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Fundamentals of Kinematics

Vectors and coordinate frames are human-made tools to study the motion of particles
and rigid bodies. We introduce them in this chapter to review the fundamentals of
kinematics.

1.1 COORDINATE FRAME AND POSITION VECTOR

To indicate the position of a point P relative to another point O in a three-dimensional
(3D) space, we need to establish a coordinate frame and provide three relative coordi-
nates. The three coordinates are scalar functions and can be used to define a position
vector and derive other kinematic characteristics.

1.1.1 Triad

Take four non-coplanar points O , A, B , C and make three lines OA, OB , OC . The
triad OABC is defined by taking the lines OA, OB , OC as a rigid body. The position
of A is arbitrary provided it stays on the same side of O . The positions of B and C are
similarly selected. Now rotate OB about O in the plane OAB so that the angle AOB
becomes 90 deg. Next, rotate OC about the line in AOB to which it is perpendicular
until it becomes perpendicular to the plane AOB . The new triad OABC is called an
orthogonal triad .

Having an orthogonal triad OABC , another triad OA′BC may be derived by moving
A to the other side of O to make the opposite triad OA′BC . All orthogonal triads can
be superposed either on the triad OABC or on its opposite OA′BC .

One of the two triads OABC and OA′BC can be defined as being a positive triad
and used as a standard . The other is then defined as a negative triad . It is immaterial
which one is chosen as positive; however, usually the right-handed convention is chosen
as positive. The right-handed convention states that the direction of rotation from OA
to OB propels a right-handed screw in the direction OC . A right-handed or positive
orthogonal triad cannot be superposed to a left-handed or negative triad. Therefore,
there are only two essentially distinct types of triad. This is a property of 3D space.

We use an orthogonal triad OABC with scaled lines OA, OB , OC to locate a point
in 3D space. When the three lines OA, OB , OC have scales, then such a triad is called
a coordinate frame.

Every moving body is carrying a moving or body frame that is attached to the body
and moves with the body. A body frame accepts every motion of the body and may
also be called a local frame. The position and orientation of a body with respect to
other frames is expressed by the position and orientation of its local coordinate frame.
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4 Fundamentals of Kinematics

When there are several relatively moving coordinate frames, we choose one of them
as a reference frame in which we express motions and measure kinematic information.
The motion of a body may be observed and measured in different reference frames;
however, we usually compare the motion of different bodies in the global reference
frame. A global reference frame is assumed to be motionless and attached to the ground.

Example 1 Cyclic Interchange of Letters In any orthogonal triad OABC , cyclic
interchanging of the letters ABC produce another orthogonal triad superposable on the
original triad. Cyclic interchanging means relabeling A as B , B as C , and C as A or
picking any three consecutive letters from ABCABCABC . . . .

Example 2 � Independent Orthogonal Coordinate Frames Having only two types
of orthogonal triads in 3D space is associated with the fact that a plane has just two
sides. In other words, there are two opposite normal directions to a plane. This may
also be interpreted as: we may arrange the letters A, B , and C in just two orders when
cyclic interchange is allowed:

ABC , ACB

In a 4D space, there are six cyclic orders for four letters A, B, C , and D :

ABCD, ABDC , ACBD, ACDB , ADBC , ADCB

So, there are six different tetrads in a 4D space.
In an nD space there are (n − 1)! cyclic orders for n letters, so there are (n − 1)!

different coordinate frames in an nD space.

Example 3 Right-Hand Rule A right-handed triad can be identified by a right-hand
rule that states: When we indicate the OC axis of an orthogonal triad by the thumb of
the right hand, the other fingers should turn from OA to OB to close our fist.

The right-hand rule also shows the rotation of Earth when the thumb of the right
hand indicates the north pole.

Push your right thumb to the center of a clock, then the other fingers simulate the
rotation of the clock’s hands.

Point your index finger of the right hand in the direction of an electric current.
Then point your middle finger in the direction of the magnetic field. Your thumb now
points in the direction of the magnetic force.

If the thumb, index finger, and middle finger of the right hand are held so that
they form three right angles, then the thumb indicates the Z -axis when the index finger
indicates the X -axis and the middle finger the Y -axis.

1.1.2 Coordinate Frame and Position Vector

Consider a positive orthogonal triad OABC as is shown in Figure 1.1. We select a unit
length and define a directed line ı̂ on OA with a unit length. A point P1 on OA is at
a distance x from O such that the directed line

−−→
OP1 from O to P1 is

−−→
OP1 = xı̂. The
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Figure 1.1 A positive orthogonal triad OABC , unit vectors ı̂, ĵ , k̂, and a position vector r with
components x , y , z .

directed line ı̂ is called a unit vector on OA, the unit length is called the scale, point
O is called the origin , and the real number x is called the ı̂-coordinate of P1. The
distance x may also be called the ı̂ measure number of

−−→
OP1. Similarly, we define the

unit vectors ĵ and k̂ on OB and OC and use y and z as their coordinates, respectively.
Although it is not necessary, we usually use the same scale for ı̂, ĵ , k̂ and refer to OA,
OB , OC by ı̂, ĵ , k̂ and also by x , y , z .

The scalar coordinates x , y , z are respectively the length of projections of P on
OA, OB , and OC and may be called the components of r. The components x , y , z are
independent and we may vary any of them while keeping the others unchanged.

A scaled positive orthogonal triad with unit vectors ı̂, ĵ , k̂ is called an orthogonal
coordinate frame. The position of a point P with respect to O is defined by three
coordinates x , y , z and is shown by a position vector r = rP :

r = rP = xı̂ + yĵ + zk̂ (1.1)

To work with multiple coordinate frames, we indicate coordinate frames by a capital
letter, such as G and B , to clarify the coordinate frame in which the vector r is
expressed. We show the name of the frame as a left superscript to the vector:

Br = xı̂ + yĵ + zk̂ (1.2)

A vector r is expressed in a coordinate frame B only if its unit vectors ı̂, ĵ , k̂ belong
to the axes of B . If necessary, we use a left superscript B and show the unit vectors
as B ı̂, Bĵ , Bk̂ to indicate that ı̂, ĵ , k̂ belong to B :

Br = x B ı̂ + y Bĵ + z Bk̂ (1.3)

We may drop the superscript B as long as we have just one coordinate frame.
The distance between O and P is a scalar number r that is called the length ,

magnitude, modulus , norm , or absolute value of the vector r:

r = |r| =
√

x2 + y2 + z2 (1.4)
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We may define a new unit vector ûr on r and show r by

r = rûr (1.5)

The equation r = rûr is called the natural expression of r, while the equation r =
xı̂ + yĵ + zk̂ is called the decomposition or decomposed expression of r over the axes
ı̂, ĵ , k̂. Equating (1.1) and (1.5) shows that

ûr = xı̂ + yĵ + zk̂

r
= xı̂ + yĵ + zk̂

√
x2 + y2 + z2

= x
√

x2 + y2 + z2
ı̂ + y

√
x2 + y2 + z2

ĵ + z
√

x2 + y2 + z2
k̂ (1.6)

Because the length of ûr is unity, the components of ûr are the cosines of the angles
α1, α2, α3 between ûr and ı̂, ĵ , k̂, respectively:

cos α1 = x

r
= x

√
x2 + y2 + z2

(1.7)

cos α2 = y

r
= y

√
x2 + y2 + z2

(1.8)

cos α3 = z

r
= z

√
x2 + y2 + z2

(1.9)

The cosines of the angles α1, α2, α3 are called the directional cosines of ûr , which, as
is shown in Figure 1.1, are the same as the directional cosines of any other vector on
the same axis as ûr , including r.

Equations (1.7)–(1.9) indicate that the three directional cosines are related by the
equation

cos2 α1 + cos2 α2 + cos3 α3 = 1 (1.10)

Example 4 Position Vector of a Point P Consider a point P with coordinates x = 3,
y = 2, z = 4. The position vector of P is

r = 3ı̂ + 2ĵ + 4k̂ (1.11)

The distance between O and P is

r = |r| =
√

32 + 22 + 42 = 5.3852 (1.12)

and the unit vector ûr on r is

ûr = x

r
ı̂ + y

r
ĵ + z

r
k̂ = 3

5.3852
ı̂ + 2

5.3852
ĵ + 4

5.3852
k̂

= 0.55708ı̂ + 0.37139ĵ + 0.74278k̂ (1.13)



1.1 Coordinate Frame and Position Vector 7

The directional cosines of ûr are

cos α1 = x

r
= 0.55708

cos α2 = y

r
= 0.37139 (1.14)

cos α3 = z

r
= 0.74278

and therefore the angles between r and the x -, y-, z -axes are

α1 = cos−1 x

r
= cos−1 0.55708 = 0.97993 rad ≈ 56.146 deg

α2 = cos−1 y

r
= cos−1 0.37139 = 1.1903 rad ≈ 68.199 deg (1.15)

α3 = cos−1 z

r
= cos−1 0.74278 = 0.73358 rad ≈ 42.031 deg

Example 5 Determination of Position Figure 1.2 illustrates a point P in a scaled
triad OABC . We determine the position of the point P with respect to O by:

1. Drawing a line PD parallel OC to meet the plane AOB at D
2. Drawing DP1 parallel to OB to meet OA at P1
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Figure 1.2 Determination of position.

The lengths OP1, P1D, DP are the coordinates of P and determine its position in
triad OABC . The line segment OP is a diagonal of a parallelepiped with OP1, P1D, DP
as three edges. The position of P is therefore determined by means of a parallelepiped
whose edges are parallel to the legs of the triad and one of its diagonal is the line
joining the origin to the point.
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Example 6 Vectors in Different Coordinate Frames Figure 1.3 illustrates a globally
fixed coordinate frame G at the center of a rotating disc O . Another smaller rotating
disc with a coordinate frame B is attached to the first disc at a position GdO . Point P
is on the periphery of the small disc.
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Figure 1.3 A globally fixed frame G at the center of a rotating disc O and a coordinate frame
B at the center of a moving disc.

If the coordinate frame G(OXYZ ) is fixed and B(oxyz ) is always parallel to G ,
the position vectors of P in different coordinate frames are expressed by

GrP = Xı̂ + Yĵ + Zk̂ = GrP

(
cos ϕ ı̂ + sin ϕ ĵ

)
(1.16)

BrP = xı̂ + yĵ + zk̂ = BrP

(
cos θ ı̂ + sin θ ĵ

)
(1.17)

The coordinate frame B in G may be indicated by a position vector Gdo:

Gdo = do

(
cos α ı̂ + sin αĵ

)
(1.18)

Example 7 Variable Vectors There are two ways that a vector can vary: length and
direction. A variable-length vector is a vector in the natural expression where its mag-
nitude is variable, such as

r = r(t) ûr (1.19)

The axis of a variable-length vector is fixed.
A variable-direction vector is a vector in its natural expression where the axis of its

unit vector varies. To show such a variable vector, we use the decomposed expression
of the unit vector and show that its directional cosines are variable:

r = r ûr (t) = r
(
u1(t)ı̂ + u2(t)ĵ + u3(t)k̂

)
(1.20)

√
u2

1 + u2
2 + u2

3 = 1 (1.21)



1.1 Coordinate Frame and Position Vector 9

The axis and direction characteristics are not fixed for a variable-direction vector, while
its magnitude remains constant. The end point of a variable-direction vector slides on
a sphere with a center at the starting point.

A variable vector may have both the length and direction variables. Such a vector
is shown in its decomposed expression with variable components:

r = x(t)ı̂ + y(t)ĵ + z(t)k̂ (1.22)

It can also be shown in its natural expression with variable length and direction:

r = r(t) ûr (t) (1.23)

Example 8 Parallel and Perpendicular Decomposition of a Vector Consider a line
l and a vector r intersecting at the origin of a coordinate frame such as shown is in
Figure 1.4. The line l and vector r indicate a plane (l, r). We define the unit vectors
û‖ parallel to l and û⊥ perpendicular to l in the (l, r)-plane. If the angle between r
and l is α, then the component of r parallel to l is

r‖ = r cos α (1.24)

and the component of r perpendicular to l is

r⊥ = r sin α (1.25)

These components indicate that we can decompose a vector r to its parallel and perpen-
dicular components with respect to a line l by introducing the parallel and perpendicular
unit vectors û‖ and û⊥:

r = r‖û‖ + r⊥û⊥ = r cos α û‖ + r sin α û⊥ (1.26)
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r

P

l

z

O

u

u

Figure 1.4 Decomposition of a vector r with respect to a line l into parallel and perpendicular
components.
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1.1.3 � Vector Definition

By a vector we mean any physical quantity that can be represented by a directed section
of a line with a start point, such as O , and an end point, such as P . We may show a
vector by an ordered pair of points with an arrow, such as

−→
OP . The sign

−→
PP indicates

a zero vector at point P .
Length and direction are necessary to have a vector; however, a vector may have

five characteristics:

1. Length . The length of section OP corresponds to the magnitude of the physical
quantity that the vector is representing.

2. Axis . A straight line that indicates the line on which the vector is. The vector
axis is also called the line of action .

3. End point . A start or an end point indicates the point at which the vector is
applied. Such a point is called the affecting point .

4. Direction . The direction indicates at what direction on the axis the vector is
pointing.

5. Physical quantity . Any vector represents a physical quantity. If a physical quan-
tity can be represented by a vector, it is called a vectorial physical quantity .
The value of the quantity is proportional to the length of the vector. Having
a vector that represents no physical quantity is meaningless, although a vector
may be dimensionless.

Depending on the physical quantity and application, there are seven types of
vectors:

1. Vecpoint . When all of the vector characteristics—length, axis, end point, direc-
tion, and physical quantity—are specified, the vector is called a bounded vector ,
point vector , or vecpoint . Such a vector is fixed at a point with no movability.

2. Vecline. If the start and end points of a vector are not fixed on the vector axis,
the vector is called a sliding vector , line vector , or vecline. A sliding vector is
free to slide on its axis.

3. Vecface. When the affecting point of a vector can move on a surface while
the vector displaces parallel to itself, the vector is called a surface vector or
vecface. If the surface is a plane, then the vector is a plane vector or veclane.

4. Vecfree. If the axis of a vector is not fixed, the vector is called a free vector ,
direction vector , or vecfree. Such a vector can move to any point of a specified
space while it remains parallel to itself and keeps its direction.

5. Vecpoline. If the start point of a vector is fixed while the end point can slide
on a line, the vector is a point-line vector or vecpoline. Such a vector has a
constraint variable length and orientation. However, if the start and end points
of a vecpoline are on the sliding line, its orientation is constant.

6. Vecpoface. If the start point of a vector is fixed while the end point can slide
on a surface, the vector is a point-surface vector or vecpoface. Such a vector
has a constraint variable length and orientation. The start and end points of a
vecpoface may both be on the sliding surface. If the surface is a plane, the
vector is called a point-plane vector or vecpolane.
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Figure 1.5 (a) A vecpoint, (b) a vecline, (c) a vecface, and (d ) a vecfree.
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Figure 1.6 (a) a vecpoline, (b) vecpoface, (c) vecporee.

7. Vecporee. When the start point of a vector is fixed and the end point can
move anywhere in a specified space, the vector is called a point-free vector or
vecporee. Such a vector has a variable length and orientation.

Figure 1.5 illustrates a vecpoint, a vecline, vecface, and a vecfree and Figure 1.6
illustrates a vecpoline, a vecpoface, and a vecporee.

We may compare two vectors only if they represent the same physical quantity and
are expressed in the same coordinate frame. Two vectors are equal if they are compara-
ble and are the same type and have the same characteristics. Two vectors are equivalent
if they are comparable and the same type and can be substituted with each other.

In summary, any physical quantity that can be represented by a directed section
of a line with a start and an end point is a vector quantity. A vector may have five
characteristics: length, axis, end point, direction, and physical quantity. The length and
direction are necessary. There are seven types of vectors: vecpoint, vecline, vecface,
vecfree, vecpoline, vecpoface, and vecporee. Vectors can be added when they are
coaxial. In case the vectors are not coaxial, the decomposed expression of vectors
must be used to add the vectors.

Example 9 Examples of Vector Types Displacement is a vecpoint. Moving from a
point A to a point B is called the displacement. Displacement is equal to the difference
of two position vectors. A position vector starts from the origin of a coordinate frame
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and ends as a point in the frame. If point A is at rA and point B at rB , then displacement
from A to B is

rA/B = BrA = rA − rB (1.27)

Force is a vecline. In Newtonian mechanics, a force can be applied on a body at
any point of its axis and provides the same motion.

Torque is an example of vecfree. In Newtonian mechanics, a moment can be applied
on a body at any point parallel to itself and provides the same motion.

A space curve is expressed by a vecpoline, a surface is expressed by a vecpoface,
and a field is expressed by a vecporee.

Example 10 Scalars Physical quantities which can be specified by only a number
are called scalars . If a physical quantity can be represented by a scalar, it is called
a scalaric physical quantity . We may compare two scalars only if they represent the
same physical quantity. Temperature, density, and work are some examples of scalaric
physical quantities.

Two scalars are equal if they represent the same scalaric physical quantity and they
have the same number in the same system of units. Two scalars are equivalent if we
can substitute one with the other. Scalars must be equal to be equivalent.

1.2 VECTOR ALGEBRA

Most of the physical quantities in dynamics can be represented by vectors. Vector addi-
tion, multiplication, and differentiation are essential for the development of dynamics.
We can combine vectors only if they are representing the same physical quantity, they
are the same type, and they are expressed in the same coordinate frame.

1.2.1 Vector Addition

Two vectors can be added when they are coaxial . The result is another vector on the
same axis with a component equal to the sum of the components of the two vectors.
Consider two coaxial vectors r1 and r2 in natural expressions:

r1 = r1ûr r2 = r2ûr (1.28)

Their addition would be a new vector r3 = r3ûr that is equal to

r3 = r1 + r2 = (r1 + r2)ûr = r3ûr (1.29)

Because r1 and r2 are scalars, we have r1 + r2 = r1 + r2, and therefore, coaxial vector
addition is commutative,

r1 + r2 = r2 + r1 (1.30)

and also associative,
r1 + (r2 + r3) = (r1 + r2) + r3 (1.31)
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When two vectors r1 and r2 are not coaxial, we use their decomposed expressions

r1 = x1 ı̂ + y1ĵ + z1k̂ r2 = x2 ı̂ + y2ĵ + z2k̂ (1.32)

and add the coaxial vectors x1 ı̂ by x2 ı̂, y1ĵ by y2ĵ , and z1k̂ by z2k̂ to write the result
as the decomposed expression of r3 = r1 + r2:

r3 = r1 + r2

=
(
x1 ı̂ + y1ĵ + z1k̂

)
+

(
x2 ı̂ + y2ĵ + z2k̂

)

= (
x1 ı̂ + x2 ı̂

) + (
y1ĵ + y2ĵ

) +
(
z1k̂ + z2k̂

)

= (x1 + x2) ı̂ + (y1 + y2) ĵ + (z1 + z2) k̂

= x3 ı̂ + y3ĵ + z3k̂ (1.33)

So, the sum of two vectors r1 and r2 is defined as a vector r3 where its components
are equal to the sum of the associated components of r1 and r2. Figure 1.7 illustrates
vector addition r3 = r1 + r2 of two vecpoints r1 and r2.

Subtraction of two vectors consists of adding to the minuend the subtrahend with
the opposite sense:

r1 − r2 = r1 + (−r2) (1.34)

The vectors −r2 and r2 have the same axis and length and differ only in having opposite
direction.

If the coordinate frame is known, the decomposed expression of vectors may also
be shown by column matrices to simplify calculations:

r1 = x1 ı̂ + y1ĵ + z1k̂ =
⎡

⎣
x1

y1

z1

⎤

⎦ (1.35)
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Figure 1.7 Vector addition of two vecpoints r1 and r2.
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r2 = x2 ı̂ + y2ĵ + z2k̂ =
⎡

⎣
x2

y2

z2

⎤

⎦ (1.36)

r3 = r1 + r2 =
⎡

⎣
x1

y1

z1

⎤

⎦ +
⎡

⎣
x2

y2

z2

⎤

⎦ =
⎡

⎣
x1 + x2

y1 + y2

z1 + z2

⎤

⎦ (1.37)

Vectors can be added only when they are expressed in the same frame. Thus, a
vector equation such as

r3 = r1 + r2 (1.38)

is meaningless without indicating that all of them are expressed in the same frame,
such that

Br3 = Br1 + Br2 (1.39)

The three vectors r1, r2, and r3 are coplanar, and r3 may be considered as the
diagonal of a parallelogram that is made by r1, r2.

Example 11 Displacement of a Point Point P moves from the origin of a global
coordinate frame G to a point at (1, 2, 0) and then moves to (4, 3, 0). If we express the
first displacement by a vector r1 and its final position by r3, the second displacement
is r2, where

r2 = r3 − r1 =
⎡

⎣
4
3
0

⎤

⎦ −
⎡

⎣
1
2
0

⎤

⎦ =
⎡

⎣
3
1
0

⎤

⎦ (1.40)

Example 12 Vector Interpolation Problem Having two digits n1 and n2 as the start
and the final interpolants, we may define a controlled digit n with a variable q such that

n =
{
n1 q = 0
n2 q = 1

0 ≤ q ≤ 1 (1.41)

Defining or determining such a controlled digit is called the interpolation problem.
There are many functions to be used for solving the interpolation problem. Linear
interpolation is the simplest and is widely used in engineering design, computer
graphics, numerical analysis, and optimization:

n = n1(1 − q) + n2q (1.42)

The control parameter q determines the weight of each interpolants n1 and n2 in the
interpolated n . In a linear interpolation, the weight factors are proportional to the
distance of q from 1 and 0.
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Figure 1.8 Vector linear interpolation.

Employing the linear interpolation technique, we may define a vector r = r (q) to
interpolate between the interpolant vectors r1 and r2:

r = (1 − q)r1 + qr2 =
⎡

⎣
x1 (1 − q) + qx2

y1 (1 − q) + qy2

z1 (1 − q) + qz2

⎤

⎦ (1.43)

In this interpolation, we assumed that equal steps in q results in equal steps in r between
r1 and r2. The tip point of r will move on a line connecting the tip points of r1 and
r2, as is shown in Figure 1.8.

We may interpolate the vectors r1 and r2 by interpolating the angular distance θ

between r1 and r2:

r = sin
[
(1 − q)θ

]

sin θ
r1 + sin (qθ)

sin θ
r2 (1.44)

To derive Equation (1.44), we may start with

r = ar1 + br2 (1.45)

and find a and b from the following trigonometric equations:

a sin (qθ) − b sin
[
(1 − q)θ

] = 0 (1.46)

a cos (qθ) + b cos
[
(1 − q)θ

] = 1 (1.47)

Example 13 Vector Addition and Linear Space Vectors and adding operation make
a linear space because for any vectors r1, r2 we have the following properties:

1. Commutative:
r1 + r2 = r2 + r1 (1.48)

2. Associative:
r1 + (r2 + r3) = (r1 + r2) + r3 (1.49)
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3. Null element:
0 + r = r (1.50)

4. Inverse element:
r + (−r) = 0 (1.51)

Example 14 Linear Dependence and Independence The n vectors r1, r2, r3, . . . , rn

are linearly dependent if there exist n scalars c1, c2, c3, . . . , cn not all equal to zero
such that a linear combination of the vectors equals zero:

c1r1 + c2r2 + c3r3 + · · · + cnrn = 0 (1.52)

The vectors r1, r2, r3, . . . , rn are linearly independent if they are not linearly dependent,
and it means the n scalars c1, c2, c3, . . . , cn must all be zero to have Equation (1.52):

c1 = c2 = c3 = · · · = cn = 0 (1.53)

Example 15 Two Linearly Dependent Vectors Are Colinear Consider two linearly
dependent vectors r1 and r2:

c1r1 + c2r2 = 0 (1.54)

If c1 �= 0, we have
r1 = −c2

c1
r2 (1.55)

and if c2 �= 0, we have
r2 = −c1

c2
r1 (1.56)

which shows r1 and r2 are colinear.

Example 16 Three Linearly Dependent Vectors Are Coplanar Consider three linearly
dependent vectors r1, r2, and r3,

c1r1 + c2r2 + c3r3 = 0 (1.57)

where at least one of the scalars c1, c2, c3, say c3, is not zero; then

r3 = −c1

c3
r1 − c2

c3
r2 (1.58)

which shows r3 is in the same plane as r1 and r2.
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1.2.2 Vector Multiplication

There are three types of vector multiplications for two vectors r1 and r2:

1. Dot, Inner, or Scalar Product

r1 · r2 =
⎡

⎣
x1

y1

z1

⎤

⎦ ·
⎡

⎣
x2

y2

z2

⎤

⎦ = x1x2 + y1y2 + z1z2

= r1r2 cos α (1.59)

The inner product of two vectors produces a scalar that is equal to the product
of the length of individual vectors and the cosine of the angle between them.
The vector inner product is commutative in orthogonal coordinate frames,

r1 · r2 = r2 · r1 (1.60)

The inner product is dimension free and can be calculated in n-dimensional
spaces. The inner product can also be performed in nonorthogonal coordinate
systems.

2. Cross, Outer, or Vector Product

r3 = r1 × r2 =
⎡

⎣
x1

y1

z1

⎤

⎦ ×
⎡

⎣
x2

y2

z2

⎤

⎦ =
⎡

⎣
y1z2 − y2z1

x2z1 − x1z2

x1y2 − x2y1

⎤

⎦

= (r1r2 sin α) ûr3 = r3ûr3 (1.61)

ûr3 = ûr1 × ûr2 (1.62)

The outer product of two vectors r1 and r2 produces another vector r3 that
is perpendicular to the plane of r1, r2 such that the cycle r1r2r3 makes a
right-handed triad. The length of r3 is equal to the product of the length of
individual vectors multiplied by the sine of the angle between them. Hence r3

is numerically equal to the area of the parallelogram made up of r1 and r2.
The vector inner product is skew commutative or anticommutative:

r1 × r2 = −r2 × r1 (1.63)

The outer product is defined and applied only in 3D space. There is no
outer product in lower or higher dimensions than 3. If any vector of r1and r2

is in a lower dimension than 3D, we must make it a 3D vector by adding zero
components for missing dimensions to be able to perform their outer product.

3. Quaternion Product

r1r2 = r1 × r2 − r1 · r2 (1.64)

We will talk about the quaternion product in Section 5.3.
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In summary, there are three types of vector multiplication: inner, outer, and quater-
nion products, of which the inner product is the only one with commutative property.

Example 17 Geometric Expression of Inner Products Consider a line l and a vector
r intersecting at the origin of a coordinate frame as is shown in Figure 1.9. If the angle
between r and l is α, the parallel component of r to l is

r‖ = OA = r cos α (1.65)

This is the length of the projection of r on l . If we define a unit vector ûl on l by its
direction cosines β1, β2, β3,

ûl = u1 ı̂ + u2ĵ + u3k̂ =
⎡

⎣
u1

u2

u3

⎤

⎦ =
⎡

⎣
cos β1

cos β2

cos β3

⎤

⎦ (1.66)

then the inner product of r and ûl is

r · ûl = r‖ = r cos α (1.67)

We may show r by using its direction cosines α1, α2, α3,

r = rûr = xı̂ + yĵ + zk̂ = r

⎡

⎣
x/r

y/r

z/r

⎤

⎦ = r

⎡

⎣
cos α1

cos α2

cos α3

⎤

⎦ (1.68)

Then, we may use the result of the inner product of r and ûl ,

r · ûl = r

⎡

⎣
cos α1

cos α2

cos α3

⎤

⎦ ·
⎡

⎣
cos β1

cos β2

cos β3

⎤

⎦

= r (cos β1 cos α1 + cos β2 cos α2 + cos β3 cos α3) (1.69)

to calculate the angle α between r and l based on their directional cosines:

cos α = cos β1 cos α1 + cos β2 cos α2 + cos β3 cos α3 (1.70)

y

x

r

P

O

A

l

α

B

z

ul

Figure 1.9 A line l and a vector r intersecting at the origin of a coordinate frame.
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So, the inner product can be used to find the projection of a vector on a given line. It
is also possible to use the inner product to determine the angle α between two given
vectors r1 and r2 as

cos α = r1 · r2

r1r2
= r1 · r2√

r1 · r1
√

r2 · r2
(1.71)

Example 18 Power 2 of a Vector By writing a vector r to a power 2, we mean the
inner product of r to itself:

r2 = r · r =
⎡

⎣
x

y

z

⎤

⎦ ·
⎡

⎣
x

y

z

⎤

⎦ = x2 + y2 + z2 = r2 (1.72)

Using this definition we can write

(r1 + r2)
2 = (r1 + r2) · (r1 + r2) = r2

1 + 2r1 · r2 + r2
2 (1.73)

(r1 − r2) · (r1 + r2) = r2
1 − r2

2 (1.74)

There is no meaning for a vector with a negative or positive odd exponent.

Example 19 Unit Vectors and Inner and Outer Products Using the set of unit vectors
ı̂, ĵ , k̂ of a positive orthogonal triad and the definition of inner product, we conclude that

ı̂2 = 1 ĵ 2 = 1 k̂2 = 1 (1.75)

Furthermore, by definition of the vector product we have

ı̂ × ĵ = − (
ĵ × ı̂

) = k̂ (1.76)

ĵ × k̂ = −
(
k̂ × ĵ

)
= ı̂ (1.77)

k̂ × ı̂ = −
(
ı̂ × k̂

)
= ĵ (1.78)

It might also be useful if we have these equalities:

ı̂ · ĵ = 0 ĵ · k̂ = 0 k̂ · ı̂ = 0 (1.79)

ı̂ × ı̂ = 0 ĵ × ĵ = 0 k̂ × k̂ = 0 (1.80)

Example 20 Vanishing Dot Product If the inner product of two vectors a and
b is zero,

a · b = 0 (1.81)

then either a = 0 or b = 0, or a and b are perpendicular.
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Example 21 Vector Equations Assume x is an unknown vector, k is a scalar, and a,
b, and c are three constant vectors in the following vector equation:

kx + (b · x) a = c (1.82)

To solve the equation for x, we dot product both sides of (1.82) by b:

kx · b + (x · b) (a · b) = c · b (1.83)

This is a linear equation for x · b with the solution

x · b = c · b
k + a · b

(1.84)

provided
k + a · b �= 0 (1.85)

Substituting (1.84) in (1.82) provides the solution x:

x = 1

k
c − c · b

k (k + a · b)
a (1.86)

An alternative method is decomposition of the vector equation along the axes ı̂,
ĵ , k̂ of the coordinate frame and solving a set of three scalar equations to find the
components of the unknown vector.

Assume the decomposed expression of the vectors x, a, b, and c are

x =
[
x
y
z

]

a =
[
a1
a2
a3

]

b =
[
b1
b2
b3

]

c =
[
c1
c2
c3

]

(1.87)

Substituting these expressions in Equation (1.82),

k

⎡

⎣
x

y

z

⎤

⎦ +
⎛

⎝

⎡

⎣
b1

b2

b3

⎤

⎦ ·
⎡

⎣
x

y

z

⎤

⎦

⎞

⎠

⎡

⎣
a1

a2

a3

⎤

⎦ =
⎡

⎣
c1

c2

c3

⎤

⎦ (1.88)

provides a set of three scalar equations
⎡

⎣
k + a1b1 a1b2 a1b3

a2b1 k + a2b2 a2b3

a3b1 a3b2 k + a3b3

⎤

⎦

⎡

⎣
x

y

z

⎤

⎦ =
⎡

⎣
c1

c2

c3

⎤

⎦ (1.89)

that can be solved by matrix inversion:
[
x
y
z

]

=
⎡

⎣
k + a1b1 a1b2 a1b3

a2b1 k + a2b2 a2b3

a3b1 a3b2 k + a3b3

⎤

⎦

−1 ⎡

⎣
c1

c2

c3

⎤

⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

kc1 − a1b2c2 + a2b2c1 − a1b3c3 + a3b3c1

k (k + a1b1 + a2b2 + a3b3)

kc2 + a1b1c2 − a2b1c1 − a2b3c3 + a3b3c2

k (k + a1b1 + a2b2 + a3b3)

kc3 + a1b1c3 − a3b1c1 + a2b2c3 − a3b2c2

k (k + a1b1 + a2b2 + a3b3)

⎤

⎥⎥⎥⎥⎥⎥
⎦

(1.90)

Solution (1.90) is compatible with solution (1.86).
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Example 22 Vector Addition, Scalar Multiplication, and Linear Space Vector addi-
tion and scalar multiplication make a linear space, because

k1 (k2r) = (k1k2) r (1.91)

(k1 + k2) r = k1r + k2r (1.92)

k (r1 + r2) = kr1 + kr2 (1.93)

1 · r = r (1.94)

(−1) · r = −r (1.95)

0 · r = 0 (1.96)

k · 0 = 0 (1.97)

Example 23 Vanishing Condition of a Vector Inner Product Consider three non-
coplanar constant vectors a, b, c and an arbitrary vector r. If

a · r = 0 b · r = 0 c · r = 0 (1.98)
then

r = 0 (1.99)

Example 24 Vector Product Expansion We may prove the result of the inner and
outer products of two vectors by using decomposed expression and expansion:

r1 · r2 =
(
x1 ı̂ + y1ĵ + z1k̂

)
·
(
x2 ı̂ + y2ĵ + z2k̂

)

= x1x2 ı̂ · ı̂ + x1y2 ı̂ · ĵ + x1z2 ı̂ · k̂
+ y1x2ĵ · ı̂ + y1y2ĵ · ĵ + y1z2ĵ · k̂
+ z1x2k̂ · ı̂ + z1y2k̂ · ĵ + z1z2k̂ · k̂

= x1x2 + y1y2 + z1z2 (1.100)

r1 × r2 =
(
x1 ı̂ + y1ĵ + z1k̂

)
×

(
x2 ı̂ + y2ĵ + z2k̂

)

= x1x2 ı̂ × ı̂ + x1y2 ı̂ × ĵ + x1z2 ı̂ × k̂

+ y1x2ĵ × ı̂ + y1y2ĵ × ĵ + y1z2ĵ × k̂

+ z1x2k̂ × ı̂ + z1y2k̂ × ĵ + z1z2k̂ × k̂

= (y1z2 − y2z1) ı̂ + (x2z1 − x1z2) ĵ + (x1y2 − x2y1) k̂ (1.101)

We may also find the outer product of two vectors by expanding a determinant and
derive the same result as Equation (1.101):

r1 × r2 =
∣∣∣∣∣∣

ı̂ ĵ k̂

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣
(1.102)
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Example 25 bac–cab Rule If a, b, c are three vectors, we may expand their triple
cross product and show that

a × (b × c) = b (a · c) − c (a · b) (1.103)
because

⎡

⎣
a1

a2

a3

⎤

⎦ ×
⎛

⎝

⎡

⎣
b1

b2

b3

⎤

⎦ ×
⎡

⎣
c1

c2

c3

⎤

⎦

⎞

⎠

=
⎡

⎣
a2 (b1c2 − b2c1) + a3 (b1c3 − b3c1)

a3 (b2c3 − b3c2) − a1 (b1c2 − b2c1)

−a1 (b1c3 − b3c1) − a2 (b2c3 − b3c2)

⎤

⎦

=
⎡

⎣
b1 (a1c1 + a2c2 + a3c3) − c1 (a1b1 + a2b2 + a3b3)

b2 (a1c1 + a2c2 + a3c3) − c2 (a1b1 + a2b2 + a3b3)

b3 (a1c1 + a2c2 + a3c3) − c3 (a1b1 + a2b2 + a3b3)

⎤

⎦ (1.104)

Equation (1.103) may be referred to as the bac–cab rule, which makes it easy to
remember. The bac–cab rule is the most important in 3D vector algebra. It is the key
to prove a great number of other theorems.

Example 26 Geometric Expression of Outer Products Consider the free vectors r1

from A to B and r2 from A to C , as are shown in Figure 1.10:

r1 =
⎡

⎣
−1

3
0

⎤

⎦ =
√

10

⎡

⎣
−0.31623

0.94868
0

⎤

⎦ (1.105)

r2 =
⎡

⎣
−1

0
2.5

⎤

⎦ = 2.6926

⎡

⎣
−0.37139

0
0.92847

⎤

⎦ (1.106)

x

y
r1

z

r2

r 3

A B

C
D

Figure 1.10 The cross product of the two free vectors r1 and r2 and the resultant r3.
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The cross product of the two vectors is r3:

r3 = r1 × r2 =
⎡

⎣
7.5
2.5
3

⎤

⎦ = 8.4558

⎡

⎣
0.88697
0.29566
0.35479

⎤

⎦

= r3ûr3 = (r1r2 sin α) ûr3 (1.107)

ûr3 = ûr1 × ûr2 =
⎡

⎣
0.88697
0.29566
0.35479

⎤

⎦ (1.108)

where r3 = 8.4558 is numerically equivalent to the area A of the parallelogram ABCD
made by the sides AB and AC :

AABCD = |r1 × r2| = 8.4558 (1.109)

The area of the triangle ABC is A/2. The vector r3 is perpendicular to this plane and,
hence, its unit vector ûr3 can be used to indicate the plane ABCD .

Example 27 Scalar Triple Product The dot product of a vector r1 with the cross
product of two vectors r2 and r3 is called the scalar triple product of r1, r2, and r3.
The scalar triple product can be shown and calculated by a determinant:

r1 · (r2 × r3) = r1 · r2 × r3 =
∣∣∣
∣∣∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣
∣∣∣

(1.110)

Interchanging two rows (or columns) of a matrix changes the sign of its determinant.
So, we may conclude that the scalar triple product of three vectors r1, r2, r3 is also
equal to

r1 · r2 × r3 = r2 · r3 × r1 = r3 · r1 × r2

= r1 × r2 · r3 = r2 × r3 · r1 = r3 × r1 · r2

= −r1 · r3 × r2 = −r2 · r1 × r3 = −r3 · r2 × r1

= −r1 × r3 · r2 = −r2 × r1 · r3 = −r3 × r2 · r1 (1.111)

Because of Equation (1.111), the scalar triple product of the vectors r1, r2, r3 can be
shown by the short notation [r1r2r3]:

[r1r2r3] = r1 · r2 × r3 (1.112)

This notation gives us the freedom to set the position of the dot and cross product signs
as required.

If the three vectors r1, r2, r3 are position vectors, then their scalar triple product
geometrically represents the volume of the parallelepiped formed by the three vectors.
Figure 1.11 illustrates such a parallelepiped for three vectors r1, r2, r3.
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y

x

r1

O

z

r2

r3

Figure 1.11 The parallelepiped made by three vectors r1, r2, r3.

Example 28 Vector Triple Product The cross product of a vector r1 with the cross
product of two vectors r2 and r3 is called the vector triple product of r1, r2, and r3.
The bac–cab rule is always used to simplify a vector triple product:

r1 × (r2 × r3) = r2 (r1 · r3) − r3 (r1 · r2) (1.113)

Example 29 � Norm and Vector Space Assume r, r1, r2, r3 are arbitrary vectors
and c, c1, c3 are scalars. The norm of a vector ‖r‖ is defined as a real-valued function
on a vector space v such that for all {r1, r2} ∈ V and all c ∈ R we have:

1. Positive definition: ‖r‖> 0 if r �= 0 and ‖r‖ = 0 if r = 0.
2. Homogeneity: ‖cr‖ = ‖c‖ ‖r‖.
3. Triangle inequality: ‖r1 + r2‖ = ‖r1‖ + ‖r2‖.

The definition of norm is up to the investigator and may vary depending on the
application. The most common definition of the norm of a vector is the length:

‖r‖ = |r| =
√

r2
1 + r2

2 + r2
3 (1.114)

The set v with vector elements is called a vector space if the following conditions
are fulfilled:

1. Addition: If {r1, r2} ∈ V and r1 + r2 = r, then r ∈ V .
2. Commutativity: r1 + r2 = r2 + r1.
3. Associativity: r1 + (r2 + r3) = (r1 + r2) + r3 and c1 (c2r) = (c1c2) r.
4. Distributivity: c (r1 + r2) = cr1 + cr2 and (c1 + c2) r = c1r + c2r.
5. Identity element: r + 0 = r, 1r = r, and r − r = r + (−1) r = 0.

Example 30 � Nonorthogonal Coordinate Frame It is possible to define a coordi-
nate frame in which the three scaled lines OA, OB , OC are nonorthogonal. Defining
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three unit vectors b̂1, b̂2, and b̂3 along the nonorthogonal non-coplanar axes OA, OB ,
OC , respectively, we can express any vector r by a linear combination of the three
non-coplanar unit vectors b̂1, b̂2, and b̂3 as

r = r1b̂1 + r2b̂2 + r3b̂3 (1.115)

where, r1, r2, and r3 are constant.
Expression of the unit vectors b̂1, b̂2, b̂3 and vector r in a Cartesian coordinate

frame is
r = xı̂ + yĵ + zk̂ (1.116)

b̂1 = b11 ı̂ + b12ĵ + b13k̂ (1.117)

b̂2 = b21 ı̂ + b22ĵ + b23k̂ (1.118)

b̂3 = b31 ı̂ + b32ĵ + b33k̂ (1.119)

Substituting (1.117)–(1.119) in (1.115) and comparing with (1.116) show that
⎡

⎣
x

y

z

⎤

⎦ =
⎡

⎣
b11 b12 b13

b21 b22 b23

b31 b32 b33

⎤

⎦

⎡

⎣
r1

r2

r3

⎤

⎦ (1.120)

The set of equations (1.120) may be solved for the components r1, r2, and r3:
⎡

⎣
r1

r2

r3

⎤

⎦ =
⎡

⎣
b11 b12 b13

b21 b22 b23

b31 b32 b33

⎤

⎦

−1 ⎡

⎣
x

y

z

⎤

⎦ (1.121)

We may also express them by vector scalar triple product:

r1 = 1
∣∣∣
∣∣∣

b11 b12 b13

b21 b22 b23

b31 b32 b33

∣∣∣
∣∣∣

∣
∣∣∣∣∣

x y z

b21 b22 b23

b31 b32 b33

∣
∣∣∣∣∣
= r · b̂2 × b̂3

b̂1 · b̂2 × b̂3

(1.122)

r2 = 1
∣∣∣∣∣∣

b11 b12 b13

b21 b22 b23

b31 b32 b33

∣∣∣∣∣∣

∣∣∣∣∣∣

b11 b12 b13

x y z

b31 b32 b33

∣∣∣∣∣∣
= r · b̂3 × b̂1

b̂1 · b̂2 × b̂3

(1.123)

r3 = 1
∣∣∣∣∣∣

b11 b12 b13

b21 b22 b23

b31 b32 b33

∣∣∣∣∣∣

∣∣∣∣
∣∣

b11 b12 b13

b21 b22 b23

x y z

∣∣∣∣
∣∣
= r · b̂1 × b̂2

b̂1 · b̂2 × b̂3

(1.124)

The set of equations (1.120) is solvable provided b̂1 · b̂2 × b̂3 �= 0, which means b̂1,
b̂2, b̂3 are not coplanar.
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1.2.3 � Index Notation

Whenever the components of a vector or a vector equation are structurally similar, we
may employ the summation sign,

∑
, and show only one component with an index to

be changed from 1 to 2 and 3 to indicate the first, second, and third components. The
axes and their unit vectors of the coordinate frame may also be shown by x1, x2, x3 and
û1, û2, û3 instead of x, y, z and ı̂, ĵ , k̂. This is called index notation and may simplify
vector calculations.

There are two symbols that may be used to make the equations even more concise:

1. Kronecker delta δij :

δij =
{

1 i = j

0 i �= j

}
= δji (1.125)

It states that δjk = 1 if j = k and δjk = 0 if j �= k.
2. Levi-Civita symbol εijk :

εijk = 1
2 (i − j)(j − k)(k − i) i, j, k = 1, 2, 3 (1.126)

It states that εijk = 1 if i , j , k is a cyclic permutation of 1, 2, 3, εijk = −1 if i ,
j , k is a cyclic permutation of 3, 2, 1, and εijk = 0 if at least two of i , j , k are
equal. The Levi-Civita symbol is also called the permutation symbol .

The Levi-Civita symbol εijk can be expanded by the Kronecker delta δij :

3∑

k=1

εijk εmnk = δimδjn − δinδjm (1.127)

This relation between ε and δ is known as the e–delta or ε–delta identity.
Using index notation, the vectors a and b can be shown as

a = a1 ı̂ + a2ĵ + a3k̂ =
3∑

i=1

aiûi (1.128)

b = b1 ı̂ + b2ĵ + b3k̂ =
3∑

i=1

biûi (1.129)

and the inner and outer products of the unit vectors of the coordinate system as

ûj · ûk = δjk (1.130)

ûj × ûk = εijk ûi (1.131)

Example 31 Fundamental Vector Operations and Index Notation Index notation
simplifies the vector equations. By index notation, we show the elements ri,

i = 1, 2, 3 instead of indicating the vector r. The fundamental vector operations by
index notation are:
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1. Decomposition of a vector r:

r =
3∑

i=1

ri ûi (1.132)

2. Orthogonality of unit vectors:

ûi · ûj = δij ûi × ûj = εijk ûk (1.133)

3. Projection of a vector r on ûi :

r · ûj =
3∑

i=1

ri ûi · ûj =
3∑

i=1

riδij = rj (1.134)

4. Scalar, dot, or inner product of vectors a and b:

a · b =
3∑

i=1

aiûi ·
3∑

j=1

bj ûj =
3∑

j=1

3∑

i=1

aibj

(
ûi · ûj

) =
3∑

j=1

3∑

i=1

aibj δij

=
3∑

i=1

aibi (1.135)

5. Vector, cross, or outer product of vectors a and b:

a × b =
3∑

j=1

3∑

k=1

εijk ûiaj bk (1.136)

6. Scalar triple product of vectors a, b, and c:

a · b × c = [abc] =
3∑

k=1

3∑

j=1

3∑

i=1

εijk ajbj ck (1.137)

Example 32 Levi-Civita Density and Unit Vectors The Levi-Civita symbol εijk , also
called the “e” tensor, Levi-Civita density , and permutation tensor and may be defined
by the clearer expression

εijk =
⎧
⎨

⎩

1 ijk = 123, 231, 312
0 i = j or j = k or k = 1

−1 ijk = 321, 213, 132
(1.138)

can be shown by the scalar triple product of the unit vectors of the coordinate system,

εijk = [
ûi ûj ûk

] = ûi · ûj × ûk (1.139)

and therefore,
εijk = εjki = εkij = −εkji = −εjik = −εikj (1.140)
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The product of two Levi-Civita densities is

εijk εlmn =
∣∣∣
∣∣∣

δil δim δin

δjl δjm δjn

δkl δkm δkn

∣∣∣
∣∣∣

i, j, k, l, m, n = 1, 2, 3 (1.141)

If k = l, we have
3∑

k=1

εijk εmnk =
∣∣∣∣
δim δin

δjm δjn

∣∣∣∣ = δimδjn − δinδjm (1.142)

and if also j = n, then
3∑

k=1

3∑

j=1

εijk εmjk = 2δim (1.143)

and finally, if also i = m, we have

3∑

k=1

3∑

j=1

3∑

i=1

εijk εijk = 6 (1.144)

Employing the permutation symbol εijk , we can show the vector scalar triple
product as

a · b × c =
3∑

i=1

3∑

j=1

3∑

k=1

εijk aibj ck =
3∑

i,j,k=1

εijk aibj ck (1.145)

Example 33 � Einstein Summation Convention The Einstein summation convention
implies that we may not show the summation symbol if we agree that there is a hidden
summation symbol for every repeated index over all possible values for that index.
In applied kinematics and dynamics, we usually work in a 3D space, so the range of
summation symbols are from 1 to 3. Therefore, Equations (1.135) and (1.136) may be
shown more simply as

d = aibi (1.146)

ci = εijk ajbk (1.147)

and the result of a · b × c as

a · b × c =
3∑

i=1

ai

3∑

j=1

3∑

k=1

εijk bj ck =
3∑

i=1

3∑

j=1

3∑

k=1

εijk aibj ck

= εijk aibj ck (1.148)

The repeated index in a term must appear only twice to define a summation rule. Such
an index is called a dummy index because it is immaterial what character is used for
it. As an example, we have

aibi = ambm = a1b1 + a2b2 + a3b3 (1.149)
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Example 34 � A Vector Identity We may use the index notation and verify vector
identities such as

(a × b) × (c × d) = c (d · a × b) − d (c · a × b) (1.150)

Let us assume that

a × b = p = piûi (1.151)

c × d = q = qiûi (1.152)

The components of these vectors are

pi = εijk ajbk (1.153)

qi = εijk cjdk (1.154)

and therefore the components of p × q are

r = p × q = ri ûi (1.155)

ri = εijk pjqk = εijk εjmnεkrsambncrds

= εijk εrsk εjmnambncrds

= (
δirδjs − δisδjr

)
εjmnambncrds

= εjmn
(
(crδir )

(
dsδjs

)
ambn − (

crδjr
)
(dsδis) ambn

)

= εjmn
(
ambncidj − ambncjdi

)

= ci

(
εjmndjambn

) − di

(
εjmncjambn

)
(1.156)

so we have
r = c (d · a × b) − d (c · a × b) (1.157)

Example 35 � bac–cab Rule and ε–Delta Identity Employing the ε–delta identity
(1.127), we can prove the bac–cab rule (1.103):

a × (b × c) = εijk aibkcmεnjm ûn = εijk εjmnaibkcmûn

= (δimδkn − δinδkm) aibkcmûn

= ambncmûn − anbmcmûn

= amcmb − bmcmc = b (a · c) − c (a · b) (1.158)

Example 36 � Series Solution for Three-Body Problem Consider three point
masses m1, m2, and m3 each subjected to Newtonian gravitational attraction from the
other two particles. Let us indicate them by position vectors X1, X2, and X3 with
respect to their mass center C . If their position and velocity vectors are given at a time
t0, how will the particles move? This is called the three-body problem .
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This is one of the most celebrated unsolved problems in dynamics. The three-body
problem is interesting and challenging because it is the smallest n-body problem that
cannot be solved mathematically. Here we present a series solution and employ index
notation to provide concise equations. We present the expanded form of the equations
in Example 177.

The equations of motion of m1, m2, and m3 are

Ẍi = −G

3∑

j=1

mj

Xi − Xj
∣∣Xji

∣∣3
i = 1, 2, 3 (1.159)

Xij = Xj − Xi (1.160)

Using the mass center as the origin implies

3∑

i=1

GiXi = 0 Gi = Gmi i = 1, 2, 3 (1.161)

G = 6.67259 × 10−11 m3 kg−1 s−2 (1.162)

Following Belgium-American mathematician Roger Broucke (1932–2005), we use
the relative position vectors x1, x2, x3 to derive the most symmetric form of the three-
body equations of motion:

xi = εijk
(
Xk − Xj

)
i = 1, 2, 3 (1.163)

Using xi , the kinematic constraint (1.161) reduces to

3∑

i=1

xi = 0 (1.164)

The absolute position vectors in terms of the relative positions are

mXi = εijk
(
mkxjj − mj xk

)
i = 1, 2, 3 (1.165)

m = m1 + m2 + m3 (1.166)

Substituting Equation (1.165) in (1.161), we have

ẍi = −Gm
xi

|xi |3
+ Gi

3∑

j=1

xj
∣∣xj

∣∣3
i = 1, 2, 3 (1.167)

We are looking for a series solution of Equations (1.167) in the following form:

xi (t) = xi0 + ẋi0 (t − t0) + ẍi0

(t − t0)
2

2!
+ ...

x i0

(t − t0)
3

3!
+ · · · (1.168)

xi0 = xi (t0) ẋi0 = ẋi (t0) i = 1, 2, 3 (1.169)

Let us define μ = Gm along with an ε-set of parameters

μ = Gm εi = 1

|xi |3
i = 1, 2, 3 (1.170)



1.3 Orthogonal Coordinate Frames 31

to rewrite Equations (1.167) as

ẍi = −μεixi + Gi

3∑

j=1

εj xj i = 1, 2, 3 (1.171)

We also define three new sets of parameters

aijk = xi · xj

|xk|2
bijk = ẋi · xj

|xk|2
cijk = ẋi · ẋj

|xk|2
(1.172)

where

aiii = 1 aijk = ajik cijk = cjik (1.173)

The time derivatives of the ε-set, a-set, b-set, and c-set are

ε̇i = −3biii εi (1.174)

ȧijk = −2bkkkaijk + bijk + bjik ȧiii = 0 (1.175)

ḃijk = −2bkkkbijk + cijk − μεiaijk + Gi

3∑

r=1

εrarjk (1.176)

ċijk = −2bkkkcijk − μ
(
εibjik + εjbijk

)

+ Gi

3∑

r=1

εrbjrk + Gi

3∑

s=1

εsaisk (1.177)

The ε-set, a-set, b-set, and c-set make 84 fundamental parameters that are indepen-
dent of coordinate systems. Their time derivatives are expressed only by themselves.
Therefore, we are able to find the coefficients of series (1.168) to develop the series
solution of the three-body problem.

1.3 ORTHOGONAL COORDINATE FRAMES

Orthogonal coordinate frames are the most important type of coordinates. It is compati-
ble to our everyday life and our sense of dimensions. There is an orthogonality condition
that is the principal equation to express any vector in an orthogonal coordinate frame.

1.3.1 Orthogonality Condition

Consider a coordinate system (Ouvw) with unit vectors ûu, ûv , ûw. The condition
for the coordinate system (Ouvw) to be orthogonal is that ûu, ûv , ûw are mutually
perpendicular and hence

ûu · ûv = 0

ûv · ûw = 0 (1.178)

ûw · ûu = 0
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In an orthogonal coordinate system, every vector r can be shown in its decomposed
description as

r = (r · ûu)ûu + (r · ûv)ûv + (r · ûw)ûw (1.179)

We call Equation (1.179) the orthogonality condition of the coordinate system (Ouvw).
The orthogonality condition for a Cartesian coordinate system reduces to

r = (r · ı̂)ı̂ + (r · ĵ )ĵ + (r · k̂)k̂ (1.180)

Proof : Assume that the coordinate system (Ouvw) is an orthogonal frame. Using the
unit vectors ûu, ûv , ûw and the components u, v, and w, we can show any vector r in
the coordinate system (Ouvw) as

r = u ûu + v ûv + w ûw (1.181)

Because of orthogonality, we have

ûu · ûv = 0 ûv · ûw = 0 ûw · ûu = 0 (1.182)

Therefore, the inner product of r by ûu, ûv , ûw would be equal to

r · ûu = (
u ûu + v ûv + w ûw

) · (1ûu + 0ûv + 0ûw

) = u

r · ûv = (
u ûu + v ûv + w ûw

) · (0ûu + 1ûv + 0ûw

) = v (1.183)

r · ûv = (
u ûu + v ûv + w ûw

) · (0ûu + 0ûv + 1ûw

) = w

Substituting for the components u, v, and w in Equation (1.181), we may show the
vector r as

r = (r · ûu)ûu + (r · ûv)ûv + (r · ûw)ûw (1.184)

If vector r is expressed in a Cartesian coordinate system, then ûu = ı̂, ûv = ĵ ,
ûw = k̂, and therefore,

r = (r · ı̂)ı̂ + (r · ĵ )ĵ + (r · k̂)k̂ (1.185)

The orthogonality condition is the most important reason for defining a coordinate
system (Ouvw) orthogonal. �

Example 37 � Decomposition of a Vector in a Nonorthogonal Frame Let a, b,
and c be any three non-coplanar, nonvanishing vectors; then any other vector r can be
expressed in terms of a, b, and c,

r = ua + vb + wc (1.186)

provided u, v, and w are properly chosen numbers. If the coordinate system (a, b, c)
is a Cartesian system (Î , Ĵ , K̂), then

r = (r · Î )Î + (r · Ĵ )Ĵ + (r · K̂)K̂ (1.187)
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To find u, v, and w, we dot multiply Equation (1.186) by b × c:

r · (b × c) = ua · (b × c) + vb · (b × c) + wc · (b × c) (1.188)

Knowing that b × c is perpendicular to both b and c, we find

r · (b × c) = ua · (b × c) (1.189)

and therefore,

u = [rbc]

[abc]
(1.190)

where [abc] is a shorthand notation for the scalar triple product

[abc] = a · (b × c) =
∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣
(1.191)

Similarly, v and w would be

v = [rca]

[abc]
w = [rab]

[abc]
(1.192)

Hence,

r = [rbc]

[abc]
a + [rca]

[abc]
b + [rab]

[abc]
c (1.193)

which can also be written as

r =
(

r · b × c
[abc]

)
a +

(
r · c × a

[abc]

)
b +

(
r · a × b

[abc]

)
c (1.194)

Multiplying (1.194) by [abc] gives the symmetric equation

[abc] r − [bcr] a + [cra] b − [rab] c = 0 (1.195)

If the coordinate system (a, b, c) is a Cartesian system (Î , Ĵ , K̂), then

[
ÎĴK̂

]
= 1 (1.196)

Î × Ĵ = K̂ Ĵ × Î = K̂ K̂ × Î = Ĵ (1.197)

and Equation (1.194) becomes

r =
(

r·Î
)

Î +
(

r·Ĵ
)

Ĵ +
(

r·K̂
)

K̂ (1.198)

This example may considered as a general case of Example 30.
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1.3.2 Unit Vector

Consider an orthogonal coordinate system (Oq1q2q3). Using the orthogonality condi-
tion (1.179), we can show the position vector of a point P in this frame by

r = (r · û1)û1 + (r · û2)û2 + (r · û3)û3 (1.199)

where q1, q2, q3 are the coordinates of P and û1, û2, û3 are the unit vectors along
q1, q2, q3 axes, respectively. Because the unit vectors û1, û2, û3 are orthogonal and
independent, they respectively show the direction of change in r when q1, q2, q3 are
positively varied. Therefore, we may define the unit vectors û1, û2, û3 by

û1 = ∂r/∂q1

|∂r/∂q1| û2 = ∂r/∂q2

|∂r/∂q2| û3 = ∂r/∂q3

|∂r/∂q3| (1.200)

Example 38 Unit Vector of Cartesian Coordinate Frames If a vector r given as

r = q1û1 + q2û2 + q3û3 (1.201)

is expressed in a Cartesian coordinate frame, then

q1 = x q2 = y q3 = z (1.202)

and the unit vectors would be

û1 = ûx = ∂r/∂x

|∂r/∂x| = ı̂

1
= ı̂

û2 = ûy = ∂r/∂y
|∂r/∂y| = ĵ

1
= ĵ (1.203)

û3 = ûz = ∂r/∂z

|∂r/∂z| = k̂

1
= k̂

Substituting r and the unit vectors in (1.199) regenerates the orthogonality condition
in Cartesian frames:

r = (r · ı̂)ı̂ + (r · ĵ )ĵ + (r · k̂)k̂ (1.204)

Example 39 Unit Vectors of a Spherical Coordinate System Figure 1.12 illustrates
an option for spherical coordinate system. The angle ϕ may be measured from the
equatorial plane or from the Z -axis. Measuring ϕ from the equator is used in geography
and positioning a point on Earth, while measuring ϕ from the Z -axis is an applied
method in geometry. Using the latter option, the spherical coordinates r , θ , ϕ are
related to the Cartesian system by

x = r cos θ sin ϕ y = r sin θ sin ϕ z = r cos ϕ (1.205)
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X Y

Z

r
P

G
S

ûθ

ûr

ûϕ

θ

ϕ

Figure 1.12 An optional spherical coordinate system.

To find the unit vectors ûr , ûθ , ûϕ associated with the coordinates r , θ , ϕ, we substitute
the coordinate equations (1.205) in the Cartesian position vector,

r = xı̂ + yĵ + zk̂

= (r cos θ sin ϕ) ı̂ + (r sin θ sin ϕ) ĵ + (r cos ϕ) k̂ (1.206)

and apply the unit vector equation (1.203):

ûr = ∂r/∂r

|∂r/∂r| = (cos θ sin ϕ) ı̂ + (sin θ sin ϕ) ĵ + (cos ϕ) k̂

1

= cos θ sin ϕı̂ + sin θ sin ϕĵ + cos ϕk̂ (1.207)

ûθ = ∂r/∂θ

|∂r/∂θ | = (−r sin θ sin ϕ) ı̂ + (r cos θ sin ϕ) ĵ

r sin ϕ

= − sin θ ı̂ + cos θ ĵ (1.208)

ûϕ = ∂r/∂ϕ

|∂r/∂ϕ| = (r cos θ cos ϕ) ı̂ + (r sin θ cos ϕ) ĵ + (−r sin ϕ) k̂

r

= cos θ cos ϕı̂ + sin θ cos ϕĵ − sin ϕk̂ (1.209)

where ûr , ûθ , ûϕ are the unit vectors of the spherical system expressed in the Cartesian
coordinate system.

Example 40 Cartesian Unit Vectors in Spherical System The unit vectors of an
orthogonal coordinate system are always a linear combination of Cartesian unit vectors
and therefore can be expressed by a matrix transformation. Having unit vectors of an
orthogonal coordinate system B1 in another orthogonal system B2 is enough to find the
unit vectors of B2 in B1.
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Based on Example 39, the unit vectors of the spherical system shown in Figure 1.12
can be expressed as

⎡

⎣
ûr

ûθ

ûϕ

⎤

⎦ =
⎡

⎣
cos θ sin ϕ sin θ sin ϕ cos ϕ

− sin θ cos θ 0
cos θ cos ϕ sin θ cos ϕ − sin ϕ

⎤

⎦

⎡

⎣
ı̂

ĵ

k̂

⎤

⎦ (1.210)

So, the Cartesian unit vectors in the spherical system are

⎡

⎣
ı̂

ĵ

k̂

⎤

⎦ =
⎡

⎣
cos θ sin ϕ sin θ sin ϕ cos ϕ

− sin θ cos θ 0
cos θ cos ϕ sin θ cos ϕ − sin ϕ

⎤

⎦

−1 ⎡

⎣
ûr

ûθ

ûϕ

⎤

⎦

=
⎡

⎣
cos θ sin ϕ − sin θ cos θ cos ϕ

sin θ sin ϕ cos θ cos ϕ sin θ

cos ϕ 0 − sin ϕ

⎤

⎦

⎡

⎣
ûr

ûθ

ûϕ

⎤

⎦ (1.211)

1.3.3 Direction of Unit Vectors

Consider a moving point P with the position vector r in a coordinate system (Oq1q2q3).
The unit vectors û1, û2, û3 associated with q1, q2, q3 are tangent to the curve traced
by r when the associated coordinate varies.

Proof : Consider a coordinate system
(
Oq1q2q3

)
that has the following relations with

Cartesian coordinates:

x = f (q1, q2, q3)

y = g (q1, q2, q3) (1.212)

z = h (q1, q2, q3)

The unit vector û1 given as

û1 = ∂r/∂q1

|∂r/∂q1| (1.213)

associated with q1 at a point P (x0, y0, z0) can be found by fixing q2, q3 to q20 , q30

and varying q1. At the point, the equations

x = f
(
q1, q20, q30

)

y = g
(
q1, q20, q30

)
(1.214)

z = h
(
q1, q20 , q30

)

provide the parametric equations of a space curve passing through (x0, y0, z0). From
(1.228) and (1.358), the tangent line to the curve at point P is

x − x0

dx/dq1
= y − y0

dy/dq1
= z − z0

dz/dq1
(1.215)
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and the unit vector on the tangent line is

û1 = dx

dq1
ı̂ + dy

dq1
ĵ + dz

dq1
k̂ (1.216)

(
dx

dq

)2

+
(

dy

dq

)2

+
(

dz

dq

)2

= 1 (1.217)

This shows that the unit vector û1 (1.213) associated with q1 is tangent to the space
curve generated by varying q1. When q1 is varied positively, the direction of û1 is
called positive and vice versa.

Similarly, the unit vectors û2 and û3 given as

û2 = ∂r/∂q2

|∂r/∂q2| û3 = ∂r/∂q3

|∂r/∂q3| (1.218)

associated with q2 and q3 are tangent to the space curve generated by varying q2 and
q3, respectively. �

Example 41 Tangent Unit Vector to a Helix Consider a helix

x = a cos ϕ y = a sin ϕ z = kϕ (1.219)

where a and k are constant and ϕ is an angular variable. The position vector of a
moving point P on the helix

r = a cos ϕ ı̂ + a sin ϕ ĵ + kϕ k̂ (1.220)

may be used to find the unit vector ûϕ :

ûϕ = ∂r/∂q1

|∂r/∂q1| = −a sin ϕ ı̂ + a cos ϕ ĵ + k k̂
√

(−a sin ϕ)2 + (a cos ϕ)2 + (k)2

= − a sin ϕ√
a2 + k2

ı̂ + a cos ϕ√
a2 + k2

ĵ + k√
a2 + k2

k̂ (1.221)

The unit vector ûϕ at ϕ = π/4 given as

ûϕ = −
√

2a

2
√

a2 + k2
ı̂ +

√
2a

2
√

a2 + k2
ĵ + k√

a2 + k2
k̂ (1.222)

is on the tangent line (1.255).

1.4 DIFFERENTIAL GEOMETRY

Geometry is the world in which we express kinematics. The path of the motion of
a particle is a curve in space. The analytic equation of the space curve is used to
determine the vectorial expression of kinematics of the moving point.
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1.4.1 Space Curve

If the position vector GrP of a moving point P is such that each component is a function
of a variable q ,

Gr = Gr (q) = x (q) ı̂ + y (q) ĵ + z (q) k̂ (1.223)

then the end point of the position vector indicates a curve C in G , as is shown in
Figure 1.13. The curve Gr = Gr (q) reduces to a point on C if we fix the parameter q .
The functions

x = x (q) y = y (q) z = z (q) (1.224)

are the parametric equations of the curve.
When the parameter q is the arc length s , the infinitesimal arc distance ds on the

curve is

ds2 = dr · dr (1.225)

The arc length of a curve is defined as the limit of the diagonal of a rectangular box
as the length of the sides uniformly approach zero.

When the space curve is a straight line that passes through point P(x0, y0, z0)

where x0 = x(q0), y0 = y(q0), z0 = z(q0), its equation can be shown by

x − x0

α
= y − y0

β
= z − z0

γ
(1.226)

α2 + β2 + γ 2 = 1 (1.227)

where α, β, and γ are the directional cosines of the line.
The equation of the tangent line to the space curve (1.224) at a point P(x0, y0, z0) is

x − x0

dx/dq
= y − y0

dy/dq
= z − z0

dz/dq
(1.228)

(
dx

dq

)2

+
(

dy

dq

)2

+
(

dz

dq

)2

= 1 (1.229)

X Y

Z

G
C

drdy

dx

dz

ds

r2r1

Figure 1.13 A space curve and increment arc length ds
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Proof : Consider a position vector Gr = Gr (s) that describes a space curve using the
length parameter s:

Gr = Gr (s) = x (s) ı̂ + y (s) ĵ + z (s) k̂ (1.230)

The arc length s is measured from a fixed point on the curve. By a very small change
ds , the position vector will move to a very close point such that the increment in the
position vector would be

dr = dx (s) ı̂ + dy (s) ĵ + dz (s) k̂ (1.231)

The length of dr and ds are equal for infinitesimal displacement:

ds =
√

dx2 + dy2 + dz 2 (1.232)

The arc length has a better expression in the square form:

ds2 = dx2 + dy2 + dz 2 = dr · dr (1.233)

If the parameter of the space curve is q instead of s , the increment arc length would be

(
ds

dq

)2

= dr
dq

· dr
dq

(1.234)

Therefore, the arc length between two points on the curve can be found by integration:

s =
∫ q2

q1

√
dr
dq

· dr
dq

dq (1.235)

=
∫ q2

q1

√(
dx

dq

)2

+
(

dy

dq

)2

+
(

dz

dq

)2

dq (1.236)

Let us expand the parametric equations of the curve (1.224) at a point P(x0, y0, z0),

x = x0 + dx

dq
�q + 1

2

d2x

dq2
�q2 + · · ·

y = y0 + dy

dq
�q + 1

2

d2y

dq2
�q2 + · · · (1.237)

z = z0 + dz

dq
�q + 1

2

d2z

dq2
�q2 + · · ·

and ignore the nonlinear terms to find the tangent line to the curve at P :

x − x0

dx/dq
= y − y0

dy/dq
= z − z0

dz/dq
= �q (1.238)

�



40 Fundamentals of Kinematics

Example 42 Arc Length of a Planar Curve A planar curve in the (x, y)-plane

y = f (x) (1.239)

can be expressed vectorially by

r = xı̂ + y (x) ĵ (1.240)

The displacement element on the curve

dr
dx

= ı̂ + dy

dx
ĵ (1.241)

provides (
ds

dx

)2

= dr
dx

· dr
dx

= 1 +
(

dy

dx

)2

(1.242)

Therefore, the arc length of the curve between x = x1 and x = x2 is

s =
∫ x2

x1

√

1 +
(

dy

dx

)2

dx (1.243)

In case the curve is given parametrically,

x = x(q) y = y(q) (1.244)

we have (
ds

dq

)2

= dr
dq

· dr
dq

=
(

dx

dq

)2

+
(

dy

dq

)2

(1.245)

and hence,

s =
∫ q2

q1

∣∣∣∣
dr
dq

∣∣∣∣ =
∫ q2

q1

√(
dx

dq

)2

+
(

dy

dq

)2

dq (1.246)

As an example, we may show a circle with radius R by its polar expression using
the angle θ as a parameter:

x = R cos θ y = R sin θ (1.247)

The circle is made when the parameter θ varies by 2π . The arc length between θ = 0
and θ = π/2 would then be one-fourth the perimeter of the circle. The equation for
calculating the perimeter of a circle with radius R is

s = 4
∫ π/2

0

√(
dx

dθ

)2

+
(

dy

dθ

)2

dθ = R

∫ π/2

0

√
sin2 θ + cos2 θ dθ

= 4R

∫ π/2

0
dθ = 2πR (1.248)
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Example 43 Alternative Space Curve Expressions We can represent a space curve
by functions

y = y (x) z = z (x) (1.249)

or vector
r (q) = xı̂ + y (x) ĵ + z (x) k̂ (1.250)

We may also show a space curve by two relationships between x , y , and z ,

f (x, y, z) = 0 g(x, y, z) = 0 (1.251)

where f (x, y, z) = 0 and g(x, y, z) = 0 represent two surfaces. The space curve would
then be indicated by intersecting the surfaces.

Example 44 Tangent Line to a Helix Consider a point P that is moving on a helix
with equation

x = a cos ϕ y = a sin ϕ z = kϕ (1.252)

where a and k are constant and ϕ is an angular variable. To find the tangent line to
the helix at ϕ = π/4,

x0 =
√

2

2
a y0 =

√
2

2
a z0 = k

π

4
(1.253)

we calculate the required derivatives:

dx

dϕ
= −a sin ϕ = −

√
2

2
a

dy

dϕ
= a cos ϕ =

√
2

2
a (1.254)

dz

dϕ
= k

So, the equation of the tangent line is

−
√

2

a

(
x − 1

2

√
2a

)
=

√
2

a

(
y − 1

2

√
2a

)
= 1

k

(
z − 1

4
πk

)
(1.255)

Example 45 Parametric Form of a Line The equation of a line that connects two
points P1(x1, y1, z1) and P2(x2, y2, z3) is

x − x1

x2 − x1
= y − y1

y2 − y1
= z − z1

z2 − z1
(1.256)
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This line may also be expressed by the following parametric equations:

x = x1 + (x2 − x1) t

y = y1 + (y2 − y1) t (1.257)

z = z1 + (z2 − z1) t

Example 46 Length of a Roller Coaster Consider the roller coaster illustrated later
in Figure 1.22 with the following parametric equations:

x = (a + b sin θ) cos θ

y = (a + b sin θ) sin θ (1.258)

z = b + b cos θ

for
a = 200 m b = 150 m (1.259)

The total length of the roller coaster can be found by the integral of ds for θ from 0
to 2π :

s =
∫ θ2

θ1

√
dr
dθ

· dr
dθ

dθ =
∫ θ2

θ1

√(
∂x

∂θ

)2

+
(

∂x

∂θ

)2

+
(

∂x

∂θ

)2

dθ

=
∫ 2π

0

√
2

2

√
2a2 + 3b2 − b2 cos 2θ + 4ab sin θdθ

= 1629.367 m (1.260)

Example 47 Two Points Indicate a Line Consider two points A and B with position
vectors a and b in a coordinate frame. The condition for a point P with position vector
r to lie on the line AB is that r − a and b − a be parallel. So,

r − a = c (b − a) (1.261)

where c is a parameter. The outer product of Equation (1.261) by b − a provides

(r − a) × (b − a) = 0 (1.262)

which is the equation of the line AB .

Example 48 Line through a Point and Parallel to a Given Line Consider a point A
with position vector a and a line l that is indicated by a unit vector ûl . To determine
the equation of the parallel line to ûl that goes over A, we employ the condition that
r − a and ûl must be parallel:

r = a + cûl (1.263)
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We can eliminate the parameter c by the outer product of both sides with ûl :

r × ûl = a × ûl (1.264)

1.4.2 Surface and Plane

A plane is the locus of the tip point of a position vector

r = xı̂ + yĵ + zk̂ (1.265)

such that the coordinates satisfy a linear equation

Ax + By + Cz + D = 0 (1.266)

A space surface is the locus of the tip point of the position vector (1.265) such that its
coordinates satisfy a nonlinear equation:

f (x, y, z) = 0 (1.267)

Proof : The points P1, P2, and P3 at r1, r2, and r3,

r1 =

⎡

⎢⎢
⎣

−D

A
0

0

⎤

⎥⎥
⎦ r2 =

⎡

⎢⎢
⎣

0

−D

B
0

⎤

⎥⎥
⎦ r3 =

⎡

⎢⎢
⎣

0

0

−D

C

⎤

⎥⎥
⎦ (1.268)

satisfy the equations of the plane (1.266). The position of P2 and P3 with respect to
P1 are shown by 1r2 and 1r3 or r2/1 and r3/1:

1r2 = r2 − r1 =

⎡

⎢⎢⎢⎢
⎣

D

A

−D

B

0

⎤

⎥⎥⎥⎥
⎦

1r3 = r3 − r1 =

⎡

⎢⎢⎢⎢
⎣

D

A
0

−D

C

⎤

⎥⎥⎥⎥
⎦

(1.269)

The cross product of 1r2 and 1r3 is a normal vector to the plane:

1r2 × 1r3 =

⎡

⎢⎢⎢⎢
⎣

D

A

−D

B

0

⎤

⎥⎥⎥⎥
⎦

×

⎡

⎢⎢⎢⎢
⎣

D

A

0

−D

C

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

D2

BC
D2

AC
D2

AB

⎤

⎥⎥⎥⎥⎥⎥
⎦

(1.270)

The equation of the plane is the locus of any point P ,

rP =
⎡

⎣
x

y

z

⎤

⎦ (1.271)
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where its position with respect to P1,

1rP = rP − r1 =

⎡

⎢
⎣

x + D

A
y

z

⎤

⎥
⎦ (1.272)

is perpendicular to the normal vector:

1rP · (1r2 × 1r3) = D + Ax + By + Cz = 0 (1.273)

�

Example 49 Plane through Three Points Every three points indicate a plane.
Assume that (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) are the coordinates of three points
P1, P2, and P3. The plane made by the points can be found by

∣∣∣∣
∣∣∣∣

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣
∣∣∣∣

= 0 (1.274)

The points P1, P2, and P3 satisfy the equation of the plane

Ax1 + By1 + Cz1 + D = 0

Ax2 + By2 + Cz2 + D = 0 (1.275)

Ax3 + By3 + Cz3 + D = 0

and if P with coordinates (x, y, z) is a general point on the surface,

Ax + By + Cz + D = 0 (1.276)

then there are four equations to determine A, B , C , and D :

⎡

⎢⎢
⎣

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

A

B

C

D

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0
0
0
0

⎤

⎥⎥
⎦ (1.277)

The determinant of the equations must be zero, which determines the equation of
the plane.

Example 50 Normal Vector to a Plane A plane may be expressed by the linear
equation

Ax + By + Cz + D = 0 (1.278)
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or by its intercept form

x

a
+ y

b
+ z

c
= 1 (1.279)

a = −D

A
b = −D

B
c = −D

C
(1.280)

In either case, the vector

n1 = Aı̂ + Bĵ + Ck̂ (1.281)

or
n2 = aı̂ + bĵ + ck̂ (1.282)

is normal to the plane and may be used to represent the plane.

Example 51 Quadratic Surfaces A quadratic relation between x, y, z is called the
quadratic form and is an equation containing only terms of degree 0, 1, and 2 in the
variables x, y, z. Quadratic surfaces have special names:

x2

a2
+ y2

b2
+ z2

c2
= 1 Ellipsoid (1.283)

x2

a2
+ y2

b2
− z2

c2
= 1 Hyperboloid of one sheet (1.284)

x2

a2
− y2

b2
− z2

c2
= 1 Hyperboloid of two sheets (1.285)

x2

a2
+ y2

b2
+ z2

c2
= −1 Imaginary ellipsoid (1.286)

x2

a2
+ y2

b2
= 2nz Elliptic paraboloid (1.287)

x2

a2
− y2

b2
= 2nz Hyperbolic paraboloid (1.288)

x2

a2
+ y2

b2
− z2

c2
= 0 Real quadratic cone (1.289)

x2

a2
+ y2

b2
+ z2

c2
= 0 Real imaginary cone (1.290)

x2

a2
± y2

b2
= ±1 y2 = 2px Quadratic cylinders (1.291)
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1.5 MOTION PATH KINEMATICS

The derivative of vector functions is based on the derivative of scalar functions. To find
the derivative of a vector, we take the derivative of its components in a decomposed
Cartesian expression.

1.5.1 Vector Function and Derivative

The derivative of a vector is possible only when the vector is expressed in a Cartesian
coordinate frame. Its derivative can be found by taking the derivative of its components.
The Cartesian unit vectors are invariant and have zero derivative with respect to any
parameter.

A vector r = r (t) is called a vector function of the scalar variable t if there is
a definite vector for every value of t from a certain set T = [τ1, τ2]. In a Cartesian
coordinate frame G , the specification of the vector function r (t) is equivalent to the
specification of three scalar functions x (t), y (t), z (t):

Gr (t) = x (t) ı̂ + y (t) ĵ + z (t) k̂ (1.292)

If the vector r is expressed in Cartesian decomposition form, then the derivative
dr/dt is

Gd

dt
Gr = dx (t)

dt
ı̂ + dy (t)

dt
ĵ + dz (t)

dt
k̂ (1.293)

and if r is expressed in its natural form

Gr = rûr = r (t)
[
u1 (t) ı̂ + u2 (t) ĵ + u3 (t) k̂

]
(1.294)

then, using the chain rule, the derivative dr/dt is

Gd

dt
Gr = dr

dt
ûr + r

d

dt
ûr

= dr

dt

(
u1 ı̂ + u2ĵ + u3k̂

)
+ r

(
du1

dt
ı̂ + du2

dt
ĵ + du3

dt
k̂

)

=
(

dr

dt
u1 + r

du1

dt

)
ı̂ +

(
dr

dt
u2 + r

du2

dt

)
ĵ +

(
dr

dt
u3 + r

du3

dt

)
k̂ (1.295)

When the independent variable t is time, an overdot ṙ (t) is used as a shorthand notation
to indicate the time derivative.

Consider a moving point P with a continuously varying position vector r = r (t).
When the starting point of r is fixed at the origin of G , its end point traces a continuous
curve C as is shown in Figure 1.14. The curve C is called a configuration path that
describes the motion of P , and the vector function r (t) is its vector representation.
At each point of the continuously smooth curve C = {r (t) , t ∈ [τ1, τ2]} there exists a
tangent line and a derivative vector dr (t) /dt that is directed along the tangent line
and directed toward increasing the parameter t . If the parameter is the arc length s of
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X Y

Z

G

Cr(t)

Figure 1.14 A space curve is the trace point of a single variable position vector.

the curve that is measured from a convenient point on the curve, the derivative of Gr
with respect to s is the tangential unit vector ût to the curve at Gr:

Gd

ds
Gr = ût (1.296)

Proof : The position vector Gr in its decomposed expression

Gr (t) = x (t) ı̂ + y (t) ĵ + z (t) k̂ (1.297)

is a combination of three variable-length vectors x (t) ı̂, y (t) ĵ , and z (t) k̂. Consider
the first one that is a multiple of a scalar function x (t) and a constant unit vector ı̂. If
the variable is time, then the time derivative of this variable-length vector in the same
frame in which the vector is expressed is

Gd

dt

(
x (t) ı̂

) = ẋ (t) ı̂ + x (t)
Gd

dt
ı̂ = ẋ (t) ı̂ (1.298)

Similarly, the time derivatives of y (t) ĵ and z (t) k̂ are ẏ (t) ĵ and ż (t) k̂, and therefore,
the time derivative of the vector Gr (t) can be found by taking the derivative of its
components

Gv =
Gd

dt
Gr (t) = ẋ (t) ı̂ + ẏ (t) ĵ + ż (t) k̂ (1.299)

If a variable vector Gr is expressed in a natural form

Gr = r (t) ûr (t) (1.300)

we express the unit vector ûr (t) in its decomposed form

Gr = r (t) ûr (t)

= r (t)
[
u1 (t) ı̂ + u2 (t) ĵ + u3 (t) k̂

]
(1.301)
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and take the derivative using the chain rule and variable-length vector derivative:

Gv =
Gd

dt
Gr = ṙ ûr + r

Gd

dt
ûr

= ṙ
(
u1 ı̂ + u2ĵ + u3k̂

)
+ r

(
u̇1 ı̂ + u̇2ĵ + u̇3k̂

)

= (ṙu1 + ru̇1) ı̂ + (ṙu2 + ru̇2) ĵ + (ṙu3 + ru̇3) k̂ (1.302)

�

Example 52 Geometric Expression of Vector Derivative Figure 1.15 depicts a con-
figuration path C that is the trace of a position vector r (t) when t varies. If �t > 0,
then the vector �r is directed along the secant AB of the curve C toward increasing
values of the parameter t . The derivative vector dr (t) /dt is the limit of �r when
�t → 0:

d

ds
r (t) = lim

�t→0

�r
�t

(1.303)

where dr (t) /dt is directed along the tangent line to C .
Let us show the unit vectors along �r and dr (t) /dt by �r/�r and ût to get

ût = lim
�r→0

�r
�r

= lim
�t→0

�r/�t

�r/�t
= dr (t) /dt

dr/dt
(1.304)

The tangent unit vector ût to the curve C is called the orientation of the curve C .
When �t → 0, the length of �r approaches the arc length �s between A and B . So,
Equation (1.304) can also be written as

ût = lim
�s→0

�r
�s

= lim
�t→0

�r/�t

�s/�t
= dr (t) /dt

ds (t) /dt
(1.305)

If �t < 0, then the vector �r is directed toward decreasing values of t .

X Y

Z

G

r(t) C

r(t + Δt) Δr
A

B

Δr
Δr dr/dt

ut
s

Figure 1.15 The increment vector �r for �t > 0 of a position vector r (t) is directed along
the increasing secant AB of the curve configuration path C .
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X Y

Z

G

Δr

Gr1

Gv2

Gv1

Δv

Gr2

v z

G

Δv

Δa

vx vy

Gv2

Gv1

Ga1

Ga2

(a) (b)

Figure 1.16 (a) Path of a position vector r. (b) Path of the velocity vector v = dr/dt .

Consider a moving point P in a coordinate frame G(x, y, z), with a continuously
varying position vector r = r (t) from a fixed origin, as is shown in Figure 1.16(a). The
end point of the vector describes a path C when time t varies. Assume that r = Gr1 is
the position vector at a time t = t1 and r = Gr2 is the position vector at a time t = t2.
The difference vector

G�r = Gr2 − Gr1 (1.306)

becomes smaller by shortening the time duration:

�t = t2 − t1 (1.307)

The quotient �r/�t is the average rate of change of r in the interval �t . Following
the method of calculus, the limit of this quotient when �t → 0 by moving t2 toward
t1 is the derivative of r at t1:

lim
�t→0

G�r
�t

=
Gd

dt
Gr = Gv (1.308)

where Gv is a tangent vector to the path C at the position Gr1 and is called the
velocity of P .

We may express the velocity vector in a new orthogonal coordinate frame
G(vx, vy, vz). The tip point of the velocity vector traces a path in the velocity
coordinate frame called a velocity hodograph . Employing the same method, we can
define the velocity v = Gv1 at time t = t1 and the velocity v = Gv2 at time t = t2.
The difference vector

G�v = Gv2 − Gv1 (1.309)

becomes smaller by shortening the time duration

�t = t2 − t1 (1.310)

The quotient �v/�t is the average rate of change of v in the interval �t . The limit of
this quotient is the derivative of v that makes the acceleration of P :

lim
�t→0

G�v
�t

=
Gd

dt
Gv = Ga (1.311)
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Example 53 A Moving Point on a Helix Consider the point P in Figure 1.17 with
position vector Gr (ϕ),

Gr (ϕ) = a cos ϕ ı̂ + a sin ϕ ĵ + kϕ k̂ (1.312)

that is moving on a helix with equation

x = a cos ϕ y = a sin ϕ z = kϕ (1.313)

where a and k are constant and ϕ is an angular variable. The first, second, and third
derivatives of Gr (ϕ) with respect to ϕ are

Gd

dϕ
r (ϕ) = r′ (ϕ) = −a sin ϕ ı̂ + a cos ϕ ĵ + k k̂ (1.314)

Gd2

dϕ2
r (ϕ) = r′′ (ϕ) = −a cos ϕ ı̂ − a sin ϕ ĵ (1.315)

Gd3

dϕ3
r (ϕ) = r′′′ (ϕ) = a sin ϕ ı̂ − a cos ϕ ĵ (1.316)

If the angle ϕ is a function of time t , then the first, second, and third derivatives of
Gr (ϕ) with respect to t are

Gd

dt
r (t) = −aϕ̇ sin ϕ ı̂ + aϕ̇ cos ϕ ĵ + kϕ̇ k̂ (1.317)

Gd2

dt2
r (t) = (−aϕ̈ sin ϕ − aϕ̇2 cos ϕ

)
ı̂

+ (
aϕ̈ cos ϕ − aϕ̇2 sin ϕ

)
ĵ + kϕ̈ k̂ (1.318)

Gd3

dt3
r (t) = (−a

...
ϕ sin ϕ − 3aϕ̇ϕ̈ cos ϕ + aϕ̇3 sin ϕ

)
ı̂

+ (
a

...
ϕ cos ϕ − 3aϕ̇ϕ̈ sin ϕ − aϕ̇3 cos ϕ

)
ĵ + k

...
ϕ k̂ (1.319)

X

Y

Z

G

r

a

2πk

Figure 1.17 Helical path of a moving point.
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Example 54 Vector Function If the magnitude of a vector r and/or direction of r
in a reference frame B depends on a scalar variable, say q , then r is called a vector
function of q in B . A vector may be a function of a variable in one coordinate frame
but be independent of this variable in another coordinate frame.

1.5.2 Velocity and Acceleration

If the vector r = Gr (t) is a position vector in a coordinate frame G , then its time
derivative is a velocity vector Gv. It shows the speed and the direction of motion of
the tip point of Gr:

Gv =
Gd

dt
Gr (t) = ẋ (t) ı̂ + ẏ (t) ĵ + ż (t) k̂ (1.320)

The time derivative of a velocity vector Gv is called the acceleration Ga,

Ga =
Gd

dt
Gv (t) = ẍ (t) ı̂ + ÿ (t) ĵ + z̈ (t) k̂ (1.321)

and the time derivative of an acceleration vector Ga is called the jerk Gj,

Gj =
Gd

dt
Ga (t) = ...

x (t) ı̂ + ...
y (t) ĵ + ...

z (t) k̂ (1.322)

Example 55 Velocity, Acceleration, and Jerk of a Moving Point on a Helix Consider
a moving point P with position vector in a coordinate frame G as

Gr (t) = cos (ωt) ı̂ + sin (ωt) ĵ + 2t k̂ (1.323)

Such a path is called a helix or screw . The helix is uniformly turning on a circle in
the (x, y)-plane while the circle is moving with a constant speed in the z -direction.

Taking the derivative shows that the velocity, acceleration, and jerk of the point
P are

Gv (t) = −ω sin (ωt) ı̂ + ω cos (ωt) ĵ + 2 k̂ (1.324)
Ga (t) = −ω2 cos (ωt) ı̂ − ω2 sin (ωt) ĵ (1.325)
Gj (t) = ω3 sin (ωt) ı̂ − ω3 cos (ωt) ĵ (1.326)

Example 56 � Flight of a Bug Consider two cars A and B that are initially 15 km
apart. The cars begin moving toward each other. The speeds of cars A and B are 10
and 5 km/ h, respectively. The instant they started a bug on the bumper of car A starts
flying with speed 12 km/ h straight toward car B . As soon as it reaches the other car
it turns and flies back. The bug flies back and forth from one car to the other until the
two cars meet. The total length that the bug flies would be 12 km.
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To calculate the total length of the bug’s motion, let us show the velocities of the
cars by vA and vB and the velocity of the bug by vF . Figure 1.18 illustrates the position
of the cars and the bug at a time t > 0. Their positions are

XA = vAt XB = l − vBt XF = vF t (1.327)

l

A X
vA vB

vF

B

Figure 1.18 Two cars A and B moving toward each other and a bug F flying from one car to
the other.

The bug reaches B at time t1 after flying the distance d1:

t1 = l

vB + vF

d1 = vF t1 = vF

vB + vF

l (1.328)

At this time, cars A, B and the bug are at

XA1 = vA

vB + vF

l (1.329)

XB1 =
(

1 − vB

vB + vF

)
l (1.330)

XF1 = XB1 (1.331)

so their positions when the bug is flying back are

XA = XA1 + vAt = vA

vB + vF

l + vAt (1.332)

XB = XB1 − vBt =
(

1 − vB

vB + vF

)
l − vBt (1.333)

XF = XF1 − vF t =
(

1 − vB

vB + vF

)
l − vF t (1.334)

The bug reaches A at time t2 after flying the distance d2:

t2 = l

vB + vF

vF − vA

vA + vF

d2 = vF

vB + vF

vA

vA + vF

l (1.335)

At this time cars A, B and the bug are at

XA2 = 2
vF

vB + vF

vA

vA + vF

l (1.336)

XB2 =
(

1 − vB

vB + vF

+ vB

vB + vF

vF − vA

vA + vF

)
l (1.337)

XF2 = XA2 (1.338)
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so their positions when the bug is flying forward are

XA = XA2 + vAt = 2
vA

vB + vF

vF

vA + vF

l + vAt (1.339)

XB = XB2 − vBt = l − vB

vB + vF

l

(
1 − vF − vA

vA + vF

)
− vBt (1.340)

XF = XF2 + vF t = 2
vA

vB + vF

vF

vA + vF

l − vF t (1.341)

By repeating this procedure, we can find the next times and distances and determine
the total time t and distance d as

t = t1 + t2 + t3 + · · · (1.342)

d = d1 + d2 + d3 + · · · (1.343)

However, there is a simpler method to analyze this problem. The total time t at
which the cars meet is

t = l

vA + vB

(1.344)

At this time, the bug can fly a distance d :

d = vF t = vF

vA + vB

l (1.345)

Therefore, if the speeds of the cars are vA = 10 km/ h and vB = 5 km/ h and their
distance is d = 15 km, it takes an hour for the cars to meet. The bug with a speed of
vF = 12 km/ h can fly d = 12 km in an hour.

Example 57 � Jerk, Snap, and Other Derivatives The derivative of acceleration
or the third time derivative of the position vector r is called the jerk j; in England
the word jolt is used instead of jerk. The third derivative may also wrongly be called
pulse, impulse, bounce, surge, shock, or superacceleration.

In engineering, jerk is important for evaluating the destructive effects of motion on
a moving object. For instance, high jerk is a reason for the discomfort of passengers in
a vehicle. Jerk is the reason for liquid splashing from an open container. The movement
of fragile objects, such as eggs, needs to be kept within specified limits of jerk to avoid
damage. It is required that engineers keep the jerk of public transportation vehicles less
than 2 m/ s3 for passenger comfort. There is an instrument in the aerospace industry
called a jerkmeter that measures jerk.

There are no universally accepted names for the fourth and higher derivatives
of a position vector r. However, the terms snap s and jounce s have been used for
derivatives of jerk. The fifth derivative of r is crackle c, the sixth derivative is pop þ,
the seventh derivative is larz z, the eight derivative is bong b, the ninth derivative is
jeeq q, and the tenth derivative is sooz u.
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1.5.3 � Natural Coordinate Frame

Consider a space curve

x = x (s) y = y (s) z = z (s) (1.346)

where s is the arc length of the curve from a fixed point on the curve. At the point
there are three important planes: the perpendicular plane to the curve,

(x − x0)
dx

ds
+ (y − y0)

dy

ds
+ (z − z0)

dz

ds
= 0 (1.347)

the osculating plane,

(
dy

ds

d2z

ds2
− dz

ds

d2y

ds2

)
(x − x0) +

(
dz

ds

d2x

ds2
− dx

ds

d2z

ds2

)
(y − y0)

+
(

dx

ds

d2y

ds2
− dy

ds

d2x

ds2

)
(z − z0) = 0 (1.348)

and the rectifying plane,

(x − x0)
d2x

ds2
+ (y − y0)

d2y

ds2
+ (z − z0)

d2z

ds2
= 0 (1.349)

The osculating plane is the plane that includes the tangent line and the curvature center
of the curve at P . The rectifying plane is perpendicular to both the osculating and
normal planes.

The curvature of the curve at P is

κ =
√(

d2x

ds2

)2

+
(

d2y

ds2

)2

+
(

d2z

ds2

)2

(1.350)

and the radius of curvature is
ρ = 1

κ
(1.351)

The radius of curvature indicates the center of curvature in the osculating plane.
Figure 1.19 illustrates a space curve and the three planes at a point P . The unit vectors
ût , ûn, and ûb are indicators of the rectifying, perpendicular, and osculating planes and
make an orthogonal triad. This triad can be used to express the velocity and acceleration
of the moving point P along the space curve C :

v = ṡût (1.352)

a = s̈ût + ṡ2

ρ
ûn (1.353)
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ûn

r

X Y

Z

ût

Osculating plane

C

Rectifying plane

Perpendicular
plane

ûb

P

ρ

Figure 1.19 A space curve C and the three associated planes to the natural coordinates at a
point P .

The orthogonal triad ût , ûn, ûb is called the natural triad or natural coordinate frame:

ût = dr
ds

(1.354)

ûn = 1
∣
∣d2r/ds2

∣
∣
d2r

ds2
(1.355)

ûb = 1
∣∣(dr/ds) × (d2r/ds2)

∣∣

(
dr
ds

× d2r

ds2

)
(1.356)

Proof : Consider the tangent line (1.228) to the space curve (1.346) at point
P (x0, y0, z0):

x − x0

dx/ds
= y − y0

dy/ds
= z − z0

dz/ds
(1.357)

The unit vector along the tangent line lt is

ût = dx

ds
ı̂ + dy

ds
ĵ + dz

ds
k̂ = dr

ds
(1.358)

because dx/ds, dy/ds, dz/ds are the directional cosines of the tangent line. A perpen-
dicular plane to this vector is

dx

ds
x + dy

ds
y + dz

ds
z = c (1.359)
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where c is a constant. The coordinates of P (x0, y0, z0) must satisfy the equation of
the plane

dx

ds
x0 + dy

ds
y0 + dz

ds
z0 = c (1.360)

and the perpendicular plane to the space curve at P (x0, y0, z0) is

(x − x0)
dx

ds
+ (y − y0)

dy

ds
+ (z − z0)

dz

ds
= 0 (1.361)

The equation of any plane that includes P (x0, y0, z0) is

A(x − x0) + B (y − y0) + C (z − z0) = 0 (1.362)

It also includes the tangent line (1.357) if

A
dx

ds
+ B

dy

ds
+ C

dz

ds
= 0 (1.363)

and includes the space curve up to �s2 if

A
d2x

ds2
+ B

d2y

ds2
+ C

d2z

ds2
= 0 (1.364)

Eliminating A, B , and C provides
∣
∣∣∣∣∣∣∣∣∣

x − x0 y − y0 z − z0
dx

ds

dy

ds

dz

ds
d2x

ds2

d2y

ds2

d2z

ds2

∣
∣∣∣∣∣∣∣∣∣

= 0 (1.365)

which is the equation of the osculating plane (1.348). The osculating plane can be
identified by its unit vector ûb, called the bivector :

ûb = 1

ub

(
dy

ds

d2z

ds2
− dz

ds

d2y

ds2

)
ı̂ + 1

ub

(
dz

ds

d2x

ds2
− dx

ds

d2z

ds2

)
ĵ

+ 1

ub

(
dx

ds

d2y

ds2
− dy

ds

d2x

ds2

)
k̂ = 1

ub

(
dr
ds

× d2r

ds2

)
(1.366)

u2
b =

(
dy

ds

d2z

ds2
− dz

ds

d2y

ds2

)2

+
(

dz

ds

d2x

ds2
− dx

ds

d2z

ds2

)2

+
(

dx

ds

d2y

ds2
− dy

ds

d2x

ds2

)2

=
(

dr
ds

× d2r

ds2

)2

(1.367)

The line of intersection of the osculating plane (1.348) and the perpendicular plane
(1.361) is called the principal normal line to the curve at P . From (1.361) and (1.348)
the equation of the principal normal is

x − x0

d2x/ds2
= y − y0

d2y/ds2
= z − z0

d2z/ds2
(1.368)



1.5 Motion Path Kinematics 57

The plane through P and perpendicular to the principal normal is called the rectifying
or tangent plane, which has the equation

(x − x0)
d2x

ds2
+ (y − y0)

d2y

ds2
+ (z − z0)

d2z

ds2
= 0 (1.369)

The intersection of the rectifying plane and the perpendicular plane is a line that is
called the binormal line:

x − x0

dy

ds

d2z

ds2
− dz

ds

d2y

ds2

= y − y0

dz

ds

d2x

ds2
− dx

ds

d2z

ds2

= z − z0

dx

ds

d2y

ds2
− dy

ds

d2x

ds2

(1.370)

The bivector (1.366) is along the binormal line (1.370). The unit vector perpendicular
to the rectifying plane is called the normal vector ûn, which is in the osculating plane
and in the direction of the center of curvature of the curve at P :

ûn = 1

un

d2x

ds2
ı̂ + 1

un

d2y

ds2
ĵ + 1

un

d2z

ds2
k̂ = 1

un

d2r

ds2
(1.371)

u2
n =

(
d2x

ds2

)2

+
(

d2y

ds2

)2

+
(

d2z

ds2

)2

(1.372)

The unit vectors ût , ûn, and ûb make an orthogonal triad that is called the natural
coordinate frame:

ût × ûn = ûb (1.373)

The curvature κ of a space curve is defined as the limit of the ratio of the angle
�θ between two tangents to the arc length �s of the curve between the tangents as
the arc length approaches zero:

κ = lim
�s→0

�θ

�s
(1.374)

The directional cosines of the tangent line are dx/ds , dy/ds , dz/ds at point
P1 (x1, y1, z1) and dx/ds + (d2x)/(ds2)�s, dy/ds + (d2y)/(ds2)�s, dz/ds +
(d2z)/(ds2)�s at

P2 (x2, y2, z2) = P2

(
x1 + dx

ds �s, y1 + dy
ds �s, z1 + dz

ds �s
)

Using the cross product of the unit vectors along the two tangent lines, we have

sin2 �θ =
[(

dy

ds

d2z

ds2
− dz

ds

d2y

ds2

)2

+
(

dz

ds

d2x

ds2
− dx

ds

d2z

ds2

)2

+
(

dx

ds

d2y

ds2
− dy

ds

d2x

ds2

)2
]

(�s)2 (1.375)
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Because of the constraint among the directional cosines and

lim
�θ→0

sin �θ

�θ
= 1 (1.376)

the coefficient of (�s)2 reduces to (d2x/ds2)2 + (d2y/ds2)2 + (d2z/ds2)2 and we can
calculate the curvature of the curve as

κ = dθ

ds
=

√(
d2x

ds2

)2

+
(

d2y

ds2

)2

+
(

d2z

ds2

)2

(1.377)

Consider a circle with x = ρ cos ϕ, y = ρ sin ϕ, z = 0. The curvature of the circle
would be κ = 1/ρ because ds = ρ dϕ. Equating the curvature of the curve with the
curvature of the circle provides the radius of curvature of the curve:

ρ = 1

κ
(1.378)

Using the radius of curvature, we may simplify the unit normal vector ûn to

ûn = ρ

(
d2x

ds2 ı̂ + d2y

ds2 ĵ + d2z

ds2 k̂

)
= ρ

d2r

ds2 (1.379)

Because the unit vector ût in (1.358) is tangent to the space curve in the direc-
tion of increasing curve length s , the velocity vector v must be tangent to the curve
in the direction of increasing time t . Therefore, v is proportional to ût where the
proportionality factor is the speed ṡ of P :

v = ṡût = ṡ

(
dx

ds
ı̂ + dy

ds
ĵ + dz

ds
k̂

)
= ṡ

dr
ds

(1.380)

v = ṡ (1.381)

The acceleration of P would be

a = s̈ût + ṡ
d

dt
ût (1.382)

However,
d

dt
ût = ṡ

d2x

ds2
ı̂ + ṡ

d2y

ds2
ĵ + ṡ

d2z

ds2
k̂ = ṡ

ρ
ûn (1.383)

which shows that

a = s̈ût + ṡ2

ρ
ûn (1.384)

a =
√

s̈2 + ṡ4

ρ2
(1.385)

The natural coordinate frame ût , ûn, and ûb may also be called the Frenet frame,
Frenet trihedron, repère mobile frame, moving frame, or path frame. �
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Example 58 Osculating Plane to a Helix A point P is moving on a helix with equation

x = a cos ϕ y = a sin ϕ z = kϕ (1.386)

where a and k are constant and ϕ is an angular variable. The tangent line (1.357) to
the helix at ϕ = π/4 is

−
√

2

a

(
x − 1

2

√
2a

)
=

√
2

a

(
y − 1

2

√
2a

)
= 1

k

(
z − 1

4
πk

)
(1.387)

Using

x0 =
√

2

2
a y0 =

√
2

2
a z0 = k

π

4
(1.388)

and
dx

dϕ
= −a sin ϕ = −

√
2

2
a

dy

dϕ
= a cos ϕ =

√
2

2
a (1.389)

dz

dϕ
= k (1.390)

we can find the perpendicular plane (1.347) to the helix at ϕ = π/4:

−
√

2ax +
√

2ay + 2zk = 1
2πk2 (1.391)

To find the osculating and rectifying planes, we need to calculate the second deriva-
tives of the curve at ϕ = π/4,

d2x

dϕ2
= −a cos ϕ = −

√
2

2
a

d2y

dϕ2
= −a sin ϕ = −

√
2

2
a

d2z

dϕ2
= 0

(1.392)

substitute in Equation (1.369) for the osculating plane,

√
2x −

√
2ky + 2az = 1

2
πak (1.393)

and substitute in Equation (1.392) for the rectifying plane,
√

2x +
√

2y = 2a (1.394)

Because of (1.392), the curvature of the helix at ϕ = π/4 is

κ = a (1.395)

and therefore the curvature radius of the helix at that point is

ρ = 1

κ
= 1

a
(1.396)



60 Fundamentals of Kinematics

Having the equations of the three planes and the curvature radius ρ, we are able
to identify the unit vectors ût , ûn, and ûb:

ût = 1√
a2 + k2

(

−
√

2

2
aı̂ +

√
2

2
aĵ + kk̂

)

(1.397)

ûn = −
√

2

2
ı̂ −

√
2

2
ĵ (1.398)

ûb = 1√
a2 + k2

(
1

2

√
2kı̂ − 1

2

√
2kĵ + ak̂

)
(1.399)

We can check and see that

ût × ûn = ûb (1.400)

A helix is a category of space curves with a constant curvature–torsion ratio:
κ

τ
= const (1.401)

The circular helix is only a special case of the general helix curves.

Example 59 Uniform Motion on a Circle Consider a particle P that is moving on a
circle with radius R around the origin of the coordinate frame at a constant speed v.
The equation of the circle is

r · r = r2 (1.402)

where r is the constant length of r. Differentiating (1.402) with respect to time
results in

r · v = 0 (1.403)

which shows that r and v are perpendicular when r has a constant length. If the speed
of the particle is constant, then

v · v = v2 (1.404)

which shows that
v · a = 0 (1.405)

Now differentiating (1.403) with respect to time results in

r · a = −v2 (1.406)

It indicates that r and a are collinear and oppositely directed. So, the value of their
product must be

r · a = −ra (1.407)

which determines the length of the acceleration vector a on a uniformly circular motion:

a = −v2

r
(1.408)



1.5 Motion Path Kinematics 61

Example 60 Curvature of a Plane Curve Let us consider a curve C in the (x, y)-
plane as is shown in Figure 1.20, which is defined time parametrically as

x = x(t) y = y(t) (1.409)

The curve increment ds is

ds2 = dr · dr = dx2 + dy2 (1.410)

which after dividing by dt would be

ṡ2 = ẋ2 + ẏ2 (1.411)

Differentiating from the slop of the curve θ ,

tan θ = dy

dx
= ẏ

ẋ
(1.412)

we have
θ̇
(
1 + tan2 θ

) = ẋÿ − ẏẍ

ẋ2
(1.413)

and therefore
θ̇ = ẋÿ − ẏẍ

ẋ2 + ẏ2
(1.414)

However, because of

θ̇ = dθ

dt
= dθ

ds

ds

dt
= ṡ

dθ

ds
= ṡ

ρ
=

√
ẋ2 + ẏ2

ρ
(1.415)

we get

κ = 1

ρ
= ẋÿ − ẏẍ

(
ẋ2 + ẏ2

)3/2
(1.416)

x

y

dx

dy
ds

C

Figure 1.20 A curve C in the (x, y)-plane.

Whenever, instead of (1.409), we have the equation of the plane curve as

y = y(x) (1.417)
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then the curvature equation would simplify to

κ = 1

ρ
=

∣∣∣∣∣
d2y/dx2

(
1 + (dy/dx)2)3/2

∣∣∣∣∣
(1.418)

As an example, consider a plane curve given by the parametric equations

x = t y = 2t2 (1.419)

The curvature at t = 3 s is 2.2909 × 10−3 m−1 because

κ = 1

ρ
= ẋÿ − ẏẍ

(
ẋ2 + ẏ2

)3/2
= 4 − 0

(
1 + 16t2

)3/2
= 2.2909 × 10−3 m−1 (1.420)

The same curve can be expressed by

y = 2x2 (1.421)

which has the same radius of curvature ρ = 1/κ = 2.2909 × 10−3 m−1 = 436.5 m at
x = 3 m because dy/dx = 4x = 12 and d2y/dx 2 = 4:

κ = 1

ρ
=

∣∣∣∣∣
d2y/dx 2

[
1 + (dy/dx)2

]3/2

∣∣∣∣∣
=

∣∣∣∣∣
4

[
1 + (12)2

]3/2

∣∣∣∣∣

= 2.2909 × 10−3 m−1 (1.422)

Example 61 Natural Coordinate Frame Is Orthogonal To show that the natural
coordinate frame ût , ûn, ûb in Equations (1.354)–(1.356) is orthogonal, we may dif-
ferentiate the relation

ût · ût = 1 (1.423)

with respect to s and get

2
dr
ds

· d2r

ds2 = 0 (1.424)

It indicates that ût is orthogonal to ûn. Equation (1.356) also shows that ûb is orthogonal
to both ût and ûn.

Example 62 Vectorial Expression of Curvature Assume that the position vector of
a moving point on a space curve is given by

r = r(s) (1.425)
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where s is the arc length on the curve measured from a fixed point on the curve. Then,

v = ṡût (1.426)

ût = dr
ds

(1.427)

d2r

ds2 = d

ds
ût = 1

ρ
ûn = κûn (1.428)

and therefore,

κ = 1

ρ
=

∣∣∣∣
d2r

ds2

∣∣∣∣ (1.429)

We may also employ the velocity and acceleration vectors of the moving point and
determine the curvature of the curve. Because the outer product of v and a is

v × a = (
ṡût

) ×
(

s̈ût + ṡ2

ρ
ûn

)
= v × an (1.430)

|v × a| = van (1.431)

we have

an = ṡ2

ρ
= v2

ρ
= |v × a|

v
(1.432)

and therefore,

κ = 1

ρ
= |v × a|

v3
= |v × a|

|v|3 (1.433)

As an example, consider a moving point at

r =
[

t

2t2

]
(1.434)

Its velocity and acceleration are

v =
[

1
4t

]
a =

[
0
4

]
(1.435)

and therefore the curvature of the motion is

κ = 1

ρ
= |v × a|

|v|3 = 4
(√

16t2 + 1
)3

(1.436)

The curvature at t = 3 s is κ = 2.290 9 × 10−3 m−1.

Example 63 � Curvature Vector κ Using the definition of tangential unit vector ût ,

ût = dr
ds

(1.437)
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and taking a curve length derivative we can define a curvature vector κ as

κ = dût

ds
= d2r

ds2
= κûn (1.438)

that has a length κ and indicates the curvature center of the curve. So, the curvature
vector κ points in the direction in which ût is turning, orthogonal to ût . The length
κ = |κ | gives the rate of turning. It can be found from

κ2 = d2r

ds2
· d2r

ds2
(1.439)

Furthermore, because
ût = v

ṡ
(1.440)

we may also define the curvature vector κ as

κ = d

ds

v
ṡ

= 1

ṡ

d

dt

v
ṡ

= aṡ − vs̈

ṡ3
(1.441)

Example 64 � Frenet–Serret Formulas When the position vector of a moving
point on a space curve is given as a function of the arc length s ,

r = r(s) (1.442)

we define the unit vectors ût , ûn, and ûb and an orthogonal coordinate frame

ût × ûn = ûb (1.443)

that is carried by the point. Because s is the variable that indicates the point, it is useful
to determine the derivatives of the unit vectors with respect to s .

Using Equation (1.383), we can find the s-derivative of the tangent unit vector ût :

dût

ds
= dût

dt

dt

ds
= dût

dt

1

ṡ
= 1

ρ
ûn = κûn (1.444)

∣∣∣∣
dût

ds

∣∣∣∣ = 1

ρ
=

√(
d2x

ds2

)2

+
(

d2y

ds2

)2

+
(

d2z

ds2

)2

(1.445)

To find dûb/ds, we may take a derivative from (1.443):

dûb

ds
= d

ds

(
ût × ûn

) = dût

ds
× ûn + ût × dûn

ds
= ût × dûn

ds
(1.446)

Because ûb is a constant-length vector, dûb/ds is perpendicular to ûb. It must also be
perpendicular to ût . So, dûb/ds is parallel to ûn:

dûb

ds
= −τ ûn = − 1

σ
ûn (1.447)
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The coefficient τ is called the torsion of the curve, while σ = 1/τ is called the radius
of torsion. The torsion at a point of the curve indicates that the osculating plane rotates
about the tangent to the curve as the point moves along the curve. The torsion is
considered positive if the osculating plane rotates about ût and negative if it rotates
about −ût . A curve with κ �= 0 is planar if and only if τ = 0.

The derivative of the normal unit vector dûn/ds may be calculated from

dûn

ds
= d

ds

(
ûb × ût

) = dûb

ds
× ût + ûb × dût

ds

= − 1

σ

(
ûn × ût

) + 1

ρ

(
ûb × ûn

) = 1

σ
ûb − 1

ρ
ût (1.448)

Equations (1.444), (1.447), and (1.448) are called the Frenet–Serret formulas. The
Frenet–Serret formulas may be summarized in a matrix form:

⎡

⎢⎢⎢⎢⎢⎢
⎣

dût

ds
dûn

ds
dûb

ds

⎤

⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢
⎣

0 κ 0

−κ 0 τ

0 −τ 0

⎤

⎥
⎦

⎡

⎢
⎣

ût

ûn

ûb

⎤

⎥
⎦ (1.449)

It shows that the derivative of the natural coordinate unit vectors can be found by
multiplying a skew-symmetric matrix and the coordinate unit vectors.

Having the Frenet–Serret formulas, we are able to calculate the kinematics of a
moving point on the space curve:

v = dr
dt

= dr
ds

ṡ = ṡût (1.450)

a = dv
dt

= s̈ût + ṡ
dût

dt
= s̈ût + ṡ2 dût

ds
= s̈ût + ṡ2 1

ρ
ûn (1.451)

j = da
dt

=
(

...
s − ṡ3

ρ2

)
ût + 1

ρ

(
3ṡ s̈ + ṡ2

ρ
ρ̇

)
ûn + ṡ3

ρσ
ûb (1.452)

Frenet (1816–1900) and Serret (1819–1885) were two French mathematicians.

Example 65 Characteristics of a Space Curve Consider a space curve C with the
parametric equation

r = r (t) (1.453)
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The natural coordinate frame and curve characteristics are

ût = ṙ
|ṙ| (1.454)

ûb = ṙ × r̈
|ṙ × r̈| (1.455)

ûn = ûb × ût (1.456)

κ = ṙ × r̈

|ṙ|3 (1.457)

τ = (ṙ × r̈) · ...
r

|ṙ × r̈|2 (1.458)

Employing these equations, the Frenet–Serret formulas (1.449) can be determined in
time derivatives:

dût

dt
= κ |ṙ| ûn (1.459)

dûn

dt
= −κ |ṙ| ût + τ |ṙ| ûb (1.460)

dûb

dt
= −τ |ṙ| ûb (1.461)

Example 66 � Osculating Sphere The sphere that has a contact of third order with a
space curve at a point P(x, y, z) is called the osculating sphere of the curve at P . If the
center of the sphere is denoted by C (xC, yC, zC), then the equation of the osculating
sphere is

(x − xC)2 + (y − yC)2 + (z − zC)2 = R (1.462)

where R is the radius of the sphere. Taking three derivatives from (1.462) provides a
set of four equations to determine xC , yC , zC and R. To set up the equations, we show
the equation of the sphere as

(rC − r)2 = R2

where rC − r indicates the position of the center of the sphere from point P . Taking
derivatives with respect to the arc length s provides

(rC − r) · dr
ds

= 0 (1.463)

−1 + (rC − r) · d2r

ds2
= 0 (1.464)

−dr
ds

· d2r

ds2
+ (rC − r) · d3r

ds3
= 0 (1.465)
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Employing the curvature τ and torsion κ , we can rewrite these equations:

(rC − r) · ût = 0 (1.466)

−1 + (rC − r) · κûn = 0 (1.467)

(rC − r) ·
(

dκ

ds
ûn + κ

(
τ ûb − κût

)) = 0 (1.468)

Expanding (1.468) yields

dκ

ds
(rC − r) · ûn + κτ (rC − r) · ûb − κ2 (rC − r) · ût = 0 (1.469)

and using Equations (1.466) and (1.467), we find

1

κ

dκ

ds
+ κτ (rC − r) · ûb = 0 (1.470)

Knowing that
dρ

ds
= d

ds

(
1

κ

)
= − 1

κ2

dκ

ds
(1.471)

we can simplify Equation (1.470):

(rC − r) · ûb = σ
dρ

ds
(1.472)

From Equations (1.466), (1.467), and (1.472), we have

(rC − r) · ût = 0 (1.473)

(rC − r) · ûn = ρ (1.474)

(rC − r) · ûb = σ
dρ

ds
(1.475)

that indicates rC − r lies in a perpendicular plane. The components of rC − r are ρ

along ûn and σ (dρ/ds) along ûb:

rC − r = ρûn + σ
dρ

ds
ûb (1.476)

Therefore, the position vector of the center of the osculating sphere is at

rC = r + ρûn + σ
dρ

ds
ûb (1.477)

and the radius of the osculating sphere is

R = |rC − r| =
√

ρ2 + σ 2

(
dρ

ds

)2

(1.478)
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Example 67 � Taylor Series Expansion of a Space Curve Consider a point P that
is moving on a space curve that is parametrically expressed as r = r(s). If at s = 0
we have the position and velocity of P , it is possible to express the curve by a Taylor
expansion:

r(s) = r(0) + dr(0)

ds
s + d2r(0)

ds2

s2

2!
+ d3r(0)

ds3

s3

3!
+ · · · (1.479)

Using the natural coordinate system, we have

dr
ds

= ût (1.480)

d2r

ds2
= κ ûn (1.481)

d3r

ds3
= d

ds

(
κ ûn

) = dκ

ds
ûn + κ

(−κût + τ ûb

)
(1.482)

d4r

ds4
= d2κ

ds2
ûn + dκ

ds

(−κût + τ ûb

) + dκ

ds

(−κût + τ ûb

)

+ κ

(
−dκ

ds
ût − κ2ûn + dτ

ds
ûb − τ 2ûn

)

= −3κ
dκ

ds
ût +

(
d2κ

ds2
− κ3 − κτ 2

)
ûn +

(
2τ

dκ

ds
+ κ

dτ

ds

)
ûb (1.483)

and therefore,
dr(0)

ds
= ût (0) = ût0 (1.484)

d2r(0)

ds2 = κ(0) ûn(0) = κ0ûn0 (1.485)

d3r(0)

ds3
= −κ2

0 ût0 + dκ0

ds
ûn0 + κ0τ0ûb0 (1.486)

d4r(0)

ds4
= −3κ0

dκ0

ds
ût0 +

(
d2κ0

ds2
− κ3

0 − κ0τ
2
0

)
ûn0

+
(

2τ0
dκ0

ds
+ κ0

dτ0

ds

)
ûb0 (1.487)

Substituting these results in Equation (1.479) shows that

r = r0 + sût0 + 1

2
κ0s

2ûn0 + s3

6

(
−κ2

0 ût0 + dκ0

ds
ûn0 + κ0τ0ûb0

)

+ s4

24

(
−3κ0

dκ0

ds

)
ût0 + s4

24

(
d2κ0

ds2 − κ3
0 − κ0τ

2
0

)
ûn0

+ s4

24

(
2τ0

dκ0

ds
+ κ0

dτ0

ds

)
ûb0 + · · · (1.488)
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Let us rearrange the equation to determine the natural components of r − r0:

r − r0 =
(

s − κ2
0

6
s3 − κ0

8

dκ0

ds
s4 + · · ·

)

ût0

+
[

1

2
κ0s

2 + 1

6

dκ0

ds
s3 + 1

24

(
d2κ0

ds2 − κ3
0 − κ0τ

2
0

)
s4 + · · ·

]
ûn0

+
[

1

6
κ0τ0s

3 + 1

24

(
2τ0

dκ0

ds
+ κ0

dτ0

ds

)
s4 + · · ·

]
ûb0 (1.489)

It follows from these equations that in the neighborhood of a point at which κ = 0 the
curve approximates a straight line. Furthermore, if τ = 0 at a point, the curve remains
on a plane. Accepting only the first term of each series, we may approximate a curve as

r(s) − r0 ≈ sût0 + 1
2κ0s

2ûn0 + 1
6κ0τ0s

3ûb0 (1.490)

Now assume that the position vector of the point P is expressed as a function of
time r = r(t). If at t = t0 we have the position and velocity of P , it is possible to
express the path of motion by a Taylor expansion:

r(t) = r0 + (t − t0) ṙ0 + (t − t0)
2

2!
r̈0 + (t − t0)

3

3!
...
r 0 + · · · (1.491)

Using the natural coordinate system (1.454)–(1.461) and defining ṡ = |ṙ|, we have

ṙ = |ṙ| ût = ṡût (1.492)

r̈ = s̈ût + κṡ2ûn (1.493)
...
r = (...

s − κ2ṡ3) ût + κ
(
3ṡs̈ + κ̇ ṡ2) ûn + κτ ṡ3ûb (1.494)

and therefore,

r(t) = r0 + (t − t0) ṡût + (t − t0)
2

2!

(
s̈ût + κṡ2ûn

)

+ (t − t0)
3

3!

[(...
s − κ2ṡ3) ût + κ

(
3ṡs̈ + κ̇ ṡ2) ûn + κτ ṡ3ûb

] + · · ·

= r0 +
(

(t − t0) ṡ + (t − t0)
2

2!
s̈ + (t − t0)

3

3!

(...
s − κ2ṡ3) + · · ·

)

ût

+
(

(t − t0)
2

2!
κṡ2 + (t − t0)

3

3!
κ
(
3ṡs̈ + κ̇ ṡ2) + · · ·

)

ûn

+
(

(t − t0)
3

3!
κτ ṡ3 + · · ·

)

ûb (1.495)
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Example 68 � Torsion of a Space Curve We may use (1.447) to determine the
torsion of a curve analytically. Let us start with

τ = −ûn · dûb

ds
(1.496)

and employ

ûb = ût × ûn ût = dr
ds

ûn = ρ
d2r

ds2
(1.497)

to get

ûb = ρ

(
dr
ds

× d2r

ds2

)
(1.498)

and hence

τ = −ρ2 d2r

ds2 · d

ds

(
dr
ds

× d2r

ds2

)
= ρ2 dr

ds
· d2r

ds2 × d3r

ds3 (1.499)

So, the scalar triple product of velocity, acceleration, and jerk
[
v, a, j

]
is

[
dr
ds

d2r

ds2

d3r

ds3

]
= dr

ds
· d2r

ds2 × d3r

ds3 = τκ2 (1.500)

Example 69 � Darboux Vector By defining a vector u as

u = 1

ρ
ûb + 1

σ
ût (1.501)

the Frenet–Serret formulas simplify to

dût

ds
= u × ût

dûn

ds
= u × ûn

dûb

ds
= u × ûb (1.502)

The vector u is called the Darboux vector . Darboux (1842–1917) was a French math-
ematician.

Example 70 � Curvature as the Change of a Deformed Curve Curvature determines
how the length of a curve changes as the curve is deformed. Consider an infinitesimal
arc ds of a planar curve, as is shown in Figure 1.21. The arc length ds lies to second
order on a circle of radius ρ = 1/κ . Let us push ds a distance dr in the direction of
the curvature vector κ . The arc length ds will change to (1 − κdr) ds that is on a
new circle of radius 1/κ − dr = (1/κ) (1 − κdr). In general, the displacement is not
necessarily in direction κ and may be indicated by a vector dr. In this case the change
of the arc length is 1 − κ · dr and hence, the rate of change of the curve length is
− ∫

κ · dv ds, where v = dr/dt .
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ds

dr

1/κ

(1−κdr)ds

1/κ − dr

Figure 1.21 An infinitesimal arc ds of a planar curve.

Example 71 � Jerk in Natural Coordinate Frame ût , ûn, ûb Employing Equation
(1.353) and using the derivatives of the unit vectors of the natural coordinate frame,

dût

dt
= dût

dt
= ṡ

ρ
ûn (1.503)

dûn

dt
= ṡ

σ
ûb − ṡ

ρ
ût (1.504)

dûb

dt
= − ṡ

σ
ûn (1.505)

we can determine the jerk vector of a moving point in the natural coordinate frame:

j = d

dt
a = d

dt

(
s̈ût + ṡ2

ρ
ûn

)

= ...
s ût + s̈

d

dt
ût + 2ρṡs̈ − ρ̇ṡ2

ρ2
ûn + ṡ2

ρ

d

dt
ûn

= ...
s ût + s̈

ṡ

ρ
ûn + 2ρṡs̈ − ρ̇ṡ2

ρ2
ûn + ṡ3

ρ

(
1

σ
ûb − 1

ρ
ût

)

=
(

...
s − ṡ3

ρ2

)
ût +

(
3
s̈ ṡ

ρ
− ρ̇ṡ2

ρ2

)
ûn +

(
ṡ3

ρσ

)
ûb (1.506)
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Example 72 � A Roller Coaster Figure 1.22 illustrates a roller coaster with the
parametric equations

x = (a + b sin θ) cos θ

y = (a + b sin θ) sin θ (1.507)

z = b + b cos θ

for
a = 200 m b = 150 m (1.508)

Such a space curve is on the surface shown in Figure 1.23. The parametric equations
of the surface are

x = (a + b sin θ) cos ϕ

y = (a + b sin θ) sin ϕ (1.509)

z = b + b cos θ

R

2

3

1

2

1

3

−1
−2

X/100

Y/100

Z/100

1

Figure 1.22 A roller coaster.

Let us assume that the car is a particle that moves on the roller coaster when the
parameter θ is a function of time. The velocity and acceleration of the particle are

v = d

dt
r =

⎡

⎣
bθ̇ cos 2θ − aθ̇ sin θ

aθ̇ cos θ + bθ̇ sin 2θ

−bθ̇ sin θ

⎤

⎦ (1.510)

a = d

dt
v =

⎡

⎣
(b cos 2θ − a sin θ) θ̈ − (a cos θ + 2b sin 2θ) θ̇2

(a cos θ + b sin 2θ) θ̈ + (2b cos 2θ − a sin θ) θ̇2

−bθ̈ sin θ − bθ̇2 cos θ

⎤

⎦ (1.511)
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G

−2
X/100

Z/100

0

2

−2

0

2

3

2

1

Y/100

Figure 1.23 The path of the roller coaster is a space curve on the torus.

The equation of the tangent line (1.228) to the space curve is

x − x0

b cos 2θ − a sin θ
= y − y0

b sin 2θ + a cos θ
= z − z0

−b sin θ
(1.512)

where
x0 = (a + b sin θ0) cos θ0

y0 = (a + b sin θ0) sin θ0 (1.513)

z0 = b + b cos θ0

and
dx

dθ
= b cos 2θ − a sin θ

dy

dθ
= b sin 2θ + a cos θ (1.514)

dz

dθ
= −b sin θ

As an example the tangent line at θ = π/4 is

x − 216.42

−141.42
= y − 216.42

291.42
= z − 256.07

−106.07
(1.515)

because
x0 =

(
a + b sin

π

4

)
cos

π

4
= 216.42 m

y0 =
(
a + b sin

π

4

)
sin

π

4
= 216.42 m (1.516)

z0 = b + b cos
π

4
= 256.07 m
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dx

dθ
= b cos 2

π

4
− a sin

π

4
= −141.42 m/rad

dy

dθ
= b sin 2

π

4
+ a cos

π

4
= 291.42 m/rad (1.517)

dz

dθ
= −b sin

π

4
= −106.07 m/rad

The arc length element ds of the space curve is

ds =
√

dr
dθ

· dr
dθ

dθ =
√(

∂x

∂θ

)2

+
(

∂x

∂θ

)2

+
(

∂x

∂θ

)2

dθ

=
√

2

2

√
2a2 + 3b2 − b2 cos 2θ + 4ab sin θdθ (1.518)

The perpendicular plane (1.347) to the roller coaster curve is

(x − x0)
dx

dθ

dθ

ds
+ (y − y0)

dy

dθ

dθ

ds
+ (z − z0)

dz

dθ

dθ

ds
= 0 (1.519)

(b cos 2θ − a sin θ) (x − x0)

+ (b sin 2θ + a cos θ) (y − y0) − b sin θ (z − z0) = 0 (1.520)

This perpendicular plane at θ = π/4 is

−141.42x + 42y − 106.07z − 5302.7 = 0 (1.521)

To find the osculating and rectifying planes, we also need to calculate the second
derivatives of the curve:

d2x

dθ2
= −a cos θ − 2b sin 2θ

d2y

dθ2
= 2b cos 2θ − a sin θ (1.522)

d2z

dθ2
= −b cos θ

The osculating plane (1.348) to the roller coaster curve can be found by the deriva-
tive with respect to the arc length ds:

(
dy

ds

d2z

ds2
− dz

ds

d2y

ds2

)
(x − x0)

+
(

dz

ds

d2x

ds2
− dx

ds

d2z

ds2

)
(y − y0)

+
(

dx

ds

d2y

ds2 − dy

ds

d2x

ds2

)
(z − z0) = 0 (1.523)

The arc length is a function of θ , so we must transform (1.523) for the deriva-
tive with respect to θ . Consider d2x/ds2, which we may transform to a function
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of θ using (1.518):

d2x

ds2 = d

ds

dx

ds
= d

ds

(
dx

dθ

dθ

ds

)
= d2x

dθ2

(
dθ

ds

)2

+ dx

dθ

dθ

ds

d

dθ

(
dθ

ds

)

= 4(−2b sin 2θ − a cos θ)

6b2 + 8ab sin θ + 4a2 − 2b2 cos 2θ

− 2(b cos 2θ − a sin θ)(8ab cos θ + 4b2 sin 2θ)
(
6b2 + 8ab sin θ + 4a2 − 2b2 cos 2θ

)2
(1.524)

Following the same method, Equation (1.523) becomes

− b(a + 2b sin θ − 2b sin θ cos2 θ)

a2 + 2b2 + 2ab sin θ − b2 cos2 θ
(x − x0)

+ b2 cos θ(2 cos2 θ − 3)

a2 + 2b2 + 2ab sin θ − b2 cos2 θ
(y − y0)

+ a2 + 2b2 + 3ab sin θ

a2 + 2b2 + 2ab sin θ − b2 cos2 θ
(z − z0) = 0 (1.525)

This osculating plane at θ = π/4 is

−0.395174x + 0.273892y + 1.27943z − 301.37061 = 0 (1.526)

The rectifying plane (1.369) is

−3.45942x − 1.91823y − .65786z + 1332.29646 = 0 (1.527)

Figure 1.24 shows the space curve and the three planes—perpendicular, osculating,
and rectifying—at θ = π/4.

The curvature κ of the space curve (1.507) from (1.377) and (1.518) is

κ = dθ

ds
= 2√

4a2 + 6b2 − 2b2 cos 2θ + 8ab sin θ
(1.528)

and therefore the curvature radius of the helix at that point is

ρ = 1

κ
= 1

2

√
4a2 + 6b2 − 2b2 cos 2θ + 8ab sin θ (1.529)

The equations of the three planes and the curvature κ enable us to identify the unit
vectors ût , ûn, and ûb. The tangent unit vector ût is given as

ût = dr
ds

=

⎡

⎢⎢⎢⎢⎢
⎢
⎣

dx

ds
dy

ds
dz

ds

⎤

⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎢
⎣

dx

dθ

dθ

ds
dy

dθ

dθ

ds
dz

dθ

dθ

ds

⎤

⎥⎥⎥⎥⎥
⎥
⎦

= κ

⎡

⎢⎢⎢⎢⎢
⎢
⎣

dx

dθ

dy

dθ

dz

dθ

⎤

⎥⎥⎥⎥⎥
⎥
⎦

= κ

⎡

⎣
b cos 2θ − a sin θ

b sin 2θ + a cos θ

−b sin θ

⎤

⎦ (1.530)
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Figure 1.24 The space curve of a roller coaster and the three planes—perpendicular, osculating,
and rectifying—at a specific point.

and the normal unit vector ûn as

ûn = ρ
d2r

ds2
= ρ

⎡

⎢⎢
⎢⎢⎢⎢
⎣

d2x

ds2

d2y

ds2

d2z

ds2

⎤

⎥⎥
⎥⎥⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢⎢
⎣

κ
d2x

dθ2
+ dx

dθ

dκ

dθ

κ
d2y

dθ2
+ dy

dθ

dκ

dθ

κ
d2z

dθ2
+ dz

dθ

dκ

dθ

⎤

⎥⎥
⎥⎥⎥⎥
⎦

(1.531)

where
dκ

dθ
= − b (a + b sin θ) cos θ

(
a2 + 2b2 − b2 cos2 θ + 2ab sin θ

)3/2 (1.532)

and the other terms come from Equations (1.528), (1.522), and (1.514).
The bivector unit vector ûb from (1.366) and (1.525) is then

ûb =
dr
ds

× d2r

ds2
∣
∣∣∣
dr
ds

× d2r

ds2

∣
∣∣∣

= 1

ub

⎡

⎢
⎢⎢⎢⎢⎢
⎣

dy

ds

d2z

ds2
− dz

ds

d2y

ds2

dz

ds

d2x

ds2
− dx

ds

d2z

ds2

dx

ds

d2y

ds2
− dy

ds

d2x

ds2

⎤

⎥
⎥⎥⎥⎥⎥
⎦

= 2√
Z

⎡

⎢
⎣

−b(a + 2b sin θ − 2b sin θ cos2 θ)

b2 cos θ(2 cos2 θ − 3)

a2 + 2b2 + 3ab sin θ

⎤

⎥
⎦ (1.533)
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Z = 4a4 + 26b4 + 38a2b2 + 4ab(6a2 + 15b2) sin θ

− 6b2(3a2 + b2) cos 2θ − 4ab3 sin 3θ (1.534)

Example 73 � Curvature Center of a Roller Coaster The position of the center of
curvature of a space curve can be shown by a vector rc, where

rc = ρûn (1.535)

The radius of curvature and the normal unit vector of the roller coaster space curve
(1.507) are give in Equations (1.529) and (1.531). Therefore, the position of the cur-
vature center of the roller coaster is

r + rc =

⎡

⎢
⎣

(a + b sin θ) cos θ

(a + b sin θ) sin θ

b + b cos θ

⎤

⎥
⎦ +

⎡

⎢⎢⎢⎢⎢⎢
⎣

d2x

dθ2
+ ρ

dx

dθ

dκ

dθ

d2y

dθ2
+ ρ

dy

dθ

dκ

dθ

d2z

dθ2
+ ρ

dz

dθ

dκ

dθ

⎤

⎥⎥⎥⎥⎥⎥
⎦

(1.536)

ρ = 1
2

√
4a2 + 6b2 − 2b2 cos 2θ + 8ab sin θ (1.537)

Figure 1.25 illustrates the path of motion and the path of curvature center. The initial
positions at θ = 0 are indicated by two small circles and the direction of motion by
increasing θ is shown by two small arrows.

2

G

2

3

1

1

3

−1
−2

X/100

Y/100

Z/100

1

Space curve

Projection of 
the space curve

Curvature
center

Figure 1.25 The path of motion of a roller coaster and the path of its curvature center.

1.6 FIELDS

A field is a domain of space in which there is a physical quantity associated with every
point of the space. If the physical quantity is scalaric, the field is called a scalar field ,
and if the physical quantity is vectorial, the field is a vector field . Furthermore, a field
is called stationary or time invariant if it is independent of time. A field that changes
with time is a nonstationary or time-variant field.
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n rq
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Cq

Cp
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Figure 1.26 A surface Gr = Gr (p, q) and partial derivatives rp and rq .

1.6.1 Surface and Orthogonal Mesh

If the position vector GrP of a moving point P is such that each component is a function
of two variables p and q ,

Gr = Gr (p, q) = x (p, q) ı̂ + y (p, q) ĵ + z (p, q) k̂ (1.538)

then the end point of the vector indicates a surface S in G , as is shown in Figure 1.26.
The surface Gr = Gr (p, q) reduces to a curve on S if we fix one of the parameters q
or p. The curves Cp and Cq on S at (p0, q0) are indicated by single-variable vectors
Gr (p, q0) and Gr (p0, q), respectively.

At any specific point Gr = Gr (p0, q0) there is a tangent plane to the surface that
is indicated by a normal unit vector n̂,

n̂ = n̂ (p0, q0) = rp × rq∣
∣rp × rq

∣
∣ (1.539)

where rp and rq are partial derivatives of Gr:

rp = ∂ r (p, q0)

∂p
(1.540)

rq = ∂ r (p0, q)

∂q
(1.541)

Varying p and q provides a set of curves Cp and Cq that make a mesh of S . The mesh
is called orthogonal if we have

rp · rq = 0 (1.542)

Proof : By fixing one of the variables, say p = p0, we can make a single-variable
vector function Gr = Gr (p0, q) to define a curve Cq lying on the surface S . Similarly,
we may fix q = q0 to define another single-variable vector function Gr = Gr (p, q0)

and curve Cp. So, there are two curves Cp and Cq that pass through the point (p0, q0).
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The vectors

rp = ∂ r (p, q0)

∂p
= ∂ x (p, q0)

∂p
ı̂ + ∂ y (p, q0)

∂p
ĵ + ∂ z (p, q0)

∂p
k̂ (1.543)

rq = ∂ r (p0, q)

∂q
= ∂ x (p0, q)

∂q
ı̂ + ∂ y (p0, q)

∂q
ĵ + ∂ z (p0, q)

∂q
k̂ (1.544)

that are tangent to the curves Cp and Cq are called the partial derivatives of Gr (p, q).
The vectors rp and rq define a tangent plane. The tangent plane may be indicated by
a unit normal vector n̂:

n̂ = n̂ (p0, q0) = rp × rq∣∣rp × rq

∣∣ (1.545)

A surface for which a normal vector n̂ can be constructed at any point is called
orientable. An orientable surface has inner and outer sides. At each point x (p0, q0),
y (p0, q0), z (p0, q0) of an orientable surface S there exists a normal axis on which we
can choose two directions n̂0, −n̂0. The positive normal vector n̂0 cannot be coincident
with −n̂0 by a continuous displacement. The normal unit vector on the convex side is
considered positive and the normal to the concave side negative.

If rp · rq = 0 at any point on the surface S , the mesh that is formed by curves Cp

and Cq is called an orthogonal mesh . The set of unit vectors of an orthogonal mesh,

ûp = rp∣
∣rp

∣
∣ (1.546)

ûq = rq∣∣rq

∣∣ (1.547)

n̂ = ûp × ûq (1.548)

defines an orthogonal coordinate system. These definitions are consistent with the def-
inition of unit vectors in Equation (1.200).

� We assume that the functions x (p, q), y (p, q), and z (p, q) in the parametric
expression of a surface in Equation (1.538) have continuous derivatives with respect to
the variables q and p. For such a surface, we can define a Jacobian matrix [J ] using
partial derivatives of the functions x , y , and z :

[J ] =
⎡

⎣
xp xq

yp yq

zp zq

⎤

⎦ (1.549)

The surface at a point P (p0, q0) is called regular if and only if the rank of [J ] is not
less than 2. A point P at which [J ] has rank 1 is called a singular point. At a regular
point, we have

rp × rq �= 0 (1.550)

Therefore, we can determine the tangent plane unit-normal vector n̂ for every regular
point. At a singular point, the rank of [J ] is 1 and we have

rp × rq = 0 (1.551)
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which indicates rp and rq are parallel. There is not a unique tangent plane at a singular
point.

A surface that has no singularity is called an immersed surface. �

Example 74 Sphere and Orthogonal Mesh A sphere is defined as the position of all
points (x, y, z) that have the same distance R from the center (x0, y0, z0):

(x − x0)
2 + (y − y0)

2 + (z − z0)
2 = R2 (1.552)

Consider a moving point P on a sphere with a center at the origin. The position vector
of P is

r = xı̂ + yĵ + zk̂

= ( R cos θ sin ϕ) ı̂ + ( R sin θ sin ϕ) ĵ + ( R cos ϕ) k̂ (1.553)

Eliminating θ and ϕ between x , y , and z generates the surface equation:

z = ±
√

R2 − x2 − y2 (1.554)

As a sample, when (θ, ϕ) = (π/3, π/4), point P is at (x, y, z) = (0.35355R,
0.61237R, 0.70711R) and we may define two curves Cθ and Cϕ as

Cθ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x = R cos
π

3
sin ϕ

y = R sin
π

3
sin ϕ

z = R cos ϕ

=
⎧
⎨

⎩

x = 0.5 R sin ϕ

y = 0.866 03 R sin ϕ

z = R cos ϕ

(1.555)

Cϕ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = R cos θ sin
π

4

y = R sin θ sin
π

4

z = R cos
π

4

=
⎧
⎨

⎩

x = 0.707 11 R cos θ

y = 0.707 11 R sin θ

z = 0.707 11 R

(1.556)

The tangent vectors to Cθ and Cϕ at arbitrary θ and ϕ can be found by partial
derivatives:

rθ = ∂ r (θ, ϕ)

∂θ
= −R sin θ sin ϕ ı̂ + R cos θ sin ϕ ĵ (1.557)

rϕ = ∂ r (θ, ϕ)

∂ϕ
= R cos θ cos ϕ ı̂ + R sin θ cos ϕ ĵ − R sin ϕ k̂ (1.558)

These tangent vectors at the point P reduce to

rϕ = ∂ r (π/3, ϕ)

∂ϕ
=

⎡

⎣
0.5R cos ϕ

0.86603R cos ϕ

−R sin ϕ

⎤

⎦ (1.559)

rθ = ∂ r (θ, π/4)

∂θ
=

⎡

⎣
−0.70711R sin θ

0.70711R cos θ

0

⎤

⎦ (1.560)
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We can check the orthogonality of the curves Cθ and Cϕ for different θ and ϕ by
examining the inner product of rθ and rϕ from (1.557) and (1.558):

rθ · rϕ =
⎡

⎣
−R sin θ sin ϕ

R cos θ sin ϕ

0

⎤

⎦ ·
⎡

⎣
R cos θ cos ϕ

R sin θ cos ϕ

−R sin ϕ

⎤

⎦ = 0 (1.561)

The tangent vectors rθ and rϕ define a tangent plane with a unit-normal vector n̂:

n̂ = n̂
(π

3
,
π

4

)
= rθ × rϕ∣

∣rθ × rϕ

∣
∣

= 1

0.70711R2

⎡

⎣
0.25R2

0.43301R2

0.5R2

⎤

⎦ =
⎡

⎣
0.35355
0.61237
0.7071

⎤

⎦ (1.562)

Therefore, we may establish an orthogonal coordinate system at P (θ, ϕ, r) =
(π/3, π/4, R) with the following unit vectors:

ûθ = rθ

|rθ | = ∂r/∂θ

|∂r/∂θ | = −0.86602ı̂ + 0.5ĵ (1.563)

ûϕ = rϕ∣∣rϕ

∣∣ = ∂r/∂ϕ

|∂r/∂ϕ| = 0.35355ı̂ + 0.61238ĵ − 0.70711k̂ (1.564)

n̂ = rθ × rϕ∣∣rθ × rϕ

∣∣ = −0.35356ı̂ − 0.61237ĵ − 0.70711k̂ (1.565)

Example 75 Surface-Analytic Expressions There are several methods to express a
surface. Three of them are the most applied forms: parametric, Monge, and implicit.

The parametric expression of a surface is when the x -, y-, and z -components of a
position vector are functions of two parameters:

Gr = Gr (p, q) = x (p, q) ı̂ + y (p, q) ĵ + z (p, q) k̂ (1.566)

The Monge expression of a surface is when we eliminate the parameters p and q
from x , y , z and define z as a function of x and y :

Gr (x, y) = xı̂ + yĵ + z (x, y) k̂ (1.567)

The implicit form of a surface is a nonlinear equation f of x , y , z :

f (x, y, z) = 0 (1.568)

Example 76 Directional Cosines of Unit-Normal Vector n̂ We are able to solve the
first two equations of the parametric expression of a surface,

x = x (p, q) y = y (p, q) z = z (p, q) (1.569)
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for p and q , and define the surface by a function

z = z (x, y) = g (x, y) (1.570)

and write the vector representation of the surface by the Monge expression

Gr (x, y) = xı̂ + yĵ + g (x, y) k̂ (1.571)

The partial derivatives and the equation of the two curves Cx and Cy would be

rx = ∂r
∂x

= ı̂ + ∂g (x, y)

∂x
k̂ (1.572)

ry = ∂r
∂y

= ĵ + ∂g (x, y)

∂y
k̂ (1.573)

The cross product of rx and ry is

rx × ry = −∂g (x, y)

∂x
ı̂ − ∂g (x, y)

∂y
ĵ + k̂ (1.574)

and hence the unit-normal vector n̂ is

n̂ = rx × ry∣∣rx × ry

∣∣ =
− ∂z

∂x
ı̂ − ∂z

∂y
ĵ + k̂

√(
∂z

∂x

)2

+
(

∂z

∂y

)2

+ 1

(1.575)

The normal vector (1.575) can never be horizontal.
As an example, the position vector of a moving point on the northern hemisphere

of the sphere,
z = +

√
R2 − x2 − y2 (1.576)

is
Gr (x, y) = xı̂ + yĵ +

√
R2 − x2 − y2k̂ (1.577)

The partial derivatives rx and ry and the unit-normal vector n̂ are

rx = ∂ r
∂x

= ı̂ − x
√

R2 − x2 − y2
k̂ (1.578)

ry = ∂ r
∂y

= ĵ − y
√

R2 − x2 − y2
k̂ (1.579)

n̂ = rx × ry∣∣rx × ry

∣∣ = 1

R

⎡

⎣
x

y√
R2 − x2 − y2

⎤

⎦ (1.580)

It shows that the normal vector to a sphere is always in the direction of the position
vector r and away from the center.
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These vectors may be used to make an orthogonal coordinate system. At a point
such as (x, y, z) = (0.35355R, 0.61237R, 0.70711R), we have

ûx = rx

|rx | = ı̂ − 0.49999k̂

1.118
= 0.89445ı̂ − 0.44722k̂

ûy = ry∣∣ry

∣∣ = ĵ − 0.86601k̂

1.3229
= 0.75592ĵ − 0.65463k̂ (1.581)

n̂ = ûx × ûy = 0.33806ı̂ + 0.58553ĵ + 0.67613k̂

Example 77 Equation of a Tangent Plane Consider a vector n,

n = aı̂ + bĵ + ck̂ (1.582)

that is perpendicular to a plane at a point (x0, y0, z0). The analytic equation of the plane
that includes the point (x0, y0, z0) is indicated by position vector Gr = xı̂ + yĵ + zk̂

such that the vector Gr − Gr0 is perpendicular to n,
(
Gr − Gr0

) · n = 0 (1.583)
which reduces to

a(x − x0) + b(y − y0) + c (z − z0) = 0 (1.584)

Because the normal vector to a surface z = g (x, y) is

n = −∂g (x, y)

∂x
ı̂ − ∂g (x, y)

∂y
ĵ + k̂ (1.585)

the equation of the tangent plane to the surface at a point (x0, y0, z0) is

z − z0 = ∂g (x0, y0)

∂x
(x − x0) + ∂g (x0, y0)

∂y
(y − y0) (1.586)

As an example consider a surface z = 10 − x2 − y2 and a point P at (x0, y0, z0) =
(1, 2, 5). The normal vector at P is

n = 2ı̂ + 4ĵ + k̂ (1.587)
and the tangent plane at P is

z − 5 = −2(x − 1) − 4(y − 2) (1.588)

Example 78 Normal Vector to a Surface Let us eliminate the parameters p and q
from the equations of a surface,

x = x (p, q) y = y (p, q) z = z (p, q) (1.589)

and define the surface by a function

z = z (x, y) = g (x, y) (1.590)
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or alternatively by

f = f (x, y, z) (1.591)

So, we theoretically have

f (x, y, z) = z − g (x, y) (1.592)

The normal vector to surface (1.590) is

n = − ∂z

∂x
ı̂ − ∂z

∂y
ĵ + k̂ (1.593)

However, we may use expression (1.592) and substitute the partial derivatives

∂f

∂x
= − ∂z

∂x

∂f

∂y
= − ∂z

∂y

∂f

∂z
= 1 (1.594)

to define the normal vector to the surface (1.592) by

n = ∂f

∂x
ı̂ + ∂f

∂y
ĵ + ∂f

∂z
k̂ (1.595)

Such an expression of a normal vector to a surface is denoted by n = ∇f and is called
the gradient of f :

∇f = ∂f

∂x
ı̂ + ∂f

∂y
ĵ + ∂f

∂z
k̂ (1.596)

Example 79 � Curvature of a Surface Consider a point P on a surface z with a
continuous second derivative, as is shown in Figure 1.27:

z = f (x, y) (1.597)

To determine the curvature of the surface at P , we find the unit-normal vector ûn to
the surface at P ,

ûn = n
|n| (1.598)

n =
(

−∂g (x, y)

∂x
ı̂ − ∂g (x, y)

∂y
ĵ + k̂

)
(1.599)

and slice the surface by planes containing ûn to consider the curvature vector κ of the
intersection curve. The curvature vector at P on any intersecting curve will be

κ = κûn (1.600)

The value of κ will change by turning the plane around ûn. The minimum and maximum
values of κ are indicated by κ1 and κ2 and are called the principal curvatures , where
κ1 and κ2 occur in orthogonal directions . They may be used to determine the curvature
in any other directions.
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n

P

Figure 1.27 A point P on a surface z = f (x, y) with a continuous second derivative.

If the unit vector tangent to the curve at P is shown by ût , the intersection curve is
in the plane spanned by ût and ûn. The curvature of the curve κ is called the directional
curvature at P in direction ût and defined by

κ = ûT
t [D2z] ût = ûT

t

⎡

⎢⎢
⎣

∂2z

∂x2

∂z

∂x∂y
∂z

∂y∂x

∂2z

∂y2

⎤

⎥⎥
⎦ ût (1.601)

The matrix [D2z] and vector ût should be determined at point P .
The principal curvatures κ1 and κ2 are the eigenvalues of [D2z] and their associated

directions are called the principal directions of surface z at P . If the coordinate frame
(x, y, z) is set up such that z is on ûn and x, y are in the principal directions, then the
frame is called the principal coordinate frame. The second-derivative matrix [D2z] in
a principal coordinate frame would be

[D2z] =
[

κ1 0
0 κ2

]
(1.602)

1.6.2 Scalar Field and Derivative

Consider a scalar function f of a vector variable r,

f = f (r) = f (x, y, z) (1.603)

such that it provides a number f at a point P (x, y, z). Having such a function is
equivalent to associating a numeric value to every point of the space. The space that
f (x, y, z) is defined in is called a scalar field , and the function f is called the scalar
field function . The field function is assumed to be smooth and differentiable. A smooth
field has no singularity, jump, sink, or source.
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Setting f equal to a specific value f0 defines a surface

f (x, y, z) = f0 (1.604)

that is the loci of all points for which f takes the fixed value f0. The surface f (x, y, z) =
f0 is called an isosurface and the associated field value is called the isovalue f0.

The space derivative of f for an infinitesimal displacement dr is a vector:

df (r)
dr

= ∂f

∂x
ı̂ + ∂f

∂y
ĵ + ∂f

∂z
k̂ = ∇f (1.605)

It can also be shown by
df = ∇f · dr (1.606)

where at any point Gr = Gr (x, y, z) there exists a vector ∇f that indicates the value
and direction of the maximum change in f for an infinitesimal change dr in position.

Figure 1.28 illustrates an isosurface f0 and the vector ∇f at a point on the iso-
surface,

∇f = ∇f (x, y, z) = ∂f

∂x
ı̂ + ∂f

∂y
ĵ + ∂f

∂z
k̂ (1.607)

The vector ∇f is called the gradient of the scalar field . The gradient (1.607) can be
expressed by a vectorial derivative operator ∇,

∇ = ∂

∂x
ı̂ + ∂

∂y
ĵ + ∂

∂z
k̂ =

⎡

⎢⎢⎢
⎢⎢
⎣

∂

∂x
∂

∂y
∂

∂z

⎤

⎥⎥⎥
⎥⎥
⎦

(1.608)

that operates on the scalar field f . The gradient operator ∇ is also called the grad ,
del , or nabla operator.

x y

z

G

Cx

rx

ry

f0

Cy

f

Δ

Figure 1.28 An isosurface f0 and its gradient vector at a point on the isosurface.
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Proof : By assigning various values to f , we obtain a family of isosurfaces of the
scalar field f = f (r) = f (x, y, z) as is shown in Figure 1.29. These surfaces serve to
geometrically visualize the field’s characteristics.

An isosurface f0 = f (x, y, z) can be expressed by a position vector Gr,

Gr = xı̂ + yĵ + zk̂ (1.609)

where its components x, y, z are constrained by the isosurface equation (1.604). Let us
consider a point P at r = r(x, y, z) on an isosurface f (x, y, z) = f . Any infinitesimal
change

dr = dx ı̂ + dy ĵ + dz k̂ (1.610)

in the position of P will move the point to a new isosurface with a field value f + df ,
where

df = f (x + dx, y + dy, z + dz) − f (x, y, z)

= ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz

=
(

∂f

∂x
ı̂ + ∂f

∂y
ĵ + ∂f

∂z
k̂

)
·
(
dx ı̂ + dyĵ + dz k̂

)
= ∇f · dr (1.611)

So df can be interpreted as an inner product between two vectors ∇f and dr. The first
vector, denoted by

∇f = ∂f

∂x
ı̂ + ∂f

∂y
ĵ + ∂f

∂z
k̂ (1.612)

is a Cartesian expression of the gradient of the scalar function f , and the second vector
dr is the displacement vector of the point. If the two nearby points lie on the same
isosurface, then df = 0, dr would be a tangent vector to this isosurface, and

df = ∇f · dr = 0 (1.613)

x
y

z

G xr

f1

f2

f3
f4

Figure 1.29 A family of isosurfaces of a scalar field f = f (r).
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Therefore, ∇f is perpendicular to dr and hence normal to the isosurface f . The gradient
of a scalar field is a coordinate-independent property.

We examine a nonstationary field at the interested specific instant of time. �

Example 80 Derivative of Scalar Function with Vector Variable If c is a constant
vector and f = c · r is a scalar field, then

grad f = grad (c · r) = c (1.614)

If f = r2, then
grad f = grad r2 = 2r (1.615)

If f = |r| and g = r2, then f = g1/2, and therefore,

grad f = 1

2
g−1/2 grad g = r

|r| (1.616)

Example 81 Gradient of Scalar Field Consider a scalar field

f (x, y, z) = x + x2y + y3 + y2x + z2 = C (1.617)

The gradient of the field is

∇f = ∂f

∂x
ı̂ + ∂f

∂y
ĵ + ∂f

∂z
k̂ =

⎡

⎢
⎣

y2 + 2xy + 1

x2 + 2xy + 3y2

2z

⎤

⎥
⎦ (1.618)

Now assume that the gradient (1.618) is given. To find the field function, we should
integrate the components of the gradient:

f =
∫ (

y2 + 2xy + 1
)

dx = x2y + xy2 + x + g1 (y, z)

=
∫ (

x2 + 2xy + 3y2) dy = x2y + xy2 + y3 + g2 (x, z)

=
∫

(2z) dz = z2 + g3 (x, y) (1.619)

Comparison shows that

f (x, y, z) = x + x2y + y3 + y2x + z2 = C (1.620)

Example 82 Examples of Scalar and Vector Fields A field is another useful man-
made concept to describe physical quantities. We call a function f = f (x, y, z) a
scalar field function if it assigns a numeric value to any point P(x, y, z) of space. We
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call a function f = f(x, y, z) a vector field function if it assigns a vector to any point
P(x, y, z) of space.

Temperature, density, and humidity are a few examples of scalar fields, and electric,
magnetic, and velocity are a few examples of vector fields.

Example 83 Time Derivative of Scalar Field Consider a time-varying scalar field
of a vector variable

f = f (r(t)) (1.621)

The time derivative of f is

df

dt
= df

dr
· dr

dt
= ∂f

∂x

∂x

∂t
+ ∂f

∂y

∂y

∂t
+ ∂f

∂z

∂z

∂t
= ∇f · v (1.622)

where v = dr/dt is called the velocity of the position vector r:

v = dr
dt

= dx

dt
ı̂ + dy

dt
ĵ + dz

dt
k̂ (1.623)

Following the derivative rule of a scalar field function (1.611), we may confirm that
the time derivative of a scalar field is

df

dt
= ∇f · dr

dt
= ∇f · v (1.624)

Example 84 Alternative Definition of Gradient Consider the scalar field function

f = f (r) = f (x, y, z) (1.625)

When the position vector moves from a point at r = r(x, y, z) to a close point at
r + dr, the field function changes from f (r) = f to f (r + dr) = f + df :

f (r + dr) = f (x + dx, y + dy, z + dz)

≈ f (x, y, z) + ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz + · · · (1.626)

Therefore, a change in the field due to an infinitesimal change in position is given as

df = f (r + dr) − f (r)

= ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz = ∇f · dr (1.627)

where df is called the total derivative of f .

Example 85 Directional Derivative An isosurface f (x, y, z) = f can be expressed
by the position vector Gr

Gr = xı̂ + yĵ + zk̂ (1.628)
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where its coordinates (x, y, z) are constrained by the isosurface equation (1.604). So,
Gr is a two-variable vector function where its end point indicates a surface in G . To
show this, let us consider a point P at r = r(x, y, z) on an isosurface f (x, y, z) = f .
Any change dr in the position of P will move the point to a new isosurface with a
field value f + df :

df = f (x + dx, y + dy, z + dz) − f (x, y, z)

= ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz (1.629)

Let us move P on a space curve r = r(q),

r = x(q)ı̂ + y(q)ĵ + z(q)k̂ (1.630)

The unit vector tangent to the curve at P is

ûq = ∂r/∂q

|∂r/∂q| = (∂x/∂q)ı̂ + (∂y/∂q)ĵ + (∂z/∂q)k̂
√

(dx/dq)2 + (dy/dq)2 + (dz/dq)2
(1.631)

For an infinitesimal motion on the curve, we have

df

dq
= ∂f

∂x

∂x

∂q
+ ∂f

∂y

∂y

∂q
+ ∂f

∂z

∂z

∂q
(1.632)

which can be interpreted as a dot product between two vectors:

df

dq
=

(
∂f

∂x
ı̂ + ∂f

∂y
ĵ + ∂f

∂z
k̂

)
·
(

∂x

∂q
ı̂ + ∂y

∂q
ĵ + ∂z

∂q
k̂

)
(1.633)

= ∇f · dr
dq

= ∇f · ûq

∣∣∣∣
dr
dq

∣∣∣∣ (1.634)

The first vector, denoted by

∇f = ∂f

∂x
ı̂ + ∂f

∂y
ĵ + ∂f

∂z
k̂

is the gradient of the scalar function f expressed in terms of Cartesian coordinates, and
the second vector,

dr
dq

= ∂x

∂q
ı̂ + ∂y

∂q
ĵ + ∂z

∂q
k̂ (1.635)

is a tangent vector to the space curve (1.630) in the direction of increasing q . The dot
product ∇f · ûq calculates the projection of ∇f on the tangent line to the space curve
at P . To maximize this product, the angle between ∇f and ûq must be zero. It happens
when ∇f and dr/dq are parallel:

∂f/∂x

∂x/∂q
= ∂f/∂y

∂y/∂q
= ∂f/∂z

∂z/∂q
(1.636)
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A space curve (1.630) with condition (1.636) is perpendicular to the surface (1.628)
and is called the normal or flow curve. Flow curves are perpendicular to isosurfaces
of a scalar field f and show the lines of maximum change in field f .

The gradient of the scalar field indicates the direction to move for maximum change
in the field, and its magnitude indicates the change in the field for a unit-length move.
The product ∇f · ûq , which determines the change in the field for a unit-length move
in direction ûq , is called the directional derivative.

Example 86 Direction of Maximum Rate of Increase Consider the scalar field

ϕ = 10 + xyz (1.637)

A point P (0.5, 0.4, z ) on an isosurface will have the following z -component:

z = ϕ − 10

xy
= ϕ − 10

0.5 × 0.4
= 5ϕ − 50 (1.638)

The gradient vector ∇ϕ at point P (0.5, 0.4,−50) on the isosurface ϕ = 0 is

∇ϕ =

⎡

⎢⎢
⎢⎢⎢
⎣

∂ϕ

∂x
∂ϕ

∂y
∂ϕ

∂z

⎤

⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢
⎣

yz

xz

xy

⎤

⎥
⎦ =

⎡

⎢
⎣

−20

−25

0.2

⎤

⎥
⎦ (1.639)

Example 87 Directional Derivative of a Field at a Point Consider the scalar field

f = xy2 + yz4 (1.640)

Its rate of change at point P (2,1,1) in the direction r = ı̂ + 2ĵ + k̂ is found by the
inner product of its gradient at P ,

∇f =

⎡

⎢
⎢⎢⎢⎢
⎣

∂f

∂x
∂f

∂y
∂f

∂z

⎤

⎥
⎥⎥⎥⎥
⎦

=

⎡

⎢
⎣

y2

z4 + 2xy

4yz3

⎤

⎥
⎦ =

⎡

⎢
⎣

1

5

4

⎤

⎥
⎦ (1.641)

and ûr = r/ |r|,

df = ∇f · r
|r| =

⎡

⎣
1
5
4

⎤

⎦ ·

⎡

⎢⎢⎢⎢
⎢
⎣

1√
6

2√
6

1√
6

⎤

⎥⎥⎥⎥
⎥
⎦

= 6.1237 (1.642)
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x y
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f3

Figure 1.30 Directional derivative of a scalar field f (r) in direction s0 at a point P is defined
by df /ds.

Example 88 � Isosurfaces Have No Common Point Consider a field f = f (r)
that is defined over a domain � of space. The isosurfaces corresponding to different
f = c fill the entire of �, and no two surfaces f (r) = c1 and f (r) = c2, c1 �= c2 have
common points. The isosurfaces, also called level surfaces, enable us to qualitatively
judge the rate of change of the scalar field f (r) in a give direction.

Consider a point P at rP in a scalar field f (r) and a fixed direction s0 as are
shown in Figure 1.30. We draw a straight line s through P parallel to s0 and pick a
point P1 to define the directional derivative of f (r):

df

ds
= lim

P1→P

f (rP ) − f
(
rP1

)

PP1
(1.643)

Such a limit, if it exists, is called the directional derivative of the scalar field f (r) in
direction s0 at point P . Using Equation (1.606), we may show that

df

ds
= ∇f · ûs = ∂f

∂x
cos α + ∂f

∂y
cos β + ∂f

∂z
cos γ (1.644)

where α, β, and γ are the directional cosines of s.

1.6.3 Vector Field and Derivative

Consider a vector function f of a vector variable r,

f = f (r) = f(x, y, z) = fx (r) ı̂ + fy (r) ĵ + fz (r) k̂ (1.645)
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so it provides a vector f at a point P(x, y, z). Having such a function is equivalent
to associating a vector to every point of the space. The space in which there exist an
f (x, y, z) is called a vector field , and the function f is called the vector field function.

The space derivative of f(r) is a quaternion product of ∇ and f,

df(r)
dr

= ∇f (r) = ∇ × f − ∇ · f = curl f − div f (1.646)

where

∇ × f = curl f =

∣∣∣∣∣∣∣∣

ı̂ ĵ k̂

∂

∂x

∂

∂y

∂

∂z
fx fy fz

∣∣∣∣∣∣∣∣

=
(

∂fz

∂y
− ∂fy

∂z

)
ı̂ +

(
∂fx

∂z
− ∂fz

∂x

)
ĵ +

(
∂fy

∂x
− ∂fx

∂y

)
k̂ (1.647)

and

∇ · f = div f =
(

∂

∂x
ı̂ + ∂

∂y
ĵ + ∂

∂z
k̂

)
·
(
fx ı̂ + fyĵ + fzk̂

)

= ∂fx

∂x
+ ∂fy

∂y
+ ∂fz

∂z
(1.648)

The first term, ∇ × f, is a vector and is called the curl of the vector field. The second
term, ∇ · f, is a scalar and is called the divergence of the vector field. The curl of f
indicates the change in direction and the divergence of f indicates the change in the
magnitude of f.
Proof : If f(r) is the function of a vector field, then each component of f is a scalar
function of a vector variable,

f(r) = fx (r) ı̂ + fy (r) ĵ + fz (r) k̂ (1.649)

So, the differential of the vector field function f(r) with respect to a change in the
position r is equal to the gradient of each component of f(r):

df (r)
dr

= d

dr

(
fx (r) ı̂ + fy (r) ĵ + fz (r) k̂

)
= ∇fxı̂ + ∇fyĵ + ∇fzk̂

=
(

∂fx

∂x
ı̂ + ∂fx

∂y
ĵ + ∂fx

∂z
k̂

)
ı̂ +

(
∂fy

∂x
ı̂ + ∂fy

∂y
ĵ + ∂fy

∂z
k̂

)
ĵ

+
(

∂fz

∂x
ı̂ + ∂fz

∂y
ĵ + ∂fz

∂z
k̂

)
k̂ (1.650)

Knowing that

ı̂2 = ĵ 2 = k̂2 = ı̂ĵ k̂ = −1 (1.651)

ı̂ĵ = −ĵı̂ = k̂ ĵ k̂ = −k̂ĵ = ı̂ k̂ı̂ = −ı̂k̂ = ĵ (1.652)
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we can simplify Equation (1.650) to

df (r)
dr

=
(

−∂fx

∂x
− ∂fx

∂y
k̂ + ∂fx

∂z
ĵ

)
+

(
∂fy

∂x
k̂ − ∂fy

∂y
− ∂fy

∂z
ı̂

)

+
(

−∂fz

∂x
ĵ + ∂fz

∂y
ı̂ − ∂fz

∂z

)

=
(

∂fz

∂y
− ∂fy

∂z

)
ı̂ +

(
∂fx

∂z
− ∂fz

∂x

)
ĵ +

(
∂fy

∂x
− ∂fx

∂y

)
k̂

− ∂fx

∂x
− ∂fy

∂y
− ∂fz

∂z
(1.653)

which is equal to

df (r)
dr

= ∇f (r) = ∇ × f − ∇ · f (1.654)

The divergence of the gradient of a scalar field f is a fundamental partial differential
equation in potential theory called the Laplacian of f . The Laplacian of f is shown
by ∇2f and is equal to:

∇2f = div gradf = ∇ · ∇f

=
(

∂

∂x
ı̂ + ∂

∂y
ĵ + ∂

∂z
k̂

)
·
(

∂f

∂x
+ ∂f

∂y
+ ∂f

∂z

)

= ∂2f

∂x2
+ ∂2f

∂y2
+ ∂2f

∂z2
(1.655)

�

Example 89 Derivative of a Vector Function with a Vector Variable If c is a constant
vector and f = c × r is a vector field, then

df(r)
dr

= grad f = grad (c × r) = 3c (1.656)

because r = xı̂ + yĵ + zk̂ and

df (r)
dr

= ∇ × f − ∇ · f = ∇ × (c × r) − ∇ · (c × r)

= (∇ · r) c − (∇ · c) r − (∇ × c) · r

=
(

∂x

∂x
+ ∂y

∂y
+ ∂z

∂z

)
c = 3c (1.657)

However, if f = cr, where c is a constant scalar, then its space derivative is a scalar,

df (r)
dr

= grad f = grad cr = 3c (1.658)
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because

df (r)
dr

= ∇ × f − ∇ · f = ∇ × cr − ∇ · cr

=

∣∣∣∣
∣∣∣∣

ı̂ ĵ k̂

∂

∂x

∂

∂y

∂

∂z
x y z

∣∣∣∣
∣∣∣∣

− c

(
∂x

∂x
+ ∂y

∂y
+ ∂z

∂z

)
= 3c (1.659)

Example 90 Matrix Form of Vector Field Derivative We may arrange the derivative
of a vector field ∇f (r),

df (r)
dr

= ∇f (r) = ∇fx ı̂ + ∇fyĵ + ∇fzk̂ (1.660)

in matrix form:

df (r)
dr

=
[

∂fi

∂xj

ı̂j ı̂i

]
=

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

∂fx

∂x
ı̂ı̂

∂fy

∂x
ı̂ĵ

∂fz

∂x
ı̂k̂

∂fx

∂y
ĵı̂

∂fy

∂y
ĵĵ

∂fz

∂y
ĵ k̂

∂fx

∂z
k̂ı̂

∂fy

∂z
k̂ĵ

∂fz

∂z
k̂k̂

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

−∂fx

∂x

∂fy

∂x
k̂ −∂fz

∂x
ĵ

−∂fx

∂y
k̂ −∂fy

∂y

∂fz

∂y
ı̂

∂fx

∂z
ĵ −∂fy

∂z
ı̂ −∂fz

∂z

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

(1.661)

The trace of the matrix indicates the divergence of f:

tr

[
∂fi

∂xj

ı̂j ı̂i

]
= ∇ · f = ∂fx

∂x
+ ∂fy

∂y
+ ∂fz

∂z
(1.662)

Example 91 Symmetric and Skew-Symmetric Derivative Matrix Recalling that every
matrix [A] can be decomposed into a symmetric plus a skew-symmetric matrix,

[A] = 1
2

[
[A] + [A]T

] + 1
2

[
[A] − [A]T

]
(1.663)
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we may determine the symmetric and skew-symmetric matrices of the derivative matrix:

[
∂fi

∂xj

ı̂j ı̂i

]T

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

−∂fx

∂x
−∂fx

∂y
k̂

∂fx

∂z
ĵ

∂fy

∂x
k̂ −∂fy

∂y
−∂fy

∂z
ı̂

−∂fz

∂x
ĵ

∂fz

∂y
ı̂ −∂fz

∂z

⎤

⎥⎥⎥⎥⎥⎥
⎦

(1.664)

[
∂fi

∂xj

ı̂j ı̂i

]
+

[
∂fi

∂xj

ı̂j ı̂i

]T

=

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

−2
∂fx

∂x

(
∂fy

∂x
− ∂fx

∂y

)
k̂

(
∂fx

∂z
− ∂fz

∂x

)
ĵ

(
∂fy

∂x
− ∂fx

∂y

)
k̂ −2

∂fy

∂y

(
∂fz

∂y
− ∂fy

∂z

)
ı̂

(
∂fx

∂z
− ∂fz

∂x

)
ĵ

(
∂fz

∂y
− ∂fy

∂z

)
ı̂ −2

∂fz

∂z

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

(1.665)

[
∂fi

∂xj

ı̂j ı̂i

]
−

[
∂fi

∂xj

ı̂j ı̂i

]T

=

⎡

⎢⎢⎢⎢⎢
⎢
⎣

0

(
∂fy

∂x
+ ∂fx

∂y

)
k̂

(
−∂fz

∂x
− ∂fx

∂z

)
ĵ

(
−∂fx

∂y
− ∂fy

∂x

)
k̂ 0

(
∂fz

∂y
+ ∂fy

∂z

)
ı̂

(
∂fx

∂z
+ ∂fz

∂x

)
ĵ

(
−∂fy

∂z
− ∂fz

∂y

)
ı̂ 0

⎤

⎥⎥⎥⎥⎥
⎥
⎦

(1.666)
The skew-symmetric matrix is an equivalent form for −∇ × f:

∇ × f =
[

∂fi

∂xj

ı̂j ı̂i

]T

−
[

∂fi

∂xj

ı̂j ı̂i

]
(1.667)

Example 92 div r = 3 and grad f (r) · r = r ∂f/∂r Direct calculation shows that if

f = r (1.668)
then

div r = ∇ · r =
(

∂

∂x
ı̂ + ∂

∂y
ĵ + ∂

∂z
k̂

)
·
(
x ı̂ + y ĵ + z k̂

)

= ∂x

∂x
+ ∂y

∂y
+ ∂z

∂z
= 3 (1.669)

To calculate grad f (r) · r we use

r =
√

x2 + y2 + z2 (1.670)

∂r

∂x
= x

r

∂r

∂y
= y

r

∂r

∂z
= z

r
(1.671)
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and show that

grad f (r) · r = ∇f (r) · r =
(

∂f

∂x
ı̂ + ∂f

∂y
ĵ + ∂f

∂z
k̂

)
·
(
x ı̂ + y ĵ + z k̂

)

= x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= x

∂f

∂r

∂r

∂x
+ y

∂f

∂r

∂r

∂y
+ z

∂f

∂r

∂r

∂z

= x2

r

∂f

∂r
+ y2

r

∂f

∂r
+ z2

r

∂f

∂r
= r

∂f

∂r
(1.672)

As an application, consider a vector function field f that generates a vector f (r)r at
every point of space,

f = f (r)r (1.673)

Divergence of f would then be

div f = div (f (r)r) = ∇ · f (r)r

=
(

∂

∂x
ı̂ + ∂

∂y
ĵ + ∂

∂z
k̂

)
·
[
xf (r) ı̂ + yf (r) ĵ + zf (r) k̂

]

= ∂

∂x
xf (r) + ∂

∂y
yf (r) + ∂

∂z
zf (r)

= f (r)

(
∂x

∂x
+ ∂y

∂y
+ ∂z

∂z

)
+ x

∂f (r)

∂x
+ y

∂f (r)

∂y
+ z

∂f (r)

∂z

= f (r)∇ · r + ∇f · r = 3f (r) + r
∂f (r)

∂r
(1.674)

Example 93 Second Derivative of a Scalar Field Function The first space derivative
of a scalar field function f = f (r) is the gradient of f :

df

dr
= ∇f (1.675)

The second space derivative of f = f (r) is

d2f

dr2
= d

dr

(
df

dr

)
= ∇ (∇f ) = ∇ × ∇f − ∇ · ∇f = −∇2f

= −
(

∂2f

∂x2
+ ∂2f

∂y2
+ ∂2f

∂z2

)
(1.676)

Example 94 Trajectory of a Vector Field A space curve r (s) whose tangent at every
point has the same direction as a vector field v (r) is called a trajectory of the field.

The trajectories of the vector field f = ∇ϕ are the orthogonal curves to the iso-
surfaces ϕ = const at every point of space. Therefore, the trajectories are the lines of
most rapid change of the function ϕ = ϕ (t).
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Consider a stationary velocity field v (r) of a moving fluid:

v = v (r) = v(x, y, z) (1.677)

The trajectory of a velocity vector field is called the streamline and shows the path of
motion of fluid particles. So, the trajectory of a fluid particle is a space curve r = r (s)

such that

dr × v (r) = 0 (1.678)

or equivalently
dx

vx(x, y, z)
= dy

vy(x, y, z)
= dz

vz(x, y, z)
(1.679)

Equation (1.678) is the vectorial differential equation of the trajectories of the vector
field v (r). Integration of the differential equation provides the family of trajectories of
the field. If the vector field is nonstationary, v = v (r, t), the streamlines change with
time and do not necessarily coincide with the actual path of particles at a specific time.
So, Equation (1.678) will become

dr × v (r, t) = 0 (1.680)

or dx

vx (x, y, z, t)
= dy

vy (x, y, z, t)
= dz

vz (x, y, z, t)
(1.681)

If v (r) = 0 at a point P , Equation (1.678) would be indeterminate. Such a point is
called a singular point.

Example 95 Time Derivative of Vector Field Consider a time-varying vector field
of a vector variable:

f = f (r (t)) (1.682)

The time derivative of f is

df
dt

= dfx

dt
ı̂ + dfy

dt
ĵ + dfz

dt
k̂

= (∇fx · v) ı̂ + (∇fy · v
)
ĵ + (∇fz · v) k̂ (1.683)

where v = dr/dt is the velocity of position vector r.

Example 96 � Laplacian of ϕ = 1/ |r| Consider a scalar field ϕ that is proportional
to the distance from a fixed point. If we set up a Cartesian coordinate frame at the
point, then

ϕ = k

|r| (1.684)



1.6 Fields 99

This is an acceptable model for gravitational and electrostatic fields. The Laplacian of
such a field is zero,

∇2ϕ = ∇2 k

|r| = 0 (1.685)

because
grad

k

|r| = − k

|r|2 grad |r| = − kr

|r|3 (1.686)

and therefore,

div grad
k

|r| = ∇ · −kr

|r|3 = − k

|r|3 ∇ · r − kr · ∇ 1

|r|3

= −3
k

|r|3 + 3
kr

|r|4 · r
|r| (1.687)

Example 97 � Tensor Fields Recalling that tensor is a general name for any type
of physical quantity, such that a tensor of rank 1 is a scalar, rank 2 is a vector, and
rank 3 is a 3 × 3 matrix, we can define a tensor field as a mathematical rule to assign
a unique value of a tensor to each point of a certain domain of space. Traditionally
tensor is used to indicate a tensor of rank 2 only.

Stress σ and strain ε are examples of the fundamental tensors in solid mechanics.
A stress field is defined by

[
σij (r)

] =
⎡

⎣
σx (r) τxy (r) τxz (r)
τyx (r) σy (r) τyz (r)
τzx (r) τzy (r) σz (r)

⎤

⎦ (1.688)

A tensor field may be nonstationary if it is a function of space and time. So, for a
nonstationary stress field σij (r, t), we may define a stress tensor at a specific instant
of time.

Example 98 Gradient of a Scalar Field Makes a Vector Field Consider a scalar
field f = f (r). The gradient of f assigns a vector ∇f at any position r, and hence,
f = ∇f defines a vector field in the same definition domain of f (r).

Example 99 Index Notation and Vector Analysis We may show a function f =
f (x, y, z) by f = f (x1, x2, x3) or in general by f = f (q1, q2, q3) to make it proper
for index notation. If we show the partial derivative of a scalar field function f =
f (q1, q2, q3) with respect to qi by a comma,

∂f

∂qi

= f,i (1.689)

then it is possible to write the vector analysis operations by index notation:

1. Gradient of a scalar field f = f (q1, q2, q3):

∇f = grad f =
3∑

i=1

f,i ûi (1.690)
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2. Laplacian of a scalar function f = f (q1, q2, q3):

∇2f =
3∑

i=1

f,ii (1.691)

3. Divergence of a vector field r = r(q1, q2, q3):

∇ · r = div r =
3∑

i=1

ri,i (1.692)

4. Curl of a vector field r = r(q1, q2, q3):

∇ × r = curl r =
3∑

j=1

3∑

k=1

εijk ûirj,k (1.693)

Example 100 � Nabla Identities If x and y are two vector functions of r and ϕ is
a scalar function of r, then we can verify the following identities:

∇ (x · y) = (∇x) · y + x · (∇y) (1.694)

∇ (x × y) = (∇x) × y + x × (∇y) (1.695)

∇ · ϕx = ∇ϕ · x + ϕ (∇ · x) (1.696)

∇ × ϕx = ∇ϕ × x + ϕ ∇ × x (1.697)

∇ × ∇ϕ = 0 (1.698)

∇ · (x × y) = (∇ × x) · y + x · (∇ × y) (1.699)

∇ · (∇ × x) = 0 (1.700)

∇ × (x × y) = (y · ∇) x − (x · ∇) y + x (∇ · y) − y (∇ · x) (1.701)

x × (∇ × y) = ∇y · x − x · ∇y (1.702)

∇ × (∇ × x) = ∇ (∇ · x) − ∇2x (1.703)

KEY SYMBOLS

0 zero vector
a, ẍ, a, v̇ acceleration
aijk inner product constant of xi

a, b, c, p, q vectors, constant vectors
[abc] scalar triple product a· (b × c)
A, B points
A, B,C axes of triad, constant parameters
A, B,C, D axes of tetrad, coefficient of a plane equation
b̂1, b̂2, b̂3 nonorthogonal unit vectors
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b = ż bong
bijk inner product of xi , ẋj

B(oxyz), B1, B2 body coordinate frames
c constant coefficient
ci weight factors of vector addition
cijk inner product of ẋi , ẋj

c = ṡ crackle
C space curve
Cp,Cq space curves on S for constant q and p at (p0, q0)

df total derivative of f
dr infinitesimal displacement
ds arc length element
Gdo position vector of B in G
[D2z] second-derivative matrix
f = f (r) scalar field function
f, g, h functions of x, y, z of q1, q2, q3

f0 isovalue
f (x, y, z) equation of a surface
f (x, y, z) = f0 isosurface of the scalar field f (r) for f0

f = f(r) vector field function
G gravitational constant
G(OXYZ) global coordinate frame
Gi kinematic constants of three bodies
ı̂, ĵ , k̂ unit vectors of a Cartesian coordinate frame
Î , Ĵ , K̂ unit vectors of a global Cartesian system G
j, ȧ, v̈,

...
r jerk

[J ] Jacobian matrix
k scalar coefficient
l a line
n number of dimensions of an nD space,

controlled digit for vector interpolation
n perpendicular vector to a surface z = g (x, y)

n̂ perpendicular unit vector
O origin of a triad, origin of a coordinate frame
OABC a triad with axes A, B , C
(Ouvw) an orthogonal coordinate frame
(Oq1q2q3) an orthogonal coordinate system
P point, particle
q, p parameters, variables
q = ḃ jeeq
r = |r| length of r
r position vector
rc position vector of curvature center of a space curve
BrA position vector of A relative to B
rp, rq partial derivatives of Gr
r‖, r⊥ parallel and perpendicular components of r on l
R radius
s arc length parameter
s = dj/dt snap, jounce
S surface
t time
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T = [τ1, τ2] the set in which a vector function is defined
u, v, w components of a vector r in (Ouvw)

u Darboux vector
u = q̇ sooz
u1, u2, u3 components of ûr

ûT transpose of û

ûl unit vector on a line l
ûr a unit vector on r
û1, û2, û3 unit vectors along the axes q1, q2, q3

ûr , ûθ , ûϕ unit vectors of a spherical coordinate system
ût , ûn, ûb unit vectors of natural coordinate frame
ûu, ûv, ûw unit vectors of (Ouvw)

û‖, û⊥ parallel and perpendicular unit vectors of l
v speed
v, ẋ, v velocity
v (r) velocity field
v (r) = 0 singular points equation
v vector space
x, y, z axes of an orthogonal Cartesian coordinate frame
x0, y0, z0 coordinates of an interested point P
x, y vector functions
xi relative position vectors of three bodies
X,Y,Z global coordinate axes
Xi global position vectors of three bodies
z = þ̈ larz
Z short notation symbol

Greek
α angle between two vectors, angle between r and l
α, β, γ directional cosines of a line
α1, α2, α3 directional cosines of r and ûr

δij Kronecker delta
ε strain
εi = 1/ |xi |3 relative position constant of three bodies
εijk Levi-Civita symbol
θ angle, angular coordinate, angular parameter
κ curvature
κ = κûn curvature vector
ρ curvature radius
σ stress tensor, normal stress[
σij (r)

]
stress field

τ curvature torsion, shear stress
ϕ = ϕ (r) scalar field function
ω angular speed

Symbol
· inner product of two vectors
D dimension
× outer product of two vectors
∇ gradient operator
∇f (r) gradient of f
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∇ × f = curl f curl of f
∇ · f = div f divergence of f
∇2f Laplacian of f
∇f = grad f gradient of f
P = ċ pop
� difference symbol
R set of real numbers
‖ parallel
⊥ perpendicular

EXERCISES

1. Position Vector Characteristics Three position vectors r1 = OA, r2 = DB , and r3 = EB
are illustrated in Figure 1.31.

(a) Determine the length of OA, DB , and EB .

(b) Determine the directional cosines of OA, DB , EB , and AO , BD , and BE .

(c) Determine the angle between OA and DB .

(d) Determine a vector to be perpendicular to both OA and DB .

(e) Determine the surface area of the box by using the vectors OA, DB , and EB .

(f) Determine the volume of the box by using the vectors OA, DB , and EB .

(g) Determine the equation of the perpendicular plane to OA, DB , and EB .

(h) � Determine the area of the triangle that is made up by the intersection of the planes
in (g) if the plane of OA includes point O , the plane of DB includes point D , and the
plane of EB includes point E.

106

A
O

x
y

z

3

r1

BD

E

r2

r3

Figure 1.31 Three position vectors OA, DB , and EB .

2. � Independent Orthogonal Coordinate Frames in Euclidean Spaces In 3D Euclidean
space, we need a triad to locate a point. There are two independent and nonsuperposable
triads. How many different nonsuperposable Cartesian coordinate systems can be imagined
in 4D Euclidean space? How many Cartesian coordinate systems do we have in an nD
Euclidean space?
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3. Vector Algebra Using

a = 2ı̂ − k̂ b = 2ı̂ − ĵ + 2k̂ c = 2ı̂ − 3ĵ + k̂

determine

(a) (a + b) × (a − b) (b) b · c × a

(c) a · b × c (d) a × b × c

(e) A unit vector perpendicular to b and c

4. Bisector Assume that in �OAB of Figure 1.32 we have ∠AOC = ∠BOC . Show that
the vector c divides the side AB such that

AC

CB
= |a|

|b|

YX

a
α α

G

Z

bc

A
B C

O

Figure 1.32 The bisector c divides the side AB such that AC/CB = |a| / |b|.

5. Vector Interpolation Determine a vector r = r (q), 0 ≤ q ≤ 1, to interpolate between
two position vectors with the tip points A and B :

(a) A (1, 0, 0) , B (0, 1, 0) (b) A (1, 1, 0) , B (−1, 1, 0)

(c) �A (1, 0, 0) , B (−1, 1, 0)

6. Vectorial Equation Solve for x:

ax + x × b = c

7. Loci of Tip Point of a Vector Find the locus of points (x, y, z) such that a vector from
point (2,−1, 4) to point (x, y, z) will always be perpendicular to the vector from (2,−1, 4)

to (3, 3, 2).

8. Rotating Triangle The triangle in Figure 1.33 remains equilateral while point A is
moving on an ellipse with a center at O . Assume a corner of the triangle is fixed at O .

(a) What is the path of point B?

(b) What is the area of the triangle?

(c) � If the side OA is turning with a constant angular velocity ω, then what is the area
of the triangle as a function of time t?

(d) � If point A is moving with a constant speed v, then what is the area of the triangle
as a function of time t?
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y

x
a

b

O

B
A

B

Figure 1.33 A rotating triangle.

9. Components of an Unknown Vector Consider a given vector a:

a = b

2

√
x2 + y2

(
ı̂ − ĵ

)

Solve the following equations for the components of the vector r = xı̂ + yĵ + zk̂:

r × a = b

2

√
x2 + y2 sinh cy k̂ r · a = 0

10. Cosine Law Consider a triangle ABC where its sides are expressed by vectors as

−→
AB = c −→

AC = b −→
CB = a c = a + b

Use vector algebra and prove the cosine law,

c2 = a2 + b2 − 2ab cos α

where

α = ∠ACB

11. Trigonometric Equation Use two planar vectors a and b which respectively make angles
α and β with the x -axis and prove the following trigonometric equation:

cos (α − β) = cos α cos β + sin α sin β

12. Spherical Trigonometric Equations Use vectors to prove the following spherical
trigonometric equations in a spherical triangle �ABC with sides a, b, c and angle α, β, γ :

cos a = cos b cos c + sin b sin c cos α

cos b = cos c cos a + sin c sin a cos β

cos c = cos a cos b + sin a sin b cos γ

13. Three Colinear Points Consider three points A, B , and C at a, b, and c. If the points
are colinear, then

cx − ax

bx − ax

= cy − ay

by − ay

= cz − az

bz − az

Show that this condition can be expressed as

(a × b) + (b × c) + (c × a) = 0
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YX

a
G

Z

bc

A

BC

Figure 1.34 Dividing a line in a given ratio.

14. Dividing a Line in a Given Ratio The points A and B are at positions a and b as shown
in Figure 1.34.

(a) Find the position vector c of point C that divides the line AB in the ratio of x/y:

AC

CB
= x

y

(b) Show that the equation of a line is

r − a = k (b − a)

(c) Show that the equation of a plane going through A and B and parallel to a vector u is

[(r − a) × (b − a)] · u

(d) Find the equation of a line going through a point A and parallel to a given vector u.

15. Volume of a Parallelepiped Consider three points A, B , C and determine the volume of
the parallelepiped made by the vectors OA, OB , OC .

(a) A (1, 0, 0), B (0, 1, 0), C (0, 0, 1)

(b) A (1, 0, 0), B (0, 1, 0), C is the center of the parallelepiped in part (a)

(c) � A (1, 0, 0), B (0, 1, 0), C is at a point that makes the volume of the parallelepiped
equal to 2. Determine and discuss the possible loci of C .

16. Moving on x -Axis The displacement of a particle moving along the x -axis is given by

x = 0.01t4 − t3 + 4.5t2 − 10 t ≥ 0

(a) Determine t1 at which x becomes positive.

(b) For how long does x remain positive after t = t1?

(c) How long does it take for x to become positive for the second time?

(d) When and where does the particle reach its maximum acceleration?

(e) Derive an equation to calculate its acceleration when its speed is given.
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17. Moving on a Cycloid A particle is moving on a planar curve with the following para-
metric expression:

x = r (ωt − sin ωt) y = r (1 − cos ωt)

(a) Determine the speed of the particle at time t .

(b) Show that the magnitude of acceleration of the particle is constant.

(c) Determine the tangential and normal accelerations of the particle.

(d) Using ds = v dt , determine the length of the path that the particle travels up to time t .

(e) Check if the magnitude of acceleration of the particle is constant for the following
path:

x = a (ωt − sin ωt) y = b (1 − cos ωt)

18. Areal Velocity Point A in Figure 1.35 is moving on the following circle such that its
position vector r sweeps out with a constant areal velocity h:

x2 − 2Rx + y2 = 0

Determine the velocity and acceleration of the point.

y

x 
C

ϕ
r

OB

A

R

Figure 1.35 A moving point on a circle with constant areal velocity.

19. Velocity v as a Function of Position x Determine the acceleration of a particle that is
moving according to the following equations:

(a) v2 = 2 (x sin x + cos x)

(b) v2 = 2 (x sinh x + cosh x)

(c) v2 = 4x − x2
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20. Relative Frequency Consider a body B that is moving along the x -axis with a constant
velocity u and every T seconds emits small particles which move with a constant velocity
c along the x -axis. If f denotes the frequency and λ the distance between two successively
emitted particles, then we have

f = 1

T
= c − u

λ

Now suppose that an observer moves along the x -axis with velocity v. Let us show the
number of particles per second that the observer meets by the relative frequency f ′ and
the time between meeting the two successive particles by the relative period T ′, where

f ′ = c − v

λ

Show that
f ′ ≈ f

(
1 − v − u

c

)

21. � A Velocity–Acceleration–Jerk Equation Show that if the path of motion of a moving
particle,

r = r(t)

is such that the scalar triple product of its velocity–acceleration–jerk is zero,

v · (a × j) = 0 v = dr
dt

a = d2r

dt2 j = d3r

dt3

then r(t) is a planar curve.

22. Velocity of End Point of a Stick Point A of the stick in Figure 1.36 has a constant
velocity vA = vı̂ on the x -axis. What is the velocity of point B?

y

R

h

A

B

x

Figure 1.36 A sliding stick.

23. � Disadvantages of a Nonorthogonal Triad Why do we use an orthogonal triad to
define a Cartesian space? Can we define a 3D space with nonorthogonal triads?

24. � Usefulness of an Orthogonal Triad Orthogonality is the common property of all use-
ful coordinate systems, such as Cartesian, cylindrical, spherical, parabolic, and ellipsoidal
coordinate systems. Why do we only define and use orthogonal coordinate systems? Do
you think the ability to define a vector based on the inner product and unit vectors of the
coordinate system, such as

r = (r · ı̂)ı̂ + (r · ĵ )ĵ + (r · k̂)k̂

is the main reason for defining the orthogonal coordinate systems?
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25. � Three Coplanar Vectors Show that if a × b · c = 0, then a, b, c are coplanar.

26. A Derivative Identity If a = a (t) and b is a constant vector, show that

d

dt
[a · (ȧ × b)] = a · (ä × b)

27. Lagrange and Jacobi Identities

(a) Show that for any four vectors a, b, c, d the Lagrange identity is correct:

(a × b) · (c × d) = (a · c) (b · d) − (a · d) (b · c)

(b) Show that for any four vectors a, b, c, d the following identities are correct:

(a × b) × (c × d) = [abd] c − [abc] d

[abc] d = [dbc] a + [dca] b + [dab] c

(c) Show that for any four vectors a, b, c, d the Jacobi identity is correct:

a × (b × c) + c × (a × b) + b × (c × a) = 0

28. � Flight and Local Time Figure 1.37 illustrates Earth of radius R with its local coor-
dinate frame E that is turning about the Z -axis of a global coordinate frame G with a
constant angular velocity ω. Consider an airplane that is flying at a height h above the
spherical Earth. The local time of the airplane is the time of the associated point on Earth
right below the airplane. So, the local time of the airplane is determined by its global
coordinates. The speed of the airplane v can be indicated by an angle α with respect to the
local constant latitude circle.

(a) An airplane is flying from Tokyo, Japan (35◦41′6′′N/139◦45′5′′E), to Tehran, Iran
(35◦40′19′′N/51◦25′27′′E). What would be the velocity of the plane to have a constant
local time. For simplicity assume that both cities are at 35◦41′ N.

(b) An airplane is flying from Tehran, Iran (35◦40′19′′N/51◦25′27′′E), to Oklahoma City,
Oklahoma (35◦28′3′′N/97◦30′58′′W). What would be the velocity of the plane to have
a constant local time. For simplicity assume that both cities are at 35◦40′N.

(c) An airplane is flying from Tehran, Iran (35◦40′19′′N/51◦25′27′′E), to Toronto, Canada
(43◦40′0′′N/79◦25′0′′W). What would be the velocity of the plane to have a constant
local time.

(d) An airplane flies from Toronto, Canada (43◦40′0′′N/79◦25′0′′W), to Tehran, Iran
(35◦40′19′′N/51◦25′27′′E). What would be the local time at Tehran if the plane flies
with a constant average velocity of part (c) and begins its flight at 1 AM.

(e) An airplane flies from Melbourne, Australia (37◦49′0′′S/144◦58′0′′E), to Dubai by the
Persian Gulf (25◦15′8′′N/55◦16′48′′E). What would be the velocity of the airplane to
have a constant local time.

(f) An airplane flies from Melbourne, Australia (37◦49′0′′S/144◦58′0′′E), to Dubai by the
Persian Gulf (25◦15′8′′N/55◦16′48′′E) and returns to Melbourne with no stop. What
would be the local time at Melbourne when the airplane is back. Assume the velocity
of the airplane on the way to Dubai is such that its local time remains constant and
the airplane keeps the same velocity profile on the way back.
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Figure 1.37 Flight and local time on Earth.

29. � Vector Function and Vector Variable A vector function is defined as a dependent
vectorial variable that relates to a scalar independent variable:

r = r(t)

Describe the meaning and define an example for a vector function of a vector variable

a = a(b)

and a scalar function of a vector variable

f = f (b)

30. � Index Notation Expand the mass moment of n particles m1,m2, . . . , mn about a line
û,

Iû =
n∑

i=1

mi

(
ri × û

)2

and express Iû by an index equation.

31. � Frame Dependent and Frame Independent A vector function of scalar variables
is a frame-dependent quantity. Is a vector function of vector variables frame dependent?
What about a scalar function of vector variables?

32. � Coordinate Frame and Vector Function Explain the meaning of BvP (GrP ) if r is a
position vector, v is a velocity vector, and v(r) means v is a function of r.

33. A Vector Product Identity Show that for any three vectors a, b, c in a Cartesian coor-
dinate frame, we have

a × (b × c) + b × (c × a) + c × (a × b) = 0

34. Expansion of a Vector with Respect to Two Vectors Consider two linearly independent
vectors r1 and r2. Show that every vector r3 coplanar with r1 and r2 has a unique expansion

r3 = −c1r1 − c2r2
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35. � Natural Coordinate System of a Parametric Path Assume the path s can be
expressed by a one-parameter function s = s (α), where α is the parameter. Show that

(a) r′′s ′ = s ′′s ′ût +
(
s ′)3

ρ
ûn

(b) ûn = ρ

(s ′)3

(
r′′s ′ − s ′′r′)

(c)
1

ρ
= 1

(s ′)3

√
(r′′ · r′′) (s ′)2 − (r′ · r′′)2

36. � Natural Coordinate System of a Planar Path Show that if a planar path is given by
a set of equations of a parameter α which is not necessarily the path length

x = x(α) y = y(α)

then the natural tangential unit vector and derivatives of the path are

ût = 1
√

x ′2 + y ′2

[
x ′
y ′

]
dût

dα
= x ′y ′′ − x ′′y ′

x ′2 + y ′2

ds

dα
=

√
x ′2 + y ′2 1

R
=

∣
∣x ′y ′′ − x ′′y ′∣∣
(
x ′2 + y ′2)3/2

Use the equations and show that the radius of curvature of the parabola y = x2/ (4a) is

R = 4a2

(
4a2 + x2

)3/2

37. � Natural Coordinate System and Important Planes Consider the space curve

x = (10 + 2 sin θ) cos θ y = (10 + 2 sin θ) sin θ z = 2 + 2 cos θ

(a) Find the equations of osculating, perpendicular, and rectifying planes and determine
them at θ = 45◦.

(b) Find the radius and coordinates of the center of curvature of the curve.

38. Moving on a Given Curve A particle is moving on a curve y = f (x) such that the
x -component of the velocity of the particle remains constant. Determine the acceleration
and jerk of the particle.

(a) y = x2

(b) y = x3

(c) y = ex

(d) Determine the angle between velocity vectors of curves (a) and (b) at their intersection.

(e) Determine the exponent n of y = xn such that the angle between velocity vectors of
this curve and curve (a) at their intersection is 45 deg.

39. � A Wounding Cable Figure 1.38 illustrates a turning cone and wounding cable that
supports a hanging box. If the cone is turning with angular velocity ω, determine:

(a) Velocity, acceleration, and jerk of the box

(b) The angular velocity ω such that the velocity of the box remains constant

(c) The angular velocity ω such that the acceleration of the box remains constant

(d) The angular velocity ω such that the jerk of the box remains constant
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Figure 1.38 A wounding cable on a cone.

40. � Natural Coordinate Unit Vectors A particle is moving on the following curves.
Determine the tangential ût , normal ûn, and binormal ûb unit vectors.

(a) x = sin α y = 8x2

(b) x = cos α y = −x2

(c) x = sin2 t y = −√
x

41. � Cylindrical Coordinate System and a Helix A particle is moving on a helix of radius
R and pitch a at a constant speed, where

z = aθ

2π

(a) Express the position, velocity, and acceleration of the particle in the cylindrical coor-
dinate system.

(b) Determine the unit vectors in the cylindrical coordinate system.

(c) Determine the radius of curvature.

42. � Torsion and Curvature of a Helix A point P is moving with arc length parameter s
on a space curve,

r(s) = 10 cos

√
2s

20
ı̂ + 10 sin

√
2s

20
ĵ + 10

√
2sk̂ =

⎡

⎢⎢⎢⎢⎢
⎣

10 cos

√
2s

20

10 sin

√
2s

20

10
√

2s

⎤

⎥⎥⎥⎥⎥
⎦

Determine the curvature κ and torsion τ .

43. Arc Length Element Find the square of the element of arc length ds in cylindrical and
spherical coordinate systems.

44. Plane through Three Points Show that the equation of a plane that includes the three
points

P1 (0, 1, 2) P2 (−3, 2, 1) P3 (1, 0,−1)

is
4x + 10y − 2z = 6
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45. Vectorial Operation of Scalar Fields Consider a scalar field φ(x, y, z),

φ(x, y, z) = 1
2ax2 + 1

2 by2 + cz

(a) Determine grad φ(x, y, z) = ∇φ(x, y, z).

(b) Determine curl grad φ(x, y, z) = ∇ × ∇φ(x, y, z).

(c) Show that ∇ × ∇φ = 0 regardless of the form of φ.

(d) Show that ∇ · (∇ × a) = 0 regardless of the form of a.

(e) Show that ∇ · (φa) = ∇φ · a + φ (∇ · a).
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