) was born
in Warsaw and studied in Russia. He became a professor at
the Institute of Engineers of Ways of Communication in
St. Petersburg.
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Stäbe,” Physikalische Zeitschrift, Vol. 9, No. 4, 1908,
pp. 136–140 (this paper also appears in Vol. I of Ref. 11-14).

Note: Theodore von Kármán (1881–1963) was born
in Hungary and later worked at the University of
Göttingen in the field of aerodynamics. After coming to
the United States in 1929, he founded the Jet Propulsion
Laboratory and pioneered in aircraft and rocket
problems. His research also included inelastic buckling of
columns and stability of shells.

11-13 von Kármán, T., “Untersuchungen über
Knickfestigkeit,” Mitteilungen über Forschungsarbeiten
auf dem Gebiete des Ingenieurwesens, Verein Deutscher
Ingenieure, Berlin, Heft 81, 1910 (this paper also appears
in Ref. 11-14).
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11-15 Shanley, F. R., “The column paradox,” Journal of
the Aeronautical Sciences, Vol. 13, No. 12, December
1946, p. 678. Note: Francis Reynolds Shanley (1904–1968)
was a professor of aeronautical engineering at the
University of California, Los Angeles.
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Vol. 14, No. 5, May 1947, pp. 261–267.
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11-2 Euler, L., “Sur la force des colonnes,” Histoire de
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published in Memoires of the Academie, Vol. 13, Berlin,
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cussion of this paper.)
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tor. He was a professor at the University of Michigan and
later at Stanford University. His five textbooks in the
field of applied mechanics, written with S. P. Timoshenko,
were translated into many languages and used throughout
the world.

11-6 Lamarle, A. H. E., “Mémoire sur la flexion du bois,”
Annales des Travaux Publiques de Belgique, Part 1, Vol. 3,
1845, pp. 1–64, and Part 2, Vol. 4, 1846, pp. 1–36. Note:
Anatole Henri Ernest Lamarle (1806–1875) was an engi-
neer and professor. He was born in Calais, studied in
Paris, and became a professor at the University of Ghent,
Belgium. For his work on columns, see Ref. 1-1, p. 208.

11-7 Considère, A., “Résistance des pièces comprimées,”
Congrès International des Procédés de Construction, Paris,
September 9–14, 1889, proceedings published by Librairie
Polytechnique, Paris, Vol. 3, 1891, p. 371. Note: Armand
Gabriel Considère (1841–1914) was a French engineer.

11-8 Engesser, F., “Ueber die Knickfestigkeit gerader
Stäbe,” Zeitschrift für Architektur und Ingenieurwesen,
Vol. 35, No. 4, 1889, pp. 455–462. Note: Friedrich Engesser
(1848–1931) was a German railway and bridge engineer.
Later, he became a professor at the Karlsruhe
Polytechnical Institute, where he made important advances
in the theory of structures, especially in buckling and
energy methods. For his work on columns, see Ref. 1-1,
pp. 292 and 297–299.

11-9 Engesser, F., “Knickfragen,” Schweizerische
Bauzeitung, Vol. 25, No. 13, March 30, 1895, pp. 88–90.
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A P P E N D I X  A

Systems of Units and Conversion
Factors

A.1 SYSTEMS OF UNITS
Measurement systems have been a necessity since people first began to build
and barter, and every ancient culture developed some sort of measurement
system to serve its needs. Standardization of units took place gradually over
the centuries, often through royal edicts. Development of the British
Imperial System from earlier measurement standards began in the 13th cen-
tury and was well established by the 18th century. The British system spread
to many parts of the world, including the United States, through commerce
and colonization. In the United States the system gradually evolved into the
U.S. Customary System (USCS) that is in common use today.

The concept of the metric system originated in France about 300 years
ago and was formalized in the 1790s, at the time of the French Revolution.
France mandated the use of the metric system in 1840, and since then many
other countries have done the same. In 1866, the United States Congress
legalized the metric system without making it compulsory.

A new system of units was created when the metric system underwent
a major revision in the 1950s. Officially adopted in 1960 and named the
International System of Units (Système International d’Unités), this newer
system is commonly referred to as SI. Although some SI units are the
same as in the old metric system, SI has many new features and simplifi-
cations. Thus, SI is an improved metric system.

Length, time, mass, and force are the basic concepts of mechanics for
which units of measurement are needed. However, only three of these
quantities are independent since all four of them are related by Newton’s
second law of motion:

(A-1)

in which F is the force acting on a particle, m is the mass of the particle,
and a is its acceleration. Since acceleration has units of length divided by
time squared, all four quantities are involved in the second law.

The International System of Units, like the metric system, is based
upon length, time, and mass as fundamental quantities. In these systems,
force is derived from Newton’s second law. Therefore, the unit of force is
expressed in terms of the basic units of length, time, and mass, as shown
in the next section.

F � ma
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Appendix A  Systems of Units and Conversion Factors

SI is classified as an absolute system of units because measurements of
the three fundamental quantities are independent of the locations at which
the measurements are made; that is, the measurements do not depend
upon the effects of gravity. Therefore, the SI units for length, time, and
mass may be used anywhere on earth, in space, on the moon, or even on
another planet. This is one of the reasons why the metric system has
always been preferred for scientific work.

The British Imperial System and the U.S. Customary System are based
upon length, time, and force as the fundamental quantities with mass being
derived from the second law. Therefore, in these systems the unit of mass is
expressed in terms of the units of length, time, and force. The unit of force
is defined as the force required to give a certain standard mass an accelera-
tion equal to the acceleration of gravity, which means that the unit of force
varies with location and altitude. For this reason, these systems are called
gravitational systems of units. Such systems were the first to evolve, proba-
bly because weight is such a readily discernible property and because varia-
tions in gravitational attraction were not noticeable. It is clear, however,
that in the modern technological world an absolute system is preferable.

A.2 SI UNITS
The International System of Units has seven base units from which all
other units are derived. The base units of importance in mechanics are the
meter (m) for length, second (s) for time, and kilogram (kg) for mass.
Other SI base units pertain to temperature, electric current, amount of
substance, and luminous intensity.

The meter was originally defined as one ten-millionth of the distance
from the North Pole to the equator. Later, this distance was converted to
a physical standard, and for many years the standard for the meter was
the distance between two marks on a platinum-iridium bar stored at the
headquarters of the International Bureau of Weights and Measures
(Bureau International des Poids et Mesures) in Sèvres, a suburb on the
western edge of Paris, France.

Because of the inaccuracies inherent in the use of a physical bar as a stan-
dard, the definition of the meter was changed in 1983 to the length of the path
traveled by light in a vacuum during a time interval of 1/299,792,458 of a sec-
ond.* The advantages of this “natural” standard are that it is not subject to
physical damage and is reproducible at laboratories anywhere in the world.

The second was originally defined as 1/86,400 of a mean solar day
(24 hours equals 86,400 seconds). However, since 1967 a highly accurate
atomic clock has set the standard, and a second is now defined to be the
duration of 9,192,631,770 periods of the radiation corresponding to the tran-
sition between the two hyperfine levels of the ground state of the cesium-133
atom. (Most engineers would probably prefer the original definition over the
new one, which hasn’t noticeably changed the second, but which is necessary
because the earth’s rotation rate is gradually slowing down.)

Of the seven base units in SI, the kilogram is the only one that is still
defined by a physical object. Since the mass of an object can only be

1010

*Taking the reciprocal of this number gives the speed of light in a vacuum (299,792,458 meters per second).
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Appendix A  Systems of Units and Conversion Factors 1011

determined by comparing it experimentally with the mass of some other
object, a physical standard is needed. For this purpose, a one-kilogram
cylinder of platinum-iridium, called the International Prototype
Kilogram (IPK), is kept by the International Bureau of Weights and
Measures at Sèvres. (At the present time, attempts are being made to
define the kilogram in terms of a fundamental constant, such as the
Avogadro number, thus removing the need for a physical object.)

Other units used in mechanics, called derived units, are expressed in
terms of the base units of meter, second, and kilogram. For instance, the
unit of force is the newton, which is defined as the force required to impart
an acceleration of one meter per second squared to a mass of one kilo-
gram.* From Newton’s second law , we can derive the unit of
force in terms of base units:

Thus, the newton (N) is given in terms of base units by the formula

(A-2)

To provide a point of reference, we note that a small apple weighs approx-
imately one newton.

The unit of work and energy is the joule, defined as the work done
when the point of application of a force of one newton is displaced a dis-
tance of one meter in the direction of the force.** Therefore,

or (A-3)

When you raise this book from desktop to eye level, you do about 1 joule
of work, and when you walk up one flight of stairs, you do about 200 joules
of work.

The names, symbols, and formulas for SI units of importance in
mechanics are listed in Table A-1. Some of the derived units have special
names, such as newton, joule, hertz, watt, and pascal. These units are
named for notable persons in science and engineering and have symbols
(N, J, Hz, W, and Pa) that are capitalized, although the unit names them-
selves are written in lowercase letters. Other derived units have no special
names (for example, the units of acceleration, area, and density) and must
be expressed in terms of base units and other derived units.

The relationships between various SI units and some commonly used
metric units are given in Table A-2. Metric units such as dyne, erg, gal, and
micron are no longer recommended for engineering or scientific use.

The weight of an object is the force of gravity acting on that object,
and therefore, weight is measured in newtons. Since the force of gravity
depends upon altitude and position on the earth, weight is not an invari-
ant property of a body. Furthermore, the weight of a body as measured
by a spring scale is affected not only by the gravitational pull of the earth,
but also by the centrifugal effects associated with the rotation of the earth.

1 J � 1 N # m

1 joule � (1 newton)(1 meter) � 1 newton meter

1 N � 1 kg # m/s2

1 newton � (1 kilogram)(1 meter per second squared)

(F � ma)

*Sir Isaac Newton (1642–1727) was an English mathematician, physicist, and astronomer. He invented calculus
and discovered the laws of motion and gravitation.

**James Prescott Joule (1818–1889) was an English physicist who developed a method for determining the
mechanical equivalent of heat. His last name is pronounced “jool.”
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Appendix A  Systems of Units and Conversion Factors

As a consequence, we must recognize two kinds of weight, absolute
weight and apparent weight. The former is based upon the force of gravity
alone, and the latter includes the effects of rotation. Thus, apparent
weight is always less than absolute weight (except at the poles). Apparent
weight, which is the weight of an object as measured with a spring scale,

1012

Table A-1  
Principal Units Used in Mechanics

Quantity 
International System (SI)

Unit Symbol Formula

Acceleration (angular) radian per second squared rad/s2

Acceleration (linear) meter per second squared m/s2

Area square meter m2

Density (mass)
(Specific mass)

kilogram per cubic meter kg/m3

Density (weight) 
(Specific weight)

newton per cubic meter N/m3

Energy; work joule J N�m

Force newton N kg�m/s2

Force per unit length 
(Intensity of force)

newton per meter N/m

Frequency hertz Hz s�1

Length meter m (base unit)

Mass kilogram kg (base unit)

Moment of a force; torque newton meter N�m

Moment of inertia (area) meter to fourth power m4

Moment of inertia (mass) kilogram meter squared kg�m2

Power watt W J/s
(N�m/s)

Pressure pascal Pa N/m2

Section modulus meter to third power m3

Stress pascal Pa N/m2

Time second s (base unit)

Velocity (angular) radian per second rad/s

Velocity (linear) meter per second m/s

Volume (liquids) liter L 10�3 m3

Volume (solids) cubic meter m3

Notes:

1 liter (L) � 0.001 cubic meter (m3) � 1000 cubic centimeters (cm3)
1 pascal (Pa) � 1 newton per meter squared (N/m2)
1 watt (W) � 1 joule per second (J/s) � 1 newton meter per second (N # m/s)
1 hertz (Hz) � 1 cycle per second (cps) or 1 revolution per second (rev/s)
1 joule (J) � 1 newton meter (N # m) � 1 watt second (W # s)
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Appendix A  Systems of Units and Conversion Factors 1013

is the weight we customarily use in business and everyday life; absolute
weight is used in astroengineering and certain kinds of scientific work. In
this book, the term “weight” will always mean “apparent weight.”

The acceleration of gravity, denoted by the letter g, is directly propor-
tional to the force of gravity, and therefore it too depends upon position.
In contrast, mass is a measure of the amount of material in a body and
does not change with location.

The fundamental relationship between weight, mass, and acceleration
of gravity can be obtained from Newton’s second law , which in
this case becomes

(A-4)

In this equation, W is the weight in newtons (N), m is the mass in kilograms
(kg), and g is the acceleration of gravity in meters per second squared
(m/s2). Equation (A-4) shows that a body having a mass of one kilogram has
a weight in newtons numerically equal to g. The values of the weight W
and the acceleration g depend upon many factors, including latitude and
elevation. However, for scientific calculations a standard international
value of g has been established as

(A-5)g � 9.806650 m/s2

W � mg

(F � ma)

Table A-2 
Additional Units in Common Use

SI and Metric Units

for example, )

= 9.80665 newtons (N)

1 kilogram-force (kgf) � 1 kilopond (kp)

1 dyne � 10�5 newtons (N)

1 kilowatt-hour (kWh) � 3.6 megajoules (MJ)

1 erg � 10�7 joules (J)

1 hectare (ha) � 10,000 square meters (m2)

1 are (a) � 100 square meters (m2)

1 gal. � 1 centimeter per second squared (cm/s2)
g L 981 gals

1 stere � 1 cubic meter (m3)

1 bar � 105 pascals (Pa)

1 gram (g) � 10�3 kilograms (kg)

1 micron � 1 micrometer (μm) � 10�6 meters (m)

1 cubic centimeter (cm3) � 1 milliliter (mL)

1 centimeter (cm) � 10�2 meters (m)

1 watt (W) � 107 ergs per second (erg/s)

1 metric ton (t) � 1 megagram (Mg) � 1000 kilograms (kg)

1 dyne per square centimeter (dyne/cm2) � 10�1 pascals (Pa)

USCS and Imperial Units

1 horsepower (hp) � 550 foot-pounds per second (ft-lb/s)

1 mile � 5280 feet (ft)

1 yard (yd) � 3 feet (ft)

1 mil � 0.001 inch (in.)

1 inch (in.) � 1/12 foot (ft)

= 0.138255 newtons (N)

1 poundal (pdl) � 0.0310810 pounds (lb)

1 Imperial ton (or long ton) � 2240 pounds (lb)
1 ton � 2000 pounds (lb)

1 ounce (oz) � 1/16 pound (lb)

1 kilowatt-hour (kWh) � 2,655,220 foot-pounds (ft-lb)

1 British thermal unit (Btu) � 778.171 foot-pounds (ft-lb)

1 kip (k) � 1000 pounds (lb)

= 737.562 foot-pounds per second (ft-lb/s)
1 kilowatt (kW)

= 1.34102 horsepower (hp)

1 Imperial gallon � 277.420 cubic inches (in.3)

= 7.48052 gallons (gal.)

1 cubic foot (cf) � 576/77 gallons

1 quart (qt) � 2 pints � 1/4 gallon (gal.)

1 gallon (gal.) � 231 cubic inches (in.3)

= 22/15 feet per second (fps)
1 mile per hour (mph)

= 2π/60 radians per second (rad/s)
1 revolution per minute (rpm)

= 144 pounds per square foot (psf)
1 pound per square inch (psi)
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Appendix A  Systems of Units and Conversion Factors

This value is intended for use under standard conditions of elevation and lat-
itude (sea level at a latitude of approximately 45�). The recommended value
of g for ordinary engineering purposes on or near the surface of the earth is

(A-6)

Thus, a body having a mass of one kilogram has a weight of 9.81 newtons.
Atmospheric pressure varies considerably with weather conditions,

location, altitude, and other factors. Consequently, a standard interna-
tional value for the pressure at the earth’s surface has been defined:

(A-7)

The following simplified value is recommended for ordinary engineering
work:

(A-8)

Of course, the values given in Eqs. (A-7) and (A-8) are intended for use in
calculations and do not represent the actual ambient pressure at any given
location.

A basic concept in mechanics is moment or torque, especially the
moment of a force and the moment of a couple. Moment is expressed in units
of force times length, or newton meters (N�m). Other important concepts in
mechanics are work and energy, both of which are expressed in joules, a
derived unit that happens to have the same units (newton meters) as the units
of moment. However, moment is a distinctly different quantity from work or
energy, and the joule should never be used for moment or torque.

Frequency is measured in units of hertz (Hz), a derived unit equal to
the reciprocal of seconds . The hertz is defined as the frequency
of a periodic phenomenon for which the period is one second; thus, it is
equivalent to one cycle per second (cps) or one revolution per second
(rev/s). It is customarily used for mechanical vibrations, sound waves, and
electromagnetic waves, and occasionally it is used for rotational frequency
instead of the traditional units of revolution per minute (rpm) and revo-
lution per second (rev/s).*

Two other derived units that have special names in SI are the watt (W)
and the pascal (Pa). The watt is the unit of power, which is work per unit
of time, and one watt is equal to one joule per second (J/s) or one newton
meter per second . The pascal is the unit of pressure and stress, or
force per unit area, and is equal to one newton per square meter (N/m2).**

The liter is not an accepted SI unit, yet it is so commonly used that it
cannot be discarded easily. Therefore, SI permits its use under limited
conditions for volumetric capacity, dry measure, and liquid measure.
Both uppercase L and lowercase l are permitted as symbols for liter in SI,
but in the United States only L is permitted (to avoid confusion with the
numeral 1). The only prefixes permitted with liter are milli and micro.

Loads on structures, whether due to gravity or other actions, are usually
expressed in force units, such as newtons, newtons per meter, or pascals

(1/s or s�1)

1 standard atmosphere � 101 kPa

1 standard atmosphere � 101.325 kilopascals

g � 9.81 m/s2

(N # m/s)

1014

*Heinrich Rudolf Hertz (1857–1894) was a German physicist who discovered electromagnetic waves and
showed that light waves and electromagnetic waves are identical.

**James Watt (1736–1819) was a Scottish inventor and engineer who developed a practical steam engine and
discovered the composition of water. Watt also originated the term “horsepower.” Blaise Pascal (1623–1662)
was a French mathematician and philosopher. He founded probability theory, constructed the first calculating
machine, and proved experimentally that atmospheric pressure varies with altitude.
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Appendix A  Systems of Units and Conversion Factors 1015

(newtons per square meter). Examples of such loads are a concentrated load
of 25 kN acting on an axle, a uniformly distributed load of intensity
800 N/m acting on a small beam, and air pressure of intensity 2.1 kPa  acting
on an airplane wing.

However, there is one circumstance in SI in which it is permissible to
express a load in mass units. If the load acting on a structure is produced
by gravity acting on a mass, then that load may be expressed in mass units
(kilograms, kilograms per meter, or kilograms per square meter). The
usual procedure in such cases is to convert the load to force units by mul-
tiplying by the acceleration of gravity .

SI Prefixes
Multiples and submultiples of SI units (both base units and derived units) are
created by attaching prefixes to the units (see Table A-3 for a list of prefixes).
The use of a prefix avoids unusually large or small numbers. The general rule
is that prefixes should be used to keep numbers in the range 0.1 to 1000.

All of the recommended prefixes change the size of the quantity by a
multiple or submultiple of three. Similarly, when powers of 10 are used as
multipliers, the exponents of 10 should be multiples of three (for example,

is satisfactory, but is not). Also, the exponent
on a unit with a prefix refers to the entire unit; for instance, the symbol
mm2 means (mm)2 and not m(m)2.

Styles for Writing SI Units
Rules for writing SI units have been established by international agree-
ment, and some of the most pertinent ones are described here. Examples
of the rules are shown in parentheses.

1. Units are always written as symbols (kg) in equations and numerical
calculations. In text, units are written as words (kilograms) unless
numerical values are being reported, in which case either words or
symbols may be used (12 kg or 12 kilograms).

2. Multiplication is shown in a compound unit by a raised dot (kN�m).
When the unit is written in words, no dot is required (kilonewton
meter).

40 � 103 N 400 � 102 N

(g � 9.81 m/s2)

Table A-3 
SI Prefixes

Prefix Symbol Multiplication factor

tera
giga
mega
kilo
hecto
deka
deci
centi
milli
micro
nano
pico

T
G
M
k
h
da
d
c
m
μ
n
p 10�12 � 0.000 000 000 001

10�9 � 0.000 000 001
10�6 � 0.000 001
10�3 � 0.001
10�2 � 0.01
10�1 � 0.1
101 � 10
102 � 100
103 � 1000
106 � 1,000,000
109 � 1,000,000,000
1012 � 1,000,000,000,000

Note: The use of the prefixes hecto, deka, deci, and centi is not recommended in SI.
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3. Division is shown in a compound unit by a slash (or solidus) or by
multiplication using a negative exponent . When the
unit is written in words, the slash is always replaced by “per” (meter
per second).

4. A space is always used between a number and its units (200 Pa or
200 pascals) with the exception of the degree symbol (either angle or
temperature), where no space is used between the number and the
symbol (45�, 20�C).

5. Units and their prefixes are always printed in roman type (that is,
upright or vertical type) and never in italic type (slanted type), even
when the surrounding text is in italic type.

6. When written as words, units are not capitalized (newton) except at
the beginning of a sentence or in capitalized material such as a title.
When written as a symbol, units are capitalized when they are
derived from the name of a person (N). An exception is the symbol
for liter, which may be either L or l, but the use of uppercase L is
preferred to avoid confusion with the numeral 1. Also, some prefixes
are written with capital letters when used in symbols (MPa) but not
when used in words (megapascal).

7. When written as words, units are singular or plural as appropriate
to the context (1 kilometer, 20 kilometers, 6 seconds). When written
as symbols, units are always singular (1 km, 20 km, 6 s). The plural
of hertz is hertz; the plurals of other units are formed in the custom-
ary manner (newtons, watts).

8. Prefixes are not used in the denominator of a compound unit. An
exception is the kilogram (kg),which is a base unit and therefore, the
letter “k” is not considered as a prefix. For example, we can write
kN/m but not N/mm, and we can write J/kg, but not mJ/g.

Pronunciation of SI Prefixes and Units
A guide to the pronunciation of a few SI names that are sometimes mis-
pronounced is given in Table A-4. For instance, kilometer is  pronounced

(m/s or m # s�1)

1016

Table A-4 
Pronunciation of SI Prefixes and
Units

Prefix Pronunciation

tera
giga

mega
kilo
milli
micro
nano
pico

same as terra, as in terra firma
pronounced jig-uh; with a pronounced as in about

(Alternate pronunciation: gig-uh)
same as mega in megaphone
pronounced kill-oh; rhymes with pillow
pronounced mill-eh, as in military
same as micro in microphone
pronounced nan-oh; rhymes with man-oh
pronounced pea-ko
Note: The first syllable of every prefix is accented.

Unit Pronunciation

joule
kilogram
kilometer
pascal

pronounced jool; rhymes with cool and pool
pronounced kill-oh-gram
pronounced kill-oh-meter
pronounced pas-kal, with the accent on kal
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Appendix A  Systems of Units and Conversion Factors 1017

kill-oh-meter, not kil-om-eter. The only prefix that generates arguments
is giga—the official pronunciation is jig-uh, but many people say gig-uh.

A.3 TEMPERATURE UNITS
Temperature is measured in SI by a unit called the kelvin (K), and the cor-
responding scale is the Kelvin temperature scale. The Kelvin scale is an
absolute scale, which means that its origin (zero kelvins, or 0 K) is at
absolute zero temperature, a theoretical temperature characterized by the
complete absence of heat. On the Kelvin scale, water freezes at approxi-
mately 273 K and boils at approximately 373 K.

For nonscientific purposes the Celsius temperature scale is normally used.
The corresponding unit of temperature is the degree Celsius (�C), which is
equal to one kelvin. On this scale, water freezes at approximately zero degrees
(0�C) and boils at approximately 100 degrees (100�C) under certain standard
conditions. The Celsius scale is also known as the centigrade temperature scale.

The relationship between Kelvin temperature and Celsius tempera-
ture is given by the following equations:

or (A-9)

where T denotes the temperature. When working with changes in temper-
ature, or temperature intervals, as is usually the case in mechanics, either
unit can be used because the intervals are the same.*

T(°C) � T(K) � 273.15

Temperature in degrees Celsius � temperature in kelvins � 273.15

*Lord Kelvin (1824–1907), William Thomson, was a British physicist who made many scientific discoveries,
developed theories of heat, and proposed the absolute scale of temperature. Anders Celsius (1701–1744) was
a Swedish scientist and astronomer. In 1742 he developed the temperature scale in which 0 and 100 corre-
spond, respectively, to the freezing and boiling points of water.
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A P P E N D I X  B

Problem Solving

B.1 TYPES OF PROBLEMS
The study of mechanics of materials divides naturally into two parts: first,
understanding the general concepts and principles, and second, applying
those concepts and principles to physical situations. An understanding of
the general concepts is obtained by studying the discussions and deriva-
tions presented in books such as this one. Skill in applying the concepts is
accomplished by solving problems on your own. Of course, these two
aspects of mechanics are closely related, and many experts in mechanics
will argue that you do not really understand the concepts if you can not
apply them. It is easy to recite the principles, but applying them to real sit-
uations requires an in-depth understanding. That is why teachers of
mechanics place so much emphasis on problems. Problem solving gives
meaning to the concepts and also provides an opportunity to gain experi-
ence and develop judgment.

Some of the homework problems in this book require symbolic solu-
tions and others require numerical solutions. In the case of symbolic
problems (also called analytical, algebraic, or literal problems), the data
are supplied in the form of symbols for the various quantities, such as P
for load, L for length, and E for modulus of elasticity. Such problems
are solved in terms of algebraic variables, and the results are expressed
as formulas or mathematical expressions. Symbolic problems usually do
not involve numerical calculations, except when numerical data are sub-
stituted into the final symbolic result in order to obtain a numerical
value. However, this final substitution of numerical data should not
obscure the fact that the problem was solved in symbolic terms.

In contrast, numerical problems are those in which the data are given
in the form of numbers (with appropriate units); for example, a load
might be given as 12 kN, a length as 3 m, and a dimension as 150 mm. The
solution of a numerical problem is carried out by performing calculations
from the beginning, and the results, both intermediate and final, are in the
form of numbers.

An advantage of a numerical problem is that the magnitudes of all
quantities are evident at every stage of the solution, thereby providing an
opportunity to observe whether the calculations are producing reasonable
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Appendix B Problem Solving

results. Also, a numerical solution makes it possible to keep the magni-
tudes of quantities within prescribed limits. For instance, suppose the
stress at a particular point in a beam must not exceed a certain allowable
value. If this stress is calculated as an intermediate step in the numerical
solution, you can verify immediately whether or not it exceeds the limit.

Symbolic problems have several advantages too. Because the results
are algebraic formulas or expressions, you can see immediately how the
variables affect the answers. For instance, if a load appears to the first
power in the numerator of the final result, you know that doubling the
load will double the result. Equally important is the fact that a symbolic
solution shows what variables do not affect the result. For instance, a cer-
tain quantity may cancel out of the solution, a fact that might not even be
noticed in a numerical solution. Furthermore, a symbolic solution makes
it convenient to check the dimensional homogeneity of all terms in the
solution. And most important, a symbolic solution provides a general for-
mula that is applicable to many different problems, each with a different
set of numerical data. In contrast, a numerical solution is good for only
one set of circumstances, and a complete new solution is required if the
data are changed. Of course, symbolic solutions are not feasible when the
formulas become too complex to manipulate; when that happens, a
numerical solution is required.

In more advanced work in mechanics, problem solving requires the
use of numerical methods. This term refers to a wide variety of computa-
tional methods, including standard mathematical procedures (such as
numerical integration and numerical solution of differential equations)
and advanced methods of analysis (such as the finite-element method).
Computer programs for these methods are readily available. More spe-
cialized computer programs are also available for performing routine
tasks, such as finding deflections of beams and finding principal stresses.
However, when studying mechanics of materials, we concentrate on the
concepts rather than on the use of particular computer programs.

B.2 STEPS IN SOLVING PROBLEMS
The procedures used in solving problems will vary among individuals and
will vary according to the type of problem. Nevertheless, the following
suggestions will help in reducing mistakes.

1. Make a clear statement of the problem and draw a figure portraying
the mechanical or structural system to be investigated. An important
part of this step is identifying what is known and what is to be
found.

2. Simplify the mechanical or structural system by making assump-
tions about its physical nature. This step is called modeling, because
it involves creating (on paper) an idealized model of the real system.
The objective is to create a model that represents the real system to
a sufficient degree of accuracy that the results obtained from the
model can be applied to the real system.

Here are a few examples of idealizations used in modeling
mechanical systems: (a) Finite objects are sometimes modeled as
 particles, as when determining the forces acting on a joint of a truss.

1020
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Appendix B  Problem Solving 1021

(b) Deformable  bodies are sometimes represented as rigid bodies, as
when finding the reactions of a statically determinate beam or the
forces in the  members of a statically determinate truss. (c) The geom-
etry and shapes of objects may be simplified, as when we consider the
earth to be a sphere or a beam to be perfectly straight. (d) Distributed
forces acting on machines and structures may be represented by
equivalent  concentrated forces. (e) Forces that are small compared to
other forces, or forces that are known to have only a minor effect on
the results, may be disregarded (friction forces are sometimes in this
 category). (f) Supports of structures often may be considered as
immovable.

3. Draw large and clear sketches as you solve problems. Sketches
always aid in understanding the physical situation and often bring
out aspects of the problem that would otherwise be overlooked.

4. Apply the principles of mechanics to the idealized model to obtain
the governing equations. In statics, the equations usually are equa-
tions of equilibrium obtained from Newton’s first law; in dynamics,
they usually are equations of motion obtained from Newton’s sec-
ond law. In mechanics of materials, the equations are associated
with stresses, strains, deformations, and displacements.

5. Use mathematical and computational techniques to solve the equa-
tions and obtain results, either in the form of mathematical formu-
las or numerical values.

6. Interpret the results in terms of the physical behavior of the mechan-
ical or structural system; that is, give meaning or significance to the
results, and draw conclusions about the behavior of the system.

7. Check the results in as many ways as you can. Because errors can be
disastrous and expensive, engineers should never rely on a single
solution.

8. Finally, present your solution in clear, neat fashion so that it can be
easily reviewed and checked by others.

B.3 DIMENSIONAL HOMOGENEITY
The basic concepts in mechanics are length, time, mass, and force. Each
of these physical quantities has a dimension, that is, a generalized unit of
measurement. For example, consider the concept of length. There are
many units of length, such as the meter, kilometer, yard, foot, and inch,
yet all of these units have something in common—each one represents a
distinct length and not some other quantity such as volume or force.
Therefore, we can refer to the dimension of length without being specific as
to the particular unit of measurement. Similar comments can be made for
the dimensions of time, mass, and force. These four dimensions are cus-
tomarily denoted by the symbols L, T, M, and F, respectively.

Every equation, whether in numeric form or symbolic form, must be
dimensionally homogeneous, that is, the dimensions of all terms in the equa-
tion must be the same. To check the dimensional correctness of an equa-
tion, we disregard numerical magnitudes and write only the dimensions of
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Appendix B Problem Solving

each quantity in the equation. The resulting equation must have identical
dimensions in all terms.

As an example, consider the following equation for the deflection δ at
the midpoint of a simple beam with a uniformly distributed load:

The corresponding dimensional equation is obtained by replacing each
quantity by its dimensions; thus, the deflection δ is replaced by the dimen-
sion L, the intensity of uniform load q is replaced by F/L (force per unit of
length), the length L of the beam is replaced by the dimension L, the modu-
lus of elasticity E is replaced by F/L2 (force per unit of area), and the moment
of inertia I is replaced by L4. Therefore, the dimensional equation is

When simplified, this equation reduces to the dimensional equation
, as expected.

Dimensional equations can be written either in generalized terms
using the LTMF notation or in terms of the actual units being used in the
problem. For instance, if we are making calculations for the preceding
beam deflection using SI units, we can write the dimensional equation as
follows:

which reduces to and is dimensionally correct. Frequent
checks for dimensional homogeneity (or consistency of units) help to elim-
inate errors when performing derivations and calculations.

B.4 SIGNIFICANT DIGITS
Engineering calculations are performed by calculators and computers that
operate with great precision. For instance, some computers routinely per-
form calculations with more than 25 digits in every numerical value, and
output values with 10 or more digits are available in even the most inex-
pensive hand-held calculators. Under these conditions it is important to
realize that the accuracy of the results obtained from an engineering
analysis is determined not only by the calculations, but also by factors
such as the accuracy of the given data, the approximations inherent in the
analytical models, and the validity of the assumptions used in the theories.
In many engineering situations, these considerations mean that the results
are valid to only two or three significant digits.

As an example, suppose that a computation yields the 
result for the reaction of a statically indeterminate beam.
To state the result in this manner is misleading, because it implies that the
reaction is known to the nearest 1/100 of a Newton even though its mag-
nitude is over 6000 Newtons. Thus, it implies an accuracy of approxi-
mately 1/600,000 and a precision of 0.01 N, neither of which is justified.
Instead, the accuracy of the calculated reaction depends upon matters
such as the following: (1) how accurately the loads, dimensions, and other

R � 6287.46 N

mm � mm

mm �
(N/mm)mm4

(N/mm2)mm4

L � L

L �
(F/L)L4

(F/L2)L4

δ �
5qL4

384EI

1022
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Appendix B  Problem Solving 1023

data used in the analysis are known, and (2) the approximations inherent
in the theories of beam behavior. Most likely, the reaction R in this exam-
ple would be known only to the nearest 10 Newtons, or perhaps only to
the nearest 100 Newtons. Consequently, the result of the computation
should be stated as either or .

To make clear the accuracy of a given numerical value, it is common
practice to use significant digits. A significant digit is a digit from 1 to 9 or
any zero not used to show the position of the decimal point; for instance, the
numbers 417, 8.29, 7.30, and 0.00254 each have three significant digits.
However, the number of significant digits in a number such as 29,000 is not
apparent. It may have two significant digits, with the three zeros serving only
to locate the decimal point, or it may have three, four, or five significant dig-
its if one or more of the zeros is valid. By using powers of ten, the accuracy
of a number such as 29,000 can be made clearer. When written as 
or , the number is understood to have two significant digits;
when written as or , it has three significant digits.

When a number is obtained by calculation, its accuracy depends upon
the accuracy of the numbers used in performing the calculations. A rule of
thumb that serves for multiplication and division is the following: The
number of significant digits in the calculated result is the same as the least
number of significant digits in any of the numbers used in the calculation.
As an illustration, consider the product of 2339.3 and 35.4. The calculated
result is 82,811.220 when recorded to eight digits. However, stating the
result in this manner is misleading because it implies much greater accu-
racy than is warranted by either of the original numbers. Inasmuch as the
number 35.4 has only three significant digits, the proper way to write the
result is .

For calculations involving addition or subtraction of a column of num-
bers, the last significant digit in the result is found in the last column of dig-
its that has significant digits in all of the numbers being added or subtracted.
To make this notion clearer, consider the following three examples:

In the first example, the number 459.637 has six significant digits and the
number 7.2 has two. When added, the result has four significant digits
because all digits in the result to the right of the column containing the 2
are meaningless. In the second example, the number 7 is accurate to one
significant digit (that is, it is not an exact number). Therefore, the final
result is accurate only as far as the column containing the 7, which means
it has three significant digits and is recorded as 831. In the third example,
the numbers 856,400 and 847,900 are assumed to be accurate to four sig-
nificant digits, but the result of the subtraction is accurate to only two sig-
nificant digits since none of the zeros is significant. In general, subtraction
results in reduced accuracy.

These three examples show that numbers obtained by calculation may
contain superfluous digits having no physical meaning. Therefore, when
reporting such numbers as final results, you should give only those digits
that are significant.

Result from calculator:
Write the result as:

459.637
�7.2
466.837
466.8

838.49
�7
831.49
831

856,400
�847,900

8500
8500

82.8 � 103

0.0290 � 10629.0 � 103
0.029 � 106

29 � 103

R � 6300 NR � 6290 N
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Appendix B Problem Solving

In mechanics of materials, the data for problems are usually accurate
to about 1%, or perhaps 0.1% in some cases, and therefore, the final
results should be reported to a comparable accuracy. When greater accu-
racy is warranted, it will be obvious from the statement of the problem.

Although the use of significant digits provides a handy way to deal
with the matter of numerical accuracy, it should be recognized that signifi-
cant digits are not valid indicators of accuracy. To illustrate this fact, con-
sider the numbers 999 and 101. Three significant digits in the number 999
correspond to an accuracy of 1/999, or 0.1%, whereas the same number of
significant digits in the number 101 corresponds to an accuracy of only
1/101, or 1.0%. This disparity in accuracy can be reduced by always using
one additional significant digit for numbers beginning with the digit 1.
Thus, four significant digits in the number 101.1 gives about the same accu-
racy as three significant digits in the number 999.

In this book we generally will follow the rule that final numerical
results beginning with the digits 2 through 9 should be recorded to three
significant digits and those beginning with the digit 1 should be recorded
to four significant digits. However, to preserve numerical accuracy and
avoid round-off errors during the calculation process, the results of inter-
mediate calculations will usually be recorded with additional digits.

Many of the numbers entering into our calculations are exact, for
example, the number π, fractions such as 1/2, and integers such as the
number 48 in the formula PL3/48EI for a beam deflection. Exact numbers
are significant to an infinite number of digits and, therefore, have no role
in determining the accuracy of a calculated result.

B.5 ROUNDING OF NUMBERS
The process of discarding the insignificant digits and keeping only the signif-
icant ones is called rounding. To illustrate the process, assume that a number
is to be rounded to three significant digits. Then the following rules apply:

(a) If the fourth digit is less than 5, the first three digits are left unchanged
and all succeeding digits are dropped or replaced by zeros. For
example, 37.44 rounds to 37.4 and 673,289 rounds to 673,000.

(b) If the fourth digit is greater than 5, or if the fourth digit is 5 and is
followed by at least one digit other than zero, then the third digit is
increased by 1 and all following digits are dropped or replaced by zeros.
For example, 26.37 rounds to 26.4 and 3.245002 rounds to 3.25.

(c) Finally, if the fourth digit is 5 and all following digits (if any) are
zeros, then the third digit is unchanged if it is an even number and
increased by 1 if it is an odd number, and the 5 is replaced by a zero.
(Trailing and leading zeros are retained only if they are needed to
locate the decimal point.) This process is usually described as
“rounding to the even digit.” Since the occurrence of even and odd
digits is more or less random, the use of this rule means that numbers
are rounded upward about as often as downward, thereby reducing
the chances of accumulating round-off errors.

The rules described in the preceding paragraphs for rounding to three
significant digits apply in the same general manner when rounding to any
other number of significant digits.

1024
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Mathematical Formulas

MATHEMATICAL CONSTANTS

Conversions: Multiply degrees by to obtain radians

Multiply radians by to obtain degrees

EXPONENTS

LOGARITHMS

log A � (log e)(ln A) � 0.434294 ln A

ln A � (ln 10)(log A) � 2.30259 log A

log An � n log A log 1 � ln 1 � 0 log 10 � 1 ln e � 1

log AB � log A � log B log
A
B

� log A � log B log
1
A

� �log A

eln A � A 10log A � A ln eA � A log 10A � A

ln K natural logarithm (logarithm to the base e) ex � y ln y � x

10x � y log y � x

log K common logarithm (logarithm to the base 10)

(AB)n � AnBn aA
B
bn

�
An

Bn Am/n � 2n Am A0 � 1 (A Z 0)

AnAm � An � m Am

An � Am � n (Am)n � Amn A�m �
1

Am

1 degree �
π

180
radians � 0.0174533 rad

1 radian �
180
π degrees � 57.2958°

180
π

π
180

π � 3.14159 Á e � 2.71828 Á 2π radians � 360 degrees
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Appendix C  Mathematical Formulas1026

B

C

A

a

c

b

TRIGONOMETRIC FUNCTIONS

For any triangle with sides a, b, c and opposite angles A, B, C:

Law of sines:  

Law of cosines:  

QUADRATIC EQUATION AND QUADRATIC FORMULA

INFINITE SERIES

cos (x � y) � cos x cos y � sin x sin y

ex � 1 � x �
x2

2!
�

x3

3!
� Á (�q 6 x 6 q)

1
11 � x

� 1 �
x
2

�
3x2

8
�

5x3

16
� Á (�1 6 x 6 1)

11 � x � 1 �
x
2

�
x2

8
�

x3

16
� Á (�1 6 x 6 1)

1
1 � x

� 1 � x � x2 � x3 � Á (�1 6 x 6 1)

ax2 � bx � c � 0 x �
�b� 3b2 � 4ac

2a

c2 � a2 � b2 � 2ab cos C

a
sin A

�
b

sin B
�

c
sin C

sin2 x �
1
2

(1 � cos 2x) cos2 x �
1
2

(1 � cos 2x)

tan x �
1 � cos 2x

sin 2x
�

sin 2x
1 � cos 2x

tan 2x �
2 tan x

1 � tan2 x

sin 2x � 2 sin x cos x cos 2x � cos2 x � sin2 x

sin (x � y) � sin x cos y � cos x sin y

sin (�x) � �sin x cos (�x) � cos x tan (�x) � �tan x

sin2 x � cos2 x � 1 tan2 x � 1 � sec2 x cot2 x � 1 � csc2 x

tan x �
sin x
cos x

cot x �
cos x
sin x

sec x �
1

cos x
csc x �

1
sin x
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Appendix C  Mathematical Formulas 1027

Note: If x is very small compared to 1, only the first few terms in the series
are needed.

DERIVATIVES

INDEFINITE INTEGRALS
Note: A constant must be added to the result of every integration.

L

dx
a � bx

�
1
b

ln (a � bx)
L

dx
(a � bx)2 �

1
b(a � bx)

L

dx
xn �

x1 � n

1 � n
(n Z 1)

L
(a � bx)n dx �

(a � bx)n � 1

b(n � 1)
(n Z �1)

L
xn dx �

xn � 1

n � 1
(n Z �1)

L

dx
x

� ln |x| (x Z 0)

L
a dx � ax

L
u dv � uv �

L
v du (integration by parts)

d
dx

(au) � au ln a
du
dx

d
dx

(eu) � eu du
dx

d
dx

(arctan u) �
1

1 � u2

du
dx

d
dx

(log u) �
log e

u
du
dx

d
dx

(ln u) �
1
u

du
dx

d
dx

(sec u) � sec u tan u
du
dx

d
dx

(csc u) � �csc u cot u
du
dx

d
dx

(tan u) � sec2 u
du
dx

d
dx

(cot u) � �csc2 u
du
dx

d
dx

(sin u) � cos u
du
dx

d
dx

(cos u) � �sin u
du
dx

d
dx

(un) � nun � 1 du
dx

dy

dx
�

dy

du
du
dx

du
dx

�
1

dx/du

d
dx

(uv) � u
dv
dx

� v
du
dx

d
dx
au

v
b �

v(du/dx) � u(dv/dx)

d
dx

(ax) � a
d

dx
(xn) � nxn � 1 d

dx
(au) � a

du
dx

cos x � 1 �
x2

2!
�

x4

4!
�

x6

6!
� Á (�q 6 x 6 q)

sin x � x �
x3

3!
�

x5

5!
�

x7

7!
� Á (�q 6 x 6 q)
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Appendix C  Mathematical Formulas

L
x sin ax dx �

sin ax
a2 �

x cos ax
a

(x in radians)

L
cos2 ax dx �

x
2

�
sin 2ax

4a
(x in radians)

L
sin2 ax dx �

x
2

�
sin 2ax

4a

L
csc ax dx �

1
a

ln (csc ax � cot ax)

L
sec ax dx �

1
a

ln (sec ax � tan ax)

L
tan ax dx �

1
a

ln (sec ax)
L

cot ax dx �
1
a

ln (sin ax)

L
sin ax dx � �

cos ax
a L

cos ax dx �
sin ax

a

L

x2 dx
(a � bx)4 � �

a2 � 3abx � 3b2x2

3b3(a � bx)3

L

x2 dx
(a � bx)3 �

1
b3 ca(3a � 4bx)

2(a � bx)2 � ln (a � bx) d
L

x2 dx
(a � bx)2 �

1
b3 cbx(2a � bx)

a � bx
� 2a ln (a � bx) d

L

x2 dx
a � bx

�
1

2b3 [(a � bx)(�3a � bx) � 2a2 ln (a � bx)]

L

x dx
(a � bx)3 � �

a � 2bx
2b2(a � bx)2

L

x dx
(a � bx)4 � �

a � 3bx
6b2(a � bx)3

L

x dx
(a � bx)2 �

1
b2 c a

a � bx
� ln (a � bx) d

L

x dx
a � bx

�
1
b2 [bx � a ln (a � bx)]

L

dx
a2 � b2x2 �

1
2ab

ln aa � bx
a � bx

b (x in radians) (a 7 0, b 7 0)

L

dx
a2 � b2x2 �

1
ab

tan�1 bx
a

(x in radians) (a 7 0, b 7 0)

L

dx
(a � bx)n � �

1

(n � 1)(b)(a � bx)n � 1
(n Z 1)
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Appendix C  Mathematical Formulas 1029

DEFINITE INTEGRALS

L
1a � bx dx �

2
3b

(a � bx)3/2

L
2a2 � b2x2 dx �

x
2
2a2 � b2x2 �

a2

2b
sin�1 bx

a

L
2a2 � b2x2 dx �

x
2
2a2 � b2x2 �

a2

2b
ln £bx

a
�

C
1 �

b2x2

a2 ≥

L
x cos ax dx �

cos ax
a2 �

x sin ax
a

(x in radians)

L

dx
1 � sin ax

� �
1
a

tan aπ
4

�
ax
2
b

L
eax dx �

eax

a L
xeax dx �

eax

a2 (ax � 1)

L
ln ax dx � x(ln ax � 1)

L

b

a
f (x) dx � �

L

a

b
f (x) dx

L

b

a
f (x) dx �

L

c

a
f (x) dx �

L

b

c
f (x) dx

L

dx

2a2 � b2x2
�

1
b

ln £bx
a

�
C

1 �
b2x2

a2 ≥
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A P P E N D I X  D

Properties of Plane Areas

Notation:

moments of inertia with respect to the x and y axes, 
respectively

product of inertia with respect to the x and y axes
polar moment of inertia with respect to the 

origin of the x and y axes
moment of inertia with respect to axis B–BIBB �

IP � Ix � Iy �

Ixy �

Ix, Iy �

A � area
x, y � distances to centroid C

1 Rectangle (Origin of axes at centroid)

2 Rectangle (Origin of axes at corner)

3 Triangle (Origin of axes at centroid)

Ixy �
bh2

72
(b � 2c) IP �

bh
36

(h2 � b2 � bc � c2)

Ix �
bh3

36
Iy �

bh
36

(b2 � bc � c2)

A �
bh
2

x �
b � c

3
y �

h
3

IBB �
b3h3

6(b2 � h2)

Ix �
bh3

3
Iy �

hb3

3
Ixy �

b2h2

4
IP

bh
3

(h2 � b2)

Ix �
bh3

12
Iy �

hb3

12
Ixy � 0 IP �

bh
12

(h2 � b2)

A � bh x �
b
2

y �
h
2

y

x

xh
y

b

C

y

x

h

b

O

B

B

y
c

h

b

C x

x

y
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Appendix D  Properties of Plane Areas

4 Triangle (Origin of axes at vertex)

5 Isosceles triangle (Origin of axes at centroid)

(Note: For an equilateral triangle, .)

6 Right triangle (Origin of axes at centroid)

7 Right triangle (Origin of axes at vertex)

8 Trapezoid (Origin of axes at centroid)

Ix �
h3(a2 � 4ab � b2)

36(a � b)
IBB �

h3(3a � b)

12

A �
h(a � b)

2
y �

h(2a � b)

3(a � b)

IP �
bh
12

(h2 � b2) IBB �
bh3

4

Ix �
bh3

12
Iy �

hb3

12
Ixy �

b2h2

24

IP �
bh
36

(h2 � b2) IBB �
bh3

12

Ix �
bh3

36
Iy �

hb3

36
Ixy � �

b2h2

72

A �
bh
2

x �
b
3

y �
h
3

h � 13 b/2

IP �
bh
144

(4h2 � 3b2) IBB �
bh3

12

Ix �
bh3

36
Iy �

hb3

48
Ixy � 0

A �
bh
2

x �
b
2

y �
h
3

Ixy �
bh2

24
(3b � 2c) IBB �

bh3

4

Ix �
bh3

12
Iy �

bh
12

(3b2 � 3bc � c2)

1032

y c

h

b
O

B B

x

B B

C

y

x

b

h
y

x

y

y x

xh

b

B
C

B

y

x

h

b

B B

O

y

y
xh

b

a

B B

C
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Appendix D  Properties of Plane Areas 1033

9 Circle (Origin of axes at center)

10 Semicircle (Origin of axes at centroid)

11 Quarter circle (Origin of axes at center of circle)

12 Quarter-circular spandrel (Origin of axes at point of tangency)

13 Circular sector (Origin of axes at center of circle)

Ixy � 0 IP �
αr4

2

Ix �
r4

4
(α � sin α cos α) Iy �

r4

4
(α � sin α cos α)

A � πr2 �
πd2

4
Ix � Iy �

πr4

4
�

πd4

64

Ixy � 0 IP �
πr4

2
�

πd4

32
IBB �

5πr4

4
�

5πd4

64

Ix � a1 �
5π
16
br4

L 0.01825r4 Iy � IBB � a1
3

�
π
16
br4

L 0.1370r4

A � 11 �
π
4
2r2 x �

2r
3(4 � π)

L 0.7766r y �
(10 � 3π)r

3(4 � π)
L 0.2234r

A � αr2 x � r sin α y �
2r sin α

3α

α � angle in radians (α … π /2)

Ix � Iy �
πr4

16
Ixy �

r4

8
IBB �

(9π2 � 64)r4

144π
L 0.05488r4

A �
πr2

4
x � y �

4r
3π

Ix �
(9π2 � 64)r4

72π
L 0.1098r4 Iy �

πr4

8
Ixy � 0 IBB �

πr4

8

A �
πr2

2
y �

4r
3π

y

x
r

d = 2r

C

B B

y

y x
r C

B B

y

y
x

r

B B
C

O

x

y

x

r

x

O
C

B B

y

a a

C

O

y

r

x

x

y

x
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Appendix D  Properties of Plane Areas

14 Circular segment (Origin of axes at center of circle)

15 Circle with core removed (Origin of axes at center of circle)

16 Ellipse (Origin of axes at centroid)

17 Parabolic semisegment (Origin of axes at corner)

Ix �
16bh3

105
Iy �

2hb3

15
Ixy �

b2h2

12

A � r2(α � sin α cos α) y �
2r
3
a sin3 α

α � sin α cos α
b

α � angle in radians (α … π /2)

Iy �
r4

12
(3α � 3 sin α cos α � 2 sin3 α cos α)

Ix �
r4

4
(α � sin α cos α � 2 sin3 α cos α) Ixy � 0

Ix �
r4

6
a3α �

3ab

r2 �
2ab3

r4 b Iy �
r4

2
aα �

ab

r2 �
2ab3

r4 b Ixy � 0

A �
2bh

3
x �

3b
8

y �
2h
5

y � f(x) � ha1 �
x2

b2 b

L 4.17b2/a � 4a (0 … b … a/3)

Circumference L π [1.5(a � b) � 1ab ] (a/3 … b … a)

Ixy � 0 IP �
πab

4
(b2 � a2)

A � πab Ix �
πab3

4
Iy �

πba3

4

α � arccos
a
r

b � 2r2 � a2 A � 2r2aα �
ab
r2 b

α � angle in radians (α … π /2)

1034

a a

C

O

y

y

x

r

a

a

y

x

a

2a

br

b

C

y

x

b

a a

b
C

y = f (x)

y

x

y

x

C

O b

h

Vertex
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Appendix D  Properties of Plane Areas 1035

18 Parabolic spandrel (Origin of axes at vertex)

19 Semisegment of nth degree (Origin of axes at corner)

20 Spandrel of nth degree (Origin of axes at point of tangency)

21 Sine wave (Origin of axes at centroid)

Ixy � 0 IBB �
8bh3

9π

Ixy �
b2h2n2

4(n � 1)(n � 2)

y � f(x) �
hx2

b2

Ix �
bh3

21
Iy �

hb3

5
Ixy �

b2h2

12

A �
bh
3

x �
3b
4

y �
3h
10

Ix � a 8
9π

�
π
16
bbh3

L 0.08659bh3 Iy � a 4
π �

32
π 3 bhb3

L 0.2412hb3

Ix �
2bh3n3

(n � 1)(2n � 1)(3n � 1)
Iy �

hb3n
3(n � 3)

A �
4bh
π y �

πh
8

Ix �
bh3

3(3n � 1)
Iy �

hb3

n � 3
Ixy �

b2h2

4(n � 1)

A �
bh

n � 1
x �

b(n � 1)

n � 2
y �

h(n � 1)

2(2n � 1)

y � f(x) �
hxn

bn (n 7 0)

A � bh1 n
n � 1

2 x �
b(n � 1)

2(n � 2)
y �

hn
2n � 1

y � f(x) � ha1 �
xn

bn b (n 7 0)

y

y

h

b
x

x

C
O

Vertex

y = f (x)

C

O

y
y = f (x)

y

x

x

b

h

y

x

x h

b
O

C y

y = f (x)

y

y
h

b b

x
B B

C

77742_17_appd_p1031-1036.qxd:77742_17_appd_p1031-1036.qxd  2/27/12  9:30 PM  Page 1035

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Appendix D  Properties of Plane Areas

22 Thin circular ring (Origin of axes at center) Approximate formulas for case
when t is small

23 Thin circular arc (Origin of axes at center of circle) Approximate formulas for
case when t is small

24 Thin rectangle (Origin of axes at centroid) Approximate formulas for case when
t is small

25 Regular polygon with n sides (Origin of axes at centroid)

moment of inertia about any axis through C (The centroid C is a principal
point and every axis through C is a principal axis.)

Ic �
nb4

192
acot

β
2
b a3 cot2 β

2
� 1b IP � 2Ic

Ic �

R2 � radius of inscribed circle (line CB)

R1 � radius of circumscribed circle (line CA)

R1 �
b
2

csc
β
2

R2 �
b
2

cot
β
2

A �
nb2

4
cot

β
2

A � 2πrt � πdt Ix � Iy � πr3t �
πd3t

8

β � angle in radians (Note: For a semicircular arc, β � π /2.)

Ixy � 0 IP � 2πr3t �
πd3t

4

A � 2βrt y �
r sin β

β

Ix � r3t(β � sin β cos β) Iy � r3t(β � sin β cos β)

β �
360°

n
α � an � 2

n
b180° α � β � 180°

β � central angle for a side α � interior angle (or vertex angle)

n � number of sides (n Ú 3) b � length of a side

C � centroid (at center of polygon)

Ix �
tb3

12
sin2 β Iy �

tb3

12
cos2 β IBB �

tb3

3
sin2 β

A � bt

Ixy � 0 IBB � r3ta2β � sin 2β
2

�
1 � cos 2β

β
b

1036

y

x

t

C
r

d = 2r

y

y

x

B B
C

b b

t

r

O

y

x

B B

C

b

t

b

b

b

a

C

B
A

R1
R2
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A P P E N D I X  E

Properties of Structural-Steel
Shapes
In the following tables, the properties of a few structural-steel shapes are
presented as an aid to the reader in solving problems in the text. These
tables were compiled from the extensive tables of properties for steel
shapes commonly used in Europe (Ref. 5-4).

Notation:

r � 1I/A � radius of gyration

S � section modulus

I � moment of inertia
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Appendix E  Properties of Structural-Steel Shapes1038

Designation

Mass 
per

meter

Area 
of

section

Depth
of

section

Width 
of

section Thickness Strong axis 1-1 Weak axis 2-2 

G A h b tw tf I1 S1 r1 I2 S2 r2

kg/m cm2 mm mm mm mm cm4 cm3 cm cm4 cm3 cm 

HE 1000 B 314 400 1000 300 19 36 644700 12890 40.15 16280 1085 6.38 
HE 900 B 291 371.3 900 300 18.5 35 494100 10980 36.48 15820 1054 6.53
HE 700 B 241 306.4 700 300 17 32 256900 7340 28.96 14440 962.7 6.87
HE 650 B 225 286.3 650 300 16 31 210600 6480 27.12 13980 932.3 6.99
HE 600 B 212 270 600 300 15.5 30 171000 5701 25.17 13530 902 7.08

HE 550 B 199 254.1 550 300 15 29 136700 4971 23.2 13080 871.8 7.17
HE 600 A 178 226.5 590 300 13 25 141200 4787 24.97 11270 751.4 7.05
HE 450 B 171 218 450 300 14 26 79890 3551 19.14 11720 781.4 7.33
HE 550 A 166 211.8 540 300 12.5 24 111900 4146 22.99 10820 721.3 7.15
HE 360 B 142 180.6 360 300 12.5 22.5 43190 2400 15.46 10140 676.1 7.49
HE 450 A 140 178 440 300 11.5 21 63720 2896 18.92 9465 631 7.29

HE 340 B 134 170.9 340 300 12 21.5 36660 2156 14.65 9690 646 7.53
HE 320 B 127 161.3 320 300 11.5 20.5 30820 1926 13.82 9239 615.9 7.57
HE 360 A 112 142.8 350 300 10 17.5 33090 1891 15.22 7887 525.8 7.43
HE 340 A 105 133.5 330 300 9.5 16.5 27690 1678 14.4 7436 495.7 7.46

HE 320 A 97.6 124.4 310 300 9 15.5 22930 1479 13.58 6985 465.7 7.49
HE 260 B 93 118.4 260 260 10 17.5 14920 1148 11.22 5135 395 6.58
HE 240 B 83.2 106 240 240 10 17 11260 938.3 10.31 3923 326.9 6.08
HE 280 A 76.4 97.26 270 280 8 13 13670 1013 11.86 4763 340.2 7
HE 220 B 71.5 91.04 220 220 9.5 16 8091 735.5 9.43 2843 258.5 5.59
HE 260 A 68.2 86.82 250 260 7.5 12.5 10450 836.4 10.97 3668 282.1 6.5
HE 240 A 60.3 76.84 230 240 7.5 12 7763 675.1 10.05 2769 230.7 6

HE 180 B 51.2 65.25 180 180 8.5 14 3831 425.7 7.66 1363 151.4 4.57
HE 160 B 42.6 54.25 160 160 8 13 2492 311.5 6.78 889.2 111.2 4.05
HE 140 B 33.7 42.96 140 140 7 12 1509 215.6 5.93 549.7 78.52 3.58
HE 120 B 26.7 34.01 120 120 6.5 11 864.4 144.1 5.04 317.5 52.92 3.06
HE 140 A 24.7 31.42 133 140 5.5 8.5 1033 155.4 5.73 389.3 55.62 3.52

HE 100 B 20.4 26.04 100 100 6 10 449.5 89.91 4.16 167.3 33.45 2.53
HE 100 A 16.7 21.24 96 100 5 8 349.2 72.76 4.06 133.8 26.76 2.51

Note: Axes 1-1 and 2-2 are principal centroidal axes.

TABLE E-1 
Properties of European Wide-Flange Beams

1 1

2

2
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Appendix E  Properties of Structural-Steel Shapes 1039

1 1

2

2

Designation

Mass 
per

meter

Area 
of

section

Depth
of

section

Width 
of

section Thickness Strong axis 1-1 Weak axis 2-2 

G A h b tw tf I1 S1 r1 I2 S2 r2

kg/m cm2 mm mm mm mm cm4 cm3 cm cm4 cm3 cm 

IPN 550 166 212 550 200 19 30 99180 3610 21.6 3490 349 4.02
IPN 500 141 179 500 185 18 27 68740 2750 19.6 2480 268 3.72

IPN 450 115 147 450 170 16.2 24.3 45850 2040 17.7 1730 203 3.43
IPN 400 92.4 118 400 155 14.4 21.6 29210 1460 15.7 1160 149 3.13

IPN 380 84 107 380 149 13.7 20.5 24010 1260 15 975 131 3.02
IPN 360 76.1 97 360 143 13 19.5 19610 1090 14.2 818 114 2.9
IPN 340 68 86.7 340 137 12.2 18.3 15700 923 13.5 674 98.4 2.8
IPN 320 61 77.7 320 131 11.5 17.3 12510 782 12.7 555 84.7 2.67
IPN 300 54.2 69 300 125 10.8 16.2 9800 653 11.9 451 72.2 2.56

IPN 280 47.9 61 280 119 10.1 15.2 7590 542 11.1 364 61.2 2.45
IPN 260 41.9 53.3 260 113 9.4 14.1 5740 442 10.4 288 51 2.32
IPN 240 36.2 46.1 240 106 8.7 13.1 4250 354 9.59 221 41.7 2.2
IPN 220 31.1 39.5 220 98 8.1 12.2 3060 278 8.8 162 33.1 2.02
IPN 200 26.2 33.4 200 90 7.5 11.3 2140 214 8 117 26 1.87

IPN 180 21.9 27.9 180 82 6.9 10.4 1450 161 7.2 81.3 19.8 1.71
IPN 160 17.9 22.8 160 74 6.3 9.5 935 117 6.4 54.7 14.8 1.55
IPN 140 14.3 18.3 140 66 5.7 8.6 573 81.9 5.61 35.2 10.7 1.4
IPN 120 11.1 14.2 120 58 5.1 7.7 328 54.7 4.81 21.5 7.41 1.23
IPN 100 8.34 10.6 100 50 4.5 6.8 171 34.2 4.01 12.2 4.88 1.07

IPN 80 5.94 7.58 80 42 3.9 5.9 77.8 19.5 3.2 6.29 3 0.91

Note: Axes 1-1 and 2-2 are principal centroidal axes.

TABLE E-2 
Properties of European Standard Beams
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Appendix E  Properties of Structural-Steel Shapes1040

1 1

2

2

c

Designation

Mass 
per

meter

Area 
of

section

Depth
of

section

Width 
of

section Thickness Strong axis 1-1 Weak axis 2-2 

G A h b tw tf I1 S1 r1 I2 S2 r2 c

kg/m cm2 mm mm mm mm cm4 cm3 cm cm4 cm3 cm cm

UPN 400 71.8 91.5 400 110 14 18 20350 1020 14.9 846 102 3.04 2.65

UPN 380 63.1 80.4 380 102 13.5 16 15760 829 14 615 78.7 2.77 2.38
UPN 350 60.6 77.3 350 100 14 16 12840 734 12.9 570 75 2.72 2.4
UPN 320 59.5 75.8 320 100 14 17.5 10870 679 12.1 597 80.6 2.81 2.6
UPN 300 46.2 58.8 300 100 10 16 8030 535 11.7 495 67.8 2.9 2.7

UPN 280 41.8 53.3 280 95 10 15 6280 448 10.9 399 57.2 2.74 2.53
UPN 260 37.9 48.3 260 90 10 14 4820 371 9.99 317 47.7 2.56 2.36
UPN 240 33.2 42.3 240 85 9.5 13 3600 300 9.22 248 39.6 2.42 2.23
UPN 220 29.4 37.4 220 80 9 12.5 2690 245 8.48 197 33.6 2.3 2.14
UPN 200 25.3 32.2 200 75 8.5 11.5 1910 191 7.7 148 27 2.14 2.01

UPN 180 22 28 180 70 8 11 1350 150 6.95 114 22.4 2.02 1.92
UPN 160 18.8 24 160 65 7.5 10.5 925 116 6.21 85.3 18.3 1.89 1.84
UPN 140 16 20.4 140 60 7 10 605 86.4 5.45 62.7 14.8 1.75 1.75
UPN 120 13.4 17 120 55 7 9 364 60.7 4.62 43.2 11.1 1.59 1.6
UPN 100 10.6 13.5 100 50 6 8.5 206 41.2 3.91 29.3 8.49 1.47 1.55

UPN 80 8.64 11 80 45 6 8 106 26.5 3.1 19.4 6.36 1.33 1.45

Notes: 1. Axes 1-1 and 2-2 are principal centroidal axes.
2. The distance c is measured from the centroid to the back of the web.
3. For axis 2-2, the tabulated value of S is the smaller of the two section moduli for this axis.

TABLE E-3 
Properties of European Standard Channels
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Appendix E  Properties of Structural-Steel Shapes 1041

a

1

4

43

3

1

2

2

c

c

Designation Thickness

Mass 
per

meter

Area 
of

section Axis 1-1 and Axis 2-2 Axis 3-3

G A I S r c Imin rmin

mm kg/m cm2 cm4 cm3 cm cm cm4 cm

L 200 � 200 � 26 26 76.6 97.59 3560 252.7 6.04 5.91 1476 3.89
L 200 � 200 � 22 22 65.6 83.51 3094 217.3 6.09 5.76 1273 3.9
L 200 � 200 � 19 19 57.1 72.74 2726 189.9 6.12 5.64 1117 3.92
L 180 � 180 � 20 20 53.7 68.35 2043 159.4 5.47 5.18 841.3 3.51

L 180 � 180 � 19 19 51.1 65.14 1955 152.1 5.48 5.14 803.8 3.51
L 200 � 200 � 16 16 48.5 61.79 2341 161.7 6.16 5.52 957.1 3.94
L 180 � 180 � 17 17 46 58.66 1775 137.2 5.5 5.06 727.8 3.52
L 180 � 180 � 15 15 40.9 52.1 1589 122 5.52 4.98 650.5 3.53

L 160 � 160 � 17 17 40.7 51.82 1225 107.2 4.86 4.57 504.1 3.12
L 160 � 160 � 15 15 36.2 46.06 1099 95.47 4.88 4.49 450.8 3.13
L 180 � 180 � 13 13 35.7 45.46 1396 106.5 5.54 4.9 571.6 3.55
L 150 � 150 � 15 15 33.8 43.02 898.1 83.52 4.57 4.25 368.9 2.93

L 150 � 150 � 14 14 31.6 40.31 845.4 78.33 4.58 4.21 346.8 2.93
L 150 � 150 � 12 12 27.3 34.83 736.9 67.75 4.6 4.12 302 2.94
L 120 � 120 � 15 15 26.6 33.93 444.9 52.43 3.62 3.51 184.1 2.33
L 120 � 120 � 13 13 23.3 29.69 394 46.01 3.64 3.44 162.2 2.34

L 150 � 150 � 10 10 23 29.27 624 56.91 4.62 4.03 256 2.96
L 140 � 140 � 10 10 21.4 27.24 504.4 49.43 4.3 3.79 206.8 2.76
L 120 � 120 � 11 11 19.9 25.37 340.6 39.41 3.66 3.36 139.7 2.35
L 100 � 100 � 12 12 17.8 22.71 206.7 29.12 3.02 2.9 85.42 1.94

L 110 � 110 � 10 10 16.6 21.18 238 29.99 3.35 3.06 97.72 2.15
L 100 � 100 � 10 10 15 19.15 176.7 24.62 3.04 2.82 72.64 1.95
L  90 � 90 � 9 9 12.2 15.52 115.8 17.93 2.73 2.54 47.63 1.75
L  90 � 90 � 8 8 10.9 13.89 104.4 16.05 2.74 2.5 42.87 1.76
L  90 � 90 � 7 7 9.6 12.24 92.5 14.13 2.75 2.45 38.02 1.76

Notes: 1. Axes 1-1 and 2-2 are centroidal axes parallel to the legs.
2. The distance c is measured from the centroid to the back of the legs.
3. For axes 1-1 and 2-2, the tabulated value of S is the smaller of the two section moduli for those axes.
4. Axes 3-3 and 4-4 are principal centroidal axes.
5. The moment of inertia for axis 3-3, which is the smaller of the two principal moments of inertia, can be found from the equation I33 � Ar 2

min.
6. The moment of inertia for axis 4-4, which is the larger of the two principal moments of inertia, can be found from the equation I44 � I33 � I11 � I22.

Table E-4
Properties of European Equal Angles
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Appendix E  Properties of Structural-Steel Shapes1042

1

4

4

3

3

1

2

2

c

d

a

Designation Thickness

Mass 
per

meter

Area 
of

section Axis 1-1 Axis 2-2 Axis 3-3 Angle α

G A I S r d I S r c Imin rmin tan α

mm kg/m cm2 cm4 cm3 cm cm cm4 cm3 cm cm cm4 cm

L 200 � 100 � 14 14 31.6 40.28 1654 128.4 6.41 7.12 282.2 36.08 2.65 2.18 181.7 2.12 0.261
L 150 � 100 � 14 14 26.1 33.22 743.5 74.12 4.73 4.97 264.2 35.21 2.82 2.5 153 2.15 0.434
L 200 � 100 � 12 12 25.1 34.8 1440 111 6.43 7.03 247.2 31.28 2.67 2.1 158.5 2.13 0.263
L 200 � 100 � 10 10 23 29.24 1219 93.24 6.46 6.93 210.3 26.33 2.68 2.01 134.5 2.14 0.265

L 150 � 100 � 12 12 22.6 28.74 649.6 64.23 4.75 4.89 231.9 30.58 2.84 2.42 133.5 2.16 0.436
L 160 � 80 � 12 12 21.6 27.54 719.5 69.98 5.11 5.72 122 19.59 2.1 1.77 78.77 1.69 0.260
L 150 � 90 � 11 11 19.9 25.34 580.7 58.3 4.79 5.04 158.7 22.91 2.5 2.08 95.71 1.94 0.360
L 150 � 100 � 10 10 19 24.18 551.7 54.08 4.78 4.8 197.8 25.8 2.86 2.34 113.5 2.17 0.439

L 150 � 90 � 10 10 18.2 23.15 533.1 53.29 4.8 5 146.1 20.98 2.51 2.04 87.93 1.95 0.361
L 160 � 80 � 10 10 18.2 23.18 611.3 58.94 5.14 5.63 104.4 16.55 2.12 1.69 67.01 1.7 0.262
L 120 � 80 � 12 12 17.8 22.69 322.8 40.37 3.77 4 114.3 19.14 2.24 2.03 66.46 1.71 0.432
L 120 � 80 � 10 10 15 19.13 275.5 34.1 3.8 3.92 98.11 16.21 2.26 1.95 56.6 1.72 0.435

L 130 � 65 � 10 10 14.6 18.63 320.5 38.39 4.15 4.65 54.2 10.73 1.71 1.45 35.02 1.37 0.259
L 120 � 80 � 8 8 12.2 15.49 225.7 27.63 3.82 3.83 80.76 13.17 2.28 1.87 46.39 1.73 0.438
L 130 � 65 � 8 8 11.8 15.09 262.5 31.1 4.17 4.56 44.77 8.72 1.72 1.37 28.72 1.38 0.262

Notes: 1. Axes 1-1 and 2-2 are centroidal axes parallel to the legs.
2. The distance c is measured from the centroid to the back of the legs.
3. For axes 1-1 and 2-2, the tabulated value of S is the smaller of the two section moduli for those axes.
4. Axes 3-3 and 4-4 are principal centroidal axes.
5. The moment of inertia for axis 3-3, which is the smaller of the two principal moments of inertia, can be found from the equation I33 � Ar 2

min.
6. The moment of inertia for axis 4-4, which is the larger of the two principal moments of inertia, can be found from the equation I44 � I33 � I11 � I22.

Table E-5
Properties of European Unequal Angles
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A P P E N D I X  F

Properties of Structural
Timber
Properties of Sawn Solid Timber Sizes (for the most readily available stress graded European sizes, dry)

Nominal
dimensions

b � h

Net 
dimensions 

b � h
Area 

A � b � h

Axis 1–1 Axis 2–2
Weight per 

linear 
meter 

(based on  
560 kg/m3)

Moment of
inertia 

I1 �
bh 3

12

Section 
modulus 

S1 �
bh 2

6

Moment of
inertia 

I2 �
hb 3

12

Section 
modulus

S2 �
hb 2

6

mm mm 103mm4 106mm4 106mm3 106mm4 106mm3 N

38 � 75 35 � 72 2.52 1.09 0.0302 0.257 0.0147 13.83
38 � 100 35 � 97 3.4 2.66 0.0549 0.347 0.0198 18.64
38 � 125 35 � 122 4.27 5.3 0.0868 0.436 0.0249 23.45

50 � 75 47 � 72 3.38 1.46 0.0406 0.623 0.0265 18.64
50 � 100 47 � 97 4.56 3.57 0.0737 0.839 0.0357 25.02
50 � 125 47 � 122 5.73 7.11 0.117 1.06 0.0449 31.49
50 � 150 47 � 147 6.91 12.4 0.169 1.27 0.0541 37.96
50 � 200 47 � 195 9.17 29 0.298 1.69 0.0718 50.33
50 � 250 47 � 245 11.5 57.6 0.47 2.12 0.0902 63.27

75 � 100 72 � 97 6.98 5.48 0.113 3.02 0.0838 38.36
75 � 150 72 � 147 10.6 19.1 0.259 4.57 0.127 58.17
75 � 200 72 � 147 14 44.5 0.456 6.07 0.168 77.11
75 � 250 75 � 245 17.6 88.2 0.72 7.62 0.212 96.92

100 � 100 97 � 97 9.41 7.38 0.152 7.38 0.152 51.7
100 � 150 97 � 147 14.3 25.7 0.349 11.2 0.231 78.38
100 � 200 97 � 195 18.9 59.9 0.615 14.8 0.306 103.89
100 � 250 97 � 295 23.8 119 0.97 18.6 0.384 130.57
100 � 300 97 � 295 28.6 208 1.41 22.4 0.463 157.16

150 � 150 147 � 195 21.6 38.9 0.529 38.9 0.529 118.7
150 � 200 147 � 195 28.7 90.8 0.932 51.6 0.702 157.45
150 � 300 147 � 295 43.4 314 2.13 78.1 1.06 238.19
200 � 200 195 � 195 38 120 1.24 120 1.24 208.85
200 � 300 195 � 295 57.5 417 2.83 182 1.87 315.98

300 � 300 295 � 295 87 631 4.28 631 4.28 478.04

1 1

2

2
b

h
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A P P E N D I X  G

Deflections and Slopes of Beams

Table G-1
Deflections and Slopes of Cantilever Beams

deflection in the y direction (positive upward)

slope of the deflection curve

deflection at end B of the beam (positive downward)

angle of rotation at end B of the beam (positive clockwise)

constantEI �

θB � �v�(L) �

δB � �v (L) �

v� � dv/dx �

v �

1

δB �
qL4

8EI
θB �

qL3

6EI

v � �
qx 2

24EI
(6L2 � 4Lx � x 2) v� � �

qx

6EI
(3L2 � 3Lx � x 2)

2

δB �
qa3

24EI
(4L � a) θB �

qa3

6EI

At x � a: v � �
qa4

8EI
v� � �

qa3

6EI

v � �
qa3

24EI
(4x � a) v� � �

qa3

6EI
(a … x … L)

v� � �
qx

6EI
(3a2 � 3ax � x2) (0 … x … a)

v � �
qx 2

24EI
(6a2 � 4ax � x2) (0 … x … a)

y

xA B

uB

dB

L

q

a b

q

(Continued)
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Appendix G  Deflections and Slopes of Beams1046

3

δB �
q

24EI
(3L4 � 4a3L � a4) θB �

q

6EI
(L3 � a3)

At x � a: v � �
qa2b

12EI
(3L � a) v� � �

qabL

2EI

v� � �
q

6EI
(x3 � 3Lx2 � 3L2x � a3) (a … x … L)

v � �
q

24EI
(x 4 � 4Lx3 � 6L2x2 � 4a3x � a4) (a … x … L)

v� � �
qbx

2EI
(L � a � x) (0 … x … a)

v � �
qbx2

12EI
(3L � 3a � 2x) (0 … x … a)

4

δB �
PL3

3EI
θB �

PL2

2EI

v � �
Px 2

6EI
(3L � x) v� � �

Px
2EI

(2L � x)

5

δB �
Pa2

6EI
(3L � a) θB �

Pa2

2EI

At x � a: v � �
Pa 3

3EI
v� � �

Pa 2

2EI

v � �
Pa2

6EI
(3x � a) v� � �

Pa2

2EI
(a … x … L)

v � �
Px2

6EI
(3a � x) v� � �

Px
2EI

(2a � x) (0 … x … a)

6

δB �
M0L2

2EI
θB �

M0L

EI

v � �
M0x

2

2EI
v� � �

M0x

EI

q

a b

P

P

a b

M0

Table G-1 (Continued)
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Appendix G  Deflections and Slopes of Beams 1047

7

δB �
M0a

2EI
(2L � a) θB �

M0a

EI

At x � a: v � �
M0a

2

2EI
v� � �

M0a

EI

v � �
M0a

2EI
(2x � a) v� � �

M0a

EI
(a … x … L)

v � �
M0x 2

2EI
v� � �

M0x

EI
(0 … x … a)

8

v� � �
q0x

24LEI
(4L3 � 6L2x � 4Lx 2 � x3)

v � �
q0x

2

120LEI
(10L3 � 10L2x � 5Lx 2 � x3)

δB �
q0L

4

30EI
θB �

q0L
3

24EI

9

δB �
11q0L

4

120EI
θB �

q0L
3

8EI

v� � �
q0x

24LEI
(8L3 � 6L2x � x3)

v � �
q0x 2

120LEI
(20L3 � 10L2x � x3)

10

δB �
2q0L

4

3π 4EI
(π 3 � 24) θB �

q0L
3

π 3EI
(π 2 � 8)

v� � �
q0L

π 3EI
12π 2Lx � π 2x 2 � 8L2 sin

πx
2L
2

v � �
q0L

3π 4EI
148L3 cos

πx
2L

� 48L3 � 3π 3Lx 2 � π 3x 32

M0

a b

q0

q0

q = q0 cos �x—
2L

q0

Table G-1 (Continued)
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Appendix G  Deflections and Slopes of Beams

Table G-2
Deflections and Slopes of Simple Beams

1048

deflection in the y direction (positive upward)

slope of the deflection curve

deflection at midpoint C of the beam (positive downward)

distance from support A to point of maximum deflection

maximum deflection (positive downward)

angle of rotation at left-hand end of the beam (positive clockwise)

angle of rotation at right-hand end of the beam 
(positive counterclockwise)

EI � constant

θB � v�(L) �

θA � �v�(0) �

δ max � �v max �

x1 �

δC � �v (L/2) �

v� � dv/dx �

v �

1

δC � δmax �
5qL4

384EI
θA � θB �

qL3

24EI

v� � �
q

24EI
(L3 � 6Lx2 � 4x3)

v � �
qx

24EI
(L3 � 2Lx2 � x3)

2 v � �
qx

384EI
(9L3 � 24Lx2 � 16x3) a0 … x …

L
2
b

δC �
5qL4

768EI
θA �

3qL3

128EI
θB �

7qL3

384EI

v� � �
qL

384EI
(24x2 � 48Lx � 17L2) a L

2
… x … Lb

v � �
qL

384EI
(8x 3 � 24Lx2 � 17L2x � L3) a L

2
… x … Lb

v� � �
q

384EI
(9L3 � 72Lx2 � 64x3) a0 … x …

L
2
b

3 v � �
qx

24LEI
(a4 � 4a3L � 4a2L2 � 2a2x2 � 4aLx2 � Lx3) (0 … x … a)

v� � �
qa2

24LEI
(4L2 � a2 � 12Lx � 6x2) (a … x … L)

v � �
qa2

24LEI
(�a2L � 4L2x � a2x � 6Lx 2 � 2x3) (a … x … L)

v� � �
q

24LEI
(a4 � 4a3L � 4a2L2 � 6a2x2 � 12aLx2 � 4Lx3) (0 … x … a)

θA �
qa2

24LEI
(2L � a)2 θB �

qa2

24LEI
(2L2 � a2)

y

x

uA uBA B

L

q

q

L
—
2

L—
2

q

a
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Appendix G  Deflections and Slopes of Beams 1049

4

δC � δmax �
PL3

48EI
θA � θB �

PL2

16EI

v � �
Px

48EI
(3L2 � 4x 2) v� � �

P
16EI

(L2 � 4x 2) a0 … x …

L
2
b

5

If a Ú b, x1 �
C

L2 � b2

3
and δmax �

Pb(L2 � b2)3/2

913LEI

If a Ú b, δC �
Pb(3L2 � 4b2)

48EI
If a … b, δC �

Pa(3L2 � 4a2)
48EI

θA �
Pab (L � b)

6LEI
θB �

Pab (L � a)
6LEI

v � �
Pbx
6LEI

(L2 � b2 � x 2) v� � �
Pb

6LEI
(L2 � b2 � 3x 2) (0 … x … a)

6

v � �
Pa
6EI

(3Lx � 3x2 � a 2) v� � �
Pa
2EI

(L � 2x) (a … x … L � a)

v � �
Px
6EI

(3aL � 3a2 � x2) v� � �
P

2EI
(aL � a2 � x2) (0 … x … a)

δC � δmax �
Pa

24EI
(3L2 � 4a2) θA � θB �

Pa(L � a)
2EI

7

x1 � La1 �
13
3
b and δmax �

M0L
2

913EI

δC �
M0L

2

16EI
θA �

M0L

3EI
θB �

M0L

6EI

v � �
M0x

6LEI
(2L2 � 3Lx � x 2) v� � �

M0

6LEI
(2L2 � 6Lx � 3x 2)

8

δC � 0 θA �
M0L

24EI
θB � �

M0L

24EI

v � �
M0x

24LEI
(L2 � 4x 2) v� � �

M0

24LEI
(L2 � 12x 2) a0 … x …

L
2
b

9 v � �
M0x

6LEI
(6aL � 3a 2 � 2L 2 � x 2) (0 … x … a)

θA �
M0

6LEI
(6aL � 3a 2 � 2L2) θB �

M0

6LEI
(3a 2 � L2)

At x � a : v �
M0ab

3LEI
(2a � L) v� � �

M0

3LEI
(3aL � 3a 2 � L2)

v� � �
M0

6LEI
(6aL � 3a 2 � 2L2 � 3x 2) (0 … x … a)

L—
2

L—
2

P

P

a b

P P

a a

M0

(Continued)

L
—
2

L
—
2

M0

a b

M0

Table G-2 (Continued)
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Appendix G  Deflections and Slopes of Beams1050

10

δC � δmax �
M0L

2

8EI
θA � θB �

M0L

2EI

v � �
M0x

2EI
(L � x) v� � �

M0

2EI
(L � 2x)

11

x1 � 0.5193L δmax � 0.00652
q0L

4

EI

δC �
5q0L

4

768EI
θA �

7q0L
3

360EI
θB �

q0L
3

45EI

v� � �
q0

360LEI
(7L4 � 30L2x2 � 15x4)

v � �
q0x

360LEI
(7L4 � 10L2x2 � 3x4)

12

δC � δmax �
q0L

4

120EI
θA � θB �

5q0L
3

192EI

v� � �
q0

192LEI
(5L2 � 4x2)(L2 � 4x2) a0 … x …

L
2
b

v � �
q0x

960LEI
(5L2 � 4x2)2 a0 … x …

L
2
b

13

δC � δmax �
q0L

4

π 4EI
θA � θB �

q0L
3

π 3EI

v � �
q0L

4

π 4EI
sin

πx
L

v� � �
q0L

3

π 3EI
cos

πx
L

M0M0

q0

q0

L—
2

L—
2

q = q0 sin
�x—
L

Table G-2 (Continued)

77742_20_appg_p1045-1050.qxd:77742_20_appg_p1045-1050.qxd  2/28/12  2:42 PM  Page 1050

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A P P E N D I X  H

Properties of Materials

Notes:
1. Properties of materials vary greatly depending upon manufacturing

processes, chemical composition, internal defects, temperature, pre-
vious loading history, age, dimensions of test specimens, and other
factors. The tabulated values are typical but should never be used
for specific engineering or design purposes. Manufacturers and
materials suppliers should be consulted for information about a par-
ticular product.

2. Except when compression or bending is indicated, the modulus of
elasticity E, yield stress σY, and ultimate stress σU are for materials
in tension.
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Appendix H  Properties of Materials1052

Material
Weight density γ Mass density ρ

kN/m3 kg/m3

Aluminum alloys 26–28 2,600–2,800
2014-T6, 7075-T6 28 2,800
6061-T6 26 2,700

Brass 82–85 8,400–8,600

Bronze 80–86 8,200–8,800

Cast iron 68–72 7,000–7,400

Concrete
Plain 23 2,300
Reinforced 24 2,400
Lightweight 11–18 1,100–1,800

Copper 87 8,900

Glass 24–28 2,400–2,800

Magnesium alloys 17–18 1,760–1,830

Monel (67% Ni, 30% Cu) 87 8,800

Nickel 87 8,800

Plastics
Nylon 8.6–11 880–1,100
Polyethylene 9.4–14 960–1,400

Rock
Granite, marble, quartz 26–28 2,600–2,900
Limestone, sandstone 20–28 2,000–2,900

Rubber 9–13 960–1,300

Sand, soil, gravel 12–21 1,200–2,200

Steel 77.0 7,850

Titanium 44 4,500

Tungsten 190 1,900

Water, fresh 9.81 1,000
sea 10.0 1,020

Wood (air dry)
Douglas fir 4.7–5.5 480–560
Oak 6.3–7.1 640–720
Southern pine 5.5–6.3 560–640

Table H-1
Weights and Mass Densities
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Appendix H  Properties of Materials 1053

Material
Modulus of elasticity E Shear modulus of elasticity G

Poisson’s
ratio νGPa GPa

Aluminum alloys 70–79 26–30 0.33
2014-T6 73 28 0.33
6061-T6 70 26 0.33
7075-T6 72 27 0.33

Brass 96–110 36–41 0.34

Bronze 96–120 36–44 0.34

Cast iron 83–170 32–69 0.2–0.3

Concrete (compression) 17–31 0.1–0.2

Copper and copper alloys 110–120 40–47 0.33–0.36

Glass 48–83 19–35 0.17–0.27

Magnesium alloys 41–45 15–17 0.35

Monel (67% Ni, 30% Cu) 170 66 0.32

Nickel 210 80 0.31

Plastics
Nylon 2.1–3.4 0.4
Polyethylene 0.7–1.4 0.4

Rock (compression)
Granite, marble, quartz 40–100 0.2–0.3
Limestone, sandstone 20–70 0.2–0.3

Rubber 0.0007–0.004 0.0002–0.001 0.45–0.50

Steel 190–210 75–80 0.27–0.30

Titanium alloys 100–120 39–44 0.33

Tungsten 340–380 140–160 0.2

Wood (bending)
Douglas fir 11–13
Oak 11–12
Southern pine 11–14

Table H-2
Moduli of Elasticity and Poisson’s Ratios
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Material
Yield stress σY Ultimate stress σU

Percent 
elongation 

(25 mm gage
length)MPa MPa

Aluminum alloys 35–500 100–550 1–45
2014-T6 410 480 13
6061-T6 270 310 17
7075-T6 480 550 11

Brass 70–550 200–620 4–60

Bronze 82–690 200–830 5–60

Cast iron (tension) 120–290 69–480 0–1

Cast iron (compression) 340–1,400

Concrete (compression) 10–70

Copper and copper alloys 55–760 230–830 4–50

Glass 30–1,000 0
Plate glass 70
Glass fibers 7,000–20,000

Magnesium alloys 80–280 140–340 2–20

Monel (67% Ni, 30% Cu) 170–1,100 450–1,200 2–50

Nickel 100–620 310–760 2–50

Plastics
Nylon 40–80 20–100
Polyethylene 7–28 15–300

Rock (compression)
Granite, marble, quartz 50–280
Limestone, sandstone 20–200

Rubber 1–7 7–20 100–800

Steel
High-strength 340–1,000 550–1,200 5–25
Machine 340–700 550–860 5–25
Spring 400–1,600 700–1,900 3–15
Stainless 280–700 400–1,000 5–40
Tool 520 900 8

Steel, structural 200–700 340–830 10–40
ASTM-A36 250 400 30
ASTM-A572 340 500 20
ASTM-A514 700 830 15

Appendix H  Properties of Materials1054

Table H-3
Mechanical Properties
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Appendix H  Properties of Materials 1055

Material
Yield stress σY Ultimate stress σU

Percent 
elongation 

(25 mm gage
length)MPa MPa

Steel wire 280–1,000 550–1,400 5–40

Titanium alloys 760–1,000 900–1,200 10

Tungsten 1,400–4,000 0–4

Wood (bending)
Douglas fir 30–50 50–80
Oak 40–60 50–100
Southern pine 40–60 50–100

Wood (compression parallel to grain)
Douglas fir 30–50 40–70
Oak 30–40 30–50
Southern pine 30–50 40–70

Table H-3 (Continued)

Material
Coefficient of 

thermal expansion α

10�6/°C

Aluminum alloys 23

Brass 19.1–21.2

Bronze 18–21

Cast iron 9.9–12

Concrete 7–14

Copper and copper alloys 16.6–17.6

Glass 5–11

Magnesium alloys 26.1–28.8

Monel (67% Ni, 30% Cu) 14

Nickel 13

Material
Coefficient of 

thermal expansion α

10�6/°C

Plastics
Nylon 70–140
Polyethylene 140–290

Rock 5–9

Rubber 130–200

Steel 10–18
High-strength 14
Stainless 17
Structural 12

Titanium alloys 8.1–11

Tungsten 4.3

Table H-4
Coefficients of Thermal Expansion

77742_21_apph_p1051-1056.qxd:77742_21_apph_p1051-1056.qxd  2/28/12  2:43 PM  Page 1055

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



77742_21_apph_p1051-1056.qxd:77742_21_apph_p1051-1056.qxd  2/28/12  2:43 PM  Page 1056

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1.2-1 (a) , ,
, ; (b) ,
, 

1.2-2 (a)
(b)
(c)

1.2-3 (a) , ,
, ,

(b) ; (c)
, ,
, ,

1.2-4 (a)
(b) 

1.2-5 (a) , , ; 
(b) 

1.2-6 (a) 
(b) 

1.2-7 (a)
(b) 

1.2-8 (a) 
(b) 

1.2-9 (a) 
(b) 

1.2-10 (a) 
(b) 

1.2-11 (a) ; 
(b)

FAB � �8.33 P
Ay � 4.67 P, AZ � �4.0 P;

FAB � 1.601 P
Ax � �1.25 P, By � 0, Bz � �P;

Bx � �0.8 P, Bz � 2.0 P,
Oz � �1.25 P; FAC � 0.960 P

FFE � 0
Fx � 0, Fy � 12.0 kN, Dy � 6.0 kN;

FFE � 8.13 kN
Ax � 0 Ay � 4.5 kN Ey � 22.5 kN

R3x � 40 N, R3y � �25 N,
R5x � 20 N; F11 � 0, F13 � 28.3 N

Ay � 165.5 N MAz � 696.5 N # m
Dx � �83.7 N Dy � 145 N
ResultantB � 253 N

Ax � 57.7 N Ay � �66.7 N
Cy � 464.3 N Dx � 50.3 N Dy � �87.2 N;

ResultantB � 88.2 N Ax � 191.7 N,

Dy � �75.6 N;
N � 0, V � �70 N, M � �36.7 N # m

MA � 0, Cy � 236 N, Dy � �75.6 N;
N � 0, V � �70 N, M � �36.7 N # m;
MA � 0, Cy � 236 N,

Ay � 22.7 N By � �22.7 N
Cx � 220 N Cy � 0 Nx � 220 N
Vx � 22.7 N Mx � 102 N # m

T1L1 � L2/22 � 1130 N # m
T1L1/22 � �1270 N # m,
TA � 1270 N # m

FAB � 6.73 kN
Az � 0, Bx � �3.75 kN;

1.2-12 (a) ; 
(b)

1.2-13 (a) , ,
, ; 

(b) , ,

1.2-14 (a)

(b) 

1.2-15 (a) , ,
, ; 

(b) , ,

1.2-16 (a)

(b) 

1.2-17 (a) , , ;
(b) , ,

1.2-18 (a)

(b)
(c) 

1.2-19 (a) , ,
; (b) 

1.2-20 (a)

(b) 

M � 289 N # m; ResultantC � 400 N
N � �312 N, V � �57.9 N,

Cy � 192 N, Ey � �192 N;
Ax � 320 N, Ay � �240 N,

Mx � 776 N # m
Nx � 7875 N Vx � 2250 N
Ay � �5625 N Ex � 0 Ey � 7875 N

ResultantC � 23.4 kN
Ex � �8.05 kN, Ey � �22 kN;

Ax � 10.98 kN, Ay � 29.0 kN,

Mx � 95 N # m
Nx � �222 N Vx � �190 N

Cx � �285 N Cy � 570 N
Ax � 285 N Ay � 1330 N

ResultantB � 280 N
MA � �1120 N # m, Dy � 151.1 N;

Ax � 280 N, Ay � 8.89 N,

Mx � �3586 N # m
Nx � 247 N Vx � 2229 N

MA � 5932 N # m Cy � 247 N
Ax � �2405 N Ay � �247 N

T1L1 � L2/22 � �T2 � �1100 N # m
T1L1/22 � 62.5 N # m,
TA � �1225 N # m

Ax � �125 N Ay � 217 N

ResultantD � 12.68 kN
Cy � 9.83 kN, Ey � 1.333 kN;

Ax � �10 kN, Ay � �2.17 kN,

T � 310 NBx � �281 N

Answers to Problems

CHAPTER 1
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Answers to Problems

1.3-9 (a) 
(b) 

1.3-10 (a) 
(b) 

1.3-11 (a) ; (b) ; 

(c) , 

1.3-12 (a) 
(b) 

1.3-13 (a) 
(b) 

1.3-14 (a) 
(b) 

1.4-1 (b) 

1.4-2 (b) 

1.4-3

1.4-4

1.4-5

1.4-6

1.4-7

1.5-1

1.5-2

1.5-3 (a) ; (b) 

1.5-4 (a) ; (b) 

1.5-5 (a) (c) (d) 

1.6-1

1.6-2 P � 27.4 kN 1tension2

T � 1.298 kN, σ � 118 MPa;

6.5 � 103m; 23.9 � 103m
11.9 � 103m; 12.7 � 103m; 6.1 � 103m;

brittle, ductile, ductile
% reduction � 8.8, 37.6, 74.5;
% elongation � 9.0, 26.4, 38.3;

(a) Lmax � 7143 m; Lmax � 8209 m

(a) Lmax � 3377 m; Lmax � 3881 m

σ � 166 MPa
TAQ � TBQ � 50.5 kN;

σmax � γω2L2/2g
σx � γω21L2 � x22/2g;

σmax � γω 2L2/2g
σx � γω21L2 � x22/2g;

T � §
18890
28532
14755
18890

¥N σ � §
245
371
192
245

¥MPa

T � £25951
20662
31616

≥N σ � £337
268
411
≥MPa

εcable � 4.923 � 10�4

T � 819 N, σ � 74.5 MPa;

εcable � 8.4 � 10�4

P � 654 kN

32 mm; 30 mm; 328 MPa

δpset � 4.28 mm σB � 65.6 MPa

δpset � 48.6 mm σB � 220 MPa

4.0 mm longer

5.5 mm longer

reduction � 32%elongation � 6%,
σU L 852 MPa;σy L 520 MPa,

σp1 L 486 MPa, Slope L 224 GPa,

Brittleσy L 53 MPa;
σp1 L 47 MPa, Slope L 2.4 GPa,

σ � 345 MPa

1058

1.2-21 (a) Ox � �213 N, Oy � 180 N,

, ,

, ; 

(b) , ,

, 

1.2-22 (a)

(b)

1.2-23 (a)

, ; 

(b) ,

1.2-24

1.2-25 ,

, , 

1.2-26 (a) 

(b) 

1.3-1 (a) (b) 

(c)

1.3-2 (a) (b)

1.3-3 (a) 

(b)

1.3-4 (a) 

(b) 

1.3-5 (a) ; (b) ,

1.3-6 (a) (b) 

1.3-7 (a) , ; 

(b) ; (c)

, 

1.3-8 σC � 5.21 MPa

σ � 130.2 MPa; ε � 4.652 � 10�4

tBC � 12.62 mm

σ AB � 9.95 MPa; P2 � 6 kN;

V � 176.8 N, M � 44.9 kN # m

VF � 336 N; N � �646 N,

HB � �104.6 N, VB � 516 N,

By � 504 N Cx � 129.2 N Cy � 26.2 N

Ay � 253 N Bx � 195.8 N 1to the left2
Hz � 499 N

Cz � 506 N,

Dz � 466 N, Hy � 320 N,

Cx � 120 N, Cy � �160 N,

TDC � 17.13 N TEC � 30.6 N

Az � �10.39 N MAz � 21.9 N # m

Ax � 26 N, Ay � 208 N,

M � 180.7 N # m

V � 41.3 N, T � 142.5 N # m,

Dy � 120 N, Dz � 30 N; N � 120 N,

MAz � �180 N # m, Dx � �60 N,

MAx � �70 N # m, MAy � �142.5 N # m,

Ay � �120 N, Az � �60 N,

Tx � �75.9 N # m Mres � 53 N # m

Nx � �180 N Vres � 220 N

MOy � 75.9 N # m MOz � �37.8 N # m

Oz � 56.9 N MOx � 37.1 N # m

σ2 � 119.2 MPa σ3 � 141.6 MPa

d1new � 0.818 mm σ1 � 120.5 MPa,

σ1 � 245 MPa σ2 � 206 MPa

αmax � 34.4°σt � 132.7 MPa;

yC � 383 mm

xC � 383 mmσC � 12.74 MPa

δ � 0.1526 mm; (c) Pmax � 89.5 kN

εs � 3.101 � 10�4;

1V-brakes2,
848 N

σ cable � 185.7 MPa 1both2
2.12 MPa 1V-brakes2;

σ C � 1.0 MPa 1cantilever2,
RB � 400 N 1cantilever2,
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Answers to Problems

1.6-3

1.6-4 (a) (b)

(c) 

1.6-5

1.6-6 (a) (b) 

1.6-7 (a) ; (b) ;
(c)

1.6-8 (a)
(b) ,

1.7-1

1.7-2

1.7-3 (a) (b)

1.7-4 (a)
(b) 

(c) 

1.7-5 (a) 
(b) 

1.7-6

1.7-7 (a) ; 
(b) ; 
(c) 

1.7-8

1.7-9 (a) (b) 

1.7-10 (a) (b) 

1.7-11 (a) , ,
; (b) ,
, 

1.7-12 τaver � 42.9 MPa

σbrg � 231 MPa τf � 124.8 MPa
σb � 419 MPaτf � 143.5 MPa

σbrg � 265 MPaσb � 482 MPa

δ � 4.92 mmγaver � 0.50;

V � 384 kNγaver � 0.004;

τ � 5.86 MPa, σbshoe � 7.36 MPa
Ay � 1150.1 N; Aresultant � 1178 N;

Bx � �252.8 N, Ax � �Bx,

σbg � 184.2 MPa
τ � 89.1 MPa; σbf � 140 MPa,

σb � 139.86 MPa, Pult � 144.45 kN

σb � 46.9 MPa, τave � 70.9 MPa

¢Vol3 � 21,610 mm3

¢Vol2 � 21,601 mm3,
¢L3 � 3.8 mm; ¢Vol1 � 21,548 mm3

¢L1 � 12.66 mm, ¢L2 � 5.06 mm,

¢dABinner � 4.02 � 10�3 mm

νbrass � 0.34
¢tAB � 6.90 � 10�3 mm,
¢dBC inner � 0.022 mm

E � 104 GPa; v � 0.34

¢d � �4.17 � 10�3 mm, P � 10.45 kN

d3 � 65.4 mm
¢V1 � ¢V1f � Vol1 � �207 mm3;

shortening;
Af � A

A
� �0.052 %,

δ � ε L � 0.469 mmP � 74.1 kN;

P � �38.5 kN

τmax � 22.9 MPa;

G � 2.5 MPa

τnut � 21.6 MPa, τpl � 4.28 MPa
σb � 33.3 MPa
Resultant � 4882 N

σb2 � 7.48 MPaσb1 � 9.15 MPa,
τ2ave � 21.2 MPa,τ1ave � 25.9 MPa,

T2 � 10.77 kN,T1 � 13.18 kN,

σbmax � 6.75 MPa
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1.7-13 (a) ;

(b)

;

(c) ; 

(d) 

1.7-14
(a) (b) 

1.7-15 (a) (b) 

1.7-16 (a) 
(b) 
(c) (d) 
(e) 

1.7-17 (a)
; (b)

; (c) 

1.7-18 (a) 
(b) 

1.7-19 (a) ; (b)
; 

(c) 

1.8-1

1.8-2

1.8-3

1.8-4 (a) (b)
(c)

1.8-5

1.8-6 (a) 
(b) 

1.8-7

1.8-8 (a) 
(b) 

1.8-9

1.8-10

1.8-11

1.8-12 Shear in rivets in CG & CD controls: 
Pallow � 45.8 kN

Wmax � 1.382 kN

Cult � 5739 N: Pmax � 445 N

Pallow � 49.1 kN

Shear at A: Wmax � 66.5 kN
FA � 12T, FB � 2T, FC � T;

max. load � 21.6 kN

Shear: Fa � 2.86 kN
F � 1.171 kN;

Total load � 1.126 MN

Pallow � 8.69 kN 1shear controls2
Pallow � 21.2 kN,
Pallow � 8.74 kN; Pallow � 8.69 kN;

Pallow � 2.67 kN

Tmax � 33.4 kN # m

Pallow � 2.53 kN

τ � 137.8 MPa, σbc � 36.1 MPa
Cy � �1041 N, Cres � 1948 N

P � 1736 N Cx � 1647 N,

τave � 1.96 MPa; (c) σb � 1.924 MPa
Fx � 153.9 N, σ � 3.06 MPa;

σbO � 6.22 MPa τ � 2.83 MPa
Ores � 56.0 N τO � 3.96 MPa,

Ox � 55.7 N, Oy � 5.69 N,

σ3 � 75.1 MPa
σb4 � 41 MPa; τ � 10.62 MPa;
σb1 � 1.985 MPa, σb4 � 0;
τ1 � 2.95 MPa, τ4 � 0;

τ �
P

2πrh
; δ �

P
2πrhG

ln
b
d

T � 1440 N; τaver � 147 MPa
For a bicycle with L/R � 1.8:

σbB � 42.5 MPa, σbC � 28.1 MPa

τB � 27.1 MPa, τC � 13.4 MPa

Bres � 1.53 kN, Cx � �Bx

Bx � 1.349 kN, By � 0.72 kN,

Ax � 0, Ay � 765 N, MA � 520 N # m
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Answers to Problems

R1.12 D

R1.13 D

R1.14 A

R1.15 B

R1.16 C

CHAPTER 2

2.2-1 (a) 

2.2-2 (a) (b) 

2.2-3 (a) ; (b)

(c) ; 

(d) [cast iron or

copper alloy (App. H)]

2.2-4

2.2-5

2.2-6 (a) (b) 
(c) (d) 
(e)

2.2-7 (a) 

(b) ratio

2.2-8 (a) (b)
(c) 

2.2-9

2.2-10 (a) (b)
(c) (d) 

2.2-11 (a) (b) 
(c) 

2.2-12

δ � 12.5 mm; n � 5.8

δ �
6W
5k

; (b) δ �
4W
5k

δa

δs

�
Es

Ea

� 2.711
da

ds

�
C

Es

Ea

�1.646;

La

Ls

� 1.5
Ea

Es

� 0.553

δD � 0.880 mmδA � 0.200 mm,

hmin � 1.412 mm
δr � 0.912 mm;tc,min � 0.580 mm;

k3 � 0.638 kN/mb � 74.1 mm;
k1 � 0.204 kN/m;x � 134.7 mm;

Pmax � 186 N

Pmax � 106.1 kNδBx � 6.71 mm,
Pmax � 390 kN;δB � 1.827 mm;

�
15
4

� 3.75

δ4 �
26P
3k

;

δ4 �
104P
45k

,

P � 20.4 N
θinit � 1.325°;Pmax � 12.51 N;

x � 205 mm;x � 102.6 mm;

h � L � πρmaxd
2/4k

h � 13.4 mm

E1 �
Es

1.7
� 121 GPa
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1.8-13 (a) (b) 

1.8-14

1.8-15

1.8-16 (a) 
(b) 

1.9-1 (a) (b) 

1.9-2 (a) (b) 

1.9-3 (a) (b) 

1.9-4

1.9-5

1.9-6 (b) 

1.9-7

1.9-8

1.9-9

1.9-10

1.9-11

1.9-12 (a) use 
(b) 

1.9-13 (a) ,
; 

(b) new so increase rod
BC to 6 mm diameter; increase diameter of
washer at B to 34 mm

1.9-14 (a) (b) 

1.9-15

R1.1 C

R1.2 C

R1.3 D

R1.4 A

R1.5 B

R1.6 A

R1.7 A

R1.8 D

R1.9 A

R1.10 C

R1.11 D

n � 11.8, or 12 bolts

dmin � 5.96 mm

dmin � 9.50 mm

Amin � 435 mm2

dmin � 26 mm

dmin � 63.3 mm

dmin � 17.84 mm; dmin � 18.22 mm

dmin � 164.6 mm; dmin � 170.9 mm

dmin � 99.5 mm; dmin � 106.2 mm

Pallow � 9.77 kN
Pallow � σc1πd2/4211 � 1R/L22;

Pmax � 557 Pa

Pallow � 96.5 kN

Pa � σa(0.587 d2); Pa � 98.7 kN

θ � arccos 1/13 � 54.7°

Pmax � 49.4 kNdm � 24.7 mm;

σBC � 158.9 MPa
σbF � 2.72 MPa 6 σba

σDF � 65.2 MPa 6 σallow

Dmin � 297 mm
t � 20 mm;tmin � 18.8 mm,

Ac � 764 mm2

1d22min � 131 mm
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Answers to Problems

2.2-13 (a) (b) 

(c) (d) 

2.2-14 (a) 
(b) 

2.2-15 (a)
; (b)

2.3-1 (a) ; (b) 

2.3-2 (a) (b) 

2.3-3 (a) elongation; 
(b) new value of P3 is 7530 N an increase
of 1750 N; (c) 

2.3-4 (a) 

(c) 

2.3-5 (a) ; (b) ; 

(c) 

2.3-6 (a) (b) 

2.3-7 (a) ; (b) ; 

(c) 

2.3-8 (a) (b) 
(c) 

2.3-9 (a) (b) 

(c) 

2.3-10 (a) (b)
(c) 

2.3-11 (a) (b)
(c) 

(d) (e) 

δ � 0.675 mm; Pmax � 267 kN

δ � 0.838 mm dB � 29.4 mm

MA � 3.5N # m
δ � 4.89 mm, RA � 60 N, RC � 40 N,
RA � RC � 50 N θ � 54.4°,

θ � 52.7°, δ � 19.54 mm,

MA � 1.882 N # m
RA � 31.5 N, RC � 18.5 N,
RC � 25 N; θ � 43.3°, δ � 8.19 mm,

θ � 35.1°, δ � 44.6 mm, RA � 25 N,

d1

d2

� 1.225; x �
365L
236

δD �
P
16

(28f2 � 9 f1);
L1

L2

�
27
16

AAB � 491 mm2

δ � 0.296 mm

β � 1/11δ2 � 2PL/3EA;
x � L/3;N2 � P/2 1tension2;

N1 � 3P/2 1tension2,R1 � �3P/2;

L2 � 9.16 mm
Pmax � 8.15 kN;δ2-4 � 0.024 mm;

δ �
PL
EA
a2
3
b, σ1y2 �

P
A
cy
L
a2 �

y

L
bd

δ �
PL

2EA
; σ1y2 �

P
A
1 y

L
2;

x � 183.3 mm
b � 4.16 mm;dmax � 23.9 mm;

δc

δa

� 0.654
δc

δb

� 0.84

δb � 2.41 mmδa � 3.1 mm

P0 � 44.2 kNδAC � 3.72 mm;

Lslot � 299 mm

δ � 0.53 mmδ �
7LP
6Ebt

Lslot � 244 mm

δ �
7PL
6Ebt

; (b) δ � 0.5 mm;
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2.3-12 (a) 
(b) (c) 

(d) 

2.3-13 (b) 

2.3-14

2.3-15

2.3-16 (a) (b) 

2.3-17

2.3-18

2.4-1 (a) (b) 

2.4-2 (a) (b) 

2.4-3 (a) (b) 
(c)

2.4-4 (a) If
. If

(b) If
If

(c) or 
(d) 

2.4-5 (a) (b)

2.4-6 (a) (b) 
(c) 

2.4-7 (a) 

(b) 

(c) ;

d) 

2.4-8 (a)

(b) 

2.4-9 (b)

δc � W1L2 � h22/2EAL;

P � 104 kN; Pmax � 116 kN

P � 9.24 kN; Pallow � 7.07 kN

δ � L2ω2/3gEA � (W1 � 3W2)

(b) δ � 3.55 m

δ � 2.18 mm; δ � 6.74 mm

δ � 2WL/πd2E

δ � 2PH/3Eb2

δ � 0.304 mm

δ �
WL
2EA

� 412 mm1in air2
δ �

WL
2EA

� 359 mm 1in sea water2;
δB � WL/2EA; β � 3;

PB /P � 3/11; σB/σA � 1/2;

RB � �P12x � 3L2/121x � 3L22
x … L/2, RA � 1�3PL2/121x � 3L22,

Ratio � 1

σs � 60.6 MPa 1tension2
σa � 10.6 MPa 1compression2,
FBC � 15.0 kN 1compression2

RD � 2.0 kN (to the right);
RA � 10.5 kN 1to the left2,

Pmax � 53 kN

δA � δE � 0δmax

5LP
6EA

1to the right2,
δD �

5LP
6EA

;δC �
LP

6EA
,δB � �

LP
6EA

,

RE � �5P/3;RA � 2P/3,

δ � 2.74 mm
δ � 1.36 mm;δ � 1.91 mm;

σO � 383 MPa
σM � 238 MPa,41.2%;

RB � ρgπd2L/8, RA � 3ρgπd2L/32
x � 3L/10 x � 2L/3;

δ � 8PL1x �L2/[31x � 3L2Eπd2];x Ú L/2,
δ � PL12x � 3L2/[1x � 3L2Eπd2].

x … L/2,RB � 1�2PL2/1x � 3L2;
RA � 1�P1x � L22/1x � 3L2,x Ú L/2,
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Answers to Problems

2.5-11 (a) 
(b) (c) 

2.5-12 (a) (b) 

2.5-13 (a) (b)
(c) 

2.5-14

2.5-15 (a)
; (b)

; 
(c) for P2,

; (d)
; (e)

2.5-16 (a)

(b)

2.5-17

2.5-18

2.5-19 (a) ; 
(b) 

2.5-20

2.5-21

2.5-22 (a) 
(b) (c) 

2.5-23 (a) (b) 
(c) (d) 

2.5-24

2.5-25 (a) (b) 
(c) (d) 

2.6-1

2.6-2

2.6-3

2.6-4 (a) (b) 

2.6-5 (a) 
(b) ; (c) 

2.6-6 (a) (b) 
(c) On rotated x face:

δB � α¢T1L12 � RA1L1/EA12,
RD � �RA;� 1L2/EA22 � 1L/k32],

RA � [�s � α¢T1L1 � L22]/[1L1/EA12
RB � 249 kN
RA � 0, RB � 0 RA � �249 kN,

¢T � 35°C,τmax � 133.33 MPa
τmax � 93.8 MPa;For P1,

RB � 249 kNRA � �249 kN,
P2 � 656 kN,RB � 249 kN
RA � �249 kN,P1 � 1027 kN,

s � PL/6EA

σ � �17.33 MPa
Fk � 12.99 kN (C);σ � �6.62 MPa;

T � 35°Cσ � 98 MPa;

177°CTB � 383 N;TA � 2008 N,
TB � 880 N;TA � 1760 N,

TC � 4623 NTB � 2541 N,

� RA[1L1/EA12 � L2/EA2]
δC � α¢T1L1 � L22

Pallow � 1.8 MN

σx1 � 42 MPa,
τmax � 42 MPa;σx � 84 MPa;

¢T � �42.7°C¢Tmax � �17.38°C
τmax � 84.7 MPa;

¢T � �9.93°C¢Tmax � �46°C;

Pmax � 52 kN

dmin � 6.81 mm

Pmax � 312 kN

¢T � �76.8°CLf � 304.8 mm;
Ft � �727 N;Fk � 727 N;

σc � 10 MPa 1compression2
σa � 500 MPa 1tension2,

¢T � 76.9°CLf � 305.2 mm;
Ft � �727 N;Fk � 727 N;

Sreqd � 25.7 mm; δfinal � 0.35 mm
Ps � �PB;PB � 25.4 kN,

σp � 15.0 MPa

σp � 25.0 MPa

τc � 1.328 MPaσb � 11.63 MPa,
σr � 17.53 MPaσp � �1.231 MPa,
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2.4-10 (a)

(b) Axial Force Diagram:
if 

if Axial Displacement Diagram: 

if 

if (c) 

2.4-11 (a) 
(b) 
(c) 

2.4-12 (a) (b) 
(c) 

2.4-13

2.4-14 (a)

(b) 

2.4-15 (a) 
(b) 

2.4-16

2.4-17

2.5-1

2.5-2

2.5-3

2.5-4 (a) 
(b) Washer:

(c) 

2.5-5 (a) 
(b) 

2.5-6 (a)
(b)

2.5-7

2.5-8

2.5-9

2.5-10

P � 13.73 kN, R1 � 9.07 kN,

d2 � 9.28 mm, L2 � 1.10 m

Pallow � 703 N
Pallow � 1504 N; Pallow � 820 N;

σ1/σ2 � E1/E2

e � b1E2 � E12/[21E2 � E12];
P1 � PE1/1E1 � E22;

x 7 L2; q � 1.522 kN/m

δ1x2 � c�R2L2

EA2

�
R1

EA1

1x � L22 d

δ1x2 � c�R2

EA2

1x2 d x … L2,

x 7 L2;
N1x2 � �R2 x … L2, N1x2 � R1

δcap � 190.9 mm,
R2 � 4.66 kN, σ2 � 7 MPa;

By � 256 kN;
Pmax � 233 kN

Bx � �329 kN,
Ay � �71.4 kN,Ax � �41.2 kN,

σc � 50.0 MPa, σD � 60.0 MPa;

Pallow � 39.5 kN

τ � 67.7 MPa

¢T � 34°C

δ � 5 mm

δC � �0.546 mmmax. σc � 15.91 MPa,
N � 31.2 kN,δC � �0.314 mm;

max.σc � 26.4 MPa,N � 51.8 kN,

σc � Eα1¢TB2/[41EA/kL � 12]
σc � Eα1¢TB2/4;

db � 10.68 mmσbw � 74.1 MPa;
Clevis: σbc � 42.4 MPa,

σrod � 57.6 MPa;¢T � 24°C,

¢T � 90°C

T � 40.3°C

σ � 100.8 MPa

σc � 33.6 MPa
σb � 28.0 MPa,σs � 58.9 MPa,

Pmax � 1800 N

δB � 0.320 mm
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Answers to Problems

On rotated y face:
(d) On rotated x face:

On rotated y face: 

2.6-7 (a) (b) 

2.6-8 (a) Element A: (compres-
sion), Element B: 
(b) 

2.6-9 (a)

; 

(b) 

2.6-10 (a)

(b) 

2.6-11 (a) (b) 

(c) 

2.6-12 (a) (b) 
(compression), 30 MPa (CCW); 
(c) 

2.6-13

2.6-14 (a) 
(b) (c) 

2.6-15 (a) 
(b) 

2.6-16

2.6-17

2.6-18 (a) (b) 

2.6-19 (a) , ; 
(b) , ; 

(c) ; (d) ; 

(e) 

Pmax � 159.3 kN

τmaxBC �
σBC

2
� �66.3 MPa

τmaxAB �
σAB

2
� 52.3 MPa

τmaxAC �
σAC

2
� 13.1 MPa

σx � 105 MPa

θ � 33.1°
τmax � 52.5 MPa;

τmax � 8.4 MPaσmax � 16.8 MPa;

σy1 � 12.3 MPa
τx1y1 � �29.7 MPaσx1 � 71.7 MPa,

σy1 � 42 MPa,
τx1y1 � 42 MPa;

112σx � �945 kPa; 122σθ � �807 kPa,

τmax � �189 kPa
τmax � �472 kPa; σmax � �378 kPa,

σmax � �945 kPa,
132σθ � �472 kPa,

τθ � 472 kPa,
τθ � 334 kPa;

¢Tmax � 53.7°C

Lmax � 0.755 mkmax � 3962
kN
m

σy1 � �0.869 MPaσx1 � �5.3 MPa
θ � 22°τθ � 2.15 MPa

Pmax � 1.53 kNθ � 30.96°;

σmax � 64.4 MPa, τmax � 34.7 MPa

τθ � 31.7 MPa
σθ1 � 54.9 MPa, σθ 2 � 18.3 MPa,

τmax � 40 MPaσmax � 80 MPa,
θ � 30°, τθ � �34.6 MPa;

α � 26.6°α � 33.3°;
τθ � �1.58 MPa;σθ � 0.57 MPa,

dmin � 32.4 mmNAC � 34.6 kN;

τpq �

β � 0.62

¢Tmax � 31.3°C; σpq � �21.0 MPa

Pmax � 127.7 kN
σ1pq � π/22 � �2.7 MPa;

τpq � 4.85 MPa; σpq � �8.7 MPa,
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2.7-1 (a) (b) 

2.7-2 (a) (b) 

2.7-3

2.7-4 (c) 

2.7-5 Aluminum: 826 kPa, 31 m

2.7-6 (a) (b) 

2.7-7 (a) ; (b) ; 
(c) 

2.7-8 (a) (b) 
(c) 

2.7-9 (a) ln 

(b) ln 

2.7-10 (a) (b) 
(c) 

2.7-11 (a) 
(b) 

2.7-12 (a) (b) 

2.8-1 (a) (b)
(c) Impact factor

2.8-2 (a) (b)
(c) Impact factor

2.8-3 (a) (b)
(c) 

2.8-4 (a) 

2.8-5 (a) 

2.8-6

2.8-7

2.8-8

2.8-9

2.8-10

2.8-11

2.8-12

2.8-13 (a)
(b) 

2.8-14

U � 1.036 JU � 5P2L/4πEd2;

U � 14.02 N # mU � 23P2L/12EA;

b2

b1

δ �
PL

Et1b2 � b12

b2

b1

;U �
P2L

2Et1b2 � b12

F3 � W/10F2 � 3W/20,F1 � 3W/10,
δ � W/10k;U � 5kδ2;

U3 � 0.264 J
U2 � 0.305 JU1 � 0.00422 J

δB � 2PL/EAU � P2L/EA;

U � P2L/2EA � PQL/2EA � Q2L/4EA

U � 788 J

P1 � 270 kN; δ � 1.321 mm;

δC � 168.8 mmU � 6.55 J;

U1 � 12k1 � k22s2
P � 21k1 � k22s;x � 2s,

U � 243 J

δmax � 0.869 mm; σmax � 152.1 MPa;

σmax � 33.3 MPa

10
Impact factor � 1 � 11 � 2EA/W21/2;

L � 25.5 m

δmax � 200 mm

Vmax � 5.40 m/s

Lmin � 4.59 m

Lmin � 9.25 m

hmax � 0.27 m

v � 13.1 m/s

δmax � 270 mm; 1b2Impact factor � 4.2

δmax � 270 mm; 1b2Impact factor � 3.9

Impact factor � 133
σmax � 177.7 MPa;δmax � 0.762 mm;

� 160
σmax � 359 MPa;δmax � 6.33 mm;

� 117

77742_22_ans_p1057-1090.qxd:77742_22_ans_p1057-1090.qxd  3/2/12  1:48 PM  Page 1063

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Answers to Problems

R2.1 D

R2.2 B

R2.3 A

R2.4 A

R2.5 D

R2.6 A

R2.7 B

R2.8 C

R2.9 A

R2.10 D

R2.11 D

R2.12 C

R2.13 A

R2.14 C

R2.15 D

R2.16 C

CHAPTER 3

3.2-1 (a) (b) 

3.2-2 (a) (b) 

3.2-3 (a) (b) 

3.2-4 (a) 
(b) 

3.2-5 (a) 
(b) 

3.3-1 (a) (b) 

3.3-2 (a) 
(b) (c) 

3.3-3 (a) (b) 

3.3-4 (a) (b)

(c) 

(d) 

3.3-5 (a) Lmin � 838 mm (b) Lmin � 982 mm

d2 � 32.5 mm

kT hollow

kTsolid

� 0.938,
τmaxH
τmaxS

� 1.067;

γmax � 997 � 10�6 radians;
kT � 2059 N # m; τmax � 27.9 MPa,

τmax � 133 MPa; φ � 3.65°

Tmax � 0.402 N # m; θ � 9.12°/m
τmax � 23.8 MPa;

τmax � 60.4 MPa dmin � 15.87 mm

r2max � 65.1 mm
γ1 � 1.967 � 10�4 radians

r2,max � 50.9 mm
γ1 � 393 � 10�6 rad;

γ1 � 2.67 � 10�4 r2min � 183.3 mm

Lmin � 162.9 mm; dmax � 68.8 mm

dmax � 10.54 mm Lmin � 545 mm

1064

2.10-1 (a) 
(b) 

2.10-2 (a) 
(b) 

2.10-3

2.10-4

2.10-5

2.10-6 (a) No, it makes it weaker:
(b) 

2.10-7

2.11-1

2.11-2 (a) (b) 
(c) 

2.11-3

2.11-4

2.11-5 For 
for 

2.11-6 For for

2.12-1

2.12-2

2.12-3 (a) 

2.12-4

2.12-5

2.12-6

2.12-7 (a) (b) no change

2.12-8 (a) 
(b) 

2.12-9 (a) 
(b) 

2.12-10 (a) 
(b) 

2.12-11 (a) 
(b) 

σmax L 45 and 50 MPa;

PP � 456 kN, δP � 0.7.5 mm
PY � 300 kN, δY � 0.475 mm

WP � 48 kN, δP � 225 mm
WY � 28.8 kN, δY � 125 mm;

PP � 5σYA/4, δP � 2σYL/E
PY � σYA, δY � σYL/E;

PP � 4σYA/3, δP � 3σYL/E;
PY � σYA, δY � 3σYL/2E;

PP � 102 kN;

PP � 82.5 kN

PP � 220 kN

PP � 2σYA11 � sin α2
PP � 5σYA

PP � 201 kN

PY � PP � 2σYA sinθ

P � 4.8 kN: δB � 17.3 mm
P � 3.2 kN; δB � 4.85 mm;

P � 180 kN, δ � 17.5 mm
P � 106 kN, δ � 4.5 mm;

δ � 6.2 mm; for P � 40 kN: δ � 12.0 mm
For P � 30 kN;

σmax L 25 MPa and 22 MPa
σmax L 26 MPa and 29 MPa;

σmax L 76 and 61 MPa

(b) P � 79.9 kN

δC � 11.88 mm
δC � 5.13 mm;δC � 1.67 mm;

δ �
γL2

2E
�

σ0αL

1m � 12E a
γL
σ0
bm

dmax � 13 mm

d0 L 15.1 mmP2 L 14.4 kN;
P1 � 25.1 kN,

σmax L 41.9 MPa

σmax L 46 MPa

Pmax � σ1bt/3
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Answers to Problems

3.3-6

3.3-7 (a)
; (b) 

3.3-8 (a) 
(b) 

3.3-9

3.3-10 (a) 
(b) increase in diameter)

3.3-11 (a) (b) 
(c) 

3.3-12 (a) (b) 
(c) 

3.3-13 (a) dmin � 100 mm; (b) 
(c) 

3.3-14 (a) (b) 

(c) 

3.3-15 (a) 
(b) (c) torque:
weight: 

3.3-16 (a) (b) 
(c) Ratio

3.3-17 (a) ; (b) 

3.4-1 (a) (b) 

3.4-2 (a) 

(b) 

3.4-3 (a) ; 
(b) , , 

3.4-4

3.4-5

3.4-6 (a) (b) 

3.4-7 (a) (b) 

3.4-8 (b) 

3.4-9

3.4-10 Minimum 

3.4-11 (a) (b)
(c) x (d) 

3.4-12 φ � 3TL/2π Gtd3
A

φ2 � 112/1721TL/GIp2
T2 � 0.5 T;

� 7L/17;
R1 � �3T/2; T1 � 1.5T,

dCD � 39.5 mm, φD � 2.6°
dBC � 60 mm

dB � 48.6 mm

dA � 63.7 mm

dB /dA � 1.45

d � 44.4 mm; d � 51.5 mm

d � 77.5 mm; d � 71.5 mm

d1 � 20.7 mm

Tallow � 439 N # m

τmax � τBC � 66 MPa, φD � 2.44°
dAB � 76.5 mm

φA � 9.43°

τbar � 79.6 MPa, τtube � 32.3 MPa;

τmax � 50.3 MPa; φC � 0.14°

r2 � 35.2 mm Pmax � 6486 N

� 0.524
φ � 5.19°; d � 88.4 mm;

25%
T1,max � 398 N # m; 6.25%,
T1,max � 424 N # m;

Tmax � 6.03 N # m, φ � 2.20°

γmax � 2.094 � 10�3 Tmax � 548 N # m
τmax � 46 MPa G � 22 GPa

Tmax � 9164 N # m;
Tmax � 7765 N # m

τmax � 54.0 MPa

dmin � 63.3 mm;
dmin�66 mm14.2%

τ2 � 25.7 MPa; τ1 � 18.4 MPa;
θ � 3.67 � 10�3 rad/m � 0.21°/m

θ � 0.306°/m
τ2 � 30.1 MPa; τ1 � 20.1 MPa;

dmin � 88.9 mm
kT � 648

kN # m
rad

;

k1�134.9 kN # m/rad;

dmin � 50 mm

dmin� 64.4 mm;
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3.4-13 (a) (b) 

3.4-14 (a) (b) 

3.4-15

3.4-16 (a) (b) 

3.4-17 (b) 

3.4-18 (a) 

(b) 

(c) 

φ � 2.48°; φ � 1.962°

L
2

… x … L; φc �
T0L

144GIP

;

TBC(x) � � c ax � L
L
b2

#
T0

3
d

TAB1x2 � aT0

6
�

x2

L2 T0b0 … x …

L
2

,

RA �
T0

6
;

τmax � 8tAL/π d3; φ � 16tAL2/3π Gd4

τmax � 16tL/π d3; φ � 16tL2/π Gd4

φD � 0.133°

�
L3

t03d03
3 d

�
L

L2

0

L2
4

1d01L2� d01x � d03x231t01L2� t01x � t03x2 dx

φD �
4Fd
π G
c L1

t01d01
3

R1 �
�T
2

; φ3 �
19
8

#
TL

π Gtd3

(d) 

3.4-19 (a) (b) 

3.4-20 (a) (b) 

3.5-1 (a) (b) 

3.5-2 (a) 
(b) (c) 

3.5-3 (a) (b)

3.5-4

3.5-5

3.5-6 (a) (b) 

3.5-7 (a) ; (b) 

3.5-8 (a) (b) 

3.5-9 (a) 
(b) 

3.5-10 (a) 
(b) 

σmax L 45 and 50 MPa;
γmax � 884 � 10�6 rad
τmax � 23.9 MPa;

γmax � 453 � 10�6 radians
τmax � 36.7 MPa;

d2 � 79.3 mm; d2 � 80.5 mm

d1 � 14.39 mm d1max � 16.25 mm

dmin � 37.7 mm; Tmax � 431 N # m

T � 234 N # m

G � 30.0 GPa

γmax � 1670 � 10�6 radians
d1 � 60.0 mm; φ � 2.30°,

σmax � 51.2 MPa; T � 20.0 kN # m
εmax � 320 � 10�6;

σmax � 48 MPa; T � 8836 N # m

Tmax � 875 N # m; τmax � 25.3 MPa

Lmax � 4.42 m; φ � 170°

τmax �
8

3π
#

T0

d3
AB
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Answers to Problems

3.8-13 (a) ; (b) 

3.8-14 (a) 
(b) 
(c) 
(d) 

3.8-15 (a) 
(b) 

3.8-16 (a) 
(b) (c)
(d) (shear in flange 

plate bolts controls); (e) 

with 

(f) 

3.9-1 (a) (b) 

3.9-2 (a) (b) 

3.9-3

3.9-4

3.9-5 (c)

3.9-6

3.9-7

3.9-8

3.9-9 (a) 

(b) 

3.9-10

3.9-11

3.11-1 (a) (b) 

3.11-2

3.11-3 (a) (b) 

3.11-4 (a) (b) τ � 9.17 MPa; φ � 0.140°

τ � 15.0 MPa; φ � 0.578°

tmin � π d/64

τapprox � 42.7 MPa; τexact � 47 MPa

τmax �
n

15d B

2π GJm

L

φ �
2n

15d2 B

2π ImL

G
;

U �
β 2GIPAIPB

2L1IPA � IPB2

w �
2TL1dA � dB2

π Gtd2
Ad2

B

U �
T2L1dA � dB2

π Gtd2
Ad2

B

;

Tmax � 1041 N # m d2 � 53.3 mm

U � 1.84 J

U � 15.2 J

U � 5.36 J; φ � 1.53°

U � 41.9 J; φ � 1.29°

fT2 �
L2

G2Ip2

; βmax � 29.1°

R1 � �R2, fT1 �
L1

G1Ip1

,

R2 �
β

fT1 � fT2

,

Tmax � 2.48 kN # m
Tmax � 2.79 kN # m; φmax � 7.51°;
R1 � �0.77 T, R2 � �0.23T;

TA � 983 N # m, TB � 3517 N # m
TA � 1720 N # m, TB � 2780 N # m

Tmax � 6.35 kN # m;
T3,allow � 7.14 kN # m;
T2,allow � 6.35 kN # m;
T1,allow � 7.14 kN # m;

U3 � T2L/2GIP � TtL2/2GIP

U � t2
0L

3/40GIP

φ � T0LALB/[G1LBIPA � LAIPB2]
U � 19T2

0L/32GIP

� t2L3/6GIP
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3.5-11 (a) , 
; (b) ;

(c) ; 
(d) ,

, ,

3.7-1 (a) (b) 

3.7-2 (a) 

3.7-3 (a) 20.2 MW; (b) Shear stress is halved

3.7-4 (a) (b) 

3.7-5

3.7-6

3.7-7 Minimum 

3.7-8

3.7-9

3.7-10

3.8-1 (a) (b) ϕ

3.8-2 (a) (b) 

3.8-3

3.8-4

3.8-5 (a) ; 
(b) 

3.8-6 (a) 
(b) 

3.8-7 (a) 
(b) 

3.8-8 (a) 

(b) 

3.8-9 (a) ; (b) � �1.031° 
at x � 767 mm

3.8-10 (a) 
(b) (c) 

3.8-11 (a) 
(b) (c) 

3.8-12 (a) (b) 

T1allow � 1.928 kN # m

φmax

Tmax � 1.521 kN # m; d2 � 56.9 mm

d3new � 65.9 mm
T2allow � 1.536 kN # m Lmid � 597 mm

Pallow � 2710 N

φmax � 2bτallow/Gd

x � L/4; φmax � T0L/8GIP

φmax � 3T0L/5GIP; max �
9LT0

25GIP

d � 53.4 mm

d � 69.1 mm

Pmax � 91.0 kW

d1 � 1.221d

dmin � 110 mm

d � 90.3 mm

τmax � 16.8 MPa; Pmax � 267 kW

τmax � 50.0 MPa; (b) dmin � 32.3 mm

τmax � 36.5 MPa; d � 81.9 mm

φmax2 � 1.29°
Tmax2 � 1.498 kN # m φmax1 � 1.492°

Tmax1 � 1.881 kN # m

kT � 238 kN # mφ � 0.48°;
τ1 � 25.4 MPa;τ2 � 38.1 MPa,

kT � 22.3 kN # mφ � 1.030°;
τ2 � 49.0 MPa;τ1 � 32.7 MPa,

x � 767 mm

� �
13L2t0

27GIP

φmax � φa L
13
b

TB �
Lt0

3
,TA �

Lt0

6
,

a/L � d 4
A /1d 4

A � d 4
B2

a/L � dA/1dA � dB2;

T0max � 436 N # m
T0max � 419 N # m

T0,max � 140 N # m
T0,max � 150 N # m;
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Answers to Problems

3.11-5

3.11-6

3.11-7

3.11-8

3.11-9 (a) 

3.11-10

3.11-11

3.11-12 (a) (b) 

3.12-1

3.12-2

3.12-3 For 

3.12-4 lower limit

3.12-5

R3.1 D

R3.2 A

R3.3 C

R3.4 A

R3.5 D

R3.6 D

R3.7 B

R3.8 B

R3.9 C

R3.10 B

R3.11 D

R3.12 B

R3.13 B

R3.14 D

R3.15 B

CHAPTER 4

4.3-1

4.3-2

4.3-3

4.3-4 V � 7.0 kN, M � �9.5 kN # m

V � 0, M � 0

V � �0.938 kN, M � 4.12 kN # m

D1 L 33.5 mm

D2 L 115 mm;

D1 � 18 mm, τmax L 121.5 MPa

Rmin L 4.0 mm

Tmax L 1770 N # m

t � 6.66 mm; t � 7.02 mm

tmin � 4.57 mm

τ � 2T11 � β 22/tL2
mβ

φ1/φ2 � 1 � 1/4β 2

τ � T13/9b2t, θ � 2T/9Gb3t

τ � 46.7 MPa, θ � 0.543°/m

τ � 35.0 MPa, φ � 0.570°

U1/U2 � 2

M � 5.6 kN # mV � 1.4 kN,
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4.3-5 (a) 
(b) (upward)

4.3-6 (a) 
(b) (c) (acts to
right)

4.3-7

4.3-8

4.3-9

4.3-10

4.3-11 (a) (b) 

4.3-12

4.3-13 (a) 
(b) 

4.3-14 (a) (compression),

(b) (compression),
(at moment release)

4.3-15

4.5-1

4.5-2

4.5-3

4.5-4

4.5-5

4.5-6

4.5-7 (a) (on AB),

(just right of B);

(b) (tension on AB),

(just right of B);

4.5-8 (a) (b)
(CCW); 

4.5-9 Vmax � qL/2, Mmax � 5qL2/72

Vmax � 2P, Mmax � 2Pa
Vmax � P, Mmax � �Pa; M � 3Pa

Mmax �
�P
5
a3L

4
b � �

3LP
20

P � 4.17 kNP � 37.5 kN;

M � 15.45 kN # mV � �6.04 kN,

M � Pγ sin θV � P cos θ,N � P sin θ,

M � 108 N # m

b/L � 1/2

P1 � �8 kNP2 � 4 kN;
M � �7 kN # m;V � �1.0 kN,

q � 5.37 kN/m
M � 21.8 kN # m;V � �786 N,

M � 75 kN # mV � � 4.17 kN,

Mm � 30 kN # mVm � 0,
MB � 12 kN # m;VB � 24 kN,

V � 7.2 kN, M � 50.4 kN # m;
N � 21.6 kN

Nmax � P Vmax �
P
5

,

Mmax � RCa3L
4
b �

3LP
8

Vmax �
P
2

Vmax � 2M1/L, Mmax � 7M1/3

Vmax � �2P/3, Mmax � PL/9

Vmax � P, Mmax � PL/4

Vmax � qL/2, Mmax � �3qL2/8

Vmax � M0/L, Mmax � M0a/L

Vmax � P, Mmax � Pa

M max � 229wL3α/75g
Vmax � 91wL2α/30g,

V � � 5.4 kN, M � 0
N � 21.6 kN
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Answers to Problems

4.5-31 (a)

; 

(b)

4.5-32

4.5-33 at
at 

4.5-34

4.5-35 (clockwise),

(leftward), (downward),

(upward),

(upward),

at B

4.5-36 (a) 
(b) 

4.5-37 (a) (rightward), 
(upward), (leftward),

; (b) 

4.5-38 (a) (leftward),
(upward), 

(leftward), (downward),

(b) (rightward),

(upward); (rightward),
(downward),

, 

4.5-39 (a)
(upward),

Vmax � �RB � �
Lq0

2
,

RCy � q0L/3; Nmax � �q0L/6,
MA � 0, RAx � 0, RAy � q0L/6

Nmax � 5 q0L/3 Vmax � 5 q0L/3, Mmax q0L
2

Dy � �5 q0L/3 MD � 0,
Dx � q0L/2

By � �q0L/2 � 5q0L/3 � 7q0L/6
Mmax � q0L

2; Bx � q0L/2

Vmax � �w0L/3, Mmax � �w0L
2/12

Mneg � �800 N # m x � 6.0 m
Mmax � Mpos � 1200 N # m x � 3.0 m

Mmax � 10 kN # m

Mmax � �MA �
4L2q0

15

Vmax � �RB � �
2Lq0

3
,

Mmax � �MA �
L2q0

6

Mmax � �w0L
2/24

Vmax � w0L/4,

Dy � w0L/6Cy � w0L/12

Ay � �3 w0L/20

Ax � �3 w0L/10MA �
w0

30
L2

Vmax � 17 q0L/18,MD � 0, Nmax � q0L
2,

Dy � �4 q0L/9
Dx � �q0L/2Ay � 17 q0L/18

Ax � �q0L/2

Nmax � �959 N,
Bx � �233 N

Ay � 936 N

Mmax � 373 N # m
Nmax � 600 N, Vmax � �219 N,

By � 638 N,Bx � 0,Ay � 298 N,
Ax � 0,Mmax � 373 N # m

Vmax � �219 N,

Ax � 233 N

Mmax � 78.4 kN # mx � 4.0 m,
Vmax � 28 kN;x � 9.6 m,
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4.5-10 (a) 

(b) (at B)

4.5-11

4.5-12

4.5-13

4.5-14

4.5-15

4.5-16

4.5-17 The first case has the larger maximum

moment: 

4.5-18 The third case has the larger maximum

moment: 

4.5-19

4.5-20

4.5-21 Two cases have the same maximum
moment: (PL).

4.5-22

4.5-23 (a) 
(b) 

4.5-24 (clockwise),

P (upward), P (upward),

4.5-25 (a)
(b) (upward)

4.5-26

4.5-27 (a) ;
(b) ; 
(c) largest 

4.5-28

4.5-29

4.5-30

Vmax � �q0L/2, Mmax � �q0L
2/6;

Vmax � 2.5 kN, Mmax � 5.0 kN # m

Mmax � 0.02145 qL2
a � 0.5858 L, Vmax � 0.2929 qL,

Vmax � �2.8 kN, Mmax � 1.450 kN # m

a � 0.940 m, Mmax � 1166 N # m
a � 1.403 m, Mmax � 1115 N # m
Vmax � �1880 N, Mmax � 1014 N # m

Mmax � �11.33 kN # mVmax � 4.5 kN,

Mmax � �13 kN # mVmax � 4 kN,

Mmax � 960 N # mVmax � 1200 N,

Mmax � 321 N # mVmax � �904 N,

Mmax � �
4L2q0

15
Vmax � �

2Lq0

3
,

Vmax � �7.81 kN, Mmax � �5.62 kN # m

Vmax � 15.34 kN, Mmax � 9.80 kN # m

a6
5

PLb

Vmax � 4.6 kN, Mmax � �6.24 kN # m

P � 54 kN
Vmax � �62.0 kN, Mmax � 64.1 kN # m;

Vmax � P/12, Mmax � PL

Ay � 0,

Cy �
1
12

Dy �
1
6

MAz � �PL Ax � 0,

Vmax� �6.49 kN, Mmax� �11.68 kN # m
Vmax � �3.70 kN, Mmax � 6.67 kN # m;

Vmax � 33.0 kN, Mmax � �61.2 kN # m

Vmax � �10.0 kN, Mmax � 16.0 kN # m

Vmax � 4000 N, Mmax � �4000 N # m

a6
5

PLb
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Answers to Problems

(b)
(upward), 

(c) (in
 column), (in beam),

(in column),
(in beam)

4.5-40
(downward),
(leftward), (upward),

R4.1 D

R4.2 C

R4.3 D

R4.4 A

R4.5 A

R4.6 C

R4.7 B

CHAPTER 5

5.4-1 (a) ; (b) ;
(c) 

5.4-2 (a) (b) 

5.4-3 (a) ; 
(b) ; (c) 

5.4-4 (a)

(c) 

5.4-5 (a) ; (b) ; 
(c) ; (d) 

5.4-6 (a) (b) 

5.5-1 (a) ; (b) ; 
(c) 

5.5-2 (a) (b) ; 
(c) 

MA � 0,

Mmax � 756 kN # m
Nmax � �62.1 kN, Vmax � 63.0 kN,

Dy � 62.1 kN
Dx � �63.0 kNMd � 0,

Ay � �18.41 kNAx � 0,

Mmax � 0.06415 q0L
2

Mmax � �(16 /15)q0L
2

Vmax � �q0L/3
Vmax � 4 q0L/3Nmax � �q0L/6,

RAy � q0L/6 RCy � q0L/3;
RAx � �4 q0L/3,MA � (16 /15)q0L

2,
Mmax � 0.06415 q0L

2;Vmax � �q0L/3,

Lmin � 15.45 mdmax � 124.3 mm
εmax � 5.89 � 10�3

dmax � 4.38 mmLmin � 5.24 m;

dmax � 5.93 mm
Rmin � 243 mmεmax � 8.88 � 10�4

(b) hmax � 136 mm;

δ � 23.5 mm;

�25%
σmax � 250 MPa; �19.98%

Lnew � 3.07 m
σmax � 361 MPa 33.3%

ε � 4.57 � 10�4; Lmax � 2 m

δ � 18.27 mm Lmax � 936 mm
ε � 8.4 � 10�4 tmax � 6.7 mm

δ � 75.3 mm

ρ � 85 m, κ � 0.0118
1
m

,
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5.5-3 (a) ; (b) ; 
(c) 

5.5-4 (a) (b) 

5.5-5

5.5-6

5.5-7

5.5-8

5.5-9

5.5-10

5.5-11 (a) ; (b)
; (c)

5.5-12

5.5-13 (a) 
(b) 
(c) 

5.5-14

5.5-15 (a) ; (b) ;
(c) 

5.5-16 (a) 

(b)

5.5-17 (a) , ; 
(b) ; (c) 

5.5-18
(b)

(c)

5.5-19 (a) , ; 
(b) 

5.5-20

5.5-21 (a) , ; 

(b) ; (c) ,

σmax � 186.2 MPa �10%

σmax � 203 MPa

σmax � 122.3 MPa

σmax � 8.63 MPa; σmax � 6.49 MPa

�55.8%

σmax � 34 MPa

σmax � 101 MPa

d � 2.54 m
Lreqd � 6.1 mσmax � 147.4 MPa

σmax � 10.965 M/d3

σt � 85.24 M/d3

σt � 360 M/173bh22;
σt � 30.93 M/d3;

σmax � 2.10 MPa

σmax � 10.98 MPa
s � 0 or L,σmin � 1884 kPa

s � 0.58579 L,σmax � 5264 kPa

σmax � 7.0 MPa

σmax � 70.6 MPa

Pmax � 893 N 1.34 m
σc � 105.8 MPa σt � 28.8 MPa

σc � 64.1 MPa

σt � 37.1 MPa,dmax �
L
2

,

σc � 61 MPa;σt � 35.4 MPa,

P � 3.9 kN

q � 1.867
kN
m

h � 82.8 mm

σc � 99.6 MPaσt � 132.8 MPa

σmax � 3 pL2a0/t

a � 4.24 m
σc � 180 MPaσt � 101.3 MPa

σt � 0.757 MPa(�50%)
σc � 0.728 MPa (�50%),

σt � 1.381 MPa(�9%);
σc � 1.666 MPa (�14%),

σc � 1.514 MPa;(a) σc � 1.456 MPa,
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Answers to Problems

5.6-23 Increase when 
decrease when 

5.7-1 (a) 
(b)

5.7-2 (a)
(b)

5.7-3 (a)
; (b)

5.7-4 (a) (b) 
(c) (d) 
(e) σmax � 214 MPa

σmax � 231 MPa;x � 0.625 m;
σB � 221 MPa;σA � 210 MPa;

σmax/σm � 1.220

x � 182 mm, σmax � 8.94 MPa,
σmax/σB � 1.047 x � 109 mm,
σmax � 8.85 MPa,

x � 4 m, σmax � 37.7 MPa,
σmax/σB � 9/8; x � 2 m,
σmax � 25.2 MPa, σmax/σm � 4/3

σmax/σB � 2; x � 0 .209 L,
σmax � 0.394 PL/h3

A, σmax/σB � 3.54

x � L/4, σmax � 4 PL/9h3
A,

d/h 6 0.6861
d/h 7 0.6861;
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5.5-22

5.5-23

5.5-24 (a)
(b)

(top of beam at C ), 
(bottom of beam at C )

5.5-25 (a) ; (b)
(compression at base); 
(c) (tension at base)

5.6-1

5.6-2 (a) (b) 

5.6-3 (a) UPN 260; (b) IPN 180; (c) HE 240A

5.6-4 (a) HE 180B; (b) HE 260B

5.6-5 (a) IPN 280; (b) 

5.6-6 (a) (b)

5.6-7 (a) (b) 

5.6-8 (a) (b) mm

5.6-9 (a) 
(b) 

5.6-10

5.6-11 (a) ; (b) IPN220

5.6-12 (a) (b)

5.6-13 (a) ; (b) 

5.6-14

5.6-15

5.6-16

5.6-17

5.6-18 (a) 
(b) 

5.6-19

5.6-20 (a) (b) 

5.6-21 (a) (b) 

5.6-22 (a) (b) 

Iz � 7.969 � 107 mm4; σt � 4659 kPa
c1 � 91.7 mm, c2 � 108.3 mm,

σmax � 7.52 MPa
d � 1 .0 m, σmax � 1.55 MPa; d � 2 m,

� 23.5 MPa17.8 MPa,σ � 25.1 MPa,

σc � 5506 kPa

Fres � 441 N σmax � 257 MPa

hmin � 214smax � 429 mm;

wmax � 8.36
kN
m250 � 250;

area(b)/area1a2 � 1.145
bmin � 141.2 mm,bmin � 161.6 mm;

Pmax � 17.24 kN

Pmax � 39.8 Ndmin � 12.62 mm;

dmin � 100 mm

σmax � 231 MPa

area(b)/area(a) � 0.635
dmin � 37.6 mm; dmin � 45.2 mm,

Sreqd � 249 cm3

hmin � 30.6 mm

q0.allow � 6.9 kN/m
q0.allow � 13.17 kN/m;

5.35%β � 1/9;

d � 292 mmsmax � 1.732 m;

bmin � 11.92 mmbmin � 11.91 mm;

6.03%

qmax � 9.37 kN/m
qmax � 6.61 kN/m;

W1:W2:W3:W4 � 1:1.260:1.408:0.888

t � 13 .61 mm

b � 259 mm

h � 202 mmb � 152 mm,

100 � 250 qmax � 332 N/m

5.7-5 (a) 
(b) 

5.7-6

5.7-7

5.7-8 hx � hB2x/L

by � 2bBx/L

hx � hBx/L

σmax � σB � 32 PL/π dB
3

1 … dB/dA … 1.5;

5.8-2 (a) 

(b) 

5.8-3 (a) ; 

(b) 

5.8-4

5.8-5 τmax � 22.5 MPa

5.8-6 (a) 

(b) 

5.8-7 (a) ; 

5.8-8 (a) 

(b) 

5.8-9 (a) ; 

(b) 

5.8-10 (a) (b) P � 38.0 kN; P � 35.6 kN

200 mm � 300 mm beam

150 mm � 300 mm beam

τmax � 500 kPa

Mmax � 10.27 kN # m

Mmax � 41.7 kN # m

τmax � 1462 kPa, σmax � 19.01 MPa;

τmax � 731 kPa, σmax � 4.75 MPa;

Mmax � 9.01 N # m

Mmax � 72.2 N # m;

(b) Pmax � 8.77 kNPmax � 8.2 kN

L0 � h1σallow/τallow2;
L0 � 1h/221σallow/τallow2
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Answers to Problems

5.8-11 (a) w1 � 9.46 kN/m2;

(b) 

(c) 

5.8-12 (a) (b) 

5.9-1

5.9-2 (a) (b) 

5.9-3 (a) (b) 

5.9-4 (a) (b) 

5.10-1 (a) (b)
(c) 
(d) 

5.10-2 (a) (b) 
(c) (d) 

5.10-3 (a) (b) 
(c) 
(d) 

5.10-4 (a) (b) 
(c) (d) 

5.10-5 (a) (b) 
(c) 
(d) 

5.10-6 (a) (b)
(c) (d) 

5.10-7

5.10-8 (a) (b) 

5.10-9 IPN 220
5.10-10

5.10-11

5.10-12

5.10-13

5.11-1

5.11-2

5.11-3

5.11-4

5.11-5 (a) ; (b) smax � 67.0 mm smax � 53.8 mm

Vmax � 10.7 kN

F � 323 kN/m

wallow � 9.46 kN/m2

w2 � 19.88 kN/m2;

b � 89.3 mm; b � 87.8 mm

Vweb � 124.3 kN, ratio � 0.956
τaver � 40.1 MPa, ratio � 1.045;
τmax � 41.9 MPa; τmin � 31.2 MPa;

qo,max � 55.7 kN/m; Lmax � 2.51 m

d � 328 mm; d � 76.4 mm

W � 28.6 kN; W � 38.7 kN

dmin � 158 mm

Vweb � 82.73 kN, ratio � 0.919
τaver � 19.66 MPa, ratio � 0.967;
τmax � 19.01 MPa; τmin � 16.21 MPa;

τaver � 29.24 MPa; Vweb � 196.1 kN
τmax � 32.28 MPa; τmin � 21.45 MPa;

Vweb � 39.9 kN, ratio � 0.886
τaver � 41.98 MPa, ratio � 0.919;
τmax � 38.56 MPa; τmin � 34.51 MPa;

τaver � 27.41 MPa, Vweb � 119.7 kN
τmax � 28.43 MPa; τmin � 21.86 MPa;

qmax� 184.7 kN/m; qmax � 247 kN/m

qmax � 131.5
kN
m

τaver � 25.97 MPa; Vweb � 58.63 kN
τmax � 28.40 MPa; τmin � 19.35 MPa;

V � 273 kN

Vmax � 1.924 MN

Vmax � 3067 MPa

τmax � 13.87 MPa

τmax � 19.7 MPa

τmin � 7.38 MPaτmax � 10.17 MPa,

1071

5.11-6 (a) (b) 

5.11-7 (a) (b) 

5.11-8

5.11-9

5.11-10

5.11-11 (a) case (2); (b) case (3); 
(c) case (1); (d) case(1)

5.11-12

5.12-1

5.12-2

5.12-3

5.12-4

5.12-5

5.12-6

5.12-7

5.12-8 (a) (b) 

5.12-9

5.12-10

5.12-11 (a) 
(b) 

5.12-12 (a) (b) ; 
(c) Rectangular post

5.12-13 (a) 
(b) both stresses increase in magnitude

5.12-14 (a) 
(b) 

5.12-15 (a) 
(b) ; (c)

, 

5.12-16 (a) 
(b) ; (c)

5.12-17 (a) ; (b) 

5.12-18 (a) (b) ; 
(c) 

tmin � 12.38 mm

σt � 5770 kPa, σc � �6668 kPa

σt � 94.6 MPa, σc � �97.7 MPa

smax � 165.2 mm

smax � 61.5 mm

Vmax � 103.0 kN

smax � 92.3 mm

smax � 67.4 mm; smax � 44.9 mm

sA � 78.3 mm; sB � 97.9 mm

W � 33.3 kN

Hmax � 9.77 m

dmin � 8.46 cm; dmin � 8.91 cm;

α � arctan[1d2
2 � d1

22/14hd22]
Tmax � 108.6 kN

σt � 2.42 MPa, σc � �2.50 MPa

tmin � 12.38 mm
σt � �11.83 MPa, σc � �12.33 MPa,

σt � 826 kPa, σc � �918 kPa;

y0 � 891 mm, P � 296 kN
y0 � �31.2 mm; P � 115 .3 kN

σt � 112.1 MPa σt � 21.4 MPa

σc � �20.3 MPa, y0 � �100.8 mm
y0 � �76.2 mm σt � 1.587 MPa,
σt � 3.27 MPa, σc � �24.2 MPa;

σt � 9.11 P/b2, σc � 6.36 P/b2

σt � 8 P/b2, σc � �4P/b2;

σc � �30.9 MPa;σt � 36.7 MPa,

b � π � d/3b � π � d/6;

dmax � 0.750 m

y0 � �139.2 mmσc � �19.04 MPa
σt � 3.77 MPa,y0 � �100.1 mm

σc � �36.2 MPaσt � 723 MPa,
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Answers to Problems

6.2-5 (a) ; 
(b) ; 
(c) 

6.2-6 (a) ;
(b) ; 

6.2-7 (a) 
(b) 

6.2-8 (a)
(b) 

6.2-9

6.2-10 (a) (compression),
(tension); (b) 

6.2-11 (a)
(b) 

6.2-12

6.3-1 (a) ; 
(b) 

6.3-2

6.3-3 (a) ;
(b) 

6.3-4 (a) 
(b) 

6.3-5

6.3-6

6.3-7 (a) 
(b) 

6.3-8 (a) (b)

6.3-9

6.3-10 Metal A

6.3-11

6.3-12 (a) 
(b) 
(c) 

6.3-13 (a) , ; 
(b) steel
controls

Mallow � Ms � 349 kN # m 6

σc � 4.24 MPa σs � 85.9 MPa

Mallow � 167.8 kN # mAs � 2254 mm2,
Mmax � Mc � 172.9 kN # m;

σs � 118.3 MPa;σc � 8.51 MPa,

σconcrete � 6.86 MPaσsteel � 77.8 MPa,

SA � 50.6 mm3;

Mmax � 10.4 kN # m

ha � 114.92 mm
hs � 5.08 mm,σs � 93.5 MPa;

qallow � 4.39 kN/m
qallow � 4.16 kN/m

σP � 0.47 MPaσa � 12.14 MPa,

σP � 0.891 MPaσa � 23.0 MPa,

Mmax � 80 kN # m

σsteel � 55.8 MPa

tB � 25.1 mm,
σw � 7.09 MPa;σB � 60.3 MPa,

σwood � 1.10 MPa,
qallow � 11.98 kN/m

tmin � 15.0 mm

Mmax � 27.2 kN # m
Mmax � 103 kN # m

QO,max � 15.53 kN/m

qmax � 1.43 kN/m
σplywood � 7.29 MPa, σpine � 6.45 MPa;

ts � 3.09 mmσs � 37.6 MPa
σw � 5.1 MPa

σC � 4296 kPaσa � 3753 kPa,

σcore � 0σface � 14.9 MPa,
σcore � 0.214 MPa;σface � 14.1 MPa,

σcore � 0σface � 26.7 MPa,
σcore � 0;σface � 26.2 MPa,

Mmax � 1051 N # mσsa � 47.9 MPa
Mallow � 768 N # m

σw � 4.99 MPa, σs � 109.7 MPa
qmax� 3.57 kN/m
M0,max�2.44 kN # m
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5.13-1 (a)

5.13-2 (a) 
(b) 

5.13-3

5.13-4

5.13-5 (a) (b) 

R5.1 A

R5.2 C

R5.3 D

R5.4 D

R5.5 A

R5.6 B

R5.7 B

R5.8 C

R5.9 C

R5.10 A

R5.11 B

R5.12 B

CHAPTER 6

6.2-1

6.2-2 (a) 
(b) (c) 

6.2-3 (a) 
(b) 

6.2-4 (a) 

(b) 
(c) 

d � 6,12,18,24 mm;

Mmax,brass � 1235 N # m;
d1 � 33.3 mm

Mallow,brass �
π σB1EBd1

4 � Esd1
4 � Esd2

42
32 Esd1

;

Mallow,steel �
π σs1EBd1

4 � Esd1
4 � Esd2

42
32 Esd2

,

σmax � 94.1, 96.4, 103.1, 143.5 MPa;

Mmax � 11.7 kN # m
Mmax � 20.8 kN # m;

t � 7.08 mmMmax � 90.9 kN # m;
Mmax � 58.7 kN # m;

σcore � �5.29 MPaσface � �21.17 MPa,

σmax L 200 MPaR � 4 mm,
σmax � 81 MPa;d � 16 mm,

Rmin L 0.33 mm; dmax � 104.1 mm

bmin L 0.33 mm

b � 6.39 mm

σmax L 500, 433, 367, 333 MPa
(b) R � 1 .25, 2.5, 3.75, 5.0 mm:
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Answers to Problems

6.3-14 (a) 
(b) 

6.3-15 wood
controls

6.4-1 so NA lies along other 
diagonal

6.4-2

6.4-3

6.4-4

6.4-5

6.4-6

6.4-7

6.4-8

6.4-9

6.4-10

6.4-11 (a)
(b) 

6.4-12

6.4-13 (a) ; 
(b) 

6.5-1

6.5-2

6.5-3

6.5-4

6.5-5 (a)
; (b)

6.5-6
σc � �40.7 MPa
β � 78.1°, σt � 40.7 MPa,

σc � �42.6 MPaσt � 52.5 MPa,
β � �41.9°,σc � �43.6 MPa

σt � 36.9 MPa,β � �30.6°,

σc � �27.9 MPa
σt � 22.7 MPa,β � 75.5°,

σc � �37.7 MPa
σt � 30.4 MPa,β � 75.6°,

σc � �13.2 MPa
σt � 7.2 MPa,β � 78.0°,

σc � �63.7 MPa
σt � 37.6 MPa,β � 74.5°,

σmax � 48.8 MPaβ � �80.9°,
σmax � 48.5 MPaβ � �76.6°,

σmax � 11.9 MPaβ � 70.3°,

tan β � 21.729 tan α
σA � 103.94 sin α � 11.48 cos α 1MPa2;

σmax � 21.6 MPaβ � 62.6°,

σmax � 31.0 MPaβ � 84.6°,

σmax � 62.3 MPaβ � �83.2°,

σmax � 12.7 MPaβ � �75.9°,

σmax � 8.87 MPaβ � �79.3°,

σB � �σD � �12 MPa
σA � �σE � 160 MPa,β � 47.7°,

σB � �σD � �89 MPa
σA � �σE � 141 MPa,β � 84.5°,

σmax � 440 MPaβ � 53.1°,

σmax � 17.5 MPaβ � 51.8°,

tan β � h/b

Mallow � MW � 16.17 kN # m 6

Mallow � 15.79 kN # mAs � 1262 mm2,
Mmax � Ms � 10.59 kN # m;
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6.5-7

6.5-8

6.5-9 For 
for

for

6.5-10

6.5-11

6.5-12

6.8-1 (a) (b) 

6.8-2 (a) (b) 

6.8-3 (a) (b) 

6.8-4 (a) (b) 

6.9-1

6.9-2

6.9-6

6.9-8 (a) 

(b) 

6.10-1

6.10-2 (a) 
(b) 

6.10-3

6.10-4 (a) (b) 

6.10-5

6.10-6

6.10-7

6.10-8

σt � 10.3 MPa, σc � �9.5 MPa
β � 73.0°,

Z � 1230 cm3, f � 1.07

Z � 188.4 cm3, f � 1.17

f � 1.15

f � 1.10

56.7%; M � 12.3 kN # m

q � 125 kN/m

f � 4/π
f � 16τ21r2

3 � r1
32/3π 1r2

4 � r1
42;

f � 212b1 � b22/13b1 � b22
e �

b
2
a43h � 48b

23h � 48b
b

e �
b
2
a2h � 3b

h � 3b
b ;

(b) e �
63 π r

24 π � 38
� 1.745r

τmax � 21.7 MPa;

e � 19.12 mm

e � 31.0 mm

τmax � 16.3 MPaτmax � 16.6 MPa;

τmax � 21.1 MPa

τB � 3.4 MPaτmax � 21.0 MPa;

τB � 2.7 MPaτmax � 29.9 MPa;

σc � �15.79 MPa
σt � 16.85 MPa,β � �48.6°,

σc � �103.2 MPa
σt � 118.8 MPa,β � �11.7°,

σc � �99.0 MPa
σt � 87.4 MPa,β � �78.9°,

σt � 3.867 M/r3, σc � �5.244 M/r3;
σc � �3.955 M/r3; θ � 90°:

σt � 4.535 M/r3,θ � 45°:
σt � �σc � 2.546 M/r3;θ � 0:

σc � �6.54 MPa
σt � 6.56 MPa,β � 2.93°,
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Answers to Problems

7.2-4 For
, 

7.2-5 For , ,
, 

7.2-6 For

7.2-7 For , ,
, 

7.2-8 For

7.2-9 Normal stress on seam, 1370 kPa tension;
shear stress, 1158 kPa (clockwise)

7.2-10 Normal stress on seam, 1440 kPa tension.
Shear stress, 1030 kPa (clockwise)

7.2-11 ,

7.2-12

7.2-13 , ,

7.2-14

7.2-15 For ,
, 

7.2-16 For

7.2-17 , 

7.2-18

7.2-19 , ,

7.3-1 , ,

7.3-2

7.3-3 , ,

θ � 52°: σx1 � �136.6 MPa,
σy1 � 16.6 MPa τx1y1 � �84 MPa

σy1 � �46.2 MPa τx1y1 � 10.16 MPa
θ � 48° σx1 � �9.84 MPa

σy1 � �27 MPa, τx1y1 � �28.1 MPa
θ � �40°: σx1 � �5.5 MPa,

θp1 � �23.6°
σ1 � �43.7 MPa σ2 � �8.31 MPa

θp1 � 29.52°
σ2 � 60.8 MPa,σ1 � 119.2 MPa,

θp1 � 8.68°
σ2 � 7.24 MPaσ1 � 40.8 MPa

θ1 � 47.9°
τb � 18.79 MPaσb � �32.0 MPa

σy � �77.7 MPa, τxy � �27.5 MPa

τxy � 10 MPaσy � 25.3 MPa

σy1 � �14.4 MPa, τx1y1 � �31.3 MPa
σx1 � 51.4 MPa,θ � �50°:

σy1 � �31.9 MPa τx1y1 � �27.2 MPa
σx1 � �81.1 MPaθ � �36°,

θ � 36.6°, σy1 � �9 MPa,
τx1y1 � �14.83 MPa

τx1y1 � �7.63 MPa
θ � 51.8° σy1 � 3.7 MPa

σw � 10.0 MPa, τw � �5.0 MPa

τw � �τx1y1 � 2647 kPa
σw � σy1 � �912 kPa

τx1y1 � �14.52 MPaσy1 � �6.52 MPa,
σx1 � �66.5 MPa,θ � �40°:

τx1y1 � 32.1 MPaσy1 � �22.9 MPa
σx1 � �94.1 MPaθ � 36°
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6.10-9

6.10-10

6.10-11

6.10-12

6.10-13

6.10-14

6.10-15 (a) (b) 

6.10-16 (a) (b) 

6.10-17 (a) (b) 

6.10-18

6.10-19

6.10-20

R6.1 B

R6.2 C

R6.3 B

R6.4 B

R6.5 D

CHAPTER 7

7.2-1 For , ,

, 

7.2-2 For

7.2-3 For , ,

, 

MP � 814 kN # m, f � 1.18

MY � 688 kN # m,

MY � 365 kN # m, MP � 431 kN # m,

σy1 � �51.2 MPa τx1y1 � �85.1 MPa

θ � 32° σx1 � �23.8 MPa

τx1y1 � �10.43 MPaσy1 � 62.8 MPa,

σx1 � 117.2 MPa,θ � 40°:

τx1y1 � �21.9 MPaσy1 � 27.8 MPa

σx1 � 30.2 MPaθ � 52°

M � 209 kN # m;

MP � 295 kN # m

MP � 117.3 kN # m

f � 1.79Z � 136 � 103 mm3,

7.6%

36%M � 524 kN # m;

23.3%M � 378 kN # m;

f � 1.20

MP � 147 kN # m,MY � 122 kN # m,

f � 1.31

MP � 453 kN # m,MY � 345 kN # m,

f � 1.31

MP � 878 kN # m,MY � 672 kN # m,

f � 1.33

MP � 205 kN # m,MY � 154.3 kN # m,

f � 1.18
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Answers to Problems

7.3-4

7.3-5 , ,
, 

7.3-6

7.3-7 , ,

7.3-8

7.3-9 (a) , ,
; (b) ,

, 

7.3-10 (a)
(b)

7.3-11 (a) , ,
; (b) ,
, 

7.3-12 (a)

7.3-13 (a) , ,
; (b) ,

, 

7.3-14 (a) 
(b) 

7.3-15 (a) , ,
; (b) ,

, 

7.3-16 (a) 
(b) 

7.3-17

7.3-18

7.3-19 (a) ; (b) ,
, 

7.3-20 (a) (b)

7.4-1 (a) , ,
, ; 

(b) , 

σ1 � 53.6 MPa, θp1 � �14.2°

σ1 � 39.9 MPa σ2 � 124.1 MPa
θp1 � �14.2° τmax � �42.1 MPa

σy1 � �14.25 MPa, θs1 � 60.53°
τmax � 24.2 MPa, σx1 � �14.25 MPa,

τmax � 26.7 MPa, θs1 � 19.08°

σaver � �57.5 MPa
τmax � 47.3 MPa θs1 � 61.7°

τmax � 49 MPa σave � 49 MPa
σy1 � 23 MPa τx1y1 � �41.6 MPa

For θ � 29° σx1 � 75 MPa

σ2 � �62.7 MPa
σ1 � 41 MPa, θp2 � �24.4°,

σy � 23.3 MPa; θp1 � 65.6°,

θp1 � �40.2°σ2 � 17.64 MPa
σ1 � 44 MPaσy � 28.6 MPa

18.5 MPa … σy … 85.5 MPa

20.6 MPa … σy … 65.4 MPa

θs1 � �62.5°
σ1 � 76.3 MPa, θp1 � 107.5°;
τmax � 101.3 MPa,

σaver � �49.5 MPaθs1 � �20.3°
τmax � 40.8 MPaθp1 � 24.7°

σ2 � �90.3 MPaσ1 � �8.72 MPa

θs1 � �63.0°
σ1 � 29.2 MPa, θp1 � �17.98°;
τmax � 66.4 MPa,

σaver � 53.8 MPaθs1 � �37.2°
τmax � 48 MPaθp1 � 7.85°

σ2 � 5.71 MPaσ1 � 101.8 MPa

θs1 � �58.7°
σ1 � 2262 kPa, θp1 � �13.70°;

(b) τmax � 1000 kPa,

σaver � 11.5 MPaθs1 � �74.9°
τmax � 6.95 MPaθp1 � �29.9°

σ2 � 4.55 MPaσ1 � 18.45 MPa

σave � �52.5 MPaτmax � 77.5 MPa,
σ2 � �130 MPa;σ1 � 25 MPa,

σaver � �4 MPaθs1 � �63.4°
τmax � 5 MPaθp1 � �18.43°

σ2 � �9 MPaσ1 � 1 MPa
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7.4-2 (a)
(b)

7.4-3 (a) , ,
; (b) ,

7.4-4 For : (a)
; (b)

7.4-5 (a) For , ,
, ; 

(b) , 

7.4-6 For (a)
(b)

7.4-7 (a) For , ,
, ;

(b) , ,

7.4-8 (a)
(b)

7.4-9 (a) For , ,
, ; 

(b) , ,

7.4-10 For

7.4-11 For , ,
, 

7.4-12 For

7.4-13 For , ,
, 

7.4-14 For

7.4-15 For , ,
, 

σave � 28.5 MPa
τx1y1 � 26 MPa; τmax � 28.5 MPa,

σx1 � 40.1 MPa, σy1 � 16.91 MPa,

τx1y1 � 18.8 MPa τmax � �23.5 MPa
σx1 � �37.6 MPa σy1 � �9.4 MPa

θs1 � 45.0 °
τx1y1 � 25.7 MPa τmax � 33.5 MPa,

θ � 25° σx1 � �36.0 MPa,

σaver � �23.5 MPa

τx1y1 � 27.3 MPaσy1 � �19.29 MPa
σx1 � �12.71 MPaθ � 65°

τx1y1 � �9.81 MPa
σx1 � 46.4 MPa,θ � 35°:

σy1 � �6.58 MPa τx1y1 � 3.85 MPa
σx1 � �10.42 MPaθ � 14°

τx1y1 � �51.7 MPa, σy1 � �171.3 MPa
σx1 � 61.7 MPa,θ � �33°:

τx1y1 � �5.36 MPa

σy1 � 25.3 MPa τx1y1 � �24.6 MPa
σx1 � 82.7 MPaθ � �51°

σx1 � 27.5 MPa,θ � 40°:

θp1 � 45°
σ1 � 26.00 MPa σ2 � �26.00 MPa

τx1y1 � 7.28 MPaσy1 � �25.0 MPa
σx1 � 25.0 MPaθ � 36.87°

τmax � 105.6 MPaσ2 � �71.6 MPa,
σ1 � 139.6 MPa,

σx1 � �60.8 MPa, σy1 � 128.8 MPa,
τx1y1 � �46.7 MPa;

θp1 � 45°
σ1 � 19.00 MPa σ2 � �19.00 MPa

τx1y1 � �4.60 MPaσy1 � �18.44 MPa
σx1 � 18.44 MPaθ � 52°

θx1 � 45.0°
τmax � 43.0 MPa,τx1y1 � 29.7 MPa;

σx1 � �17.1 MPa,θ � 21.80°:

σaver � 15.50 MPaτmax � 27.5 MPa
τx1y1 � �25.8 MPaσy1 � 24.9 MPa
σx1 � 6.09 MPaθ � 55°

77742_22_ans_p1057-1090.qxd:77742_22_ans_p1057-1090.qxd  3/2/12  10:35 AM  Page 1075

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Answers to Problems

7.5-10 (a) 
(b) (c) 

7.5-11 (a) , ; 
(b) ; (c) 

7.5-12 (a) (increase);
(b) (decrease);
(c)
(decrease); (d) 
(e) 
(f) (g) 

7.6-1 (a) ; (b) ,
, ; 

(c) ; (d) ; 
(e) ; (f) 

7.6-2 (a) 

(b)

(c) 

(d) 

(e) 

(f) 

7.6-3 (a) , ,
; (b) ; 

(c) ; (d) ; 
(e) ; 
(f) 

7.6-4 (a)

(b) 

(c) 

(d) 

(e) 

(f) 

7.6-5 (a) ; 
(b) , 

tmax � 36.1 mm; bmin � 640 mm
¢V � 2766 mm3, U � 56 J;

¢t � εzt � �2.86 � 10�3 mm
¢bc � εyd � �0.074 mm
¢ac � εxd � 0.1296 mm

tmax � 17.02 mm bmin � 262 mm
¢V � 623 mm3 U � 64.5 J

v � 0.35E � 42 GPa
KA1 � 74.1 GPa

εxmax � �741110�62
σxmax � �73 MPa;

U � uV0 � 29.9 N # m;

¢V � eV0 � �846 mm3;

τmax �
σ1 � σ3

2
� 13.92 MPa;

σx � �82.6 MPa, σy � �54.7 MPa,

σz � �54.7 MPa;

εxmax � �242110�62
σxmax � �26.5 MPa

U � 3.78 J¢V � �300 mm3

τmax � 7.2 MPa
σx � �28.8 MPa σy � �14.4 MPa

σz � �14.4 MPa

σxmax � �65.1 MPa

σxmax � �50 MPa;

U � uV0 � 56.2 N # m;

¢V � eV0 � �2.052 � 103 mm3;

¢c � εzc � �9.67 � 10�3 mm;

¢b � εyb � �9.67 � 10�3 mm,

¢a � aεx � �0.0525 mm,

τmax �
σ1 � σ3

2
� 8.5 MPa;

σxmax � 82 MPaσxmax � 88.5 MPa
U � 109.9 J¢V � 287 mm3

¢c � �0.034 mm¢b � �0.0944 mm
¢a � 0.1955 mmτmax � 60 MPa

tmax � 22.0 mm; σxmax � 63.9 MPa
U � uV0 � 71.2 N # m;

¢V � eV0 � 430 mm3;
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7.4-16 (a) 
(b) 

7.4-17 (a) , ,
; (b) ,

, 

7.4-18 (a) 
(b) 

7.4-19 (a) , ,
; (b) ,
, 

7.4-20 (a) 
(b) 

7.4-21 (a) , ,
; (b) ,
, 

7.4-22 (a) 
(b) 

7.4-23 (a) , ,
; (b) ,

, 

7.5-1 , ,

7.5-2

7.5-3 (a) 
(b) 

7.5-4

7.5-5

7.5-6 (a) 
(b) 
(c) 

7.5-7 (a) ; 
(b) (decrease); 
(c) (increase)

7.5-8 (a) 
(b) 

7.5-9 , 

τmax � 4865 kPa, θs1 � 70.2°
σ1 � 10,865 kPa, θp1 � 115.2°;

σ1 � 17.72 MPa σ2 � �27.2 MPa

τmax � 15.4 MPa, θs1 � 78.3°
σ1 � 18.2 MPa, θp1 � 123.3°;

θs1 � �13.57° σaver � �4.75 MPa
θp1 � 31.4° τmax � 22.47 MPa

θp1 � �32.9° τmax � 54.8 MPa
σ1 � �47.67 MPa σ2 � �157.3 MPa

U � 6.2452 J¢V � �602 mm3

Ua � 4.82 J¢Va � �71.5 mm3,
Ub � 3.52 J;¢Vb � �49.2 mm3,

¢V � 1372 mm3

¢t � �3.55 � 10�3 mm
γmax � 1.921 � 10�3

¢V � 387 mm3

¢t � �1.32 � 10�3 mm;
γmax � 5.85 � 10�4;

E � 204.1 GPav � 0.3,

E � 112.1 GPav � 0.24,

e � 11 � 2v21εx � εy2/11 � v2
εz � �v1εx � εy2/11 � v2;

σx � 102.6 MPa, σy � �11.21 MPa,
¢t � �1.646 � 10�3 mm

σx � 175.2 MPa σy � 135.3 MPa
¢t � �7.2 � 10�3 mm

σaver � 25 MPaθs1 � �35.1°
τmax � 26.6 MPaθp1 � 9.9°

σ2 � �1.571 MPaσ1 � 51.6 MPa

θs1 � �64.7°
σ1 � 3.43 MPa, θp1 � �19.68°;
τmax � 15.13 MPa,

σaver � 28 MPaθs1 � �71.8°
τmax � 23.6 MPaθp1 � �26.8°
σ2 � 51.6 MPaσ1 � 4.4 MPa

θs1 � 23.8°
σ1 � 40.0 MPa, θp1 � 68.8°;
τmax � 40.0 MPa,

σaver � �102.5 MPaθs1 � �77.9°
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Answers to Problems

7.6-6 (a) 
(b) 

7.6-7 (a) 
(b) 

7.6-8 (a) (b) 
(c) 

7.6-9 (a) ,
; (b) 

7.6-10 (a) (b) 
(c) 

7.6-11 , ,

7.7-1 (a) ; 
(b) (decrease,
radians); (c) ψ
(increase, radians)

7.7-2 (a) 
(b) (decrease,
radians); (c) ψ
(increase, radians)

7.7-3 (a) (increase);
(b) rad (decrease); 
(c) rad (angle ced increases)

7.7-4 (a) (increase); 
(b) rad (decrease); 
(c) rad (angle ced
increases)

7.7-5

7.7-6

7.7-7

7.7-8

7.7-9 For (a)

(b) 
(c) 

� �α � 1.89 � 10�4
¢

� �α � 1.419 � 10�4
¢

E � 1.297 GPa, v � 0.40
K � 4.95 GPa;

γmax � 587 � 10�6

ε1 � 568 � 10�6, θP1 � 22.8°;
γx1y1 � �569 � 10�6;

θ � 75°: εx1 � 202 � 10�6,

ε1 � 172 � 10�6, θp1 � 163.9°,
γmax � 674 � 10�6

εx1 � 554 � 10�6, θp1 � �22.9°,
γmax � 488 � 10�6

γx1y1 � �3.86 � 10�4

εy1 � �1.353 � 10�4,εx1 � 9.53 � 10�5,

εx1 � 3.97 � 10�4, εy1 � 3.03 � 10�4,
γx1y1 � 1.829 � 10�4

γ � �634 � 10�6

¢φ � 317 � 10�6

¢d � 0.168 mm

γ � �314 110�62
¢φ � 150 110�62
¢d � 0.1146 mm

¢φ � �α � 1.89 � 10�4

¢d � εx1Ld � 0.062 mm;

¢φ � �α � 1.419 � 10�4

¢d � 0.0476 mm

u � 0.0344 MPa
e � 8.3 � 10�4ε0 � 2.77 � 10�4

U � 2470 J
k � 175 GPa;p � 700 MPa;

h � 1620 mU � 34.4 J
¢V � 2863 mm3

¢d � 0.036 mm

u � p0
211 � v22/2E

e � �p011 � v211 � 2v2/E;p � vp0;

δ � FL11 � v211 � 2v2/EA11 � v2]
p � vF/[a11 � v2];
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7.7-10 For (a)

(b) 
(c) 

7.7-11 , ,
,

7.7-12

7.7-13 (a) For , ,
, ;

(b) , ,
; (c) 

7.7-14 For (a)
; 

(b) 
(c) 

7.7-15 ,

7.7-16 ,

7.7-17 (a) , ; 
(b) , 

7.7-18

7.7-19

7.7-20

7.7-21 , ,
, ,

γx1y1 � 690 � 10�6;
θ � 45°: εx1 � �385 � 10�6,

σ2 � 13.67 MPa
ε2 � �250110�62 σ1 � 68.3 MPa
θP1 � 30° ε1 � 1550 110�62
γxy � 21εb � εc2/13
εx � εa, εy � 12εb � 2εc � εa2/3,

α � 75.2°P � 44.1 kN,

α � 56.7°P � 121.4 kN,

τmax � 23.1 MPaγmax � 2.84 � 10�4

T � �114.9 N # mP � 23.6 kN

γmax � 515 � 10�6

θP1 � 12.0°ε1 � 332 � 10�6,

γmax � 662 � 10�6

θP1 � 12.5°ε1 � 551 � 10�6,

γmax � 911 � 10�6

ε1 � �732 � 10�6, θP1 � 166.0°;
γx1y1 � �717 � 10�6

εx1 � �1469 � 10�6,θ � 50°:

θp1 � 100.1° γmax � 1.345 � 10�3

ε2 � �9.17 � 10�4ε1 � 4.27 � 10�4

γx1y1 � 8.62 � 10�4εy1 � 2.71 � 10�4

εx1 � �7.61 � 10�4θ � 30°

� 2.15 � 10�4

γyzmax � 2
B
a εy � εz

2
b2

� γyz
2

� 1.459 � 10�3,

γxzmax � 2
B
a εx � εz

2
b2

� γxz
2

� 1.244 � 10�3,

γxymax � 2
B
a εx � εy

2
b2

� a γxy

2
b2

τmaxxy �
σx � σy

2
� 33.7 MPa,

γyzmax � 1.827 � 10�4

γxzmax � 9.01 � 10�4

τmaxxy � 29.5 MPa γxymax � 7.19 � 10�4

γmax � 1041 � 10�6

ε1 � �254 � 10�6,θP1 � 65.7°;

77742_22_ans_p1057-1090.qxd:77742_22_ans_p1057-1090.qxd  3/2/12  10:54 AM  Page 1077

 
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 

deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Answers to Problems

8.2-6 (a) 
(b) 

8.2-7 (a) ; (b) ;
(c) 

8.2-8 (a) (b)
(c) 

8.2-9 (a) ; (b) 

8.2-10 (a) (b) 

8.2-11

8.3-1 (a) ; (b) 

8.3-2 (a) (b) zero

8.3-3

8.3-4 (a) (b) 

8.3-5 (a) ; (b) 

8.3-6 (a) 
(b) 

8.3-7

8.3-8

8.3-9 (a) ; (b) 

8.3-10 (a) (b) 
(c) (d) 
(e) 

8.3-11 (a) ; (b) 

8.3-12 (a) 
(b) 
(c)
(d)

8.3-13 (a) ; 
(b) ; 
(c) ;
(d)

8.4-1 (a) , ,

, ; σ2 � �41 MPa τmax � 21.3 MPa
τxy � 7.9 MPa, σ1 � 1.522 MPa,

σx � �39.5 MPa σy � 0

τx1y1
� 5.25 MPa

θ � 15°, σx1
� 22.4 MPa,

ε2 � 42 � 10�6ε1 � 178.5 � 10�6,
τ2 � 21 MPaτ1 � 10.5 MPa,

σ2 � 21 MPaσ1 � 42 MPa,

σy1 � 78.0 MPa, τx1y1
� 21.9 MPa

θ � 35°, σx1
� 62.0 MPa,

ε2 � 9.33 � 10�5;ε1 � 3.97 � 10�4,
τ2 � 46.7 MPa;τ1 � 23.2 MPa,
σ2 � 46.7 MPa;σ1 � 93.3 MPa,

tmin � 3.12 mmtmin � 6.25 mm

τc � 24.9 MPa
τh � 12.43 MPa;σw � 24.9 MPa;
σc � 49.7 MPa;σh � 24.9 MPa;

σ1 � 817 kPah � 7.24 m

tmin � 3.71 mm

tmin � 2.53 mm

εr � 2.83 � 10�4

εmax � 6.67 � 10�5;

εr � 8.35 � 10�4p � 350 kPa

treqd � 10.91 mmF � 3πpr2;

n � 2.38

h � 22.2 m;

pmax � 11.2 MPatmin � 6.43 mm

D0 � 26.6 m

p � 19.25 MPatmin � 7.17 mm;

p � 16.33 MPatmin � 11.67 mm

εmax � 3.87 � 10�4

τmax � 57.3 MPa;f � 5.5 MN/m;

εmax � 344 � 10�6

τmax � 51 MPaf � 5100 kN/m

pmax � 2.93 MPa
pmax � 3.51 MPa;
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7.7-22

7.7-23

7.7-24

7.7-25

7.7-26

7.7-27 For (a)

(b) 

(c) 

7.7-28 For (a)

(b) 

(c) 

R7.1 C

R7.2 C

R7.3 D

R7.4 A

R7.5 B

R7.6 A

R7.7 C

R7.8 D

CHAPTER 8

8.2-1 (a) (b) 

8.2-2 (a) Use ; (b) 

8.2-3 (a) ; 
(b) ; (c) 

8.2-4 (a) 
(b) 

8.2-5 (a) , ; 
(b) 

σx � 91.6 MPa

εx1 � 3.97 � 10�4, εy1 � 3.03 � 10�4,

pmax � 129.8 kPa
εmax � 0.655σmax � 4.17 MPa

treqd � 1.29 mm
εmax � 0.438;σmax � 3.12 MPa,

r � 206 mmdb � 7.18 mm
σ � 1.707 MPaF � 4.66 kN

pmax � 3.34 MPat � 98 mm

pmax � 3.14 MPat � 112 mm;

θP1 � 65.7°;

γmax � 1041 � 10�6

ε1 � �254 � 10�6,

γx1y1 � 690 � 10�6;

εx1 � �385 � 10�6,θ � 45°:

θP1 � 22.8°;

γmax � 587 � 10�6

ε1 � 568 � 10�6,

γx1y1 � �569 � 10�6;

εx1 � 202 � 10�6,θ � 75°:

ε1 � 172 � 10�6, θp1 � 163.9°,
γmax � 674 � 10�6

ε1 � 554 � 10�6, θp1 � 157.1°,
γmax � 488 � 10�6

γx1y1 � �3.86 � 10�4

εy1 � �1.353 � 10�4,
εx1 � 9.53 � 10�5,

γx1y1 � 1.829 � 10�4
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Answers to Problems

(b) , ,

, 

8.4-2 (a) , ,
, ,

, ; 
(b) , ,

, ,
, 

8.4-3 (a) , ,
; (b) ,
, ; 

(c) , ,

8.4-4

8.4-5

8.4-6 (b)

8.4-7 (b)

8.4-8 (b)

8.4-9 (b)

8.4-10

8.4-11

8.4-12

8.5-1

8.5-2

8.5-3 (a) ,
; (b)

(c) 

8.5-4 (a) (b) 

8.5-5 no compressive stresses;
τmax � 37.1 MPa
σt � 74.2 MPa;

pmax � 6 MPaPmax � 52.7 kN;

tmin � 12.95 mm
Tmax � 215 kN # m;τmax � 19.72 MPa

σmax � σ1 � 57.2 MPa

pmax � 9.60 MPa

t � 3 mm

σ1
σ2

� �663

σ1
σ2

� �58

τmax � 9.00 MPa
σ2 � �0.145 MPa,σ1 � 17.86 MPa,

τmax � 6.29 MPa
σ2 � �11.62 MPa,σ1 � 0.961 MPa,

τmax � 35.2 MPa
σ2 � �66.9 MPa,σ1 � 3.52 MPa,

τmax � 40.9 MPa

τmax � 7238 kPa

τmax � 2750 kPa
τmax � 1484 kPa

σ1 � 75.3 MPa, σ2 � �6.5 MPa,

τmax � 40.3 MPa
σ1 � 4.5 MPa, σ2 � �76.1 MPa,

P � 13.38 kN

P � 20 KN

σ1 � 0 σ2 � �14.48 MPa

σ1 � 337 kPa
σ2 � �5163 kPa

σ1 � 1484 kPa σ2 � �1484 kPa

σ2 � �45.7 MPa τmax � 23.4 MPa
σ1 � 1.227 MPaτxy � 7.49 MPa

σy � 0σx � �44.4 MPa
τmax � 20.2 MPaσ2 � �38.9 MPa

σ1 � 1.442 MPaτxy � 7.49 MPa
σy � 0σx � �37.4 MPa

σ2 � �47.5 MPa τmax � 24.4 MPa
τxy � 7.9 MPa, σ1 � 1.315 MPa,

σx � �46.2 MPa σy � 0
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8.5-6

8.5-7

8.5-8

8.5-9

8.5-10 (a)
(b) 

8.5-11 (a) , ,
(b) , ,

8.5-12

8.5-13 , ,

8.5-14

8.5-15 at A:
, at B:

8.5-16 (a)

(b)

8.5-17

8.5-18 Pure shear: 

8.5-19 (a) ; (b) 

8.5-20 (a)
(b)

8.5-21 (a) , ,
; (b) ,

, 

8.5-22 Maximum:
σC � �18.35 MPa, τmax � 9.42 MPa

σt � 18.35 MPa,

τmax � 81.8 MPaσ2 � �155.1 MPa
σ1 � 7.02 MPaτmax � 74.0 MPa

σ2 � �148.1 MPaσ1 � 0

τmax � 94.5 MPaσ2 � �33 MPa,
σ1 � 156.1 MPaτmax � 102.6 MPa;

σ2 � �175.9 MPaσ1 � 29.3 MPa,

Pmax � 55.9 Ndmin � 47.4 mm

τmax � 0.804 MPa

τmax � 15.5 MPa
σt � 21.6 MPa, σc � �9.4 MPa,

σc � �2.41
qR2

d3 , τmax � 8.22
qR2

d3

τmax � 18.97
qR2

d3 ; σt � 14.04
qR2

d3 ,

σt � 29.15
qR2

d3 , σc � �8.78
qR2

d3 ,

τmax � 24 MPa

τmax � 193.6 MPaσc � �98.5 MPa,
σt � 289 MPa,τmax � 156.9 MPa

σc � �15.45 MPa,σt � 298 MPa,

dmin � 48.4 mm

σcmax � �46.2 MPaσtmax � 6.96 MPa

τC � 23.7 MPa
τB � 19.94 MPa,τA � 76.0 MPa,

τxy � 1.863 MPa;
σ2 � �0.094 MPa

τmax � 18.57 MPa
σ1 � 37 MPa
σx � 0 σy � 37MPa

Pmax � 6.73 kNτmax � 18.05 MPa;
σmax � σ1 � 35.8 MPa,

φmax � 0.552, rad � 31.6°

P � 815 kN

τmax � 28.9 MPa
σc � �41.4 MPa,σt � 16.93 MPa,

τmax � 52.8 MPa
σc � �73.7 MPa,σt � 32.0 MPa,
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Answers to Problems

9.2-3 Triangular load, acting
downward

9.2-4 (a) Parabolic load;
acting downward; (b) ,

9.3-1
0.28

9.3-2

9.3-3

9.3-4

9.3-5

9.3-6

9.3-7 Let

The deflection at the midpoint is close to
the maximum deflection. The maximum
difference is only 2.6%.

9.3-8 See Table H-1, Case 4

9.3-9 See Table H-2, Case 7

9.3-10 See Table H-1, Case 8

9.3-11

9.3-12

9.3-13 See Table H-2, Case 9

9.3-14 See Table H-1, Case 2

9.3-15 for 

for 

L
2

… x … L, δB �
7

160

q0L
4

EI
, δC �

1
64

q0L
4

EI

q � q0(1 � x/L);

°

80Lx4 � 16x5 � 25L4x � 3L5)

v(x) �
�q0

960LEI
(�160L2x3 � 160L3x2�

v(x) �
q0L

24EI
(x3 � 2Lx2) 0 … x …

L
2

,

δB �
qL4

48EI

v(x) � �
q

48EI
(2x4 � 12x2L2 � 11L4),

q � q0(L
2 � x2)/L2;

θB � mL2/2EI

δB � mL2/3EI,v � �mx2(3L � x)/6EI,

� 3131�1 � 8β � 4β22
β � a/L:

δC

δmax

Eg � 80.0 GPa

δ/L � 1/320

δmax � 15.4 mm

L � 3.0 m

h � 96 mm

rad �θ � 4894 � 10�6δmax � 6.5 mm,

MA � �q0L
2/A

RA � 2q0L/3

1080

8.5-23 Top of beam ,

8.5-24 (a) (b) 

8.5-25
, ,

8.5-26 (a)

(b)

(c) 

8.5-27

R8.1 A

R8.2 C

R8.3 D

R8.4 B

R8.5 C

R8.6 A

R8.7 D

R8.8 D

R8.9 A

R8.10 D

R8.11 D

R8.12 A

R8.13 C

R8.14 B

R8.15 C

CHAPTER 9

9.2-1 Triangular load, acting 
downward

9.2-2 (a) Sinusoidal load; 
(b) ; (c) Mmax � q0L

2/π2RA � RB � q0L/π
q � q0 sin πx/L,

q � q0x/L;

τmax � 75.6 MPaσ2 � �143.8 MPa,

σx � �136.4 MPa, σy � 0,
τxy � 32.7 MPa, σ1 � 7.42 MPa,

τmax � 0.928 MPa; Pmax � 348 N

σ1 � 0.703 MPa, σ2 � �1.153 MPa,

τmax �
σx

2
� �54.2 MPa;

σ2 � σx � �108.4 MPa,σ1 � 0,

τmax � 7 MPa
σ2 � �0.932 MPa

σx � 12.14 MPa, σy � 0, τxy � �3.49MPa,
σ1 � 13.07 MPa

dTl � 21.4 mmdAl � 26.3 mm;

τmax � 32.2 MPa
σ2 � 0σ1 � 64.4 MPa,
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Answers to Problems

9.3-16

for 

for 

9.3-17

for 

for 

9.4-1 See Table H-1, Case 6

9.4-2 See Table H-2, Case 13

9.4-3

(downward)

9.4-4 , 

9.4-5 See Table H-1, Case 10

9.4-6

, ,

9.4-7 ,

9.4-8

, 

δmax �
2q0L

4

15EI

v(x) �
q0x

5760LEI
(200x2L2 � 240x3L

�96x4 � 53L4) 0 … x …

L
2

,

L
2

… x … L,

(x5 � 5Lx4 � 20L3x2 � 16L5)

v(x) �
q0

120EIL

δmax � 61q0L
4/5760EI

v � �q0x(3L5 � 5L3x2 � 3L4 � x5)/ 90L2EI

v � �q0x
2(45L4 � 40L3x � 15L2x2 � x4)/

θB � q0L
3/15EI

δB � 19q0L
4/360EI360L2EI

θB � �
qL3

3EI

(2x4 � 12x2L2 � 11L4)v(x) � �
q

48EI

(�72L2x2 � 12Lx3 � 6x4 � 5L3x � 49L4)

83L2x � 3L3)

δmax � 2M0L
2/27EI

v � �M0x(L � x)2/2LEI,

δC �
3109PL3

10,368EI

for
L
2

… x … L, δA �
3565PL3

10,368EI
,

v(x) � �
P

144EIL
L
3

… x …

L
2

,

(�648Lx2 � 192x3 � 64L2x � 389L3)

v(x) � �
P

1152EI
0 … x …

L
3

,

(�4104x2 � 3565L2)v(x) � �
PL

10,368EI

(40x3 � 120Lx2 �v(x) �
�q0L

5760EI

δC �
3q0L

4

1280EI

1081

9.4-9 , 

for ,

, 

9.4-10 for

, 

for 

, , ,

9.5-1 , 

9.5-2 (a) 
(b) 
(c) 

9.5-3 (a) (b) 

9.5-4 (a) (upward); 
(b) (downward)

9.5-5

9.5-6 , 

9.5-7 , 

9.5-8 (a) (b) ,
(c) ,

9.5-9

9.5-10 (a) (positive
upward); (b) Upward when ,
downward when 

9.5-11 (a) 
(b) 

9.5-12

9.5-13 , θB � q0L
3/10EI δB � 13q0L

4/180EI

δC � 3.5 mm

v(x) � �
qL2

16EI
(x2 � L2) for 0 … x … L

v(x) � �
q

48EI
(�20L3x � 27L2x2 �

δmax � PHL2/913EI
δC � PH2(L � H)/3EI;

a/L 7 10/9
a/L 6 10/9

δA � PL2(10L � 9a)/324EI

M � (19/180)q0L
2

δB � �PL3/24EI
M � PL/8θB � PL2/12EI;

M � 5PL/24M � PL/2;

δB � 12.12 mmδC � 3.76 mm

δB � 23qL4/648EIθB � 7qL3/162EI

y � Px2(L � x)2/3LEI

δC � 18.36 mm
δC � 6.25 mm

a/L � 1/2a/L � 2/3;

δ1/δ2 � 88/75 � 1.173
δ2 � 25PL3/38EI;
δ1 � 11PL3/144EI;

δB � 5PL3/9EIθB � 7PL2/9EI

δC �
7q0L

4

240EI

L
2

… x … L δA �
19q0L

4

480EI
θB �

13q0L
3

192EI

v(x) ��
q0

960EIL
120L2x3 � 40L3x2 � 25L4x � 41L5)

(80Lx4 �16x5�0 … x …

L
2

(�20x2 � 19L2)v(x) � �
q0L

2

480EI

δC �
9qL4

128EI
θC �

7qL3

48EI

12Lx3 � 2x4 � 3L4) L … x …

3L
2
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Answers to Problems

9.6-3 See Table H-1, Cases 4 and 6

9.6-4 , 

9.6-5 , 

9.6-6 , 

9.6-7 See Table H-2, Case 1

9.6-8

9.6-9 , ,

9.6-10 ,
, 

9.6-11 , ,
(downward)

9.7-1 (a) 
(b) 

9.7-2 (a) 
(b) 

9.7-3 (a) (upward); 
(b) (downward)

9.7-4 for
,

for ,
, 

9.7-5 , ,

9.7-6 for 
, 

1458EI for ,
, ,

9.7-7

(8 ln 2 � 5)

� ln aL � x
2L

b d ,

δA �
PL3

8EIA

v �
PL3

EIA

c L
2(L � x)

�
3x
8L

�
1
8

v � P(13L3 �175L2x � 243Lx2 � 81x3)/

δB � 32PL3/2187EI
θA � 38PL2/729EI θC � 34PL2/729EI

L/3 … x … L

0 … x … L/3
v � �2Px(19L2 � 27x2)/729EI

L/4 … x … L/2

δmax � 0.01363PL3/EI
δB � 8PL4/729EIθA � 8PL2/243EI

δmax � 31qL4/409EIθA � 7qL3/256EI
�256x4)/12,288EI

v � �q(13L4 � 256L3x �512Lx3

0 … x … L/4
v � �qx(21L3 � 64x2 � 32x3)/768EI

δc � 18.08 mm
δc � �2.14 mm

r � (1 � 15I1/I2)/16
δB � qL4(1 � 15I1/I2)/128EI1;

r � (1 � 7I1/I2)/8
δB � PL3(1 � 7I1/I2)/24EI1;

δ � M0L
2/27EIθB � 0θA � M0L/6EI

δ2 � 0δ1 � Pa2(L � 2a)2/6LEI
θA � Pa(L � a)(L � 2a)/6LEI

δ � M0L
2/16EI

θB � M0L/3EIθA � M0L/6EI

P � 64 kN

δC � 4.10 mmδB � 11.8 mm

δC � 3.36 mmδB � 10.85 mm

δB � 23qL4/648EIθB � 7qL3/162EI
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9.5-14 ,

9.5-15 (a) 
(b) 
(c) for ,

for 

9.5-16

9.5-17

9.5-18 , 

9.5-19

9.5-20

9.5-21

9.5-22

9.5-23 , 

9.5-24

9.5-25 (a) , , 

(b) , , 

(c) (to the
left), (to the right); 

(d) 

9.5-26 (a) , , 

(b) , ,

, 

(c) (to the right),

(to the left); 

(d) 

9.5-27 (a) (b) 

9.5-28 , , . or 

9.6-1 See Table H-1, Case 1

9.6-2 See Table H-1, Case 8

δmax � q(5L4 � 24L2a2 � 16a4)/384EI
θA � q(L3 � 6La2 � 4a3)/24EI

�157.5°� 67.5°112.5°α � 22.5°

δC � 0.00287qL4/EIb/L � 0.403;

LCD �
215L

5
� 0.894L

δD � θCaL
2
b �

5L2M
162EI

δA � �θBaL
2
b �

2L2M
81EI

θC � a 5
81
bML

EI
θD � θC;

θB � θAθA � a�4
81
bML

EI

VC �
2P
3

;VB �
P
3

HB � 0

L � 1.871 LLCD �
114

2

δD � (1/12)ML2/EI
δA � (7/24)ML2/EIθD � θC;

θC �
�ML
6EI

,θB �
ML
3EI

θA �
5

6EI

VC � �VB;VB �
M
L

HB � 0

δ � PL2(2L � 3a)/3EI

δv � Pc2(c � 3b)/3EIδh � Pcb2/2EI

q � 16cEI/7L4

δC � 5.07 mm

δE �
47Pb3

12EI

δ �
6Pb3

EI

δD � 0

M2 � 4200 N # mM1 � 7800 N # m

k � 640 N/m

δ � 19WL3/31,104EI

P/qa � a(4L � a)/3L2

δB � 0P/qa � 9a/8L
P/Q � 8a(3L � a)/9L2;
P/Q � 9a/4L;
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Answers to Problems

9.7-8

9.7-9

9.7-10

,

9.7-11

,

9.7-12 (a) 

for

for 

(b) , 

9.8-1 U � 4bhLσ 2
max/45E

δC �
qL4(3 � 4 ln 2)

8EIA

� ln a1 �
x
L
b d 0 … x … L;

θA �
qL3

16EIA

v � �
qL4

2EIA

c (9L2 � 14Lx � x2)x

8L(L � x)2

0 … x … L,

v� � �
qL3

16EIA

c1 �
8Lx2

(L � x)3 d

a�2820 � 14,641 lna11
9
b b

�
6440x

14,641L
� 1b

δB �
19,683PL3

7,320,500EIA

a 81L
81L � 40x

� 2 ln a1 �
40x
81L
b

v(x) � �
19,683PL3

2000EIA

a�2820 � 14,641 ln a11
9
b b

δA �
19,683PL3

7,320,500EIA

a 81
121

�
40x

121L
b � a 6440x

14,641L
�

3361
14,641

b

v(x) �
19,683PL3

2000EIA

a 81L
81L � 40x

� 2 lnb

δA �
8PL3

EI4

a ln
3
2

�
7

18
b

� ln a2L � x
3L

b d ,

v �
8PL3

EIA

c L
2L � x

�
2x
9L

�
1
9

v �
PL3

24EIA

c7 �
4L(2L � 3x)

(L � x)2 �
2x
L
d ,

δA �
PL3

24EIA
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9.8-2 (a) and; (b) 
(c) 

9.8-3 (a) and (b) 

9.8-4 (a) ; (b) 

9.8-5 (a) ; 
(b) ; 
(c) , 

9.8-6

9.8-7

9.9-1 See Table H-2, Case 7

9.9-2

9.9-3

9.9-4 See Table H-1, Case 8

9.9-5 See Table H-2, Case 2

9.9-6 ,

9.9-7

9.9-8 ,

9.9-9

9.9-10 ,

9.9-11

9.9-12

9.10-1

9.10-2

9.10-3 , 

9.10-4

9.10-5 HE320A

9.10-6

9.10-7 R � 23EIImω2/L3

h � 360 mm

d � 281 mm

σmax � 218WEh/AL

σmax � 102.3 MPaσmax � 4.33 mm

σmax � σst[1 � (1 � 2h/δst)
1/2]

δD � 37qL4/6144EI (upward)

δC � Pa2(L � a)/3EI � P(L � a)2/kL2

δA � MA(2L � 3a)/6EI
θA � MA(L � 3a)/3EI

δC � 31qL4/4096EI

δC � Pb(b � 2h)/2EI
δC � Pb2(b � 3h)/3EI

θA � 7qL3/48EI

δB � L3(5P1 � 16P2)/48EI
δC � L3(2P1 � 5P2)/48EI

δC � Pa2(L � a)/3EI

δD � Pa2b2/3LEI

δB � 2PL3/3EI � 812PL/EA

� 2560M0
2)

U �
L

15,360EI
(17L4q2 � 280qL2M0

δC � 5.0 mmU � 56.2 J
δC � Pa2(L � a)/3EI
U � P2a2(L � a)/6EI

U � π 4EIδ 2/4L3U � 32EIδ 2/L3

U �
q2L3

15EI

U � P2L3/96EI;
δ � PL3/48EI
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Answers to Problems

10.3-4 ,

10.3-5 ,

, 

10.3-6 (a) ,

, ,

;

(b) 

, 

,

, 

10.3-7 (a) , ,

, 

; 

(b) , 

, 

v(x) �
16L4q0 � 24L2q0x

2 � 8Lq0x
3 � 16L4q0 cos1πx

2L2
π 4EI

�La2Lq0

π
�

48Lq0

π 4 b ,

MA �
L

L

0
q(x)x dx � RBL �

2L2q0(π � 2)

π2

RB �
L

L

0
q(x)dx � RA �

2Lq0

π �
48Lq0

π 4

RA �
48Lq0

π 4

v(x) � �
q0x

2(33L4 � 61L3x � 30L2x2 � 2x4)

720EIL2

RB �
19Lq0

120

RA �
61Lq0

120
MA �

11L2q0

120

D�q0a2L
π b

4

sin aπ x
2L
b � 6q0L

π 2 � 4π � 8
π 4

x3

6

�2q0L
2 π 2 � 12π � 24

π 4

x2

2
� q0a2L

π b
3

x
T

MA � �2q0L
2π 2 � 12π � 24

π 4 v �
1

EI

� a6
π2 � 4π � 8

π 4 bq0L

RB � �V(L) � 0.327q0L

� a 2
π � 6

π2 � 4π � 8
π 4 bq0L

RA � V(0) � 0.31q0L

v �
q0

360L2EI
(�x6 � 7L3x3 � 6q0L

4x2)

RB � �V(L) �
13
60

q0L MA �
1

30
q0L

2

RA � V(0) �
7

60
q0L

RB � �V(L) �
11
40

q0L MA �
7

120
q0L

2

RA � V(0) �
9

40
q0L

θB �
qL3

6(kRL � EI)

δB � �
1
8

qL4 �
kRqL5

12(kRL � EI)
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9.11-1
(pos. upward),
(clockwise),
(downward)

9.11-2 (upward),
(counterclockwise),

(upward)

9.11-3 ,

(counterclockwise),

(upward)

9.11-4 (a) (downward); 

(b) (downward)

9.11-5 (a) (downward); 

(b) (downward)

R9.1 C

R9.2 C

R9.3 B

R9.4 C

R9.5 B

R9.6 C

R9.7 D

CHAPTER 10

10.3-1 , ,

10.3-2 , ,

10.3-3 , ,
v � �δBx2(3L � x)/2L3

RA � RB � 3EIδB /L3 MA � 3EIδB /L2

v � �α(T2 � T1)(x)(L � x)/2h

v � �qx2(L � x)2/24EI
MA � MB � qL2/12RA � RB � qL/2

v � �M0x
2(L � x)/4LEI

MA � M0/2RA � �RB � 3M0/2L

δmax �
αT0L

4

12h

δmax �
αT0L

3

6h

δmax �
αT0L

4(212 � 1)

48h

δmax �
αT0L

3

913h

δC �
α(T2 � T1)(2La � a2)

2h

θC �
α(T2 � T1)(L � a)

h

v(x) �
α(T2 � T1)(x

2 � L2)

2h

δB � αL2(T2 � T1)/2h
θB � αL(T2 � T1)/h
v � �α(T2 � T1)(x

2)/2h

δmax � αL2(T2 � T1)/8h
θA � αL(T2 � T1)/2h
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Answers to Problems

10.3-8 (a) , 

, 

(counterclockwise), 

(counterclockwise), 

(b) ,

10.3-9 (a) , 

, 

, 

, 

(b) , 

, 

(counterclockwise),

(counterclockwise), 

10.3-10 , 

, 

, 

v �
1

120LEI
(�q0x

5 � 3q0Lx3 � 2q0L
2x2)

MA �
1
30

q0L
2

RB � �V(L) �
7

20
q0L

RA � V(0) �
3

20
q0L

v �
q0

360L2EI
[x6 � 15L2x4 � 26L3x3

�12L4x2]

MA �
1
15

q0L
2

MB � �
1
20

q0L
2

RB � �V(L) �
7

30
q0L

RA � V(0) �
13
30

q0L

v �
2

π 4EI
[�16q0L

4 cosa πx
2L
b

�8(6 � π)q0L
2x2 � 16q0L

4];
�8(4 � π)q0Lx3

MB � �
�32(π � 3)

π 4 q0L
2

MA � �q0a2L
π b

2

�
16(6 � π)

π 4 q0L
2

RB � �V(L) � a 2
π �

48(4 � π)

π 4 bq0L

RA � V(0) �
48(4 � π)

π 4 q0L

� πx2 � πLx)/π 4EIv � �q0L
2(L2 sin πx/L

v �
1

π 4EI
[�q0L

4 cos aπx
L
b

MA � MB � 2q0L
2/π3,RA � RB � q0L/π

�4q0Lx3 � 6q0L
2x2 � q0L

4];

MB � a12
π 4 �

1
π2b q0L

2

MA � a12
π 4 �

1
π 2b q0L

2

RB � �V(L) � �
24
π 4 q0L

RA � V(0) �
24
π 4 q0L
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10.3-11 , ,
for 

10.3-12 , , , 

10.4-1 ,
,

10.4-2 , , 

10.4-3 , , 

10.4-4 (a) , ,
, ; 

(b) , ,
; (c) 

10.4-5 (a) , , ,

; (b) ,

, ; 

(c) 

10.4-6 (a) , 

, 

;

(b) 

For kR goes to zero: 

For kR goes to infinity: θA �
M0L

4EI

θA �
LM0

4EI
�

LM0

4(3EI)
�

LM0

3EI

θA �
LM0

4EI
�

LM0

4(3EI � LKR)

MB �
LM0kR

6EI � 2LkR

(CCW)

RB � �RA

RA �
M0

L
�

M0kR

2(3EI � LkR)

LAB � 2.088L

θB �
�M0L

18EI
θC �

M0L

36EI

RC � �
2M0

3L
θA �

5
18

M0L

EI

RA �
4M0

3L
HA �

2M0

3L
RB � �

4M0

3L

θC � θA LBC � 2L
θA � �M0L/18EI θB � M0L/9EI

RC � �HARB � �RA

HA � �4M0/3LRA � M0/3L

MA � �
1
8

qL2RB �
17
8

qLRA � �
1
8

qL

MB �
qL2

6
MA �

qL2

3
RA � qL

MA � Pab(L � b)/2L2

RB � Pa2(3L � a)/2L3

RA � Pb(3L2 � b2)/2L3

aL
2

… x … Lb
a9M0

48L
x3 �

9M0

16
x2 �

M0L

2
x �

M0L
2

8
b

v �
1

EI

a0 … x …

L
2
b ,v �

1
EI
a9M0

48L
x3 �

M0

16
x2b

MA �
1
8

M0

L
RA �

9
8

M0

L
RB � �

9
8

M0

L

RA � �RB � 3M0/2L
0 … x … L/2v � �M0x

2(L � 2x)/8LEI
MA � �MB � M0/4
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Answers to Problems

10.4-20 ,
,

10.4-21

10.4-22

10.4-23 , ,

10.4-24

10.4-25 (a) , ,
; (b) 

10.4-26 , ,

10.4-27 , ,

10.4-28 (a) ; 
(b) , ; 
(c) For , 

10.4-29 (a) ; 

(b) ; 

(c) Point C is below points A and B by the
amount 0.01307 qL4/EI

10.4-30 , ,

10.5-1

10.5-2 (a) , 

, 

;�
α (T2 � T1)L

3

2h
a 3EIk

3EI � L3k
b

MA � RBL

RB �
α (T2 � T1)L

2

2h
a 3EIk

3EI � L3k
b

RA � �
α (T2 � T1)L

2

2h
a 3EIk
3EI � L3k

b

S �
243ESEWIAHα(¢T )

4AL3ES � 243IHEW

σmax � 19q0L
4/7680EI � 0.00891 mm

σmax � 13.4 MPaMmax � 19q0L
2/256

Mmax � qL2(3 � 212)/2 � 0.08579qL2

d2/d1 � 14 48 � 1.682

(Mmax)pos� 19qL2/648a � b � L/3
MA � qL2/12b/L � 1.0

MA � MB � qb(3L2 � b2)/24L

RC � 0.026 kN
RB � 12.45 kNRA � 12.53 kN

Mmax �
35
128

PL

HC � �
29
64

PHA � �
35
64

P

Mmax � 13PL/32MA � 13PL/32
HA � PVA � VC � 3P/32

k � 48EI(6 � 512)/7L3 � 89.63EI/L3

MDE � 9.66 kN # m
MAB � 26.0 kN # mF � 14.47 kN

(MCD)max � 5qL2/64 � 8.0 kN # m
(MAB)max � 121qL2/2048 � 6.05 kN # m;

σ � 3.14 MPa

MB � �M0a(3b � L)/L2

MA � M0b(3a � L)/L2

RA � �RB � 6M0ab/L3
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For kR goes to 6EI/L: 

10.4-7 (a) ,

, , , ; 

(b) , , 

, ; 

(c) , , , 

, , ,

, , 

10.4-8

10.4-9 , , 

10.4-10 , 

10.4-11 ,

10.4-12 , ,

10.4-13 downward, 

upward,

clockwise

10.4-14

10.4-15 (a) ; 
(b) , 

10.4-16 , ,

10.4-17 (a) , ,
; (b) 

10.4-18 , 

10.4-19 To close the gap requires q � 48 kN/m
which gives , 

, 

48 kN/m,MB(q) � (�q/8) � 18 for q Ú

MB(q) � (�1/2)(q) for q … 48 kN/m

MB � �24 kN # m

RB � RC � 11qL/10RA � RD � 2qL/5

Mmax � PL/2MA � 3PL/17
RD � RE � 20P/17RA � �23P/17

MA � 7qL2/48
RB � 17qL/48RA � 31qL/48

MA � 3.74 kN # mRA � 4.78 kN
RD � 2.12 kN

RB � 6.44 kN

MA �
5
34

PL � 3.53 kN # m

RB � RA � P � 13.18 kN

RA �
11
17

P � 5.18 kN

RC � 13qL/16
RB � 33qL/16RA � qL/8

MA � MB � 5q0L
2/96

RA � RB � q0L/4

MB �
7
12

qL2RA � 2qL

MA �
7

12
qL2RB �

17
12

qLRA �
7
12

qL

tAB/tCD � LAB/LCD

θD � θA θB �
M0L

12EI
θC � θB

VC �
�M0

L
HD � HA θA �

�M0L

24EI

VB �
M0

L

θC � �θB

HA �
M0

L
HB � �2

M0

L

θA �
�M0L

16EI
θD � �θA

θB �
M0L

8EI

HD � �HAVC � 0VB � 0HB � 0

HA �
3
2

M0

L

θA �
LM0

4EI
�

LM0

4 c3EI � La6EI
L
bd

�
5LM0

18EI
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Answers to Problems

(b)

(upward), 

, 

(counterclockwise)

10.5-3

(upward), 

(downward), 

(counterclockwise)

10.5-4 (a) 

(downward), 

(upward), 

(upward); 

(b) (downward), 

(upward), 

(upward)

10.5-5

(downward), 

(upward), 

RA � �RB � �
3EIα(T2 � T1)

2hL

a 3EIk
36EI � L3k

b
RA � �

1
4

RB �
α(T1 � T2)L

2

2h

RB � �
α(T1 � T2)L

2

h
a 6EIk

36EI � L3k
b

RC �
9Elα (T1 � T2)

2Lh

RA �
3Elα(T1 � T2)

2Lh

RB � �
6Elα(T1 � T2)

Lh

a 9EIk
36EI � L3k

b
RC � �

3
4

RB �
α(T1 � T2)L

2

2h

a 3EIk
36EI � L3k

b
RA � �

1
4

RB �
α(T1 � T2)L

3

2h

a 6EIk
36EI � L3k

b
RB � �

α(T1 � T2)L
2

h

a 3EIk
3EI � L3k

b
MA � RBL �

α(T2 � T1)L
3

2h

RB �
α(T2 � T1)L

2

2h
a 3EIk

3EI � L3k
b

a 3EIk
3EI � L3k

b
RA � �RB � �

α(T2 � T1)L
2

2h

MA � RBL �
3EIα(T2 � T1)

2h

RB �
3EIα(T2 � T1)

2hL
(downward)

1087

(upward)

10.6-1 (a) , ; 
(b) 4.32, 1.08, and 0.48 MPa

10.6-2 (a) , , ;
(b) , ; 
(c) , ,

R10.1 B

R10.2 B

R10.3 B

R10.4 D

R10.5 B

R10.6 D

R10.7 A

CHAPTER 11

11.2-1

11.2-2 (a) (b) 

11.2-3

11.2-4 (a) 

(b) 

11.2-5

11.2-6

11.2-7

11.3-1 (a) (b) 

11.3-2 a) (b) 

11.3-3 (a) (b) 

11.3-4 Mallow � 1143 kN # m

a 9EIk
36EI � L3k

b
RC � �

3
4

RB �
α(T1 � T2)L

2

2k

Pcr � 319 kN; Pcr � 120.1 kN

Pcr � 176.7 kN; Pcr � 10.86 kN

Pcr � 465 kN; Pcr � 169.5 kN

Pcr �
7
4

βL

Pcr �
3
5

βL

Pcr �
3βR

L

Pcr �
βL2 � 20βR

4L

Pcr �
1L � a21βa2 � βR2

aL
;

Pcr � 6βR/L

Pcr �
βa2 � 2βR

L
Pcr �

βa2 � βR

L
;

Pcr � βR/L

σt � 0.741 MPa
λ � 0.01112 mm σb � 117.2 MPa

σb � qhL2/16I
σt � 17q2L6/40 320EI2

λ � 17q2L7/40 320E2I2

H � π2EAδ 2/4L2 σt � π2Eδ2/4L2
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Answers to Problems

11.5-1

11.5-2

11.5-3 For

11.5-4 {arccos[5/(5 � δ )]}2, in which
and

11.5-5 P � 163.61 {arccos[5/(5 � δ )]}2, in which 
P � kN and δ � mm; P � 248 kN when 
δ � 10 mm

11.5-6

11.5-7

11.5-8

11.5-9

11.5-10

11.5-11

11.5-12

11.5-13 (a) 
(b) 

11.6-1 (a) (b) 

11.6-2

11.6-3

11.6-4 (a) (b) 

11.6-5 (a) (b) 

11.6-6

11.6-7 (a) (b) 

11.6-8 (a) (b) 

11.6-9 (a) (b) 

11.6-10 (a) (b) 

11.6-11 (a) (b) 

11.6-12 (a) (b) 

11.6-13 (a) (b) 

11.6-14 (a) (b) σmax � 120.4 MPa; P2 � 113.5 kN

σmax � 100.2 MPa; n � 2.24

σmax � 68.6 MPa; Pallow � 268 kN

σmax � 94.3 MPa; Lmax � 4.05 m

σmax � 66.5 MPa; Pallow � 779 kN

d2 � 131 mm

σmax � 63.7 MPa; Pallow � 18.98 kN

σmax � 38.8 MPa; Lmax � 5.03 m

bmin � 106.3 mm

Pallow � 37.2 kN

σmax � 116.8 MPa; Lmax � 1.367 m

Mmax � 4.23 kN # m, ratio � 0.47
q0 � 3.33 kN/m;

Tmax � 8.29 kN

Lmax � 3.86 m

Lmax � 2.21 m

δ � e1sec kL � 12, Mmax � Pe sec kL

Lmax � 3.69 m

Lmax � 3.91 m

Pallow � 57.9 kN

δ � 10 mm
P � kN δ � mm; P � 884 kN when
P � 583.33

1sin 1.721 x/L2 � cos 1.721x/L
P � 0.3Pcr: M/Pe � 1.162

δ � 8.87 mm, Mmax � 2.03 kN # m

δ � 5.98 mm, Mmax � 231 N # m

σmax � 56.6 MPa; n � 2.54

σmax � 98.9 MPa; P2 � 459 kN

σmax � 96.1 MPa; n � 3.06

1088

11.3-5

11.3-6 (a) (b) 

11.3-7 (a) (b) 

11.3-8

11.3-9

11.3-10 (a) 
(b) 

11.3-11

11.3-12

11.3-13

11.3-14

11.3-15

11.3-16

11.3-17

11.3-18

11.3-19 (a) (b) 
(c) 

11.3-20 (a) ; 
(b) 

11.3-21

11.4-1

11.4-2

11.4-3

11.4-4

11.4-5

11.4-6

11.4-7 (a) (b)

11.4-8

11.4-9

11.4-10

11.4-11 (b) Pcr � 13.89 EI/L2

tmin � 10.0 mm

Pcr � 4π 2EI/L2, v � δ 11 � cos 2π x/L2/2

Pallow�6.57 kN, 1.64 kN, 13.45 kN, 26.3 kN

Pallow � 323 kN, 80.7 kN, 661 kN, 1292 kN

Pcr � 62.2 kN, 15.6 kN, 127 kN, 249 kN

Pcr � 831 kN, 208 kN, 1700 kN, 3330 kN

Pcr � 70.3 kN

qmax � 1.045 kN/m
Ib,min � 2411 cm4

s � 70 mm, 869 mm
qmax �1.045 kN/m; Ib,min� 2411 cm4;

θ � arctan 0.5 � 26.57°

Wcr � 203 kN

Pcr � 426 kN

tmin � 4.53 mm

Wmax � 124 kN

Fallow � 164 kN

Pallow � 710 kN

P1 :P2 :P3 � 1.000:1.047:1.209

Pcr � 3 π 3Er4/4L2;
Pcr � 11 π 3Er4/4L2

h/b � 2

¢T � π2I/αAL2

Qcr �
2π2EI

L2 ; Mcr �
3dπ2EI

L2

Qcr �
π2EI
L2 ; Qcr �

2π2EI
9L2

Qallow � 109.8 kN

Pcr � 295 kN

Pcr � 447 kN, 875 kN, 54.7 kN, 219 kN

a � 0 mm
Qcr � 13.41 kN; Qcr � 35.8 kN,

Tallow � 18.1 kN
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Answers to Problems

R11.1 D

R11.2 B

R11.3 D

R11.4 A

R11.5 D

R11.6 A

R11.7 B

R11.8 B

R11.9 B

R11.10 C

R11.11 D

CHAPTER 12

12.3-2

12.3-3

12.3-4

12.3-5

12.3-6

12.3-7

12.3-8

12.4-6

12.4-7

12.4-8

12.4-9

12.5-1

12.5-2

12.5-3

12.5-4

12.5-5

12.5-6

12.5-7

12.5-8 b � 250 mm

Ixc
� 656 cm4, Iyc

� 237 cm4

Ixc
� 106 � 106 mm4

Iyc
� 14,863 cm4Ixc

� 204,493 cm4,

I2 � 405 � 103 mm4

Ixc
� 2.82 � 106 mm4

Ic � 11a4/192

Ib � 72,113 cm4

r2 � 7.42 cmr1 � 18.90 cm,
I2 � 9455 cm4,I1 � 61, 390 cm4,

rx � ry � 80.1 mm
Ix � Iy � 194.6 � 106 mm4,

Ix � 13.55 � 106 mm4,
Iy � 4.08 � 106 mm4

Ix � 518 � 103 mm4

x � 137 mm, y � 132 mm

x � 24.5 mm, y � 49.5 mm

y � 52.5 mm

y � 340 mm

2c2 � ab

y � 27.5 mm

x � y � 5a/12
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12.6-1

12.6-2

12.6-3

12.6-4

12.6-5

12.7-2

12.7-3

12.7-4

12.7-5

12.7-6

12.7-7

12.8-1

12.8-2

,

12.8-3

12.8-4 ,

12.8-5 ,

12.8-6

12.9-1 (a) (b) 

(c) 

12.9-2 Shows that two different sets of principal

axes exist at each point

12.9-3 θp1
� �29.9°, θp2 � 60.1°,

I1 � 121.5 � 106 mm4,

I2 � 34.7 � 106 mm4

1 … a/b 6 15

c � 2a2 � b2/2; a/b � 15;

Ix1
� 8.75 � 106 mm4,

Iy1
� 1.02 � 106 mm4,

Ix1y1
� �0.356 � 106 mm4

Ix1
� 480.2 cm4, Iy1

� 145.8 cm4

Ix1y1
� 181.2 cm4

Ix1
� 12.44 � 106 mm4

Iy1
� 9.68 � 106 mm4,

Ix1y1
� 6.03 � 106 mm4

Id � 14,696 cm4

Ix1y1
�

b2h2(h2 � b2)

12(b2 � h2)

Iy1
�

bh(b4 � h4)

12(b2 � h2)

Ix1
�

b3h3

6(b2 � h2)
,

Ix1y1
� 0Ix1

� Iy1
� b4/12,

1IP2C � r41176 � 84π � 9π22/[7214 � π2]

Ixc yc
� �230 cm4

Ixy � 24.3 � 106 mm4

I12 � �540 cm4

Ixy � t212b2 � t22/4
b � 2r

Ixy � r4/24

IP � bh1b2 � h22/24

IP � 32,966 cm4

1IP2C � r419α2 � 8 sin2 α2/18α

IP � bh1b2 � 12h22/48
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Answers to Problems

12.9-7

12.9-8

12.9-9

θp1 � 16.85°, θp2 � 106.85°,

θp1 � 75.3°, θp2 � �14.7°,

I1 � 6.28 � 106 mm4,

I2 � 0.66 � 106 mm4

θp1 � 74.08°, θp2 � �15.92°,

I1 � 8.29 � 106 mm4,

I2 � 1.00 � 106 mm4

I1 � 0.2390b4, I2 � 0.0387b4

1090

12.9-4

12.9-5

12.9-6

θp1 � �8.54°, θp2 � 81.46°,

θp1 � 32.63°, θp2 � 122.63°,

I1 � 8.76 � 106 mm4,

I2 � 1.00 � 106 mm4

θp1 � 37.7°, θp2 � 127.7°,

I1 � 5.87 � 106 mm4,

I2 � 0.714 � 106 mm4

I1 � 17.24 � 106 mm4,

I2 � 4.88 � 106 mm4
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unsymmetric beams, 551–558
Bending moment, 364–401, 544, 911, 934

column with eccentric axial loads, 934
diagrams, 387–399
distributed load, 385
double symmetric beam, 544
equation and column, 911
relationships between loads and shear

forces, 383–386
shear-force, 387–399
types of beams, loads and reactions,

366–372
Biaxial stress, 615, 620, 644, 651–652, 

696–697, 701
Hooke’s Law, 644
spherical pressure vessel, 696–697
strain energy density, 651–652

Bifurcation point, 905
Bolts, 165
Box beam, 472
British Imperial System, 1009
Brittle, 43
Buckling, 70, 74, 214, 329, 442, 694, 

902–911, 914, 947
angle of twist, 329
columns, 902–909
critical load, 903–905, 914
differential equation, 911
elastoplastic analysis, 214
Euler, 914, 947
spherical pressure vessels, 694
and stability, 902–909

Built-up beams, 417, 472–475
glulam, 472
plate girder, 472
shear flow, 472–473
stresses, 472–475
wide flange, 474
wood box, 474

C
Cables, 126
Cantilever beam, 366–374, 477, 709, 795,

805, 851–863
eccentric axial loads, 477
propped, 371, 851, 854–861
shear center, 559

Castigliano’s theorem, 805–816
application, 807–808
deflection of beams, 805–816
integral sign, 810–811
modified, 810

Celsius temperature scale, 1017
Center of flexure, 559
Centroids, 969–993

centroids of composite areas, 973–975
centroids of plane areas, 970–972
composite areas, 973–975
and moments of inertia, 969–993

A
Absolute weight, 1012
Acceleration of gravity, 195, 1010, 

1013–1016
Allowable loads, 68–73
Allowable stresses, 68–73
Alternating (reverse) loads, 199–200
Aluminum, 42–45, 125, 200, 441

alloys, 42
structural sections, 441

Aluminum Association, 441, 1004
American Forest and Paper Association,

441, 1004
American Institute of Steel Construction

(AISC), 441, 1004, 1037
Analysis of stress and strain, see Plane

stress
Angle of twist, 265–267, 271, 280–282, 

316, 329
bar of linearly elastic material, 271
and shear stress distribution, 316
thin-walled tubes, 329

Angle section, 570
Angles of rotation beams, 758
Angular speed, 299, 300
Apparent weight, 1012
Applications of plane stress, 693–735. 

See also Plane stress
Areas, 3, 28, 125–127, 612, 707, 970–985

composite, 973–979
plane, 979–985

Atmospheric pressure, 1014
Axial force, 27, 31–32
Axial loads, 3–4, 27, 123–221, 478

bars, 134
beams limitations, 478
changes in lengths, 124–133
changes in lengths under nonuniform

conditions, 134–141
elastoplastic analysis, 214–219
impact loading, 191–198
nonlinear behavior, 209–213
repeated loading and fatigue, 199–200
statically indeterminate structures, 

142–152
stress concentrations, 201–208
stresses in beams, 476–481
stresses on inclined sections, 168–179
thermal effects, misfits, and prestrains,

153–167
Axial rigidity, 126
Axis of symmetry, 985

B
Bars, 2–3, 70, 123–127, 134–136, 183–184,

192–194, 210–221, 271, 273, 282
angle of twist, 271
changes in lengths, 210–211

consisting of prismatic segments, 135
continuously varying loads or 

dimensions, 135
with intermediate axial loads, 134
limitations of circular cross section, 273
linearly elastic material, 271
made of linearly elastic materials, 282
maximum elongation, 192–193
maximum stress, 193–194
nonuniform, 183–184
shear strains, 267
in tension, 173

Beams, 14, 366–372, 416–489, 524–586
axial loads limitations, 478
axial load stresses, 476–481
concentrated load, 386
constant strength, 449
cross section, 422
cross sections, 431
curvature shortening, 881
deflection, 755–825
deflection curve, 758, 779
deflections and slopes, 1045–1050
elastoplastic material, 576, 579
finding reactions, 368
fully stressed, 449
Glulam, 472
hole at neutral axis, 482
horizontal reactions, 882
linearly elastic material limitations, 458
maximum stresses, 707–715
moment-curvature relationship, 536
normal stresses, 536
overhang, 366–367, 372
plastic modulus and shape factor, 579
plastic moment and neutral axis, 576
principle of superposition, 780
properties, 431
rectangular cross section, 482, 579
shapes and relative efficiency, 442
shear flow, 472
shear forces and bending moments,

366–372
shear stresses, 561–563
small angles of rotation, 758
stresses, 416–489, 524–586
structure, 14
thin-walled open cross sections, 561–563
transformed, 535–543
types, 366–372
wide-flange shape, 581
wide-flange shear stresses, 564–567
yield moment, 576

Bearing stresses, 47
Bending, 364–401, 482–486, 529, 551–558,

800–804
pure and nonuniform, 418
sandwich beams, 529
strain energy, 800–804
stress concentration in, 482–486
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462–464
cross section, 273, 462–464
limitations of bars, 273
shear stress, 462–464
transmission of power, 299–303
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cylindrical pressure vessels, 700
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Columns, 900–951
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limitations, 530
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analysis by differential equations, 
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differential equations of deflection
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expression for curvature, 760
integration, 761–777
load equation, 772–777
method of superposition, 778–785
moment-area method, 786–794
nonprismatic beams, 759–760, 795–799
prismatic beams, 760
produced by impact, 817–819
shear-force equation, 772–777
small angles of rotation, 758
statically indeterminate beams, 

853–859
strain energy of bending, 800–804
tables of beam deflections, 779
temperature effects, 819–823
use of fictitious load, 808–810

Derivatives, 1027
Design

axial loads and direct shear, 74–79
bending stresses, 440–448

Differential equation of deflection, 756–760,
853–859

column buckling, 911
deflection of beams, 756–760
fixed-end beam, 875–876
statically indeterminate beams, 

853–859
Direct shear, 59
Displacement method, 142
Displacements caused by single load, 184
Distributed loads, 7–8, 368, 383–385, 

396–398, 759, 1015
bending moment, 385
deflection curve, 779
shear force, 383
shear stresses, 457

Double shear, 58
Doubly symmetric beams

bending moments, 544
inclined loads, 544–550
load inclination, 545
neutral axis, 545
normal stresses, 544
shear center, 560

Doubly symmetric shapes, 430

neutral axis, 528
normal stresses, 529
strains and stresses, 526

Compression, 3–83, 943
allowable stresses and allowable loads,

68–73
design for axial loads and direct shear,

74–79
elasticity, plasticity and creep, 45–51
Hooke’s Law, 52–53
ideal column, 943
linear elasticity, 52–56
mechanical properties of materials, 

37–45
mechanics of materials, 4–6
normal stress and strain, 27–36
Poisson’s ratio, 53–54
shear stress and strain, 57–60
strain, 30
stresses, 28
stress-strain diagram, 943
tension, compression, and shear, 44–45
test, 38

Concentrated load, 368, 386–387, 801
beam element, 386
deflection curve, 801
shear-force and bending-moment 

diagrams, 387
Continuous beam, 853
Coordinate axes, 418
Couple, 7, 60–61, 264, 366–376, 383

bending moment, 366–372
shear force, 383

Creep, 44–51
tension, compression, and shear, 

45–51
Critical loads, 5, 903–920

columns, 903
pinned end column, 914

Critical stress, 926
Cross sections, 27, 318, 422, 428–429, 

453–464, 560–563
beam, 422
circular shear stress, 462–464
equilateral triangular, 318
hollow circular, 463
maximum stresses, 429
moment inertia, 428
rectangular shear stresses, 453–461
shear center, 560
shear stresses in beams, 561–563

Curvature, 416–431, 528–529, 758, 800, 
873, 881–885 

beam, 419–421
determine, 881
moments, 528–529
shortening, 881–885
stresses in beams, 419–420
temperature effects, 873

Cylindrical pressure vessels, 700–706
circumferential stress, 700
longitudinal stress, 701
plane stress, 700–706
stresses at inner surface, 702
stresses at outer surface, 701
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J
Joule, 181, 185, 300, 1011, 1012

K
Kelvin temperature, 1017
Kinetic energy, 191–195, 198

L
Lateral contraction, 41
Limitations, 195
Linear elastic material, 282

angle of twist, 271
behavior, 182
limitations of beams, 458
tension, compression, and shear, 52–56

Line of action, 31–32
Loads, 75

allowable, 63–73
axially loaded members, 199–200
displacement diagram, 180
double symmetric beam, 545
and fatigue, 199–200
form of couples, 387
inclination, 545
shear forces and bending moments,

366–372
shear forces and bending moments 

relations, 383–386
structures, 1014
suddenly applied, 194–195

Logarithms, 1024
Longitudinal displacements, 881–885
Longitudinal strains, 421–425
Longitudinal stress, 701
Lower flange, 567

M
Margin of safety, 59
Materials, 1051–1055
Mathematical constants, 1024
Mathematical formulas, 1025–1030
Mechanics of materials, 3–80, 969–989

tension, compression, and shear, 4–6,
37–45

Metric system, 1009
Misfits, 164

axially loaded members, 153–167
Modified Castigliano’s theorem, 810
Modulus of elasticity, 40
Modulus of rigidity, 62
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Ductility, 42
Dummy-load method, 810
Dynamic load, 191
Dynamic test, 38

E
Eccentric axial loads, 477, 931–935

cantilever beam, 477
columns, 931–935
maximum bending moment, 934

Effects of shear strains
rectangular beam, 459

Elastic column behavior
columns, 941–942

Elastic core, 576
Elasticity, 3, 40, 45–51, 125–127, 298–299,

529–530
composite beam, 529–530
shear modulus, 62
tension, compression, and shear, 45–51

Elastoplastic analysis, 214–219
Elastoplastic bending, 576–583
Elastoplastic material, 210, 214, 423, 

576, 579
beam, 576, 579

Electrical-resistance strain gage, 661
Elliptical cross section, 317
Elongation, 30, 37, 40–42, 124–133

axially loaded members, 124–133
linearly elastic behavior, 182–183

Energy, 1014
Equations of compatibility, 860
Equations of equilibrium, 860
Equilateral triangular cross section, 318
Equilibrium, 4–6, 8, 14, 26, 60, 214–215,

281, 370–371, 901–940
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equations, 6, 127, 144, 860
forces, 370
moment, 371
static, 4, 6, 8, 14, 26
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Euler buckling, 924, 947
Exponents, 1024
Expression for curvature, 760
Extensometer, 37

F
Factors of safety, 3, 68–69
Fatigue, 199–200
Fictitious load, 808–810
Filament-reinforced material, 44
First moment, 457

area theorem, 786
composite areas, 973

Fixed-end beam, 852
differential equation, 875–876

Flexibility, 124–125
bars, 271
method, 142, 144, 811, 863

Flexure formula, 417, 428–431, 443
beam, 431, 707
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composite beam, 526–529
doubly symmetric beams, 544–546
nonprismatic beam, 449
rectangular cross section, 453–458

Force, 7–8, 142, 860
displacement relations, 142, 860
method, 142

Free-body diagrams, 8–13
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Fully stressed beams, 449

G
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Gage pressure, 694
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Glulam beam, 472
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Hooke’s Law, 182, 427
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Inelastic buckling, 941
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Moment-area method, 786–794
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Moment-curvature relationship, 427, 1014
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transformed beam, 536
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deflection of beams, 795–799
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757, 800
Radius of gyration, 916, 936, 977
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bending moments, 366–372
Rectangular beam
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stress trajectories, 709
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properties, 1033–1038

Plane frame structure, 14
Plane of bending, 418
Plane strain

versus plane stress, 653
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transformation equations, 612
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Plastic modulus and shape factor, 579
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transmission of power by circular, 
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Shanley theory, 947

inelastic buckling, 946
Shape factor, 579
Shear, 3–83
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68–73

design for axial loads and direct shear,
74–79

elasticity, plasticity and creep, 45–51
formula derivation, 454
Hooke’s Law, 52–53, 62
linear elasticity, 52–56
mechanical properties of materials, 

37–45
mechanics of materials, 4–6
normal stress and strain, 27–36
Poisson’s ratio, 53–54
shear stress and strain, 57–60
strain-energy density, 310
torsion, 291–297
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channel section, 568
double symmetric cross section, 560
stresses in beams, 568–575
symmetric cross section, 560
thin-walled open cross sections, 560
thin-walled open sections, 568–575
two intersecting narrow 

rectangles, 573
unsymmetric cross section, 560

Shear flow, 324, 473
beam, 472
formula, 473
stresses in beams, 472–475
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Shear force, 364–401
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diagrams, 387–399

concentrated load, 387
distributed load, 383
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383–386
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vertical and horizontal, 453
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stresses at outer surface, 696
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Statically determinate structures, 4, 6, 142,
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reactions, 368, 372, 1021
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Mohr’s circle, 61
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normal stress, 426–439
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pure shears, 291–297
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shear-center concept, 559–560
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Tensile-test machine, 37
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torsion of noncircular prismatic shafts,

315–323
transmission of power by circular

shafts, 299–303
Torsional deformations of circular bar,

265–267
Toughness, 185
Trajectories, 709
Transformation equations, 613, 

655–659, 989
application, 655
moments and products of 

inertia, 989
plane strain, 655–659
plane stress, 613

Transformed beam, 535–543
moment-curvature relationship, 536
neutral axis, 535
stresses, 536

Transmission of power by circular shafts,
299–303

Trial-and-error procedure, 949
Triaxial stress 649–653

Hooke’s law, 650
plane stress, 649–653
shear stresses, 649
strain-energy density, 651
volume change, 651

Trigonometric functions, 1026
True strain, 40
True stress, 39
Truss structure, 14
Tubes, 324–331
Turnbuckles, 165
Twisting moments, 264
Two intersecting narrow rectangles, 573

U
Unbalanced I-beam, 559
Uniaxial stress, 31, 174, 644

Hooke’s law, 644
tension, compression, and shear, 31

Uniform load, 389
Uniform stress distribution, 31–32
United States Customary System (USCS),

1009, 1013
Unsymmetric beams 551–558

bending, 551–558
neutral axis, 551
procedure for analyzing, 553

Unsymmetric cross section, 560
Upper flange, 565

V
Volume change, 644–645

allowable stresses and allowable loads,
68–73

applied forces, 7–8
bar, 173
compression, 44–45
design for axial loads and direct shear,

74–79
elasticity, plasticity and creep, 45–51
equality of shear stresses on 

perpendicular planes, 60–61
equilibrium equations, 6
free-body diagrams, 8–13
Hooke’s Law, 52–53, 62
internal forces, 13–14
limitations, 29–30, 54
linear elasticity, 52–56
line of action of axial forces, 31–32
mechanical properties of materials, 

37–45
mechanics of materials, 4–6
normal strain, 30–31
normal stress and strain, 27–36
Poisson’s ratio, 53–54
reloading of material, 46–47
safety factors, 68–69
shear strain, 61
shear stress and strain, 57–60
sign conventions for shear stresses and

strains, 61–62
stress resultants, 13–14
tables of mechanical properties, 45
uniaxial stress and strain, 31
uniform stress distribution, 31–32

Thermal effects
axially loaded members, 153–167
strains, 153
stress, 153

Thermal expansion, 153
Thin-walled open cross sections, 319

shear center, 560
shear flow, 563
stresses in beams, 568–575

Thin-walled tubes
angle of twist, 329
limitations, 329
strain energy, 327
torsion, 324–331

Third principal stress, 621
Torque, 264, 1014
Torsion, 263–337

circular bars of linearly elastic materials,
268–279

constant and thin-walled tubes, 327
formula, 269–270, 325
noncircular prismatic shafts, 

315–323
nonuniform, 280–290, 309
nonuniform torsion, 280–290
statically indeterminate torsional 

members, 304–307
strain energy in torsion and pure shear,

308–314
stress concentrations in torsion, 

332–335
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Yield load, 214–219
Yield moment, 576–582

beam of elastoplastic material, 576
Yield point, 40–42, 576
Young’s modulus, 53

Z
Z-section, 573
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W
Watt, 1014
Web of wide-flange beam 465–471, 566

limitations, 468
shear force, 467
shear stresses, 465–471, 566

Welded steel plate girder, 474
Wide-flange beam, 474, 564–567, 581, 

710–712, 945
calculating first moment, 474
maximum shear stresses, 711
principal stresses, 711
reduced modulus, 945

shape, 581
shear stresses, 564–567

Wire rope, 126
Wood

beams, 441
box beam, 474

Work, 1014

Y
Yield displacement, 214, 216
Yielding, 40–44

elastoplastic analysis, 214
linear elasticity, 52
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